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Abstract

We prove the persistence of analyticity for classical solution of the Cauchy problem
for quasilinear wave equations with analytic data. Our results show that the analyticity
of solutions, stated by the Cauchy-Kowalewski and Ovsiannikov-Nirenberg theorems, lasts
till a classical solution exists. The approach applies to other quasilinear equations and
implies the persistence of space-analyticity of their classical solutions.

0 Introduction

Consider a quasilinear wave equation:

�u+ f(t, x, u,∇u, u̇) = 0, dimx = d, t ∈ R, (0.1)

ut=0 = u0, u̇t=0 = u1, (0.2)

where f is a real-analytic function of all its arguments and the Cauchy data u0, u1 are real-
analytic functions of x. To begin with we assume the periodic boundary conditions:

x ∈ Td = Rd/Γ (Γ is a lattice).

Regarding the solvability of the Cauchy problem (0.1), (0.2) two facts are well known: the
life-span of its classical solution is non zero, i.e., there is T > 0 such that on [0, T ) the problem
(0.1), (0.2) has a C2-solution u, e.g. see [Hör97] and Proposition 1.1 below. On the other
hand by the Cauchy-Kowalewski theorem [Kow75] there is a positive ε1 such that for t ∈ [0, ε1)
the solution u is real-analytic. Ovsiannikov and Nirenberg gave a beautiful generalization of
the latter theorem to equations (0.1), where the nonlinearity f is continuous in t (and still is
analytic in other variables), see in [Nis77]. By their result, for any real-analytic u0 and u1 there
is a positive ε2 such that for t ∈ [0, ε2) the solution u is real-analytic in x.

From the proofs of the Cauchy-Kowalewski and Ovsiannikov-Nireberg theorems all what
one can say about the life-spans of analyticity ε1 and ε2 is just their positivity. However, for
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the different classes of quasilinear wave equations, supplemented with sufficiently smooth initial
data, the life-span T of classical (smooth) solutions is often fairly large, sometimes T =∞. The
natural question is if the range of analyticity is extendable up to T .

By a general result of Alinhac and Metivier [AM84] the life-span of analyticity ε1 in the
Cauchy-Kowalewski theorem is equal to T . The proof of their theorem is very technical and
involves complicated recombination of the Taylor’s coefficients. (In [BB77] a similar result
was obtained earlier for solutions of the 2d Euler equation, using hyperbolic features of that
equation.) The aim of this paper is to give a short and transparent proof of this (and actually
more general) properties of solutions of quasilinear wave equations. We also show that the
life-span of analyticity ε2 in the Ovsiannikov-Nirenberg theorem equals the life-span time T .

Theorem 0.1. Let u(t, x), where 0 ≤ t ≤ T, x ∈ Td, be a solution of the Cauchy problem (0.1),
(0.2), Hm+1-smooth in x and C1-smooth in t. Then

i) if f and u0, u1 are real-analytic in (x1, . . . , xk), 1 ≤ k ≤ d, then u also is real-analytic in
these variables,

ii) if f and u0, u1 are real-analytic in all their arguments, then u also is.

Note that the first assertion of the theorem and the local in time existence of a classical
solution imply that if u0, u1 and f are sufficiently smooth in x, continuous in t and analytic
in x1, . . . , xk, u,∇u and u̇, then the problem (0.1), (0.2) has a unique local in time solution,
analytic in x1, . . . , xk (see below Corollary 1.9). This generalises the Ovsiannikov-Nirenberg
theorem for equations of such class.

Theorem 0.1 is proved in Section 1; its proof is based on properties of the nonlinear semi-
group, generated by the problem (0.1), (0.2). In Theorem 2.2, Section 2, we show that the
assertion holds for solutions of (0.1), (0.2) defined locally, in a characteristic cone in R × Rd.
The local result on the analyticity implies the analyticity of global solutions defined on the
whole torus. It straightforwardly generalizes to equations on homogeneous spaces and implies
the corresponding global results. For example, Theorem 0.1.ii) remain true for equations in the
standard sphere Sd, see Section 3.1. It also generalises to more general hyperbolic systems in
real-analytic manifolds; we will consider this problem in a separate paper.

We preface Theorem 0.1 to local Theorem 2.2 since the assertion i) of the former and its proof
remain true for other classes of equations for which the latter is no more valid. E.g. see Section 3
for quasilinear parabolic equations, the 3d Navier-Stokes system and NLS equations. In the
same time, the proof of assertion ii) does not generalise to non-hyperbolic equations (and for
quasilinear parabolic equations its claim is wrong). So while the Cauchy-Kowalewski theorem
is an assertion about hyperbolic equations, the Ovsiannikov-Nirenberg theorem describes a
general property of a large class of quasilinear systems.

We note that similar C∞-smooth properties of solutions for (0.1), (0.2) are known, see
[Koc93, Sog08].

Acknowledgments. The authors would like to thank S. Klainerman and H. Koch for very
useful discussions.

2



1 Global results: quasilinear wave equation on Td

1.1 Single equation.

Here we study the Cauchy problem for a quasilinear wave equation (0.1), (0.2) on Td = Rd/Γ,
where the function f is continuous in all variables, is Hm smooth in x, where

m > d/2 (or m > d/2− 1 if f does not depend on ∇u and u̇),

and is (real-)analytic in the arguments u,∇u, u̇. 1 We denote by Hm the Sobolev spaces
Hm(Td) with the norm ‖u‖m =

(
|∇mu|2L2

+ |u|2L2
)1/2, and abbreviate Hm+1 × Hm = Hm.

Consider the Cauchy operator for the linear wave equation:

�̃ : u 7→ (ut=0, u̇t=0,�u). (1.1)

It is well known that for any reasonable domain of definition this map is an embedding. For
any T > 0 consider the spaces

XT
m = C(0, T ;Hm+1) ∩ C1(0, T ;Hm), Y Tm = Hm × C(0, T ;Hm).

It is also well known (e.g., see [Tem97]) that the inverse operator defines a continuous mapping

�̃−1 : Y Tm → XT
m. (1.2)

(but certainly �̃ does not map XT
m to Y Tm ).

The spaces Y Tm and XT
m suit well to study solvability of the problem (0.1), (0.2). Indeed,

denote κ = |(u0, u1)|Hm , assume that u0, u1 are smooth and that u(t, x) is a smooth solution
of the problem such that

|U(t)|Hm ≤ 3κ ∀ 0 ≤ t ≤ T ′

with some T ′ > 0, where U(t) = (u(t), u̇(t)). Taking the Hm scalar-product of (0.1) with u̇(t),
we get that

1

2

d

dt
‖u̇‖2m + C

d

dt
‖u‖2m+1 ≤ C1‖u‖m‖u̇‖m + C2‖f(t, x, u,∇u, u̇)‖m‖u̇‖m.

By the apriori assumption and since the space Hm is an algebra, for 0 ≤ t ≤ T ′ the r.h.s. is
bounded by C(κ). Therefore |U(t)|2Hm ≤ κ2 + tC1(κ). So there exists T (κ) > 0 such that
|U(t)|Hm ≤ 2κ for 0 ≤ t ≤ T (κ). In the usual way the obtained apriori estimate implies

Proposition 1.1. There exists T ′ > 0, depending only on f and |(u0, u1)|Hm , such that the
problem (0.1), (0.2) has a unique solution u(t, x), 0 ≤ t ≤ T ′, belonging to the space Y T

′

m .

It is well known that in general the local solution u(t) cannot be extended to all t ≥ 0. The
construction below gives a convenient implicit description of the set of initial data for which a
solution exists for 0 ≤ t ≤ T . This construction is a part of the PhD thesis of the first author
[Kuk81].

1More precisely, the function f(t, x, u, ξ, η) defines a real-analytic mapping Rd+2 → C(0, T ;Hm), (u, ξ, η) 7→
f(·, ·, u, ξ, η).
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Denote �̃−1Y Tm = ZTm and provide ZTm with a norm, induces from Y Tm by �̃−1. This is a
Banach space,

�̃ : ZTm → Y Tm is an isomorphism, (1.3)

ZTm ⊂ XT
m continuously (1.4)

by (1.2), andXT
m+1 ⊂ ZTm. Denote by F the nonlinear differential operator F (u) = f(t, x, u,∇u, u̇)

and by Φ – the operator of the Cauchy problem (0.1), (0.2). That is

Φ(u) = �̃(u) + (0, 0, F (u)). (1.5)

Since m > d/2, then the space C(0, T ;Hm) is a Banach algebra. Using (1.3) and (1.4) we see
that the mapping

Φ : ZTm → Y Tm is analytic. (1.6)

It is well known that the Cauchy problem (0.1), (0.2) with zero in the r.h.s. replaced by any
function from C(0, T ;Hm) has at most one solution in XT

m. So Φ is an embedding. Consider
its differential in any point u ∈ ZTm:

dΦ(u)(v) =
(
vt=0, v̇t=0,�v + d3f [u]v + d4f [u]∇v + d5f [u]v̇

)
. (1.7)

Here f [u] = f(x, u,∇u, u̇) and dj denotes the differential with respect to the j-th variable.

Lemma 1.2. For any u ∈ ZTm the map dΦ(u) : ZTm → Y Tm is an isomorphism.

Proof. For any (v0, v1, g) ∈ Y Tm consider the corresponding Cauchy problem which we write as

�v + v +
(
d3f [u]v + d4f [u]∇v + d5f [u]v̇ − v

)
= g, v(0) = v0, v̇(0) = v1. (1.8)

Let v0, v1 and g be smooth and v be a smooth solution of the problem. Multiplying the equation
by v̇ in Hm and using that the space Hm,m > d/2, is an algebra, we get:

1

2

d

dt
‖v̇‖2m +

1

2

d

dt
‖v‖2m+1 ≤ C2‖v‖2m + C3‖v‖m+1‖v‖m + C4‖v̇‖m‖v‖m + ‖g‖m‖v‖m,

where the constants Cj are continuous functions of ‖u‖XT
m

. We immediately get from this
relation that

‖v‖XT
m
≤ C(‖u‖XT

m
)‖(v0, v1, g)‖Y T

m
.

In particular, dΦ(u) is an embedding. In the usual way this apriori estimate implies that (1.8)

has a unique solution v ∈ XT
m. Then we see from (1.8) that �̃v ∈ Y Tm . So v ∈ ZTm and

‖v‖ZT
m
≤ C ′(‖u‖ZT

m
)‖(v0, v1, g)‖Y T

m
.

Since Φ is an embedding, then Lemma 1.2 jointly with the inverse function theorem (see
[PT87], Appendix B) imply

Lemma 1.3. The mapping Φ is an analytic diffeomorphism of the space ZTm and a domain
O ∈ Y Tm .
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Therefore if for some (u1, u2, g) ∈ Y Tm the problem (0.1), (0.2) with zero in the r.h.s. of (0.1)
replaced by g has a solution u ∈ XT

m, then (u1, u2, g) ∈ O, u belongs to ZTm and analytically
depends on (u1, u2, g). Denote

O0 = {(u0, u1) ∈ Hm : (u0, u1, 0) ∈ O} (1.9)

Then for 0 ≤ t ≤ T the flow-maps

St0 : O0 → Hm, (u0, u1)→ (u(t), u̇(t)),

are well defined and analytic.
We recall that T is any positive number and that the domain O0 depends on the time-

interval [0, T ], O0 = O0([0, T ]). Similar we may study solutions of (0.1), (0.2) on negative
time-intervals [−T, 0]. The assertions above remain true for operators St0 with t ∈ [−T, 0] and
with the domain O0 = O0([−T, 0]). Finally, we may consider eq. (0.1) with the Cauchy data
given not at t = 0, but at t = t1, for arbitrary t1 ∈ [0, T ]. In this way we find that the flow-maps
St2t1 , where t1, t2 ∈ [0, T ], are analytic operators with domains Ot1([0, T ]).

It is clear from our construction that the operators St2t1 and St1t2 with domains Ot1([0, T ])

and Ot2([0, T ]) are inverse to each other, and that an operator St2t1 analytically extends to the
bigger domain Ot1([t1, t2]). This is its maximal domain of definition.

1.2 Families of equations.

We fix any k ∈ {1, . . . , d} and assume that

Td = Tk × Td−k

(that is, Γ = Γk ⊕ Γd−k and Tk = Rk/Γk, Td−k = Rd−k/Γd−k). We make the torus Tk = {θ =
(θ1, . . . , θk)} to act on Td by the shifts θR,

θR(x) = (xI + θ, xII),

where xI = (x1, . . . , xk) and xII = (xk+1, . . . , xd). Then the torus acts on the operators F by
shifting their coefficients: (θRF )(u) = f(t, θRx, u,∇u, u̇). Clearly we have

(� + θRF )(θRu) = θR
(
(� + F )(u)

)
. (1.10)

The operator of the shifted Cauchy problem θΦ(u) = �̃u+ (0, 0, (θRF )u) defines a mapping

Φ̄1 : Tk × ZTm → Y Tm , (θ, u)→ θΦ(u). (1.11)

Lemma 1.4. Assume that the function f(t, x, u,∇u, u̇) is analytic in xI . Then the mapping
Φ̄1 is analytic.

Proof. By (1.6) we only have to check that the mapping is analytic in θ. Since f is analytic in
xI , then θΦ(u) complex-analytically depends on θ from the complex vicinity of Tk. This implies
the assertion.
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By the results of Section 1.2, for any θ the operator Φ̄1(θ, ·) defines an analytic diffeomor-
phism of ZTm and a domain θO ⊂ Y Tm . By the implicit function theorem

the mapping θO 3 ξ →
(
Φ̄1(θ, ·)

)−1 ∈ ZTm is analytic in ξ and θ. (1.12)

Denoting θO0 = {(u0, u1) : (u0, u1, 0) ∈ θO} we see that for θ ∈ Tk and 0 ≤ t ≤ T the time-t
flow-mapping, corresponding to the nonlinearity θRF , is an analytic transformation

θS
t
0 : θO0 → Hm which analytically depends on θ. (1.13)

Relation (1.10), where (� + F )u = 0, implies that

θS
t
0 ◦ θR = θR ◦ St0. (1.14)

In particular, θRO0 = θO0.

Similar for any δ ∈ R we define

(δRF )(u) = f(t+ δ, x, u,∇u, u̇), δΦ = �̃ + (0, 0, δRF ).

Assume that there exists ρ > 0 such that for each value of (x, u,∇u, u̇) the function t 7→
f(t, x, u,∇u, u̇) analytically extends to the segment [−ρ, T + ρ]. Then the mapping

Φ̄2 : (−ρ, ρ)× ZTm → Y Tm , (δ, u) 7→ δΦ(u),

is analytic, and for any |δ| < ρ it defines an analytic isomorphism

δΦ : ZTm → δO ⊂ Y Tm ,

which analytically depends on δ. We set δO0 = {(u0, u1) ∈ Hm : (u0, u1, 0) ∈ δO} and denote
by δSt0 the mapping St0, corresponding to the operator δRF . Then

the operator δSt0 : δO0 → Hm is analytic and analytically depends on δ ∈ (−ρ, ρ). (1.15)

1.3 Analyticity of solutions

There is a delicate difference between the smoothness (or analyticity) of solutions for a nonlin-
ear wave equation in time and in space. For instance, there is a number of results which imply
for a solution a high smoothness in x and only a limited smoothness in t, see [Hör97]. An-
other example is given by the Ovsiannikov-Nirenberg theorem. Accordingly below we consider
smoothness of solutions for (0.1), (0.2) in x and in t separately.

Space-analyticity. Assume that the function f as above is analytic in xI , as well as the
initial data u0 and u1. Assume also that the problem (0.1), (0.2) has a solution u ∈ Y Tm . Then
(u0, u1) ∈ θO0 and by (1.13) θS

t
0u0 with 0 ≤ t ≤ T is well defined for θ from a small ball

Bε = {|θ| < ε} and is analytic in θ. Using (1.14) we have

u(t, xI + θ, xII) = (θR ◦ St0)(u0, u1)(x) = (θS
t
0 ◦ θR)(u0, u1)(x).

Since u0 is analytic in xI , then the mapping Tk → Hm, Bε 3 θ 7→ θR(u0, u1), is analytic.
Using (1.13) we get

6



Theorem 1.5. Assume that the nonlinearity f and the initial data u0, u1 are analytic in xI ∈
Tk and the problem (0.1), (0.2) has a solution u(t, x) ∈ Y Tm , 0 ≤ t ≤ T, x ∈ Td. Then u is
analytic in xI .

Time-analyticity. Now assume that the function f(t, x, u,∇u, u̇), where 0 ≤ t ≤ T , is
analytic in all its arguments, that the Cauchy data u0(x) and u1(x) are analytic and that
the problem (0.1), (0.2) has a solution u ∈ Y Tm . Denote U(t) = (u(t), u̇(t)). By the Cauchy-
Kowalewski theorem, the function u(t, x) is analytic for |t| < ε and x ∈ Td with a suitable ε > 0.
Therefore the curve [0, T ] → Hm, t 7→ U(t), also is analytic for |t| < ε. For any t∗ ∈ [0, T ] we
write the solution U(t) for t close to t∗ as U(t∗ + τ) = τSt∗0 ◦ U(τ). Using (1.15) we get

Lemma 1.6. Under the above assumptions the curve [0, T ]→ Hm, t→ (u, u̇)(t), is analytic.
In particular, u(t, x) is analytic in t ∈ [0, T ] for each x.

This result and Theorem 1.5 imply

Theorem 1.7. Assume that the nonlinearity f(t, x, u,∇u, u̇), where 0 ≤ t ≤ T , and the initial
data u0, u1 are analytic in all variables and the problem (0.1), (0.2) has a solution u(t, x) ∈ Y Tm .
Then u(t, x) is an analytic function in all its arguments.

We recall that for any t1, t2 ∈ [0, T ] the flow-map St2t1 defines an analytical isomorphism
Ot1([0, T ]) −→∼ Ot2([0, T ]). Denote by A(Td) the space of analytic functions on T d.

Corollary 1.8. If the nonlinearity f is analytic in x, u,∇u, u̇, then the mapping St2t1 defines a
bijection Ot1([0, T ]) ∩ A(Td) −→∼ Ot2([0, T ]) ∩ A(Td). If f is also analytic in t, then for each
u ∈ Ot1([0, T ]) ∩ A(Td) the curve (t1, t2) 7→ St2t1 (u) is analytic in t1 and t2.

Combining Theorem 1.5 with Proposition 1.1 we get

Corollary 1.9. Let the nonlinearity f and the Cauchy data u0, u1 be as in Theorem 1.5. Then
there exists T ′ > 0 such that for 0 ≤ t ≤ T ′ the Cauchy problem has a unique solution u ∈ Y T ′m ,
which is analytic in xI .

The global results above generilise to other classes of quasilinear PDE. E.g., to quasilinear
parabolic and Schrödinger equations, see Section 3. Moreover, they remain true for strongly
nonlinear hyperbolic equations. This will be shown in a separate publication

2 Local results

2.1 Equations in characteristic cones.

In this section we consider the problem (0.1), (0.2) defined in a characteristic cone in Rd+1.
Let T > 0 and 0 < a < T . Denote by K a truncated characteristic cone:

K = K(T, a) = {(t, x) ∈ [0, T − a]× Rd : |x| ≤ T − t}

(below for short we call it cone). Denote by Br ⊂ Rd the closed ball of radius r centered in the
origin and denote bt = BT−t. In this section we study the problem (0.1), (0.2) in the cone K,
where the Cauchy data are given on the ball K ∩ {t = 0}, identified with b0. The nonlinearity
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f is assumed to be analytic in all its variables and analytically extendable to Uε(K) × Rd+2,
where Uε(K) is the ε-vicinity of K in Rd+1, ε > 0. Then for a given Cauchy data the problem
(0.1), (0.2) has at most one classical solution, [Hör97]. Our goal is to prove for this solution
Theorem 0.1, assuming that the Cauchy data also are analytic.

Denote by Trρ(g) the restriction of a function g(x) to the ball Bρ, ρ > 0. It is well known
that there exists an integral operator L1 which for any s ≥ 0 defines a bounded linear map

L1 : Hs(B1)→ Hs
0(B2)

such that Tr1 ◦ L1 = id and L1u(x) = 0 for |x| ≥ r and each u, where r < 2 depends only on
L1. For ρ > 0 we denote by Lρ the linear operator Lρ : Hs(Bρ) → Hs

0(B2ρ), obtained from L
by the dilation (so Trρ ◦ Lρ = id). For integer k ≥ 0 denote by C([0, T − a];Hk(bt)) the space
of functions u(t, x) on the cone K such that2

Lu ∈ C([0, T − a];Hk(B2T )) where
(
Lu)(t) = Lt(u(t)),

and provide this space with the norm, induced from C([0, T −a];Hk(B2T )). Next, for m > d/2
denote Hm = Hm+1(b0)×Hm(b0) and set

X ′m = {u ∈ C([0, T − a];Hm+1(bt)) : u̇ ∈ C([0, T − a];Hm(bt))},
Y ′m = Hm × C([0, T − a];Hm(bt)).

We denote by �̃′ the operator of the Cauchy problem for � which sends any function u(t, x) ∈
X ′m to �̃′u = (u(0), u̇(0),�u) ∈ Y ′m−1.

Consider the torus T d = Rd/(4T )Zd, the corresponding spaces XT
m, Y

T
m , Z

T
m and the operator

�̃. We will identify functions on T d with 4T -periodic functions on Rd. Denoting by Tr the
operator of restricting a function on [0, T − a]× Rd to K, we get the mappings

Tr : XT
m → X ′m, Tr : Y Tm → Y ′m.

For ρ ≤ T and any u(x) ∈ Hs
0(B2ρ) denote by ι the operator which first extends u(x) to

the cube [−2T, 2T ]d by zero outside the ball B2ρ and next extends it to a 4T -periodic function.
This is a bounded linear operator from Hs

0(B2ρ) to Hs(T d), for any s ≥ 0 and any 0 < ρ ≤ T .
For a function u(t, x) we set (ιu)(t, x) = ι(u(t, ·)(x), if the r.h.s. is defined. Clearly Tr ◦ ι = id
on the space C([0, T − a];Hm(bt)).

Lemma 2.1. The inverse operator (�̃′)−1 equals

(�̃′)−1 = Tr ◦ �̃−1 ◦ ι. (2.1)

It defines a continuous mapping (�̃′)−1 : Y ′m → X ′m.

Proof. For (u0, u1, g) ∈ Y ′m consider functions ûj(x) = ι
(
LT (uj(x))

)
, j = 0, 1 and ĝ(t, x) =

ι
(
L(g)

)
. Then |(û0, û1, ĝ)|Y T

m
≤ C|(u0, u1, g)|Y ′m . The solution of the Cauchy problem for � in

T d, U(t, x) = �̃−1(û0, û1, ĝ), satisfies |U |XT
m
≤ C|(û0, û1, ĝ)|Y T

m
. Since solutions of the wave

2This space is formed by restrictions to K of functions from C([0, T − a];Hk(B2T )).
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equation in K depend only on the data in the characteristic cone, then (�̃′)−1(u0, u1, g) equals
to the restriction of U to K. This implies the assertions.

As above, we define a Banach space Z ′m as (�̃′)−1Y ′m, Z ′m ⊂ X ′m. Due to (2.1) Z ′m =
Tr (ZTm). Denote by Φ′ the operator of the Cauchy problem (0.1), (0.2) on K (cf. (1.5)). Then
the following diagram is commutative

Zm
Φ−−−−→ Ym

Tr

y y
Z ′m

Φ′−−−−→ Y ′m

where the second vertical line stands for the mapping TrT × TrT × Tr . So we derive from
Lemma 1.2 that for each u ∈ Zm the mapping dΦ′(u) is an isomorphism. Hence, Φ′ is an
analytic isomorphism

Φ′ : Zm
−→∼ O,

where O = Φ′(Zm) is a domain in Y ′m. We define O0 by the relation (1.9). This is a domain in
Hm such that the problem (0.1), (0.2) has a solution u ∈ X ′m if and only if (u0, u1) ∈ O0. The
mapping

Sτ0 (u0, u1) 7→ (u(τ), u̇(τ)), O0 → Hm,

is analytic since Φ′−1 is an analytic mapping on O.
Similar we may consider eq. (0.1) on the smaller cone

Kτ = {(t, x) ∈ [τ, T − a]× Rd : |x| ≤ T − t} = K ∩ ([τ, T − a]× Rd), 0 ≤ τ < T − a.

In this way we get a domainOτ ⊂ Hm(Kτ ) such that eq. (0.1) has a solution u(t, x), (t, x) ∈ Kτ ,
which is a trace on Kτ of a function from X ′m, if and only if (u(τ), u̇(τ)) ∈ Oτ . Clearly the
flow-map Sτ0 is an analytic operator Sτ0 : O0 → Oτ . In difference with Section 1 this is not an
embedding.

Now we define families of the Cauchy problems and of the corresponding operators Φ′. Since
the function f analytically in (t, x) extends to Uε(K), then eq. (0.1) analytically extends to the
bigger cone

K+ = {(t, x) ∈ [−ε, T + ε− a]× Rd : |x| ≤ T + ε− t}.

For any θ ∈ Bε = {|θ| ≤ ε}, as before, denote by θR the shift θR(t, x) = (t, x+ θ), and set

Kθ = θR(K) ⊂ K+, (θRf)(t, x, u∇u, u̇) = f(t, θRx, u∇u, u̇).

As before, θΦ
′ is the operator of the Cauchy problem with the nonlinearity θRf . The mapping

Φ̄1 : Bε × Z ′m → Y ′m, (θ, u)→ θΦ
′(u)

is analytic. For each θ ∈ Bε it defines an analytic diffeomorphism

Φ̄1(θ, ·) : Z ′m → θO ⊂ Y ′m,

which analytically depends on θ, as well as its inverse.
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Considering eq. (0.1) with the shifted nonlinearity θRf in a smaller cone Kτ we define the
corresponding domain θOτ ⊂ Hm(bτ ), formed by the initial data (u(τ), u̇(τ)) for which the
shifted equation has a solution in Kτ , extendable to a function from X ′m. Then the flow-map
of the shifted equation θS

τ
0 is an analytical mapping

θS
τ
0 : θO0 → θOτ

which analytically depends on θ, and θS
τ
0 ◦ θR = θR ◦Sτ0 . That is, denoting by u(t, x) a solution

of (0.1), (0.2) we have
u(t, x+ θ) = (θS

t
0)(u0(x+ θ, u1(x+ θ)).

In particular, if the functions u0 and u1 are analytic in the closed ball b0 (i.e. analytically
extend to its vicinity in Rd), then u(t, x) is analytic in x.

By the Cauchy-Kowalewski theorem the solution u(t, x) is analytic in the vicinity of the disc
b0×{0} in Rd+1. Considering shifts of the nonlinearity f by the time-translations and arguing
as above (cf. Section 1.3) we find that u is analytic in t. We have proven

Theorem 2.2. Assume that f is an analytic function on Uε(K) × Rd+2 and that the Cauchy
data u0, u1 are analytic in b0. Let the Cauchy problem (0.1), (0.2) has a solution u(t, x) ∈ Xm.
Then u is analytic.

An obvious local version of Theorem 1.5 also is true.
Since the open non-truncated characteristic cone Ko = {(t, x) ∈ [0, T )×Rd : |x| < T − t} is

the union of the closed truncated cones K(T ′, a) with T ′ < T and a > 0, then a natural version
of Theorem 2.2 holds for the cone Ko.

2.2 Global problems

In the assumptions of Theorems 1.7 let R be such that any two points of the ball BR are not
equivalent modulo the lattice Γ (which defines the torus T d). Define T ′ = min{2R, 2T} and
cover the layer [0, T ′] × Td by finitely many truncated cones K(2T ′, T ′), shifted by vectors
(0, ξ), ξ ∈ Rd. Then by Theorem 2.2 the solution u is analytic in the layer. Iterating this
construction (if T ′ < T ) we see that u is analytic in [0, T ] × Td. So the local results of this
section provide another proof of Theorems 1.5 and 1.7.

They also straightforwardly generalise to quasilinear wave equations in a connected open
domain in an analytic Riemann homogeneous space. In this case � = ∂2/∂t2 − ∆, where ∆
is the corresponding Laplace-Beltrami operator. Now the straight cone K should be replace
by the characteristic cone, constructed in terms of the geodesics of the non-flat metric, and
the translations θR – by the local isometies. This generalisation implies that Theorem 1.5 with
k = d and Theorem 1.7 remains true for quasilinear wave equations on a compact homogeneous
analytic Riemann manifold M . For example, on the standard sphere Sd.

3 Related results

3.1 Quasilinear parabolic equations

The approach to study analyticity and partial analyticity of solutions in the space-variables,
explained above, applies to other equations (to which the Cauchy-Kowalewski and Ovsiannikov-
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Nirenberg theorems do not apply). For example, to quasilinear parabolic equations

u̇−∆u+ f(t, x, u,∇u) = 0, x ∈ Td, t ≥ 0, ut=0 = u0, (3.1)

where f is sufficiently smooth in t, x and is analytic in u and ∇u. As in Section 1.1, one can
find suitable space ZTm and Y Tm such that the operator Φ of the Cauchy problem (3.1) defines an
analytic diffeomorphism between ZTm and a subdomain of the space Y Tm , see [Kuk81, Kuk82].
In the same way as in Section 2 we prove that if f is analytical in its space-variables, then
classical solutions of (3.1) with analytical initial data are space-analytic. This is a well known
result, which holds true for t > 0 without assuming analyticity of u0(x). But we also can prove
that if f is analytic in u,∇u and in a part of the space-variables, as well as the function u0,
then the solution u(t, x) is analytic in these space variables. This result seems new. Note that
the assertion of Theorem 1.7 does not hold for the problem (3.1), even when f = 0, since a
solution of the Cauchy problem (3.1)|f=0 with analytic u0(x) may be non-analytic in t when
t = 0.

The approach applies to the Navier-Stokes system on the d-torus with d = 2 or d = 3,
perturbed by a sufficiently smooth force h(t, x), see [Kuk82]. It implies that if the initial
data and the force h are analytical in space-variables x1, . . . , xk, where 1 ≤ k ≤ d, then a
corresponding strong solution u(t, x) remains analytical in this space-variables till it exists. See
[DG95] for a proof that a strong solution, corresponding to an analytical force h, is analytic.
Similar consider the 3d NSE in the thin layer M × (0, ε) = {(ϕ, r}), where M = S2 or M = T2.
At the boundary M ×{0}∪M ×{ε} impose the Dirichlet our Navier boundary conditions. Let
the force and initial data are
i) analytic in ϕ,
ii) bounded uniformly in t ≥ 0, uniformly in ε ∈ (0, 1).
Due to Raugel-Sell (see [TZ97] and references therein), if ε > 0 is sufficiently small, then there
exists a unique strong solution u(t, ϕ, r), t ≥ 0. Our result implies that this solution is analytic
in ϕ.

3.2 NLS equations

The result of Theorem 1.5 remains true for the nonlinear Schrödinger equation

u̇− i∆u+ f(t, x,Reu, Imu) = 0, ut=0 = u0, x ∈ Td,

where the complex function f is continuous in t, Hm-smooth in x (m > d/2) and real analytic in
Reu, Imu. The proof of the theorem remains literally the same if we choose XT

m = C(0, T ;Hm),
Y Tm = Hm × C(0, T ;Hm) and proceed as in Section 1 (cf. [Kuk81]). As before, we can replace
Td by any homogeneous Riemann space, analytic and compact.

3.3 Smooth and partially smooth solutions

Results of Sections 1 and 3.1 concerning spatial analyticity and partial spacial analyticity of
solutions remain true, with the same proof, for their spacial smoothness. For example if the
nonlinearity f and the initial data u0, u1 of the problem (0.1), (0.2) are smooth in the variables
x1, . . . , xk, 1 ≤ k ≤ d, and the problem has a solution u(t, x) ∈ Y Tm , then u also is smooth
in x1, . . . , xk. Similar, if for the Navier-Stokes system on T3 the initial data and the force are
smooth in some variable xl, then a corresponding strong solution is smooth in xl till it exists.
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