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0 Introduction: weak turbulence

Probably the weak turbulence (WT) originated in the work by Rudolf Peierls
[Pei97]. Modern state of affairs may be found in [ZLF92, Naz11]. The method of
WT applies to various hamiltonian PDE. E.g., to the cubic NLS equation, which
is the topic of my lecture:

u̇− i∆u+ i|u|2u = 0, x ∈ TdL = Rd/(LZd).

The WT deals with small solutions of this equation. That is, with solutions of
order one of the rescaled equation:

u̇− i∆u+ ε2ρ i|u|2u = 0, x ∈ TdL; ρ = const. (NLS)

Consider the exponential basis of the space of L-periodic functions

{ek(x) = eik·x,k ∈ ZdL}, Zd/L = ZdL

It is formed by eigenfunctions of −∆,

−∆ek = λkek; λk = |k|2 , k ∈ ZdL .

So there is plenty of exact resonances in the spectrum of the operator −∆, which
corresponds to the linearised at zero equation (NLS). This is the prerequisite for
the WT.

We decompose u in the Fourier series, u(t, x) =
∑
uk(t)ek(x), and write (NLS)

as
u̇k + iλkuk = −ε2ρi

∑
k1+k2=k3+k

uk1uk2ūk3 , k ∈ ZdL. (0.1)
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This is a hamiltonian system with the Hamiltonian

H4 =
ρ

4

∑
k1+k2=k3+k4

uk1uk2ūk3ūk4 .

In the WT they study solutions for (0.1) with a “typical” initial data u(0) =
u0, during “long” time. Time is so long that “solutions approach an invariant
measure of the equation”. They claim that for large values of time only res-
onant terms in (0.1) are important. For t � 1, they decompose solutions in
asymptotical series in ε and study this series as

ε→ 0, L→∞ .

They go to a limit, by replacing sums
∑

k∈Zd
L

by the integrals
∫
k∈Rd . In particular,

they study under that limit properly scaled quantities 1
2
|uk(t)|2, and claim that

1
2
〈|uk(t)|2〉 ∼ |k|−κ, κ > 0 , (KZ spectrum)

if |k| belongs to certain “inertial range”. Here “〈·〉” indicates some averaging.
The function |k| 7→ 1

2
〈|uk(t)|2〉 calls the energy spectrum of a solution, and its

specific form above is called the Kolmogorov-Zakharov (KZ) spectrum.
Certainly (KZ spectrum) cannot be true for all solution of (NLS). Say, since

due to the KAM theory the equation has time-quasiperiodic solutions which stay
analytic in x uniformly in t. So we must assume that u0 is random, and then try
to prove (KZ spectrum) for typical u0, or to incorporate in the averaging 〈·〉 the
ensemble-averaging.

It is not quite clear in what order we should send ε → 0 and L → ∞. So it
may be better to talk not about the limit of WT, but about WT limits (although
physicists do not do that).

Alternatively the method of the WT may be applied in the stochastic setting.
Following Zakharov - L’vov (see [ZL75, CFG08]) let us consider solutions of the
NLS equation with small damping and small random force:

u̇− i∆u+ ε2ρ i|u|2u = −ν(−∆ + 1)pu+
√
ν 〈rand. force〉, x ∈ TdL, (0.2)

where ε, ν � 1. Here ν is the inverse time-scale of the forced oscillations and ε is
their (small) amplitude. The scaling “

√
ν in front of the random force” is natural

since under this scaling solutions of the equation stay of order one when t→∞
and ν → 0. The physicists impose some relation between ν and ε, depending
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on the physical nature of the problem for which the equation is a model. The
random force usually is∑

k∈Zd
L

bk
d

dt
βk(t)eik·x, bk > 0 and bk → 0 fast at |k| → ∞ ,

where {βk(t)} are independent standard complex Wiener processes. It is a physi-
cal postulate, now rigorously proved under some restriction on the equation, that
when t → ∞ solutions of (0.2) converge in distribution to a stationary measure
µε,ν of the equation (which is a measure in the space, formed by functions u(x)):

Du(t) ⇀ µε,ν as t→∞

(here and below ⇀ signifies the weak convergence of measures). The measure
µε,ν is a “statistical equilibrium of the equation”. The fact that the convergence
above holds for each solution of the equation is called the mixing. See discus-
sion in [KN13] (we note that the existing proof of the mixing applies only to
damped/driven NLS equations with at most cubic nonlinearities; e.g. it does not
apply to (0.2), where the nonlinearity |u|2u is replaced by |u|4u).

Similar to the deterministic case, Zakharov - L’vov write the equation in the
Fourier presentation:

u̇k + iλkuk = −ε2ρ i
∑

k1+k2=k3+k

uk1uk2ūk3 − ν(λk + 1)puk +
√
ν bkβ̇

k
(t), k ∈ ZdL.

Zakharov - L’vov decompose solutions of (0.2) and/or its stationary measure
in series in a suitable small parameter, built from ε, ν and L, and study this series
as

this small parameter→ 0, L→∞.

Again, for this limit only resonant terms of the equation are important, and again
it is unclear in which order the two limits should be taken.

We choose ε2 = ν – this is within the bounds, usually imposed in physics, see
[Naz11]. It is illuminating to pass to the slow time τ = νt and write the (0.2) as

uτ − iν−1∆u+ iρ|u|2u = −(−∆ + 1)pu+ 〈rand. force〉′, x ∈ TdL. (ZL)

This is the equation I will discuss, mostly following my work with Alberto Maioc-
chi [KM13b, KM13a].
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We suggest to study the WT limits (at least, some of them) by splitting the
limiting process in two steps:

I) prove that when ν → 0, main characteristics of solutions uν and of the
stationary measure for (ZL) have limits of order one, described by certain well-
posed effective equation.

II) Show that main characteristics of solutions for the effective equation and
of its stationary measure have non-trivial limits of order one when L → ∞ and
ρ = ρ(L) is a suitable function of L.

Step I) is rigorously made in [KM13b], and I discuss it below. I stress
that the results of Step I) along cannot justify the predictions of WT since the
(KZ spectrum) cannot hold when the period L is fixed and finite. At the end
of the lecture, following [KM13a], I will show that a heuristic argument a-la
WT with a suitable choice of the function ρ(L) in the equation (ZL) leads in
the limit of L → ∞ to a Kolmogorov-Zakharov type kinetic equation and to a
(KZ spectrum).

1 Averaging for PDEs without resonances

In my works [KP08, Kuk10, Kuk13] I studied the long-time behaviour of solutions
for perturbed hamiltonian PDEs without strong resonances. Namely, in [KP08,
Kuk10] I considered perturbed integrable equations like

u̇− iuxx + i|u|2u = ν(uxx − u) +
√
ν 〈rand. force〉, x ∈ S1,

and in [Kuk13] – perturbed linear equations like

u̇+i(−∆+V (x))u+iν|u|2u = −ν(−∆+1)pu+
√
ν 〈rand. force〉, x ∈ Td, (1.1)

where p ∈ N and V (x) is such that there are no resonances in the spectrum
of −∆ + V (x). 1 The key idea to study these equations with small ν > 0 was
suggested in [Kuk10]: describe the long-time behaviour of the actions {1

2
|zk|2,k ∈

ZdL} of solutions, using certain auxiliary Effective Equation. The latter is some
well posed quasilinear SPDE with a non-local nonlinearity. It turned out that
for eq. (1.1) without resonances, the Effective Equation is linear and does not
depend on the Hamiltonian term νi|u|2u. Situation changes if we add a non-
linear dissipation and consider the equation

u̇+ i(−∆ + V (x))u+ iν|u|2u = −νC|u|2qu− ν(−∆ + 1)pu+
√
ν 〈rand. force〉.

1This is a mild restriction which holds for typical potentials V (x).
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Now the effective equation is non-linear, see [Kuk13].

2 Averaging for PDEs with resonances

Now I pass to the results of [KM13b, KM13a]. There we apply the method of
[KP08, Kuk10, Kuk13] to the equation of Zakharov-L’vov (0.2) with ε2 = ν,
written using the slow time τ = νt:

uτ − iν−1∆u+ iρ|u|2u = −(−∆ + 1)pu+ 〈rand. force〉′. (ZL)

We have to impose some restrictions on p and d to make the equation well posed.
E.g., p = 1 if d ≤ 3 (if p > 1, then d may be bigger than 3).

We write u(τ, x) =
∑

k∈Zd
L
uk(τ)eik·x and re-write the equation in terms of the

Fourier coefficients uk:

d

dτ
uk + iλkν

−1uk = −iρ
∑

k1+k2=k3+k

uk1uk2ūk3 − (λk + 1)puk + bk
d

dτ
βk(τ), (2.1)

where k ∈ ZdL. We wish to control the asymptotic behaviour of the actions
1
2
|uk|2(τ) and of other characteristics of solutions via suitable effective equation.

The Effective Equation for (2.1) may be derived through the interaction repre-
sentation, i.e. by transition to the fast rotating variables ak:

ak(τ) = eiν
−1λkτvk(τ), k ∈ ZdL.

Note that
|ak(τ)| ≡ |vk(τ)|. (2.2)

In these variables eq. (2.1) reeds

d

dτ
ak =− (λk + 1)pak + bk e

iν−1λkτ
d

dτ
βk(τ)

− iρ
∑

k1+k2=k3+k

ak1ak2 āk3 exp
(
−iν−1τ(λk1 + λk2 − λk3 − λk)

)
.

The terms, constituting the nonlinearity, oscillate fast as ν goes to zero, unless the
sum of the eigenvalues in the second line vanishes. So only the terms for which this

sum equals zero contribute to the limiting dynamics. The processes {β̃k
(τ), k ∈

ZdL} such that d
dτ
β̃

k
(τ) = eiν

−1λkτ d
dτ
βk(τ) also are standard independent complex
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Wiener processes. Accordingly, the effective equation should be the following
damped/driven hamiltonian system

d

dτ
vk = −(λk + 1)pvk −Rk(v) + bk

d

dτ
β̃k(τ), k ∈ ZdL , (Eff.Eq.)

where Rk(v) is the resonant part of the hamiltonian nonlinearity:

Rk(v) = iρ
∑

k1+k2=k3+k
|k1|2+|k2|2=|k3|2+|k|2

vk1vk2 v̄k3 .

It is easy to see that R(v) is the hamiltonian vector field R = i∇H4
res, where H4

res

is the resonant part of the Hamiltonian H4:

H4
res =

ρ

4

∑
k1+k2=k3+k4

|k1|2+|k2|2=|k3|2+|k4|2

vk1vk2 v̄k3 v̄k4 .

The lemma below comprises some important properties ofH4
res and of (Eff.Eq):

Lemma 2.1. 1) H4
res has two convex quadratic integrals of motion, H0 =

∑
|vk|2

and H1 =
∑

(|vk|2|k|2).
2) The hamiltonian vector-field i∇H4

res(v) is Lipschitz in sufficiently smooth
Sobolev spaces.

3) (Eff.Eq) is well posed in sufficiently smooth Sobolev spaces.

Due to the homogeneity of H4
res and the property 1) of the lemma, the hamil-

tonian equation with the Hamiltonian H4
res is similar to the space-periodic 2d

Euler equation, and the (Eff.Eq.) is similar to the 2d Navier-Stokes equations on
a 2-torus.

Recall that the actions of a solution uν(τ) are {Iνk(τ) = 1
2
|uνk(τ)|2, k ∈ ZdL}.

Theorem 2.2. Let {uνk(τ)} and {vk(τ)} be solutions of (0.2) and of (Eff.Eq) with
the same initial data. Then, for each k and for 0 ≤ τ ≤ 1,

DIνk(τ) ⇀ D 1
2
|vk(τ)|2 as ν → 0.

Does the effective equation control the angles ϕk = arg uk =: ϕ(uk)? No,
instead it controls the angles of of the a-variables aνk(τ) = eiν

−1λkτvνk(τ), which
fast rotate compare to the angles ϕk.

Now consider a stationary measure µνst for (0.2). Let uνst(τ) = (uνstk(τ),k ∈
ZdL) be a corresponding stationary solution, i.e.

D(uνst(τ)) ≡ µν .
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Theorem 2.3. Every sequence ν ′j → 0 has a subsequence νj → 0 such that

D(Ik(uνj)) ⇀ D(Ik(v(τ)) as νj → 0 ,

for each k, where v(τ) is a stationary solution for the (Eff.Eq)

But is the limit unique? And what we know about the phases ϕk(uνst(τ)) of
the stationary solutions uνst(τ)? If the effective equation is mixing, the answer is
given by the next result:

Theorem 2.4. Let (Eff.Eq) has a unique stationary measure m0. Then

µν ⇀ m0 as ν → 0.

So, if in addition equation (0.2) has a unique stationary measure and is mixing,
then for any its solution uν(τ) we have

lim
ν→0

lim
τ→∞
D
(
uν(τ)

)
= m0.

But when (Eff.Eq) has a unique stationary measure? This is the case when
the dimension d is not too high in terms of the exponent p which defines the
dumping:

Theorem 2.5. 1) Let p = 1. Then (Eff.Eq) has a unique stationary measure if
d ≤ 3.

2) Take any d. Then (Eff.Eq) has a unique stationary measure if p ≥ pd for
a suitable pd ≥ 0.

3 Limit L→∞ for the (Eff.Eq) on the physical

level of accuracy.

Consider the (Eff.Eq) with a bit more general damping:

d

dτ
vk = −Rk(v)− γkvk + bk

d

dτ
βk(τ), k ∈ ZdL,

γk = (a|k|m + b). Consider the moments of its solutions

M
k1,...kn1
kn1+1,...kn1+n2

(τ) = E(vk1 . . . vkn1
v̄kn1+1 . . . v̄kn1+n2

).
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In [KM13a] we study the behaviour of the moments as L → ∞ under the two
heuristic assumptions, traditionally used in the WT (see in [ZLF92]):

i) Quasi-Gaussian approximation:

M l1,l2
l3,l4
∼M l1

l1
M l2

l2
(δl3l1 + δl4l1 )(δl3l2 + δl4l2 ) ,

and similar for higher order moments.
ii) Quasi stationary approximation for equations in the chain of moment equa-

tions.
Denote

nk = LdMk
k/2 , b̃k = Ld/2bk .

The former is the normalised action (or the normalised energy) of the wave-
vector k. Accepting the two hypotheses above we get for the vector-function
(nk(τ),k ∈ ZdL) the Kolmogorov-Zakharov (KZ) kinetic equations:

Theorem 3.1. When L→∞ we have

d

dτ
nk = −2γknk + b̃2

k

+4
ρ2

L

∫
Γ

dk1dk2dk3
fk(k1,k2,k3)

γk + γk1 + γk2 + γk3

× (nk1nk2nk3 + nknk1nk2 − nknk2nk3 − nknk1nk3).

(3.1)

Here Γ is the resonant surface,

Γ = {(k1,k2,k3) ∈ R3d : k1 + k2 = k + k3, |k1|2 + |k2|2 = |k|2 + |k3|2},

γk = (a|k|m+b) and fk(k1,k2,k3) is some bounded smooth function, constructed
in terms of the normal frame in R3d to the surface Γ at a point (k1,k2,k3).

Because of the dissipation and the noise in the effective equation (Eff.Eq.),
the kinetic equation (3.1) is “better” then usually the kinetic equations in WT
are: the divisor in the integrand has no zeroes and growths to infinity with |k|.
In particular, analyzing equations (3.1) in the way, usual for the WT, we obtain
their homogeneous time-independent solutions with the KZ spectra.

I recall that γk = a|k|m+b. Looking for solutions of (KZ) such that nk depends
only on |k| and arguing a-la Zakharov (see in [ZLF92]) we find the following:

i) if 0 < a� b� 1, then

nk ∼ |k|−d+2/3 , or nk ∼ |k|−d.

ii) if 0 < b� a� 1, then

nk ∼ |k|−
m+3d−2

3 , or nk ∼ |k|−
m+3d

3 .
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H. Poincaré - PR 49 (2013), 1033–1056.

[Naz11] S. Nazarenko, Wave Turbulence, Springer, Berlin, 2011.

[Pei97] R. Peierls, On the kinetic theory of thermal conduction in crystals, Se-
lected Scientific Papers of Sir Rudolf Peierls, with commentary, World
Scientific, Singapore, 1997, pp. 15–48.

[ZL75] V. E. Zakharov and V. S. L’vov, Statistical description of nonlinear
wave fields, Radiophys. Quan. Electronics 18 (1975), 1084–1097.

[ZLF92] V. Zakharov, V. L’vov, and G. Falkovich, Kolmogorov Spectra of Tur-
bulence, Springer, Berlin, 1992.

9


