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We consider the 2D Navier–Stokes system, perturbed by a random force, such that
sufficiently many of its Fourier modes are excited (e.g. all of them are). We discuss the
results on the existence and uniqueness of a stationary measure for this system, obtained
in last years, homogeneity of the measures and some their limiting properties. Next we
use these results to prove that solutions of the equations obey the central limit theorem
and the strong law of large numbers.
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1. Introduction

In this work we interpret the 2D statistical hydrodynamics as a theory of the 2D

Navier–Stokes (NS) system, perturbed by a random force:

u̇− ν∆u+ (u · ∇)u+∇p = η(t, x) , div u = 0 , (1.1)

where u = u(t, x) ∈ R2 and p = p(t, x). The space-variable x belongs either to a

smooth bounded two-dimensional domain and then u vanishes on its boundary, or

to the torus T2 = R2/2πZ2, and then we assume that
∫
u dx ≡

∫
η dx ≡ 0.a In both

cases any vector-field v(x) admits a unique decomposition

v(x) = w(x) +∇p(x) , div w = 0 ,

and we denote by Π the projector v(x) 7→ w(x) (Π is called Leray’s projector , see

[4, 30]). Applying Π to the NS system (1.1) we re-write it as

u̇(t) + Lu(t) +B(u(t), u(t)) = η(t) . (1.2)

aPhysically the most important is the case when x belongs to an unbounded domain (say, x ∈ R2)
and the velocity-field u(x) is bounded, but has infinite energy

∫
|u|2 dx. This case leads to serious

complications which we cannot handle.
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Here we set L = −νΠ∆, B(u, u) = Π(u · ∇)u and re-denoted Πη = η. In (1.2)

we view u and η as curves in the Hilbert space H, formed by square-integrable

divergence-free vector-fields. By V we denote the space

V =

{
u(x) ∈ H

∣∣∣∣ ∂u∂x1
,
∂u

∂x2
∈ L2 and u satisfies the boundary conditions

}
,

given the norm ‖u‖ = (
∫
|∇u|2 dx)1/2, and denote by |·| the norm in the space H. It

is well known that if η(t) is a continuous curve in H, then for any u0 ∈ H Eq. (1.2)

has a unique solution u(t) (understood in the sense of generalised functions) such

that u(0) = u0 and u defines a continuous curve in H, as well as a square-integrable

curve in V , see e.g. [4, 30, 12].

Let {e1, e2, . . .} be a Hilbert basis of the space H, formed by eigenfunctions of

the operator L. In the case of periodic boundary conditions it is formed by the

trigonometric vector-fields

css
⊥ cos s · x , css

⊥ sin s · x , s ∈ S . (1.3)

Here S is a subset of Z2
0 = Z2 \ {0} such that S ∩−S = � and S ∪−S = Z2

0, s⊥ =(−s2
s1

)
for any vector

(
s1
s2

)
∈ Z2

0, and cs =
√

2
2π|s| is the L2-normalising factor.

By {αj} we denote the eigenvalues, corresponding to the eigenfunctions {ej},
and assume that α1 ≤ α2 ≤ · · · . Note that α1 > 0 and that in the periodic case

the eigenfunctions in (1.3) have the eigenvalues ν|s|2.

Concerning the random force η we assume that either it is a kick-force

η(t, x) =
∞∑

k=−∞
ηk(x)δ(t − Tk) , ηk(x) =

∞∑
j=1

bjξjkej(x) , (1.4)

where {bj ≥ 0} are some constants such that
∑
b2j <∞ and {ξjk} are independent

random variables with k-independent distributions. Or we assume that η is a “white

in time force”:

η(t, x) =
d

dt
ζ , ζ =

∞∑
j=1

bjβj(t)ej(x) , (1.5)

where {βj} are independent standard Wiener processes, defined for t ∈ R, and the

constants {bj ≥ 0} are such that∑
αjb

2
j <∞ . (1.6)

In the kick-case (1.4) solutions for (1.2) are normalised to be continuous from

the right and can be described as follows. For t ∈ [kT, (k + 1)T ), where k is any

integer, u is a solution of the free NS system (i.e. it satisfies (1.1) with η = 0), and

at t = (k + 1)T it has a jump, equal ηk+1, see Fig. 1. Denoting by S the operator

of the time-T shift along trajectories of the free NS system, we see that

u((k + 1)T ) = S(u(kT )) + ηk+1 . (1.7)
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Fig. 1. Solutions of the kicked equation.

This random system defines a Markov chain in the space H. (Here and below all

metric spaces are assumed to be provided with the Borel sigma-algebras.) Denot-

ing by u(t;u0) a solution for (1.2) and (1.4), equal u0 at t = 0, we see that the

corresponding Markov transition function P (t, v,Γ), where t ∈ TZ, v ∈ H and Γ is

a Borel subset of H, is

P (t, v,Γ) = P{u(t; v) ∈ Γ} . (1.8)

This Markov chain defines semigroups {St} and {S∗t } (t ∈ TZ+) in the space Cb
of bounded continuous functions on H and in the space P of probability (Borel)

measures, respectively. Due to (1.8),

(Stf)(v) = Ef(u(t; v)) , f ∈ Cb ,

(S∗t µ)(Γ) =

∫
P{u(t; v) ∈ Γ}µ(dv) , µ ∈ P .

A measure µ ∈ P is called a stationary measure if S∗t µ ≡ µ.

Concerning the independent variables ξjk we assume the following:

(H) Their distributions Dξjk have densities against the Lebesgue measure,

Dξjk = pj(s) ds, where pj ’s are functions of bounded total variation, supported

by the segment [−1, 1], and such that
∫ ε
−ε pj(s) ds > 0 for all integers j and all

ε > 0.

That is, we restrict ourselves to the case of bounded random kicks. Concerning

equations with unbounded kicks see [19].

Now let us pass to the white-forced NS system (1.2) and (1.5). Integrating (1.2)

from 0 to T > 0 we get:

u(T ) +

∫ T

0

(Lu(t) +B(u(t), u(t))) dt = u(0) + ζ(T )− ζ(0) . (1.9)

A random vector-field u(t, x), t ≥ 0, which defines an a.s. continuous process u(t) ∈
H such that its norm ‖u(t)‖ is square-integrable on every finite time-interval, is
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called a solution for (1.2) and (1.5) if the relation (1.9) holds a.s., for each T > 0.

The equality is understood in the sense of generalised functions of x.b

It is known (e.g. see [31]) that for any u0 ∈ H Eqs. (1.2) and (1.5) has a unique

solution, equal u0 for t = 0. Because of that, the white-forced NS system defines

a Markov process in H. Its Markov transition function P (t, v,Γ) still is defined by

the relation (1.8), where now t ∈ R+. The corresponding semigroups {St} and {S∗t }
are defined for t ≥ 0.

2. Stationary Measures

2.1. Kicked equations

Armen Shirikyan and the author studied stationary measures for the kicked equa-

tion (1.2) and (1.4) in [17, 21, 18, 24, 16] (the last paper is joint with A. Piatnitski).

In these works we assume that the force η satisfies the assumption (H) and that

bj 6= 0 , ∀ 1 ≤ j ≤ Nν , (2.1)

where Nν is a suitable constant, growing to infinity as ν → 0 (e.g. all bj are nonzero

numbers). In [17] (see also [21]) it is proved that the equation has a unique stationary

measure µ and solutions of (1.2) and (1.4) weakly converge to µ in distribution:

Du(t;u0) ⇀ µ as t→∞ , (2.2)

for all u0, where t ∈ TZ+.c To establish the result we used a Foias–Prodi type

reduction of the NS system to an Nν-dimensional system with delay which is

satisfied by the vector, formed by the first Nν Fourier components of any solu-

tion for the NS system (1.2) and (1.4). The new system turned out to be of the

Gibbs type (similar systems are studied, say, in [3]). By the assumption (2.1), the

noise, which stirs it, is non-degenerate. Therefore due to a Ruelle-type theorem,

the new system has a unique invariant (“Gibbs”) measure, so the NS system has a

unique stationary measure µ.

The condition (2.1) which guarantees the non-degeneracy of the reduced system

is crucial for all works on stationary measures for randomly forced PDEs, written

after [17] up to now. It is somewhat restrictive since Nν grows when the viscosity ν

decreases, and it is not clear if the uniqueness result remains true under the weaker

condition bj 6= 0 for j ≤ N , where N is an absolute constant. Still, it is shown

in [9] that if the system (1.2) is replaced by any its finite-dimensional Galerkin

approximation, then the stationary measure is unique provided that (2.1) holds

bI.e. if we multiply both parts of (1.9) by any smooth divergence-free vector-field w(x) and next
integrate against dx, applying formally integration by parts to the term (Lu) · w, we get equal
numbers.
cThe work was done during the year 1999, when its approach was discussed at a number of informal
seminars. At the end of that year the first talk on the results obtained was given at a meeting of
Moscow Mathematical Society and a preprint of the paper [17] appeared.
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with Nν = 3. This result follows from the Malliavin calculus since it can be checked

that the system satisfies the Hörmander non-degeneracy condition.

In [21, 18, 24, 16] we developed a coupling-approach to study the NS system and

related kick-forced dissipative nonlinear PDEs.d This approach uses not the Foias–

Prodi reduction, but the main lemma the reduction is based upon. It gives a shorter

proof of the uniqueness (under the assumption (2.1)) and implies that∣∣∣∣Ef(u(t;u0))−
∫
f(u)µ(du)

∣∣∣∣ ≤ C(|u0|)e−σt , ∀ f ∈ O , (2.3)

where t ∈ TZ+, σ > 0 is u0-independent and

O = {f ∈ Cb| |f | ≤ 1 and Lip f ≤ 1} . (2.4)

That is, for any u0 ∈ H the distribution Du(t;u0) exponentially fast converge to µ

in the Lipschitz-dual norm:

‖Du(t;u0)− µ‖∗L ≤ C(|u0|)e−σt , (2.5)

where for any two measures ν1, ν2 ∈ P ,

‖ν1 − ν2‖∗L = sup
f∈O

∣∣∣∣∫ f(u)ν1(du)−
∫
f(u)ν2(du)

∣∣∣∣ .
This convergence implies the weak convergence (2.2), see [5]. For the final version

of the proof see [24], where some ideas of L. Kantorovich are evoked to simplify and

clarify the arguments.

Independently a similar coupling-approach to study the problem (1.2), (1.4) and

(2.1) was developed by N. Masmoudi and L.-S. Young in [27].

2.2. White-forced equations

The first theorem on the uniqueness of a stationary measure for a white-forced NS

system is due to Flandoli and Maslovski [11] who considered Eq. (1.2), perturbed

by a non-smooth in the space-variable random force η(t, x). I.e. by a force (1.5),

where bj ∼ j−a, 1
2 ≤ a < 3

8 . This result is not quite satisfactory since, firstly, the

statistical hydrodynamics usually works with forces, smooth in the space-variable,

and, secondly, it is unnatural to impose a lower bound for the energy of each Fourier

mode.

After the work [17] on the kick-forced equations, E. Mattingly, Sinai [10] and

Bricmont, Kupiainen, Lefevere [2] applied the Foias–Prodi reduction to study the

dThe short paper [21] was written in December 2000 as the authors’ respond to some criticism
of the results of [17], made during my lectures at CIMS (New York). In January 2001, when the
work was presented at a work-shop in Warwick, Roger Tribe pointed out that the main idea of
the work is a form of coupling.
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NS system (1.2) with smooth in space white-force (1.5) which satisfies (2.1), reduc-

ing it to a finite-dimensional system with delay. Imposing the additional restriction

that the sum (1.5) is finite,

η(t, x) =
d

dt

N ′∑
j=1

bjβj(t)ej(x) , Nν ≤ N ′ <∞ , (2.6)

they proved that the system has a unique stationary measure µ and is ergodic. In

[10] the convergence (2.2) is not established, but it is shown that for any continuous

functional f on H and for µ-a.a. initial data u0, time-averages for f(u(t;u0)) con-

verge to the ensemble-average
∫
f dµ. Some techniques, which had been developed

in [10], were next used in works of other researches (including [2, 20]).

In [2] it is proved that the convergence (2.2) holds for µ-a.a. initial data and

is exponentially fast. This is the first work on the randomly forced NS equations,

where the exponentially fast convergence to a stationary measure was established.

Still, the stipulation “for µ-a.a.” restricts applicability of the results of that work.

In particular, they cannot be used to derive the central limit theorem for solutions

of (1.2) and (1.5), which we discuss in Sec. 4.

We also note that the assumption that the sum (2.6) is finite makes it impossible

to use the results of [10] and [2] to study the turbulence-limit ν → 0 (see Sec. 2.3).

Indeed, the restriction Nν ≤ N ′, where N ′ is fixed and Nν grows to infinity as

ν → 0, does not allow to make ν very small.

In [26], J. Mattingly applied a coupling to Eqs. (1.2) and (1.5) which satis-

fies (2.1) and (2.6), and proved that convergence (2.2) is exponential for all u(0).

Unfortunately, we found it very difficult to follow his arguments.

We also mention the papers [7, 14], devoted to studying a class of randomly

perturbed parabolic problems with strong nonlinear dissipation, including the

Ginzburg–Landau equation.

In [20] Armen Shirikyan and I show that the ideas which we developed earlier

to study the kicked equations, apply as well in the white-forced case. Technically

the main difference with the kick-case is that now to study distributions of solutions

we cannot any more use explicit formulas in terms of iterated integrals, but have to

use instead Girsanov’s formulas, related to those which were first exploited in [10].

In [20] we prove that Eqs. (1.2), (1.5) and (2.1) has a unique stationary measure

µ, and that the convergence (2.3) = (2.5) holds for all u0, with C = C1(1 + |u0|2).

Moreover, the convergence holds true if u(t), t ≥ 0, is a solution such that u(0) is

a random variable with a bounded second moment:

‖Du(t)− µ‖∗L ≤ C1(1 + E|u(0)|2)e−σt , t ≥ 0 . (2.7)

Applying the Ito formula to functionals |u|2m, m = 1, 2, . . ., and arguing by

induction we get that E|u(t;u0)|2m ≤ C(m,u0), uniformly in t ≥ 0 (see [10] and

[22]). Integrating the Lipschitz functionals fm,M(u) = |u|2m∧M against the signed

measure Du(t; 0)− µ, using (2.7) and going to limit in t, we find that
∫
fm,M dµ ≤
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C(m, 0) for each M > 0. Now application of the Beppo–Levi theorem implies that

all moments of the measure µ are finite:∫
|u|2m µ(du) <∞ , ∀m ∈ N . (2.8)

If the boundary conditions are periodic and the noise η as a function of x is

smoother than we have assumed originally and

∞∑
j=1

αljb
2
j <∞ for some l ≥ 1 , (2.9)

then for t > 0 any solution u(t;u0), u0 ∈ H, a.s. belongs to the space H l, formed

by vector-fields from H which belong to the Sobolev space of order l, and

E‖u(t;u0)‖rl ≤ Crl(|u0|) , ∀ t ≥ 1 , ∀ r ∈ N . (2.10)

Here ‖ · ‖l is the norm in H l, ‖u‖l = |(−∆u)l/2u| (in particular, ‖ · ‖1 = ‖ · ‖ and

‖ · ‖0 = | · |). Now the convergence (2.3) holds for locally Lipschitz functionals f on

H l−1 of polynomial growth:∣∣∣∣Ef(u(t;u0))−
∫
f(u)µ(du)

∣∣∣∣ ≤ C′f (|u0|)e−σf t , ∀ t ≥ 1 , f ∈ Ol−1 . (2.11)

Here Ol−1 =
⋃∞
p=1O

p
l−1, where Opl−1 denotes the set of continuous functionals f on

H l−1 such that

(i) |f(u)| ≤ 1 + ‖u‖pl−1,

(ii) |f(u)− f(v)| ≤ ‖u− v‖l−1(1 + ‖u‖p−1
l−1 + ‖v‖p−1

l−1 ),

see [22].

In particular, the energy functional f(u) = |u|2 belongs to O2
0, while the corre-

lation tensor gives rise to the functionals f(u) = ui(x)uj(y) (x and y are points in

the space-domain, i and j equals 1 or 2), which belong to O2
2 (and do not belong

to O2
0).

Similar refinement applies to the convergence (2.3) in the kick-forced case.

Let U(t), t ≥ 0, be a solution for (1.2) and (1.5) such that DU(0) = µ. Then

DU(t) ≡ µ and the Ito formula applies to the energy functional |U(t)|2. Taking

expectation and differentiating the result in t we find that 2νE‖U(t)‖2 =
∑
b2j =:

B0. That is, ∫
‖u‖2 µ(du) =

1

2ν
B0 (2.12)

(see [31, 10]). If (1.2) is the NS system with the periodic boundary conditions, then

using (2.10) with l = 1 and applying the Ito formula to the enstrophy functional

|rot u|2 = ‖u‖2 we get that∫
‖u‖22 µ(du) =

∫
|∆u|2 µ(du) =

1

2ν
B1 , B1 =

∑
αjb

2
j . (2.13)
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Since the functionals u 7→ ‖u‖2 and u 7→ ‖u‖22 belong to O1 and O2, respectively,

then for any solution u(t) = u(t;u0) (u0 ∈ H) of the NS equation under the periodic

boundary conditions we have:∣∣∣∣E‖u(t)‖2 − 1

2ν
B0

∣∣∣∣ ≤ C0e
−σ0t ,

∣∣∣∣E‖u(t)‖22 −
1

2ν
B1

∣∣∣∣ ≤ C1e
−σ1t

if t ≥ 1 and (2.9) holds with l = 3.

2.3. Stationary in space forces and solutions

In this section we restrict ourselves to the NS system under the periodic bound-

ary conditions. Now the basis {ej} is formed by the vector-fields (1.3), and it is

convenient to write it as {es(x), s ∈ Z2
0}, where for any s ∈ S, es(x) is the first

vector-field in (1.3) and e−s(x) is the second. Let us consider a white-force (1.5)

such that bs ≡ b−s. Then

ζ =
∑
s∈S

bscss
⊥(βs(t) cos s · x+ β−s(t) sin s · x)

= Re
∑
s∈S

b′ss
⊥(βs − iβ−s)eis·x , (2.14)

where b′s = bscs. Now αs = ν|s|2 and the assumption (1.6) takes the form∑
s∈S bs

2|s|2 <∞. Due to (2.14), for any y ∈ R2 we have

ζy(t, x) := ζ(t, x+ y) = Re
∑

b′ss
⊥(βs − iβ−s)(cos s · y + i sin s · y)eis·x

= Re
∑

b′ss
⊥(βys − iβ

y
−s)e

is·x ,

where βys = βys (t), t ∈ R, and for s ∈ S we have βys = βs cos s · y + β−s sin s · y,

βy−s = β−s cos s · y− β−s sin s · y. Since βs and β−s are independent normal random

variables and Dβ±s = N(0, |t|), then βys and βy−s also are independent and are

distributed as N(0, |t|). So the processes ζy(t), y ∈ R2, are distributed identically

with ζ(t).

Let µ be the unique stationary measure for Eqs. (1.1), (2.14) and (2.1) and let

U(t) = U(t, x), t ≥ 0, be a solution such thatDU(t) ≡ µ. Then Uy(t, x) = U(t, x+y)

is a stationary process in H, satisfying the equation with ζ replaced by ζy . Since

Dζy = Dζ, then DUy(t) is a stationary measure for the equation. Therefore, by the

uniqueness, DUy(t) ≡ µ. That is, the measure DUy(t) ∈ P is y-independent, and

the process U(t, x) is stationary both in time and space. Accordingly, the stationary

measure µ is homogeneous, i.e. it is preserved by transformations of the space H of

the form u(x) 7→ u(x+ y) (y is a fixed vector from R2).

Since
∫
U dx ≡ 0, then

0 = E
∫
U dx =

∫
(EU(t, x)) dx = (2π)2EU(t, x) .
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That is,

EU(t, x) ≡ 0 , ∀ t, x . (2.15)

If (2.9) holds with l = 3, i.e. if
∑
bs

2|s|6 <∞, then due to (2.11) with f(u) = u(x),

we have:

|Eu(t, x;u0)| ≤ C(|u0|)e−σt ,
for any u0 and any x.

2.4. The turbulence-limit

Due to (2.2) and (2.7), the unique stationary measure µ comprises asymptotic in

time stochastic properties of solutions for the NS system, cf. [1, Chap. VI] and

[12, Sec. 6.1]. If the force (1.5) is such that bj 6= 0 for all j, then for each positive

viscosity ν the equation has a unique stationary measure µν . The limiting properties

of this measure as ν → 0 describe the 2D turbulence. At this moment we do not

know much about the turbulence-limit for the NS system, apart from the relations

(2.12) and (2.13) (where µ = µν) and their immediate consequences.e Instead, in

the rest of this paper we discuss limiting properties of the stationary measure for

the kick-forced equation when the period T between the kicks goes to zero, and

asymptotic properties of time-averaged solutions, both in the white-forced and the

kicked-forced cases.

For some other PDEs, different from but related to the 2D NS system, some

progress in study of the turbulence-limit has been achieved in last years. Namely,

in [23] (also see in [24]) a weak form of the Kolmogorov–Obukhov law from the

theory of developed turbulence (see [25, Sec. 33]) is obtained for solutions

of the randomly forced nonlinear Schrödinger equation with small viscosity. In [8]

the small-viscosity 1D Burgers equation is considered. It is proved that when the

viscosity goes to zero, the stationary measure weakly converges to a limit, and the

limiting measure is studied. In [15] similar analysis is done for the nD Burgers

equation. We note that the weak convergence of the stationary measure is a nice

specific of the Burgers equation. Most likely, for the NS system this convergence

does not hold (so the limiting properties of the stationary measure µν correspond

to some “very weak” convergence of measures).

3. Kick-Forces with Short Periods Between the Kicks

Let us consider Eq. (1.2) with the kick-force
√
εη, where η has the form (1.4) and

T = ε, 0 < ε� 1:

η = ηε(t, x) =
√
ε

∞∑
k=−∞

ηk(x)δ(t − εk) . (3.1)

eIn particular, these relations imply that the energy-range for the periodic 2D turbulent flow
(described by Eq. (1.1)) is bounded uniformly in ν ∈ (0, 1].
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In addition to (H), we assume that E ξjk ≡ 0, E ξ2
jk ≡ 1, (1.6) holds and

bj 6= 0 , ∀ j . (3.2)

Denoting by uε(t;u0) a solution for (1.2) and (3.1), equal u0 for t = 0, due to the

results of Sec. 2.1 for any ε > 0 we have the convergence

Duε(t;u0) ⇀ µε as t→∞ ,

where µε is the corresponding stationary measure.

Let us set Xε(t) to be equal to
∫ t+0

0+
ηε(s) ds for t ∈ R+ ∩ εZ and use the linear

interpolation to extend Xε to R+. Due to the Donsker theorem (see e.g. [29]), we

have DXε(·) ⇀ Dζ(·) as ε → 0, where now ⇀ denotes the weak convergence of

measures in the space C([0, L],H), the process ζ is defined in (1.5) and L is any

positive number. This convergence underlies the “splitting up method for stochastic

PDEs” which in our situation states that

Duε(t;u0) ⇀ Du(t;u0) as ε→ 0

for each t ≥ 0, where u(t;u0) is a solution for (1.2) and (1.5), see in [22]. Using the

results of Sec. 2.2 we have

Du(t;u0) ⇀ µ as t→∞ .

So altogether we got the convergences

Duε(t;u0) −−−−−→
t→∞

µεy ε→0

Du(t;u0) −−−−−→
t→∞

µ

(the arrows signify weak convergence of measures). In [22] A. Shirikyan and the au-

thor of this paper show that µε ⇀ µ as ε→ 0. So (3.3) closes up to the commutative

diagram:

Duε(t;u0) −−−−−→
t→∞

µε

ε→0

y y ε→0

Du(t;u0) −−−−−→
t→∞

µ

That is, for distributions of solutions for the NS system, forced by the short-kick

force (3.1) and (3.2), the limits t→∞ and ε→ 0 commute.

4. Ergodic Properties of Solutions

In this section we use the convergences (2.5) and (2.7) and some versions of

the classical limiting theorems from the theory of probability to examine ergodic

properties of solutions for the randomly forced NS systems.



June 13, 2002 11:15 WSPC/148-RMP 00133

Ergodic Theorems for 2D Statistical Hydrodynamics 11

4.1. Ergodicity and the strong law of large numbers

Let us consider Eqs. (1.2) and (1.5) which satisfies (2.1). Let µ be its stationary

measure and Uτ (t), t ≥ τ , be a solution such that DUτ (τ) = µ. Then DUτ (t) = µ

for each t. Passing to the limit as τ → −∞, we obtain an a.s. continuous stationary

process U(t) ∈ H, t ∈ R (defined on a new probability space), such that DU(t) ≡ µ
and U satisfies (1.2), where η(t) is replaced by a new process η′(t) with the same

distribution (cf. [17, Proposition 1.5]). So U is a Markov process with the same

transition function P . Since µ is the unique stationary measure for the equation,

than the process U is ergodic, see [28, Theorem 3.2.6]. Therefore the strong law of

large numbers applies to the process h(U), where h is any function from L2(H, dµ)

(see [28, Theorem 3.3.1]):

〈h(U)〉T0 :=
1

T

∫ T

0

h(U(t)) dt −−−−−→
T→∞

∫
h(u)µ(du) a.s. (4.1)

If f ∈ O (see (2.4)), then this convergence holds for any solution:

Theorem 4.1. If (2.1) holds and u(t) = u(t;u0) is a solution of (1.2) and (1.5),

then

〈f(u)〉T0 −−−−−→
T→∞

∫
f(u)µ(du) a.s. (4.2)

for any f ∈ O and u0 ∈ H.

Proof. Let P be the measure, defined by the process u in the space of trajectories

H = C([0,∞),H). Then (4.2) states that the functionals on H, defined by the

l.h.s. of (4.2), converge P -a.s. as T →∞ to the constant
∫
f dµ. So to check (4.2)

we can replace u(t) by any weak solution u1(t) for (1.2) and (1.5), equal u0 at

t = 0.f Similar, (4.1) remains true if we replace U by a process u2(t) ∈ H, t ≥ 0,

distributed as U .

For any random variable T ′ ≥ 0 which is a.s. finite, we set

〈f(u)〉TT ′ := IT ′<T
1

T − T ′
∫ T

T ′
f(u(t)) dt .

Since |f | ≤ 1, then when checking (4.2) we can replace its l.h.s. by 〈f(u)〉TT ′ .
Due to [20, Proposition 2.6], the weak solutions u1, u2 can be chosen in such a

way that for a suitable random time T ′ as above we have

|u1(t)− u2(t)| ≤ Ce−σt , ∀ t ≥ T ′ ,

where C and σ are positive constants. Then

|〈f(u1)− f(u2)〉TT ′ | ≤ IT ′<T
1

T − T ′
∫ T

T ′
|u1 − u2| dt ≤ CIT ′<T

σ(T − T ′) e
−σT ′ . (4.3)

fThat is, by any process u1 such that u1(0) = u0 and u1 satisfies (1.2), where η is replaced by
a process ∂tζ′ and ζ′ has the same distribution as ζ in (1.5). This process defines in H the same
measure P .
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Since (4.1) with h = f implies that 〈f(u2)〉TT ′ →
∫
f dµ a.s. and since due to (4.3)

〈f(u1)〉TT ′ − 〈f(u2)〉TT ′ → 0 a.s., then (4.2) follows.

Remark 4.1. (1) If the boundary conditions are periodic and (2.9) holds with

some l ≥ 1, then due to (2.10) and (2.11), the theorem’s assertion is valid for any

f ∈ Ol−1.

(2) An obvious version of the theorem holds for solutions of the kicked equation

(1.2) and (1.4).

(3) The arguments used in the proof apply to study other asymptotic properties

of the solutions u. In particular, if g is a bounded Lipschitz functional on H and

the Law of Iterated Logarithm holds for the stationary process g(U), then it also

holds for the processes g(u).

4.2. The central limit theorem (CLT)

Let U(t) ∈ H, t ∈ R, be the stationary weak solution for (1.2), (1.5) and (2.1),

constructed above, and {F≤t, t ∈ R}, be the corresponding flow of σ-algebras. Let

f ∈ O be a functional such that
∫
f(u)µ(du) = 0. Then, using the Markov property

and (2.7), we get:

E(E(f(U0)|F≤−t)2 =

∫
(Ef(u(t;u0)))2 µ(du0)

≤ C2
1e
−2σt

∫
(1 + |u0|2)2 µ(du0) .

Since the integral in the r.h.s. is bounded due to (2.8), then

E(E(f(U0)|F≤−t))2 ≤ C2e
−2σt .

Let F0
≤t be the σ-algebra, generated by the random variables f(U(s)), s ≤ t. Then

F0
≤t ⊂ F≤t. Denoting E(f(U0)|F≤−t) = F and using the Jensen inequality we have:

E(E(F |F0
≤−t))

2 ≤ E(E(F 2|F≤−t)) = EF 2 .

So

E(E(f(U0)|F0
≤−t))

2 ≤ C2e
−2σt . (4.4)

Let us consider the real-valued stationary process X(t) = f(U(t)), t ∈ R. Since the

process U is ergodic, then X is ergodic as well. Due to the mixing property (4.4),

the CLT as in [6, Theorem 7.6],g applies to X, and for any positive T we have

D
(
f(U(0)) + · · ·+ f(U((n− 1)T ))√

n

)
⇀ σ̂N(0, 1) as n→∞ , (4.5)

gThis form of the CLT goes back to M. I. Gordin [13].
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where

σ̂2 = σ̂2(T ) = Ef(U(0))2 + 2
∞∑
n=1

E(f(U(0))f(U(nT ))) ≥ 0 . (4.6)

Due to (4.4), |Ef(U(0))f(U(nT ))| ≤ C
1/2
2 e−σnT . Therefore σ̂2 > 0 at least if T is

sufficiently large.

For any u0 ∈ H let us denote u(t) = u(t;u0). Taking a function h : R→ R such

that |h| ≤ 1 and Liph ≤ 1, we wish to estimate∣∣∣∣Eh(f(U(0) + · · ·+ f(U((n− 1)T )))√
n

)

−Eh
(
f(u(0) + · · ·+ f(u((n− 1)T )))√

n

) ∣∣∣∣ . (4.7)

Denoting n−1/2f(U(jT )) = f jU and n−1/2f(u(jT )) = f ju, we see that (4.7) is

majorized by

n−1∑
j=0

|E(h(f0
U + · · ·+ f jU + f j+1

u + · · ·+ fn−1
u )

−h(f0
U + · · ·+ f ju + f j+1

u + · · ·+ fn−1
u ))| . (4.8)

Due to [20, (2.39)], we can replace U and u by weak solutions having the same

initial conditions, such that (keeping for the new solutions the same notations) we

have

P{|U(jT )− u(jT )| ≥ C1e
−σjT } ≤ C2(1 + |u0|2)e−σjT . (4.9)

Let us denote the event in the l.h.s. of (4.9) by Qj , j = 0, . . . , n − 1. Since Lipf ,

Lip h ≤ 1, then everywhere outside Qj we have

|h(· · ·+ f jU + f j+1
u + · · ·)− h(· · ·+ f ju + f j+1

u + · · ·)| ≤ n−1/2C1e
−σjT .

As |h| ≤ 1, then due to (4.9) the jth term in (4.8) is bounded by

n−1/2C1e
−σjT + 2C2(1 + |u0|2)e−σjT ≤ C3e

−σjT ,

where C3 depends on |u0|. From other hand, since |f ju|, |f jU | ≤ n−1/2, then the jth

term is also bounded by 2n−1/2.

Let us denote by nT the smallest integer ≥ (logn)/σT . Then, majorizing the

first nT terms in (4.8) using the second estimate, and majorizing the rest of them

using the first, we get that

(4.8) ≤ 2n−1/2nT + C3

n−1∑
j=nT

e−σjT ≤ 2n−1nT +
C4

nσT
≤ C5n

−1/3 .
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Thus, for each h as above, (4.7) is bounded by C5n
−1/3. Hence,∥∥∥∥D(f(U(0)) + · · ·+ f(U((n− 1)T ))√

n

)

−D
(
f(u(0)) + · · ·+ f(u((n− 1)T ))√

n

)∥∥∥∥∗
L

= O(n−1/3) , (4.10)

where now ‖ · ‖∗L stands for the Lipschitz-dual norm for measures on the real line.

Since the convergence in this norm is equivalent to the weak convergence of measures

[5], then (4.5) and (4.10) imply the CLT for the process f(u(t)):

Theorem 4.2. If (2.1) holds, µ is the unique stationary measure for (1.2) and

(1.5) and u = u(t;u0) is any solution, then for any functional f ∈ O such that∫
f dµ = 0, we have the convergence

D
(
f(u(0)) + · · ·+ f(u((n− 1)T ))√

n

)
⇀ σ̂N(0, 1) as n→∞ , (4.11)

where σ̂ is defined in (4.6).

If the boundary conditions are periodic and (2.9) holds for some l ≥ 1, then f can

be taken from the space Ol−1. In particular, if l = 3, then we can take f(u) = ui(x),

or f(u) = ui(x)uj(y), where x and y are fixed points from the space-domain and

i, j ∈ {1, 2}.
The same result is true for solutions of the kicked equation (1.2), (1.4) and (2.1)

(in this case we choose T to be equal to the interval between the kicks). Proof

remains the same.

As an example, let us consider the NS equation under the periodic boundary

conditions, perturbed by the space-stationary force ∂tζ, where the process ζ is

defined in (2.14). Assuming that (2.9) holds with l ≥ 3 (i.e. that
∑
bs

2|s|6 < ∞)

and using (2.15) we get that

D
(
u(0, x) + · · ·+ u((n− 1)T, x)√

n

)
⇀ σ̂N(0, 1) as n→∞ . (4.12)

The dispersion σ̂2 is x-independent since it is defined in terms of the process U and

the latter is stationary in time and in space, see in Sec. 2.3.

We claim (giving no proof) that the integral version of (4.12) also is true:

D
(
T−1/2

∫ T

0

u(s, x) ds

)
⇀ σ′N(0, 1) as T →∞ . (4.13)

This convergence is related to the following physical effect. Let us imagine that we

are trying to measure the velocity u of the fluid at a point x, using some device.

Then what we really measure will be the averaged quantity const ·
∫ T

0
u(s, x) ds. If

our device is unsophisticated, then T � 1 and due to (4.13) we shall get the false

impression that u(t, x) is a Gaussian random variable. The normal distribution of

the velocity u was “observed” in a number of experiments in the first half of the last
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century (some of them are discussed in [1, Sec. 8.1]). We believe that the arguments

above explain this phenomenon.
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