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Abstract

In the thin domain Oε = T2 × (0, ε), where T2 is a two-dimensional
torus, we consider the 3D Navier-Stokes equations, perturbed by a white
in time random force, and the Leray α-approximation for this system. We
study ergodic properties of these models and their connection with the
corresponding 2D models in the limit ε→ 0. In particular, under natural
conditions concerning the noise we show that in some rigorous sense the 2D
stationary measure µ comprises asymptotical in time statistical properties
of solutions for the 3D Navier-Stokes equations in Oε, when ε� 1.

MSC: primary 35Q30; secondary 76D06, 60H15, 76F55.

Key Words: 3D Navier-Stokes equations; white noise; thin domains; Leray
α-model; ergodicity; stationary measure.

1 Introduction

In this paper we study the stochastic Navier-Stokes equations (NSE) in a thin
three-dimensional domain Oε = T2×(0, ε), where T2 is the torus R2/(l1Z×l2Z).
That is, in Oε we consider the 3D NSE, perturbed by a random force, which is
smooth as a function of the space-variable x, while as a function of time t it is
a white noise. Using the Leray projection Πε we write the equation as

u′ + νAεu + Bε(u, u) = fε + Ẇε . (1.1)

Here Aε is the Stokes operator −Πε∆, Bε(u, u) = Πε((u ·∇)u), fε(x) is a deter-
ministic part of the force and Ẇε(t, x) is the time-derivative of a Wiener process
Wε(t, x) in an appropriate function space. The equation is supplemented with
the free boundary conditions in the thin direction (see (2.4) below).
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This boundary value problem for the 3D NSE describes a special case of
anisotropic 3D turbulence, important for the meteorology (see, e.g., [9]). The
natural related question is to find out up to what extend this anisotropic 3D tur-
bulence can be approximated by 2D turbulence. In our work we continue the
rigorous study of this problem, initiated in [6].

The study of global existence of strong solutions for the deterministic Navier-
Stokes equations in thin three-dimensional domains began with the papers of
Raugel and Sell [24, 25], who proved global existence of strong solutions for
large initial data and forcing terms in the case of periodic or mixed boundary
conditions. After these initial results, a series of papers by different authors
followed, in which the results of Raugel and Sell were sharpened and generalised
in various ways, see [1, 27, 22, 14, 23, 15, 7]. In the quoted works it was also
shown that for ε � 1 solutions of the 3D NSE in an ε-thin domain becomes
close to solutions of the corresponding 2D NSE.

From other hand, the 2D NSE perturbed by a random force were intensively
studied in recent years by many authors, see [12, 19, 2, 11, 18, 13] and references
therein. Under some mild restriction on the random force it was proved that the
equation has a unique stationary measure, which governs stochastic properties
of its solutions as time goes to infinity; we refer to the survey [18] for details.

In [6] the authors of this work considered the 3D NSE in Oε, perturbed by
a random kick-force. That is, we considered the equation (1.1), when the r.h.s.
fε + Ẇε is replaced by a random kick-force. Assuming that the force is not
too big and is genuinely random we proved that the equation, regarded as a
random dynamical system in the H1-space of a divergence-force vector fields,
has a unique stationary measure; that all solutions converge to this measure
in distribution, and that the two-dimensional part of the stationary measure
(defined below) converges, when ε goes to zero, to a stationary measure for the
2D NSE on the torus T2. It is shown in [6] that the results obtained apply to
study asymptotical properties of various physically relevant characteristics of
the flow, described by the Navier-Stokes equations in the 3D domain Oε.

Our goal in this work is to extend the results of [6] to the stochastic NSE
(1.1). This tasks complicates by the well known difficulty: no matter how
small ε is, almost every solution for the stochastic NSE (1.1) exists only finite
time.1 So we cannot study its asymptotical in time properties directly. To
resolve this difficulty we apply a trick, often used in physics: we regularise the
equation, study its limiting properties and next remove the regularisation. For
the regularised equation we take the α-model, introduced by J. Leray in [21] for
an analytical study of the NSE. Namely, we replace the nonlinearity (u ·∇)u by
(Gαu · ∇)u, where Gα = (1 + αAε)−1, and write thus regularised equation as

u′ + νAεu + Bε(Gαu, u) = fε + Ẇε , (1.2)

see Section 2.5. Analytical properties of eq. (1.2) are as good as those of the

1More precisely, when time grows, the (strong) solution inevitably becomes very large, so
due to the well known lack of a corresponding result on the 3D NSE we cannot guarantee that
it keeps existing.
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2D NSE (in fact, they are even better). 2 In particular, for any initial data the
equation has a unique solution, existing for all t, and the techniques, developed
for the stochastic 2D NSE allow to show that the equation has a stationary
measure µα

ε , which is unique if the force Ẇε is nondegenerate. In the latter case
every solution u(t, x) of (1.2) converges to this measure in distribution:

D u(t) ⇀ µα
ε as t →∞ ,

see Theorem 2.5. Our goal is to study behaviour of the measure µα
ε when ε → 0

and α → 0.
To describe the results, we consider the operator Mε of averaging in the thin

direction x3, which maps 3D velocity fields on Oε to 2D fields on T2 by the
formula

(Mεu)(x′) =
(

1
ε

∫ ε

0

u1(x′, x3) dx3,
1
ε

∫ ε

0

u2(x′, x3) dx3

)
, x′ = (x1, x2) ∈ T2.

(1.3)
As in the previous works on the NSE in thin 3D domains, we compare Mεu(t),
where u(t) satisfies (1.2), with solutions for the 2D equation

v′ + A0v + B0(v, v) = f̃(x′) + ˙̃
W (t, x′), x′ ∈ T2 , (1.4)

where A0 and B0 are the corresponding 2D Stokes operator and the bilinear
operator, and f̃ and W̃ are limits of Mεfε and MεWε as ε → 0 (below we assume
that these limits exist). Under a mild nondegeneracy assumption on the noise
˙̃

W , the equation has a unique stationary measure µ (which is a Borel measure
in the L2-space of divergence-free vector fields on T2), see Theorem 2.2. We also
consider the α-approximation for equation (1.4) by putting B0((1+αA0)−1v, v)
in (1.4) instead of B0(v, v). Under the same nondegeneracy assumptions it also
has a unique stationary measure µα.

Our main results are presented in Theorem 3.1 and in Corollary 3.2. In
addition to some nondegeneracy conditions on the random forces they require
that (i) the correlation operator of the Wiener process Wε(t) in the L2-space of
vector-functions on Oε with respect to the normalised measure ε−1 dx1 dx2 dx3

has a finite trace, bounded uniformly in ε; (ii) the L2-norms of functions fε(x)
are bounded uniformly in ε, and (iii) the correlation operator K0 of 2D Wiener
process W̃ (t, x′) satisfies the condition tr A0K0 < ∞.

Theorem 3.1 states that the projection Mεµ
α
ε of a stationary measure µα

ε

for (1.2) weakly converges as ε → 0 to a unique stationary measure µα of the
2D Leray approximation which, in its turn, converges as α → 0 to the unique
stationary measure µ of 2D NSE (1.4). Moreover, we also show that Mεµ

α
ε

converges to µ as ε → 0 and α → 0 simultaneously. In particular, if the 3D
2Because of that the Leray α-model (with deterministic forces) and the closely related

Camassa–Holm equations were intensively used in the last decade for analytical study of
3D fluid flows. E.g., see [4, 3] and references in this articles.
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noise Ẇε is nondegenerate, then the stationary measure µα
ε is unique, and for

any solution uα
ε (t) of (1.2) we have

MεD uα
ε (t) t→∞−−−→ Mεµ

α
ε

ε,α→0−−−−→ µ ,

where the arrows indicates the weak convergence of measures.
Theorem 3.1 and also some compactness argument make it possible to deal

with the limit ‘first α → 0, next ε → 0’. Indeed, one can see that the set of
measures {µα

ε , 0 < α ≤ 1} is tight in the space of Borel measures in the corre-
sponding L2-space (see, e.g., Theorem 2.7 below). Let us denote by Lim α→0µ

α
ε

the set of all its limiting points as α → 0. By Theorem 2.7 this set consists
of (weakly) stationary measures for the 3D NSE (1.1). As a corollary from
Theorem 3.1 we get that the set Mε(Lim α→0µ

α
ε ) weakly converges to the 2D

stationary measure µ as ε → 0. This means that choosing for each ε > 0 any
µε ∈Lim α→0µ

α
ε we have µε ⇀ µ as ε → 0.

Theorem 3.1 and Corollary 3.2 jointly show that

lim
α→0

lim
ε→0

Mεµ
α
ε = lim

α,ε→0
Mεµ

α
ε = lim

ε→0
Lim
α→0

Mεµ
α
ε = µ. (1.5)

That is, in some rigorous sense the anisotropic 3D turbulence, described by
eq. (1.1) with a force, having bounded normalised intensity, may be approxi-
mated by the 2D turbulence, described by eq. (1.4). In particular, the averaged
normalised energy of the 3D flow is close to that of a corresponding 2D flow
(as well as averaging of any functional of the flow, which is continuous in the
L2-norm), see at the end of Section 3. In the same time, we cannot prove that
averaged enstrophy or enstrophy production of the 3D flow converges to that of
the 2D flow, see a discussion in Section 3.

The ideas which we use in the proof of Theorem 3.1 make it also possible to
show that Mε-component of solution uα

ε (t) for (1.2) converges in distribution as
ε, α → 0 to a solution v(t) of (1.4), if Mεu

α
ε (0) → v(0). See Proposition 3.3 for

exact statement.
Our results may be generalised to the case when Oε = Γ × (0, ε), where

Γ is any Riemann surface, e.g. the 2D sphere. Since the Earth atmosphere
occupies a thin layer around the Earth, then this generalisation may be relevant
for meteorology.

The paper is organised as follows. In Section 2 we describe the models under
the consideration, quote several known results concerning statistical solutions
and stationary measures and give some preliminary results on dependence of
statistical characteristics on ε as ε → 0. This section also contains Theorem 2.5
and Theorem 2.7 on the existence and limiting properties of stationary measures
µα

ε and corresponding statistical solutions for fixed ε, which, as we believe, are of
independent interest. In Section 3 we formulate our main results (Theorem 3.1
and Corollary 3.2). The proofs defer to Section 4. In this section we also prove
Proposition 2.6 which makes an auxiliary step in the proof of the uniqueness of
the stationary measure µα

ε for (1.2) in Theorem 2.5.
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Notations. We denote by D(·) the distribution of a random variable, denote
by the symbol ⇀ the weak convergence of measures and denote by | · |L(H) the
operator-norm for operators in a Hilbert space H.

Acknowledgements. We wish to thank Professor A. Tsinober for discussions
of physical aspects of the problem we consider in this work. Our research was
supported by EPSRC through grant EP/E059244.

2 Models

2.1 3D Navier-Stokes equations in a thin domain

Let Oε = T2 × (0, ε), where T2 is the torus T2 = R2/(l1Z× l2Z), l1, l2 > 0, and
ε ∈ (0, 1]. Let x = (x′, x3) = (x1, x2, x3) ∈ Oε, and let

u(x) = (u1(x), u2(x), u3(x)), x ∈ Oε,

stand for a vector function on Oε. On the domain Oε we consider the Navier-
Stokes equations (NSE) perturbed by a white noise

∂tu− ν4u +
3∑

j=1

uj∂ju +∇p = fε + Ẇε in Oε × (0,+∞), (2.1)

div u = 0 in Oε × (0,+∞), (2.2)

u(x, 0) = u0(x) in Oε. (2.3)

We supplement the equations with the free boundary conditions in the thin
direction. Thus we impose the following boundary conditions:

x′ ∈ T2 (i.e., u is (l1, l2)-periodic with respect to (x1, x2) ),
and
u3|x3=ε = 0, ∂3uj |x3=ε = 0, j = 1, 2,

u3|x3=0 = 0, ∂3uj |x3=0 = 0, j = 1, 2.

(2.4)

Here above fε = fε(x) is a deterministic time-independent force, and Ẇε(t) is
generalised derivative of a Wiener process with values in appropriate function
space (see Section 2.2 below).

Let Wε be the space, formed by divergence-free vector fields u = (uj)j=1,2,3

on Oε such that

u ∈
[
H2(Oε)

]3
,

∫
Oε

ujdx = 0, j = 1, 2,

and condition (2.4) is satisfied. Let Vε (respectively, Hε) be the closure of Wε

in
[
H1(Oε)

]3 (respectively, in
[
L2(Oε)

]3). In the space Hε we introduce the
normalised inner product

(u, v)ε =
1
ε

∫
Oε

uv dx, u, v ∈ Hε,
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and denote by | · |ε the corresponding norm. The norm in the space Vε is given
by

‖u‖ε ≡ |∇u|ε = ε−1/2 [aε(u, u)]1/2
.

Here and below

aε(u, v) =
3∑

j=1

∫
Oε

∇uj · ∇vj dx.

We denote by Aε the Stokes operator defined as an isomorphism from Vε

onto the dual V ′ε by

(Aεu, v)Vε,V ′
ε

= ε−1aε(u, v), u, v ∈ Vε ,

where (·, ·)Vε,V ′
ε

is the duality between Vε and V ′ε generated by the inner product
(·, ·)ε in Hε. The operator is extended to Hε as a linear unbounded self-adjoint
operator with a domain D(Aε) = Wε. Let Πε be the Leray projector on Hε in
(L2(Oε))3. Then

(Aεu)(x) = (−Πε∆u)(x), for almost all x ∈ Oε

for every u ∈ D(Aε).
Now we consider the trilinear form

bε(u, v, w) =
3∑

j,l=1

∫
Oε

uj ∂jvl wl dx, u, v ∈ D(Aε), w ∈ (L2(Oε))3.

It defines a bilinear operator Bε by the formula

(Bε(u, v), w)Vε,V ′
ε

= ε−1bε(u, v, w), u, v, w ∈ Vε ,

and the system (2.1)–(2.4) can be written in the Leray form (1.1).
It is proved in the works on deterministic equations, mentioned in Introduc-

tion (see, e.g., [15, 27]), that if the random component Ẇε of the force vanishes,
while fε ∈ Hε and u0 ∈ Vε are bounded in certain sense, then for ε � 1 the
problem (1.1) has a unique strong solution. In [6] a similar result has been
obtained for the 3D NSE, perturbed by a random kick-force. In this work we
are concerned with forces, having non-trivial white component Ẇε. We begin
their study with discussion of basic properties of the white forces and statistical
(weak) solutions.

2.2 Noise

We assume that the Wiener process Wε has the form

Wε(t, x) =
∑

j

bε
jβj(t) eλj

(x) +
∑

j

b̂ε
j β̂j(t)eΛε

j
(x) . (2.5)
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Here bε
j , b̂ε

j are real numbers such that

Bε
0 =

∑
j

(bε
j)

2 < ∞ , B̂ε
0 =

∑
j

(b̂ε
j)

2 < ∞ , (2.6)

and βj(t), β̂j(t) are standard independent Wiener process, defined on a proba-
bility space (Ω,F ,P) (so Wε(0) = 0). The system of vectors {eλj

, eΛε
j
; j ≥ 1} is

the orthonormal basis of Hε, formed by eigenfunctions of the Stokes operator,
corresponding to eigenvalues {λj ,Λε

j} (see Appendix). We also note that the
eigenfunctions eλj

have the structure eλj
= (ẽλj

; 0), where ẽλj
are the eigenfunc-

tions of the 2D Stokes operator on T2 which correspond to the same eigenvalues.

For any vectors f =
∑

j fj eλj
+
∑

j f̂jeΛε
j

and h =
∑

j hj eλj
+
∑

j ĥjeΛε
j

from Hε, we have E(Wε(t), f)ε = 0 and

E(Wε(t), f)ε(Wε(s), h))ε = (t ∧ s) (Kεf, h)ε,

where the correlation operator Kε is diagonal in the basis {eλj
, eΛε

j
, j ≥ 1}:

Kεeλj = [bε
j ]

2eλj , KεeΛε
j

= [b̂ε
j ]

2eΛε
j
, j = 1, 2, . . . (2.7)

The relations above imply that

E|Wε(t)|2ε = t ·

∑
j

[bε
j ]

2 +
∑

j

[b̂ε
j ]

2

 ≡ t · trKε < ∞.

It is well known that for a.e. ω the corresponding realisation of the process Wε

defines a continuous curve Wε(t) ∈ Hε, see [10].

2.3 3D statistical solutions

We recall now some results from [28] (see also [29]) concerning statistical solu-
tions of problem (2.1)-(2.4).

Let us denote by W−s
ε the completion of the space Hε with respect to the

norm |A−s
ε · |ε with some s > 5/4, and for any T > 0 let Zε

T be the space of
functions u(x, t) in C(0, T ;W−s

ε ) such that

| u |Zε
T
≡ sup

0≤t≤T
|A−s

ε (u(t))|ε +
(∫ T

0

|u(τ)|2εdτ
)1/2

< ∞ .

We also set

Zε = {u ∈ C(0,∞;W−s
ε ) : uT ∈ ZT for any T > 0} ,

where uT := u |[0,T ]. This is a complete metric space with respect to the distance

distZε(u, v) =
∞∑

n=1

2−n |(u− v)n|Zε
n

1 + |(u− v)n|Zε
n

.
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It is proved in [28] that if fε ∈ Hε and u0(x) is a random variable, independent
from the force Ẇε and satisfying E|u0|2+η

ε < ∞ for some η > 0, then the problem
(2.1)-(2.4) has a statistical solution which is a Borel probability measure Pε in
Zε supported by the set of functions u(x, t) in C(R+;W−s

ε ) such that

| u |T≡ sup
0≤s,t≤T

|A−s
ε (u(t)− u(s))|ε

|t− s|δ
+
(∫ T

0

‖u(τ)‖2εdτ
)1/2

< ∞ (2.8)

for all T (δ is any fixed number from the interval (0,1/2) ). It means that
there exists a new probability space and on this space there exist processes
û(t) ∈ Hε , t ≥ 0, and Ŵε(t) ∈ Hε, t ≥ 0, such that D(û(·)) = Pε and

• Ŵε is a Wiener process, distributed as the process Wε;

• Dû(0) = Du0 and the random variable û(0) is independent from the pro-
cess Ŵε;

• the process û(t), t ≥ 0, satisfies eq. (1.1) with Wε replaced by Ŵε. That
is,

û(t)− û(0) +
∫ t

0

(
νAεû + Bε(û, û)− fε

)
ds = Ŵε(t) ∀ t ≥ 0 , (2.9)

almost surely (the equality (2.9) is understood in the usual sense: it holds
true after we multiply it in Hε by any function ϕ ∈ Wε ∩ C∞(Oε) and
replace (Bε(û, û), ϕ)ε by −(Bε(û, ϕ), û)ε).

We note that in [28, 29] the statistical solutions are defined in terms of Kol-
mogorov’s equation. That definition is equivalent to the one above.

It is also proved in [28, 29] that eq. (1.1) has a stationary statistical solution
which is a statistical solution, defined by a stationary Borel measure Pε. That
is, the measure Pε is invariant under the translations

Zε → Zε, u(·) 7→ u(τ + ·), τ ≥ 0 .

The trace-measure of the measure Pε, i.e., its image under the mapping u(·) 7→
u(0), is a measure on Vε, called a weakly stationary measure for eq. (1.1).

Statistical solutions for the 2D NSE and the α-approximation for the 3D NSE
which we consider later in this work are defined similarly. In Theorem 2.7 below
we construct stationary statistical solutions Pε for (1.1) as limits (when α → 0)
of the statistical solutions to the corresponding α-approximations (1.2). Due to
lack of the uniqueness statement these 3D solutions Pε may be different from
the solutions constructed in [28] by the Galerkin method.

2.4 Corresponding 2D Navier-Stokes equations

Our goal is to study solutions for (2.1)–(2.4) when ε → 0. Under this limit
problem (2.1)–(2.4) is closely related to the 2D NSE on T2 (see Introduction).
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To describe this relation we first define the space

Ṽ =
{

u ∈ H1(T2; R2) : div′ u = 0,

∫
T2

u dx′ = 0
}

,

where the prime in div′u indicates that we consider the differential operation
with respect to the variable x′ = (x1, x2) (in contrast with x = (x1, x2, x3) ≡
(x′, x3)). Next we define the space H̃ as a closure of Ṽ in

[
L2(T2)

]2. We denote
by | · |T2 and (·, ·)T2 the (standard) L2-norm and L2-inner product in H̃, and
denote by ‖ · ‖T2 = |∇ · |T2 the norm in the space Ṽ . The subscripts in | · |T2 ,
(·, ·)T2 and ‖ · ‖T2 will be often omitted when apparent from the context.

One can see that the averaging operator Mε given by (1.3) maps the spaces
Hε and Vε in H̃ and Ṽ respectively. The operator

(M∗
ε v) (x) = u(x) with uj(x) = vj(x′) for j = 1, 2 and u3 = 0

defines isometric embeddings M∗
ε : Ṽ → (Vε, ‖ · ‖ε) and M∗

ε : H̃ → (Hε, | · |ε).
This operator is a right inverse to Mε, i.e. Mε ◦M∗

ε = id, and is adjoint to the
operator Mε : (Hε, | · |ε) → H̃. We also define the operator M̂ε in Hε (resp. in
Vε) by the formula

M̂εu = (Mεu; 0) = M∗
ε Mεu, u ∈ Hε (resp. u ∈ Vε). (2.10)

The operator M̂ε defines an orthogonal projector in Hε and in Vε. So

Vε = M̂εVε ⊕ N̂εVε , where N̂ε = I − M̂ε . (2.11)

By an analogy with the deterministic NSE (see, e.g., [27]) and the equation,
perturbed by a kick-force [6], we can conjecture that if the limits

f̃ = lim
ε→0

Mεf ∈ H̃ and b0
j = lim

ε→0
bε
j , j ≥ 1 ,

exist, then the Mε-projections of solutions to (2.1)–(2.4) should be close (when
ε � 1) to solutions of the following 2D NSE on T2

∂tv − ν4′v +
2∑

j=1

vj∂jv +∇′p = f̃ + ˙̃
W in T2 × (0,+∞), (2.12)∫

T2
v(t, x′) dx′ = 0 ; div ′v = 0 in T2 × (0,+∞), (2.13)

v(x′, 0) = ṽ0(x′) in T2. (2.14)

Here W̃ (t, x′) = W̃ (t) is the Wiener process in H̃ of the form

W̃ (t) =
∑

j

b0
jβj(t) ẽλj

, B0 =
∑

j

(b0
j )

2 < ∞ ,
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where ẽλj
≡ Mεeλj

are eigenfunctions of the 2D Stokes operator (see Appendix).
So a.a. realisation of W̃ defines a continuous trajectory in H̃, and the correlation
operator K̃0 of the process is the diagonal operator

K0ẽλj
= [b0

j ]
2ẽλj

, j = 1, 2, . . . ,

cf. Section 2.2.
In the abstract form problem (2.12)–(2.14) can be written as

u′ + νA0u + B0(u, u)− f̃ = ˙̃
W, u(0) = u0, (2.15)

where A0 and B0 are the corresponding two dimensional Stokes operator and
bilinear operator.

A random field u(t, x) is called a (strong) solution of the problem (2.12)-
(2.14) (written in the form (2.15)) on a segment [0, T ] if for a.a. ω it defines a
curve in C([0, T ], H̃) ∩ L2([0, T ], Ṽ ), satisfying

u(t)− u0 +
∫ t

0

(
νA0u(τ) + B0(u(τ), u(τ))− f̃

)
dτ = W̃ (t), (2.16)

for all 0 ≤ t ≤ T . A random field u(t, x) which defines a random process with
trajectories in the space

Z = C(0,∞; H̃) ∩ L2 loc(0,∞; Ṽ ) , (2.17)

is a solution of (2.15) for t ∈ [0,∞) if it is a solution on any finite segment [0, T ].
We also consider the process W̃ε(t) = MεWε(t). It has the form above with

the correlation operator MεKεM
∗
ε , which is the diagonal operator in H̃ with

the eigenvalues (bε
i )

2. Below we also deal with the 2D NSE (2.15) with W̃ = W̃ ε

and f = f̃ε = Mεfε:

u′ + νA0u + B0(u, u) = f̃ε + ˙̃
W ε, u(0) = uε

0 . (2.18)

The stochastic evolution equation (2.15) was studied by many authors (see,
e.g., [10, 28, 29, 17, 18] and the references therein). Here we will recall basic
result on the existence and uniqueness of its solutions from [17].

Theorem 2.1 If f̃ ∈ H̃ and u0 = uω
0 is a random variable in H̃ indepen-

dent from the process W̃ (t) and such that E|u0|2 < ∞, then eq. (2.15) has a
unique (up to equivalence) solution u(t), t ≥ 0. If, in addition, tr (A0K0) =∑

λj(b0
j )

2 < ∞ and E exp(β0 ‖ u0 ‖2) < ∞ for some β0 ∈
(
0, ν|K0|−1

L( eH)

)
,

then for every β1 ≤ 1
2 · β0

(
ν − β0|K0|L( eH)

)
we have

E exp
(

β0‖u(t)‖2 + β1

∫ t

0

| A0u(τ) |2 dτ

)
≤ eγt ·E exp(β0 ‖ u0 ‖2) (2.19)
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for all t ≥ 0, where γ = β0
2ν

(
| f̃ |2 +ν tr(A0K0)

)
. Furthermore for any positive

λ there exists a constant Dβ0,λ > 0 such that

E exp(β0‖u(t)‖2) ≤ Dβ0,λ + e−λ(t−s) ·E exp(β0‖u(s)‖2), t > s ≥ 0. (2.20)

Proof. The proof of the first part can be found in [17]. For the proof of
relations (2.19) and (2.20) we refer to [5]. �

The solution u, constructed in this theorem, will be denoted u(t;u0) =
u(t, x;u0). It defines a Markov process in the space H̃ with the transition
function Pt(v, ·) = Du(t; v); see [17, 28, 10, 18].

Clearly Theorem 2.1 remains true for problem (2.18) with the noise W̃ε =
MεWε and the force f̃ε depending on ε. The corresponding constants β0, β1

and γ in Theorem 2.1 can be chosen independent of ε provided that

|f̃ε|T2 ≤ c1 and tr
(
A0MεKM∗

ε

)
≡
∑

j

λj [bε
j ]

2 ≤ c2,

where the constants c1 and c2 do not depend on ε.

A Borel measure µ on H̃ is said to be a stationary measure for eq. (2.15) if
it is a stationary measure for the Markov process which the equation defines in
the space H̃. This means that∫

eH Eg(u(t;u0))µ(du0) =
∫

eH g(u0)µ(du0) for any g ∈ Cb(H̃), any t ≥ 0.

Let us write the force f̃(x) as f̃ =
∑

j f̃j ẽλj
.

Theorem 2.2 Assume that tr (A0K0) < ∞, that b0
j 6= 0 if f̃j 6= 0 (j = 1, 2, . . . ),

and that b0
j 6= 0, j = 1, . . . , N for N large enough. Then there exists a unique

stationary measure µ for (2.15), and every solution of (2.15) given by Theo-
rem 2.1 converges to µ in distribution when t →∞. This measure satisfies∫

eH exp
{
β0 ‖ u ‖2

}
µ(du) < ∞ for any β0 < ν|K0|−1

L( eH)
. (2.21)

Proof. The existence of the stationary measure is well-known (it follows from
the standard Krylov-Bogolyubov procedure, e.g. see [17, 28]). Concerning the
uniqueness of the measure under the imposed assumptions see [26, 18]. The
claimed estimate (2.21) follows from (2.20) and the Fatou lemma in the standard
way (see [28, 29] for similar arguments). �

Remarks. 1) If we replace the l.h.s. of (2.21) by
∫

exp
{
β0|u|2

}
µ(du), then

the assertion of Theorem 2.2 would remain true for the 2D NSE on any compact
Riemann surface Γ. Since the arguments of this work use only basic properties
of the operators Aε and Bε in (1.1), then its main results, stated in Section 3,
remain true for domain Oε = Γ× (0, ε).
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2) The hypotheses concerning diffusion coefficients b0
j in Theorem 2.2 are

not optimal and can be relaxed in one way or another. In particular, the recent
paper [13] suggests a rather general geometrical characterization of noises for
which the 2D NSE (2.12), (2.13) in the vorticity formulation is ergodic on the
square torus T2 = R2/(lZ× lZ) with f̃ ≡ 0.

The uniqueness of the measure µ implies the same property for statistical
solutions. More precisely, we have the following assertion.

Corollary 2.3 Let the hypotheses of Theorem 2.2 be in force. Then problem
(2.15) has a unique stationary statistical solution (in the sense of definitions in
Section 2.3) which is a Borel probability measure on the space Z given by (2.17).

Proof. Let u(t), t ≥ 0, be a solution of (2.15), such that Du(0) = µ. Its
distribution is a Borel measure P̃ in the space Z. This is stationary statistical
solution of the equation (cf. Section 2.3). Let P ′ be another stationary sta-
tistical solution. Then P ′ = Dv(·), where v(t) is a solution of (2.15) with W̃

replaced by another process, distributed as W̃ . So ϑ = Dv(0) is a stationary
measure for the Markov process, defined by the equation, and ϑ = µ by the
theorem above. Accordingly, P ′ is the distribution of trajectories of the Markov
process with the initial measure µ. So P ′ = P̃ ; that is, the stationary statistical
solution P̃ for the 2D NSE is unique. �

2.5 Leray α-approximation of stochastic 3D Navier-Stokes
equations

It is unknown if the 3D NSE (2.1)-(2.4) has a unique solution. So to make a
progress in its study we replace the equation by its Leray α-approximation [21],
in order later to send α to zero. That is, we consider the equations

∂tu− ν4u +
3∑

j=1

vj∂ju +∇p = fε + Ẇε in Oε × (0,+∞), (2.22)

div u = 0 in Oε × (0,+∞),

u(x, 0) = u0(x) in Oε ,

where the forces fε and Ẇε are the same as in (2.1). These equations are sup-
plemented with boundary conditions (2.4), and the vector field v = (v1, v2, v3)
solves the elliptic problem

v − α4v = u, div v = 0 in Oε × (0,+∞), (2.23)

and satisfies the same boundary conditions.
In the Leray representation the problem above takes the form

u′ + νAεu + Bε(Gαu, u) = fε + Ẇε, u(0) = u0, (2.24)
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where Gα = (I + αAε)−1, α ≥ 0, is the Green operator for problem (2.23) with
boundary conditions (2.4). The nonlinear term Bε(Gαu, u) in (2.24) possesses
the properties:

(Bε(Gαv, u), u) = 0

and

|Bε(Gαu1, u1)−Bε(Gαu2, u2)|ε ≤ Cα,ε (‖u1‖ε + ‖u2‖ε) ‖u1 − u2‖ε. (2.25)

This allows to obtain for the α-model results, similar to those in the 2D case.

Theorem 2.4 Assume that Wε(t) is the Wiener process in Hε of the form
(2.5) and relations (2.6) holds. Let f ∈ Hε. Then there exists a unique (strong)
solution u(t) to (2.24) for any initial data u0 which is independent from the
noise and satisfies E|u0|2ε < ∞. Moreover, for any n ≥ 1 we have

E|u(t)|2n
ε +

νn

2

∫ t

0

E|u|2(n−1)
ε ‖u‖2εdτ ≤ E|u(0)|2n

ε + bnt ≤ ∞ , (2.26)

where bn = Cnν1−nσn
ε with σε = tr Kε + λ1

ν |fε|2ε and Kε is given by (2.7).

Proof. Due to the regularity in (2.25) the existence and uniqueness of strong
solutions can be obtained by the same argument as for 2D NSE (see, e.g., [17, 18]
or [10]). Now we prove (2.26). Here our arguments are formal. To make them
rigorous one should consider the Galerkin approximations for the problem.

Let us consider the functional F (u(t)) = |u(t)|2n
ε . Using the Ito formula we

have

dF = 2n|u|2(n−1)
ε (u, du)ε + n

{
|u|2(n−1)

ε tr Kε + 2(n− 1)|u|2(n−2)
ε (Kεu, u)ε

}
dt.

Since (u, du)ε = −ν‖u‖2εdt + (u, fεdt + dWε)ε, then integrating the equality
above we obtain

E|u(t)|2n
ε + 2νn

∫ t

0

E|u|2(n−1)
ε ‖u‖2εdτ

= E|u(0)|2n
ε + 2n

∫ t

0

E
(
|u|2(n−1)

ε (u, fε)ε

)
dτ

+n

∫ t

0

E
(
|u|2(n−1)

ε tr Kε + 2(n− 1)|u|2(n−2)
ε (Kεu, u)ε

)
dτ.

Therefore

E|u(t)|2n
ε + νn

∫ t

0

E|u|2(n−1)
ε ‖u‖2εdτ

≤ E|u(0)|2n
ε + Cn

(
tr Kε +

λ1

ν
|fε|2ε + |Kε|L(Hε)

)∫ t

0

E|u|2(n−1)
ε dτ.

13



Since |Kε|L(Hε) ≤ tr Kε, then the second term in the r.h.s. is bounded by

C ′nσε

∫ t

0

E|u|2(n−1)
ε dτ ≤ C ′nσε

(∫ t

0

E|u|2n
ε dτ

)(n−1)/n

t1/n

≤ νn

2
λn

1

∫ t

0

E|u|2n
ε dτ + tC ′′n(σε)nν1−n .

Since λ1|u|2ε ≤ ‖u‖2ε, this implies the required estimate. �

Under the condition σε ≤ C for all 0 ≤ ε ≤ ε0 the constant bn in (2.26) is
independent from α and ε. Therefore if E|u(0)|2n

ε ≤ C for all 0 ≤ ε ≤ ε0, then
the theorem above provides a priori estimates for solutions of (2.24), uniform
in α and ε. This observation is important in the limit transitions below.

Let us decompose the force fε = fε(x) in (2.22) in the basis of Hε:

fε(x) =
∑

fjeλj (x) +
∑

f̂jeΛε
j
(x)

Theorem 2.5 1) Eq. (2.24) has a stationary measure µα
ε in Hε, satisfying∫

Hε

|u|2(n−1)
ε ‖u‖2εµα

ε (du) ≤ Cn, n = 1, 2, . . . , (2.27)

where the constants Cn are increasing functions of σε = trKε + λ1
ν |fε|2ε, inde-

pendent from α.
2) There are constants n(ε, α) and n̂(ε, α) such that if bε

j 6= 0 for j ≤ n and
b̂ε
j 6= 0 for j ≤ n̂, and if

bε
j 6= 0 if fj 6= 0 and b̂ε

j 6= 0 if f̂j 6= 0, ∀ j , (2.28)

then a stationary measure is unique, and every solution of (2.24) converges to
it in distribution (in the space of Borel measures in Hε) as time goes to infinity.

3) Assume that trKε ≤ c0 and |fε|ε ≤ c1 for all ε. Then n(ε, α) may be
chosen independent from ε, and the assumption b̂ε

j 6= 0 for j ≤ n̂ may be dropped
if ε ≤ ε0, where ε0 = ε0(α) > 0.

Note that the assumption in 2) holds trivially if the noise Ẇε is nondegen-
erate, i.e. all coefficients bε

j and b̂ε
j are non-zero. We do not know whether

the nondegeneracy noise hypotheses in Theorem 2.5 can be relaxed significantly
(the characterization suggested in [13] is not applied here because, in contrast
with [13], we deal with a 3D hydrodynamical problem).

Proof. The first assertion follows from the Bogolyubov-Krylov arguments and
the Fatou lemma in the standard way, cf. [18], Section 4.4.

The second assertion follows from the techniques, developed in recent works
on the randomly forced 2D NSE, discussed in Introduction. More specifically,
in [20, 26] the 2D NSE is written in the abstract form as

u′ + Lu + B(u, u) = f + Ẇ (2.29)
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(in [20] f = 0, but it is shown in [26] that the arguments of that work apply
to equations with non-zero f). The proof in [20, 26] uses only basic properties
of the linear operator L and the quadratic operator B. It is straightforward
that the operators νAε and Bε in (2.24) satisfy these properties, if we choose
for the basic function space the space (Hε, | · |ε). So the main theorems in the
references above apply and imply the uniqueness of a stationary measure and
the assertion about the convergence.

The proof in [20, 26] uses in a critical way the ‘squeezing property’, stating
that asymptotical in time behaviour of a solution for (2.29) with a deterministic
r.h.s. is determined by its finite-dimensional part, formed by first few Fourier
harmonics of the solution. The validity of this property for the α-model can
be checked by literal repeating of the classical arguments due to Foias-Prodi,
exploited in [20, 26] (see Proposition A.1 in [20]). The finite-dimensional part
corresponds to the subspace of Hε, spanned by the vectors eλj

, j ≤ n(ε, α),
and eΛε

j
, j ≤ ñ(ε, α), where the corresponding eigenvalues λj and Λε

j contain all
eigenvalues of the Stokes operator Aε, smaller than a suitable threshold Λ.

To prove the last assertion of the theorem we have to estimate how the
numbers n and ñ grow when ε → 0. Let us write the spectrum of the Stokes
operator Aε, formed by the two branches {λj} and {Λε

j} (see Appendix) as
µ1 ≤ µ2 ≤ . . . , and denote by {bµj

} the corresponding coefficients in the de-
composition of the Wiener process Wε. By [20, 26] a stationary measure is
unique if (2.28) holds and bµj 6= 0 for j ≤ Nµ. The constant N = Nµ should
be so big that the assumptions (A.1) and (A.2) of Proposition A.1 in [20] imply
the estimate (A.3). This can be achieved with help of the following proposition
(which is an analog of Proposition A.1 [20] for the case considered).

Proposition 2.6 Let ui, i = 1, 2 be solutions to the (deterministic) problems

u′ + νAεu + Bε(Gαu, u) = ηi(t), i = 1, 2.

Assume that ∫ t

s

‖u1(τ)‖2ε dτ ≤ ρ + K(t− s), 0 ≤ s ≤ t ≤ s + T, (2.30)

where ρ,K and T are nonnegative constants. Let P ≡ Pn,n̂ be the spectral
orthoprojector on the subspace 3

Span
{
eλj

, eΛε
i

: 1 ≤ j ≤ n, 1 ≤ i ≤ n̂
}

, n ≥ 1, n̂ ≥ 0,

and Q = 1− P . If Pu1(t) = Pu2(t) and Qη1(t) = Qη2(t) for all t ∈ [s, s + T ],
then

|u1(t)− u2(t)|ε ≤ e−mn,n̂(t−s)+ρn |u1(s)− u2(s)|ε, t ∈ [s, s + T ], (2.31)

where
mn,n̂ =

ν

2
min

{
λn+1,Λε

n̂+1

}
− c0K

α

(
ε2 + α1/2λ

−1/2
n+1

)
3If n̂ = 0, then this subspace equals Span {eλj

: 1 ≤ j ≤ n}.
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and
ρn =

c0ρ

α

(
ε2 + α1/2λ

−1/2
n+1

)
.

We prove this proposition in Section 4.3.

The structure of the constant mn,n̂ and the fact that Λε
k ≥ ε−2 for all k

imply the third assertion of the theorem by the same argument as in [20]. �

Let uα
ε (t), t ≥ 0, be a stationary solution of (2.24), corresponding to the

stationary measure µα
ε . Then Pα

ε = Duα
ε (·) is a stationary statistical solution

of (2.24) in the space Zε. For the same reason as in the 2D case (see Corol-
lary 2.3), under the assumptions of item 2) of the theorem this equation has a
unique stationary statistical solution. Other properties of Pα

ε are collected in
the following assertion.

Theorem 2.7 Assume that

tr Kε ≤ c0, |fε|2ε ≤ c1 (2.32)

for some ε-independent constants c0, c1 and denote Pα
ε = Duα

ε (·). Then
1) for any fixed ε > 0 the set of measures {Pα

ε , 0 < α ≤ 1} is tight in the
space of Borel measures on Zε and the corresponding trace-measures µα

ε are
tight in Hε.

2) Let Pε be any limiting measure for this family as α → 0.4 Then the
measure Pε is a stationary statistical solution of the 3D NSE (1.1) in the space
Zε. Its trace-measure µε (i) satisfies estimates (2.27), (ii) is a limiting point
for µα

ε in Hε as α → 0, and (iii) is a weakly stationary measure for (1.1) (see
Section 2.3 for the corresponding definitions).

Proof. 1) The tightness of the set {Pα
ε , 0 < α ≤ 1} follows by repeating the

argument from [28, Chap. IV]. Moreover, in the same way as in [28, Chap. IV]
we can derive from (2.27) the estimate∫

Zε

|u|1+κ
T Pα

ε (du) ≤ CT (2.33)

for every T > 0 and for some κ > 0, where |·|T is given by (2.8) and the constant
CT does not depend on α. The tightness of µα

ε follows from (2.27) with n = 1.
2) By the Skorokhod representation theorem (see [16]), there exists a new

probability space and on this space there are random processes û
αj
ε (t) ∈ Hε,

t ≥ 0, and ûε(t) ∈ Hε, t ≥ 0, such that D(ûαj
ε ) = Pαl

ε , D(ûε) = Pε and

ûαj
ε → ûε in Zε (2.34)

almost surely. Since P
αj
ε is a statistical solution, then a.s. u = û

αj
ε satisfies

u(t)− u(0) +
∫ t

0

(
νAεu + Bε(Gαj u, u)− f

)
ds = Wαj

ε (t), ∀t ≥ 0 , (2.35)

4this means that P
αj
ε ⇀ Pε in the space of Borel measures on Zε for some sequence

αj → 0.
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where W
αj
ε (t) is a Wiener process, distributed as Wε(t). The validity of equa-

tion (2.35) is understood in the same way as that of (2.9).
Let e be any basis vector eλk

or eΛε
k
, and be be the corresponding coefficient

bε
k or b̂ε

k. Let us denote by ξ
αj
e (t) the Hε-scalar product of the l.h.s. of (2.35)

with e, where u = û
αj
ε and we replaced bε(Gαj u, u, e) with −bε(Gαj u, e, u).

Then (2.35) implies that ξ
αj
ε (t) is a scalar Wiener process with the dispersion

E(ξαj
ε (t))2 = b2

et. The convergence (2.34) and estimate (2.33) imply that

ξαj
e (t) → ξ0

e(t) a.s.,

uniformly for t in finite segments, where the process ξ0
ε(t) is obtained by replac-

ing û
αj
ε (t) by ûε(t). Therefore ξ0

ε(t) also is a Wiener process with the dispersion
b2
εt.

Now let us take any two basis vectors e′ 6= e′′. Since the Wiener processes
ξ

αj

e′ (t) and ξ
αj

e′′ (t) are independent, then the limiting processes ξ0
e′(t) and ξ0

e′′(t)
are independent as well. Therefore we see that the process ûε(t) satisfies (2.35)
with αj := 0, where the Wiener process W

αj
ε (t) is replaced by an equidistributed

process W 0
ε (t). So Pε is a statistical solution of the 3D NSE.

The estimates on the measure µε follows from the estimates (2.27) on the
measures µα

ε , the convergence (2.34) and the Fatou lemma. The theorem is
proved. �

2.6 Leray α-approximation of stochastic 2D NSE

We also consider the α-approximation for the 2D NSE (2.15):

u′ + νA0u + B0(G0
αu, u) = f̃ + ˙̃

W, u(0) = u0, (2.36)

where G0
α = (1 + αA0)−1, α > 0. This equation possesses the same basic

properties as the 2D NSE: given a suitable initial condition it has a unique
solution, and under the assumptions of Theorem 2.2 it has a unique stationary
measure in the space H̃. However when α > 0 we cannot guarantee bounds
(2.19), (2.20) and (2.21) for the exponential moments. Indeed, the proof of
these estimates for solutions of (2.15) uses essentially the orthogonality relation
b0(u, u, A0u) = 0. Since b0(G0

αu, u, A0u) does not vanish identically, then the
corresponding arguments do not apply to eq. (2.36).

In the case α > 0 we can only use the orthogonality relation b0(G0
αu, u, u) =

0. It implies bounds for exponential moments of the L2-norms of solutions:

Theorem 2.8 If f̃ ∈ H̃ and u0 = uω
0 is a random variable in H̃ independent

from the process W̃ (t) and such that E|u0|2 < ∞, then eq. (2.36) has a unique
(up to equivalence) solution u(t), t ≥ 0. If, in addition, E exp(β0|u0|2) < ∞ for
some β0 ∈

(
0, ν|K0|−1

L( eH)
λ−1

1

)
, where λ1 > 0 is the first eigenvalue of the 2D

Stokes operator, then for every β1 ≤ 1
2 · β0

(
ν − β0λ1|K0|L( eH)

)
we have

E exp
(

β0|u(t)|2 + β1

∫ t

0

‖u(τ)‖2dτ

)
≤ eγt ·E exp(β0|u0|2)
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for all t ≥ 0, where γ = β0
2νλ1

(
| f̃ |2 +νλ1 trK0

)
. Furthermore for any positive

λ there exists a constant Dβ0,λ > 0 such that

E exp(β0|u(t)|2) ≤ Dβ0,λ + e−λ(t−s) ·E exp(β0|u(s)|2), t > s ≥ 0.

Proof. This is a slight modification of argument given in [17] and [5]. To ob-
tain the required inequalities we first apply the Ito formula to the corresponding
processes. �

This theorem implies an analogy of Theorem 2.2 for eq. (2.36):

Theorem 2.9 Assume that the hypotheses of Theorem 2.2 are in force. Then
there exists a unique stationary measure µα for (2.36). This measure satisfies∫ eH exp

{
β0|u|2

}
µα(du) < ∞ for any β0 < ν|K0|−1

L( eH)
λ−1

1 . Every solution of
(2.36) given by Theorem 2.8 converges to µα in distribution when t → ∞, in
the weak topology of the space of Borel measures in H̃.

3 Main results

In the theorem below Mεµ stands for the image of a measure µ under the map
Mε defined in (1.3).

Theorem 3.1 Assume that

• the assumptions of Theorem 2.2 hold;

• there exist constants c0, c1 independent of ε such that (2.32) holds;

• we have that limε→0

∑
j [b

ε
j − b0

j ]
2 = 0 and limε→0 |f̃ −Mεfε| = 0.

Let µα
ε be a stationary measure for eq. (2.24), given by the first item of Theo-

rem 2.5. Then

• Mεµ
α
ε ⇀ µα in H̃ as ε → 0, where µα is a unique stationary measure for

the corresponding 2D α-model (2.36), and µα ⇀ µ as α → 0, where µ is
a unique stationary measure for the 2D NSE (2.15).

• Mεµ
α
ε ⇀ µ in H̃ as ε → 0 and α → 0 simultaneously.

We note that in Theorem 3.1 we do not assume that the stationary measure
µα

ε is unique for α, ε > 0. However under condition (2.32) we can use the third
statement of Theorem 2.5 to achieve the uniqueness for ε ≤ ε0(α) by increasing
the parameter N in the hypotheses of Theorem 2.2.

As we will see in the proof given below an assertion similar to Theorem 3.1
can be easily established for stationary statistical solutions Pα

ε .
We recall that under the assumptions (2.32) the set Lim α→0µ

α
ε of Borel

measures in Hε, limiting for the family {µα
ε } as α → 0, is formed by weakly sta-

tionary measures for (1.1) (see Theorem 2.7). The next result dealing with the
iterated limit ‘first α → 0, then ε → 0’ follows immediately from Theorem 3.1
by the standard commutation limits argument.
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Corollary 3.2 Under the assumptions of Theorem 3.1 the only limiting point
of the family of measures Mε (Lim α→0µ

α
ε ) as ε → 0 is the unique stationary

measure µ of (2.15).

Under the conditions of Theorem 3.1 we obviously have relation (1.5) claimed
in the Introduction. Moreover, using (2.27) one can see that

lim
ε→0

∫
Hε

|N̂εu|2εµα
ε (du) = 0 uniformly in α,

where N̂ε is the ’vertical’ projection defined in Section 2.4. Accordingly, the
averaged normalised energy

E(µα
ε ) =

1
2

∫
Hε

|u|2εµα
ε (du) =

∫
Hε

( 1
2ε

∫
Oε

|u(x)|2 dx
)
µα

ε (du)

possesses the property

lim
α→0

lim
ε→0

E(µα
ε ) = E(µ) ≡ 1

2

∫
eH |u|

2
T2µ(du).

In contrast with the kick model considered in [6] we are not able to establish
similar convergence of averaged enstrophy and enstrophy production. However
for a fixed α > 0 the convergence properties of the measures µα

ε can be improved
and the hypotheses concerning fε and Wε can be relaxed. This happens since
using additional regularity provided by α-approximation, in addition to relation
(2.26), we can estimate the projections M̂εu and N̂εu separately. We do not
discuss this issue in details.

We also note that literally repeating the proof of Theorem 3.1 we get a
similar result for solutions of the initial-value problems:

Proposition 3.3 Let u0ε ∈ Hε, 0 < ε ≤ 1, be a non-random vector such that
|u0ε|ε ≤ C and Mεu0ε → u0 in H̃ as ε → 0. Let uα

ε (t), t ≥ 0, be a solution of
(2.24) such that uα

ε (0) = u0ε and u(t), t ≥ 0, be a solution of (2.15), equal u0

at t = 0. Then under the assumptions of Theorem 3.1 we have

DMεu
α
ε (·) ⇀ Du(·) as ε, α → 0

in the space of Borel measures in Z̃ = Lloc
2 (R+; H̃) ∩ C(R+; W̃−1).

4 Proofs

In this section we prove Theorem 3.1 and Proposition 2.6 (needed to complete
the proof of Theorem 2.5).
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4.1 Preliminaries

We define the operators M̂ε and N̂ε = I − M̂ε as in Section 2.4. The most
important property of these operators is that they are spectral (orthogonal)
projectors for the Stokes operator Aε. In particular, they map the space Vε to
itself, are orthogonal in both spaces Hε and Vε, and commute with Aε. Other
properties of the operators M̂ε and N̂ε which we use in the further considerations
are listed below (we refer to [27] for the proofs):

(i) M̂ε∂xi
= ∂xi

M̂ε and N̂ε∂xi
= ∂xi

N̂ε, i = 1, 2.

(ii) If one of the vector fields u, w, v lies in N̂εVε and two others belong to
M̂εVε, then bε(u, w, v) = 0. In particular, for all u, w, v ∈ Vε we have

bε(u, w, M̂εv) = bε(M̂εu, M̂εw, M̂εv) + bε(N̂εu, N̂εw, M̂εv). (4.1)

(iii) For any ε ∈ (0, 1) we have that

|N̂εu|ε ≤ ε|∂3N̂εu|ε for all u ∈ Vε. (4.2)

4.2 Proof of Theorem 3.1

For definiteness we consider the second case when both ε and α tend to 0 (the
case of a fixed α > 0 is simpler).

Let Pα
ε be a stationary statistical solution of problem (2.24). Then µα

ε

is a trace-measure for Pα
ε . Since estimates (2.27) are uniform in α and ε,

then the families {Mεµ
α
ε }0≤ε,α≤1 and{MεP

α
ε }0≤ε,α≤1 are tight in the spaces

H̃ and Z̃ = Lloc
2 (R+; H̃) ∩ C(R+; W̃−1) respectively, see [28] or the proof of

Theorem 2.7. Denote by P̄ any limiting measure for the family {MεP
α
ε } as

ε, α → 0. Then for suitable sequences εj → 0 and αj → 0 we have

Mεj
Pαj

εj
⇀ P̄ in Z̃ , Mεj

µαj
εj

⇀ µ̄ in H̃,

where µ̄ is a trace-measure for P̄ . Using the Skorokhod representation theorem
(see [16]), we construct on a new probability space random processes û

αj
εj (t) ∈

Hεj
and v̂(t) ∈ H̃, t ≥ 0, such that Dû

αj
εj (·) = P

αj
εj , Dv̂(·) = P̂ , and

Mεj
ûαj

εj
→ v̂ in Z̃, a.s. (4.3)

(cf. Lemma 5.9 in [6]). Since P
αj
εj is a stationary statistical solution, then û

αj
εj (t)

is a stationary process, satisfying the corresponding α-approximation of (2.9)
with a suitable Wiener process Ŵε = Ŵj . The process v̂(t) also is stationary.
Let us denote Mεj

û
αj
εj (t) = v̂

αj
εj (t). Then v = v̂

αj
εj a.s. satisfies

v(t)− v(0) +
∫ t

0

(
νA0v + Mεj

Bεj
(Gαj

ûαj
εj

, ûαj
εj

)−Mεj
fεj

)
ds = Mεj

Ŵj(t),
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for any t ≥ 0. Let us take any vector e = ẽλk
(see Appendix), multiply the last

equation by e in H̃ and denote the l.h.s. by ξj
e(t). Consider the 3-linear term

bj(t) := (Mεj
Bεj

(Gαj
û, û), e)T2 = ε−1bεj

(Gαj
û, û, M∗

εj
e),

where we abbreviated û = û
αj
εj . Due to (4.1),

bj(t) = ε−1
j bεj

(M̂εj
Gαj

û, M̂εj
û, M∗

εj
e) + ε−1

j bεj
(N̂εj

Gαj
û, N̂εj

û, M∗
εj

e).

Since MεGα = G0
αMε, then we obtain

bj(t) = b0(G0
αj

v, v, e) + ε−1
j bεj

(N̂εj
Gαj

û, N̂εj
û, M∗

εj
e).

Using (4.2) we have that

ε−1bε(N̂εGαû, N̂εû, M∗
ε e) ≤ C max

x′∈T2
{|∇e(x′)|} |Nεû|ε|NεGαû|ε ≤ Ceε

2‖Nεû‖2ε.

Since

|A−1/2
0

[
I −G0

α

]
|L(eV ) ≤ max

λ>0

αλ1/2

1 + αλ
≤ α1/2,

we also have that

|b0

(
(I −Gαj

)v, v, e
)
| ≤ Ceα

1/2
j ‖v‖T2 |v|T2 ≤ Ceα

1/2
j ‖ûεj

(t)‖2εj
.

Therefore
|bj(t)− b0(v̂εj

, v̂εj
, e)| ≤ Ce

[
ε2
j + α

1/2
j

]
‖ûεj

(t)‖2εj
. (4.4)

Now let us denote by ξe(t) the scalar product in H̃ of the vector e with the
l.h.s. of eq. (2.16), where u is replaced by v̂. The convergence (4.3) and the
estimates (2.27)n=1, (4.4) imply that for any T > 0 we have

ξj
e(·) → ξe(·) in C[0, T ] as j →∞

almost surely (if necessary, we replace the sequence j = 1, 2, . . . by a suitable
subsequence). Moreover, since

|bj(t)| ≤ C|ûαj
εj

(t)|2 for 0 ≤ t ≤ T,

where C = C(e, T ), then by (2.27) all moments of the random variables |ξj
e(t)|

are bounded uniformly in j and in t ∈ [0, T ]. Now arguing as when proving
Theorem 2.7, we get that P̄ = D(v̂) is a stationary statistical solution of the
2D NSE. Accordingly, µ̄ is a stationary measure and µ̄ = µ by the uniqueness.
This completes the proof of Theorem 3.1.
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4.3 Proof of Proposition 2.6

Now we complete the proof of Theorem 2.5 on the uniqueness of the stationary
measure for the 3D α-approximation (2.24). To do this we need to establish
Proposition 2.6 only.

For u = u1 − u2 we have that

u′ + νAεu + Bε(Gαu, u1) + Bε(Gαu2, u) = η1 − η2.

Since u = Qu, we obtain that

1
2

d

dt
|Qu|2ε + ν|A1/2

ε Qu|2ε + ε−1bε(Gαu, u1, Qu) = 0. (4.5)

The projector P can be written in the form P = P 1
n + P 2

n̂ , where P 1
n and P 2

n̂

are the spectral orthoprojectors on the subspaces Span
{
eλj

: 1 ≤ j ≤ n
}

and
Span

{
eΛε

i
: 1 ≤ i ≤ n̂

}
. Therefore

|A1/2
ε Qu|2ε ≥ min

{
λn+1,Λε

n̂+1

}
|Qu|2ε. (4.6)

Now we estimate the nonlinear term in (4.5). Since

u = Qu = (1− P 1
n)M̂εu + (1− P 2

n̂)N̂εu ≡ Q1
nM̂εu + Q2

n̂N̂εu,

we have that

bε(Gαu, u1, Qu) = bε(N̂εGαQ2
n̂u, u1, Qu) + bε(M̂εGαQ1

nu, u1, Qu). (4.7)

To estimate the first term in r.h.s. of (4.7) we use the relation

|bε(N̂εu, w, v)| ≤ cε2|AεN̂εu|ε · ‖w‖ε · |v|ε,

see [27] and Lemma 6.3 in [6]. Since |A1/2
ε Gα|L(Hε) ≤ α−1/2, this inequality

implies that

|bε(N̂εGαQ2
n̂u, u1, Qu)| ≤ Cε2|AεN̂εGαQ2

n̂u|ε‖u1‖ε|Qu|ε
≤ Cε2|A1/2

ε Gα|L(Hε)‖Q2
n̂u‖ε‖u1‖ε|Qu|ε

≤ δε‖Qu‖2ε +
Cδε

3

α
‖u1‖2ε|Qu|2ε

for any δ > 0. To estimate the second term in r.h.s. of (4.7) we note that

|bε(M̂εGαQ1
nu, u1, Qu)| ≤ Cε max

x′∈T2

{
|(MεGαQ1

nu)(x′)|
}
‖u1‖ε|Qu|ε,

where

max
x′∈T2

{
|(MεGαQ1

nu)(x′)|
}
≤ C|MεGαQ1

nu|1/2
T2 |A0MεGαQ1

nu|1/2
T2 . (4.8)

22



Since |MεGαQ1
nu|T2 ≤ Cλ

−1/2
n+1 |A

1/2
0 Q1

nu|T2 and

|A0MεGαQ1
nu|T2 ≤ |A1/2

0 G0
α|L( eH) · |A

1/2
0 Q1

nu|T2 ,

then the r.h.s. in (4.8) is ≤ C
(
λn+1α

)−1/4‖Q1
nu‖ε . Therefore

|bε(M̂εGαQ1
nu, u1, Qu)| ≤ δε‖Qu‖2ε +

Cδε√
αλn+1

‖u1‖2ε|Qu|2ε

for every δ > 0. Thus

|bε(Gαu, u1, Qu)| ≤ ν

2
ε|A1/2

ε Qu|2ε + c0

(
ε3

α
+

ε√
αλn+1

)
‖u1‖20,ε|Qu|2ε

and we get from (4.5) an (4.6) that

d

dt
|Qu|2ε + ν min

{
λn+1,Λε

n̂+1

}
|Qu|2ε ≤ c0

(
ε2

α
+

1√
αλn+1

)
‖u1‖2ε|Qu|2ε.

Now the desired relation in (2.31) follows from Gronwall’s lemma.

5 Appendix: spectral problem for the Stokes
operator

The spectral boundary value problem which corresponds to operator Aε has the
form 

−∆w = λw, div w = 0 in Oε = T2 × (0, ε),

w(x′, x3) is (l1, l2)-periodic with respect to x′,

w3|x3=ε = 0, ∂3wj |x3=ε = 0, j = 1, 2,

w3|x3=0 = 0, ∂3wj |x3=0 = 0, j = 1, 2.∫
Oε

wjdx = 0, j = 1, 2.

Using the spectral decomposition (2.11) one can see that the spectrum consists
of two branches. Recalling estimate (4.2) we find that these branches are: (i) the
spectrum of the 2D Stokes operator A0, 0 < λ1 ≤ λ2 ≤ . . ., and (ii) series of
eigenvalues 0 < Λε

1 ≤ Λε
2 ≤ . . . , depending on ε and greater than ε−2 . We

denote the corresponding eigenfunctions eλj
and eΛε

j
. We have

M̂εeλj = eλj , M̂εeΛε
j

= 0 ,

where the (spectral) projector M̂ε is defined by (2.10). One can also see that
eλj

= (ẽλj
; 0), where ẽλj

≡ Mεeλj
is the eigenfunction for the 2D Stokes op-

erator on T2 which correspond to the eigenvalue λj . The eigenvalues λj are
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properly ordered numbers
(
s1

2π
l1

)2

+
(
s2

2π
l2

)2

, s = (s1, s2) ∈ Z2 \ {0}, so that

C−1j ≤ λj ≤ Cj for all j, with some C > 1 (see, e.g., [8]). We normalise the
eigenfunctions as follows:

|eλj
|ε = |eΛε

j
|ε = 1 ∀ j .

It is also obvious that |ẽλj
|T2 = 1 and ‖ẽλj

‖T2 =
√

λj for all j.
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