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Abstract. In this paper we discuss properties of the KdV equation under
periodic boundary conditions, especially those which are important to study
perturbations of the equation. Next we review what is known now about long-time
behaviour of solutions for perturbed KdV equations.
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0. Introduction

The famous Korteweg-de Vries (KdV) equation

ut = −uxxx + 6uux, x ∈ R,

was first proposed by Joseph Boussinesq [15] as a model for shallow water wave
propagation. It became famous later when two Dutch mathematicians, Diederik
Korteweg and Gustav De Vries [38], used it to explain the existence of a soliton
water wave, previously observed by John Russel in physical experiments. Their work
was so successful that this equation is now named after them. Since the mid-sixties
of 20th century the KdV equation received a lot of attention from mathematical and
physical communities after the numerical results of Kruskal and Zabusky [40] led to
the discovery that its solitary wave solutions interact in an integrable way. It turns
out that in some suitable setting, the KdV equation can be viewed as an integrable
infinite dimensional hamiltonian system.

In his “New Methods of Celestial Mechanics”, Poincaré calls the task to study
perturbations of integrable systems the “General Problem of Dynamics”. The great
scientist was motivated by the celestial mechanics, where perturbed integrable systems
play a very important role‡. For a similar reason his maxim is true for mathematical
physics, where many important processes are described by suitable perturbations of an
integrable PDE, while the unperturbed integrable equations correspond to idealization
of physical reality. In particular, no physical process is exactly described by the KdV
equation.

In this paper§, we focus on the KdV equation with zero mean value periodic
boundary condition. It is known since the works of Novikov, Lax, Marcênko, Its-
Matveev and McKean-Trubowitz that this system is integrable ([57, 59, 52, 67]). All
of its solutions are periodic, quasi-periodic or almost periodic in time. In Section 1
we discuss the KdV equation in the framework of infinite-dimensional hamiltonian
systems, in Section 2 we present some normal form results for finite-dimensional
integrable hamiltonian systems and in Section 3 — recent results on KdV which may
be regarded as infinite-dimensional versions of those in Section 2. Finally in Section 4
we discuss long-time behavior of solutions for the perturbed KdV equations, under
hamiltonian and non-hamiltonian perturbations. Results presented there are heavily
based on theorems from Section 3.

As indicated in the title of our work, we restrict our study to the periodic
boundary conditions. In this case the KdV equation behaves as a hamiltonian system
with countablely-many degrees of freedom and the method of Dynamical Systems
may be used for its study (same is true for other hamiltonian PDEs in finite volume,
e.g. see [45]). The KdV is a good example of an integrable PDE in the sense that
properties of many other integrable equations with self-adjoint Lax operators, e.g. of
the defocusing Zakharov-Shabat equation (see [25]), and of their perturbations are
very similar to those of KdV and its perturbations, while the equations with non-
selfadjoint Lax operators, e.g. the Sine-Gordon equation, are similar to KdV when
we study their small-amplitude solutions (and the KAM-theory for such equation is
similar to the KAM theory for KdV without the smallness assumption, see [44]).

‡ For example, the solar system, regarded as a system of 8 interacting planets rotating around the
Sun, is a small perturbation of the Kaplerian system. The latter is integrable
§ Based on the courses, given by the second author in Saint-Etienne de Tinée in February 2012 and
in the High School for Economics (Moscow) in April 2013.
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When considered on the whole line with “zero at infinity” boundary condition, due
to the effect of radiation, the KdV equation and its perturbations behave differently,
and people working on these problems prefer to call them “dispersive systems”. To
discuss the corresponding results should be a topic of another work.

The number of publications, dedicated to KdV and its perturbations is immense,
and our bibliography is hopelessly incomplete.

1. KdV under periodic boundary conditions as a hamiltonian system

Consider the KdV equation under zero mean value periodic boundary condition:

ut + uxxx − 6uux = 0, x ∈ T = R/Z,
∫
T
udx = 0. (1.1)

(Note that the mean-value
∫
T udx of a space-periodic solution u is a time-independent

quantity, to simplify presentation we choose it to be zero.) To fix the setup, for any
integer p > 0, we introduce the Sobolev space of real valued functions on T with zero
mean-value:

Hp =
{
u ∈ L2(T,R) : ||u||p < +∞,

∫
T

= 0
}
, ||u||2p =

∑
k∈N
|2πk|2p(|ûk|2 + |û−k|2).

Here ûk, û−k, k ∈ N, are the Fourier coefficients of u with respect to the trigonometric
base

ek =
√

2 cos 2πkx, k > 0 and ek =
√

2 sin 2πkx, k < 0, (1.2)

i.e.

u =
∑
k∈N

ûkek + û−ke−k. (1.3)

In particular, H0 is the space of L2-functions on T with zero mean-value. By 〈·, ·〉 we
denote the scalar product in H0 (i.e. the L2-scalar product).

For a C1-smooth functional F on some space Hp, we denote by ∇F its gradient
with respect to 〈·, ·〉, i.e.

dF (u)(v) = 〈∇F (u), v〉,
if u and v are sufficiently smooth. So ∇F (u) = δF

δu(x) + const, where δF
δu is the

variational derivative, and the constant is chosen in such a way that the mean-value
of the r.h.s vanishes. See [44, 31] for details. The initial value problem for KdV on the
circle T is well posed on every Sobolev space Hp with p > 1, see [70]. The regularity
of KdV in function spaces of lower smoothness was studied intensively, see [16, 34]
and references in these works; also see [16] for some qualitative results concerning the
KdV flow in these spaces. We avoid this topic.

It was observed by Gardner [23] that if we introduce the Poisson bracket which
assigns to any two functionals F (u) and G(u) the new functional {F,G},{

F,G
}

(u) =

∫
T

d

dx
∇F (u(x))∇G(u(x))dx (1.4)

(we assume that the r.h.s is well defined, see [44, 45, 31] for details), then KdV becomes
a hamiltonian PDE. Indeed, this bracket corresponds to a differentiable hamiltonian
function F a vector filed VF , such that

〈VF (u),∇G(u)〉 = {F,G}(u)
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for any differentiable functional G. From this relation we see that VF (u) = ∂
∂x∇F (u).

So the KdV equation takes the hamiltonian form

ut =
∂

∂x
∇H(u), (1.5)

with the KdV Hamiltonian

H(u) =

∫
T
(
u2
x

2
+ u3)dx. (1.6)

The Gardner bracket (1.4) corresponds to the symplectic structure, defined in H0 (as
well as in any space Hp, p > 0) by the 2-form

ωG2 (ξ, η) =
〈
(− ∂

∂x
)−1ξ, η

〉
for ξ, η ∈ H0. (1.7)

Indeed, since ωG2 (VF (u), ξ) ≡ −〈∇F (u), ξ〉, then the 2-form ωG2 also assigns to a
Hamiltonian F the vector field VF (see [4, 31, 44, 45]).

We note that the bracket (1.4) is well defined on the whole Sobolev spaces
Hp(T) = Hp ⊕ R, while the symplectic form ωG2 is not, and the affine subspaces
{u ∈ Hp(T) :

∫
T udx = const} ' Hp are symplectic leaves for this Poisson system.

We study the equation only on the leaf
∫
T udx = 0, but on other leaves it may be

studied similarly.
Writing a function u(x) ∈ H0 as in (1.3) we see that ωG2 =

∑∞
k=1 k

−1dûk ∧ û−k
and that H(u) = H(û) := Λ(û) +G(û) with

Λ(û) =

+∞∑
k=1

(2πk)2
(1

2
û2
k +

1

2
û2
−k
)
, G(û) =

∑
k,l,m6=0,k+l+m=0

ûkûlûm.

Accordingly, the KdV equation may be written as the infinite chain of hamiltonian
equations

d

dt
ûj = −2πj

∂H(û)

∂û−j
, j = ±1, ±2, . . . .

2. Finite dimensional integrable systems

Classically, integrable systems are particular hamiltonian systems that can be
integrated in quadratures. It was observed by Liouville that for a hamiltonian system
with n degrees of freedom to be integrable, it has to possess n independent integrals
in involution. This assertion can be understood globally and locally. Now we recall
corresponding finite-dimensional definitions and results.

2.1. Liouville-integrable systems

Let Q ⊂ R2n
(p,q) be a 2n-dimensional domain. We provide it with the standard

symplectic form ω0 = dp ∧ dq and the corresponding Poisson bracket

{f, g} = ∇pf · ∇qg −∇qf · ∇pg,
where g, f ∈ C1(Q) and “ · ” stands for the Euclidean scalar product in Rn (see [4]).
If {f, g} = 0, the functions f and g are called commuting, or in involution. If h(p, q)
is a C1-function on Q, then the hamiltonian system with the Hamiltonian h is

ṗ = −∇qh, q̇ = ∇ph. (2.1)
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Definition 2.1 (Liouville-integrability). The hamiltonian system (2.1) is called
integrable in the sense of Liouville if its Hamiltonian h admits n independent integrals
in involution h1, . . . , hn. That is, {h, hi} = 0 for 1 6 i 6 n; {hi, hj} = 0 for
1 6 i, j 6 n, and dh1 ∧ · · · ∧ dhn 6= 0.

A nice structure of an Liouville-integrable system is assured by the celebrated
Liouville-Arnold-Jost theorem (see [4, 62]) It claims that if an integrable systems
is such that the level sets Tc = {(p, q) ∈ Q : h1(p, q) = c1, . . . , hn(p, q) = cn},
c = (c1, . . . , cn) ∈ Rn are compact, then each non-empty set Tc is an embedded n-
dimensional torus. Moreover for a suitable neighborhood OTc of Tc in Q there exists
a symplectomorphism

Θ : OTc → O × Tn = {(I, ϕ)}, O ⊂ Rn,
where the symplectic structure in O × Tn is given by the 2-form dI ∧ dϕ. Finally,
there exists a function h̄(I) such that h(p, q) = h̄(Θ(p, q)). This result is true both in
the smooth and analytic categories.

The coordinates (I, ϕ) are called the action-angle variables for (2.1). Using them
the hamiltonian system may be written as

İ = 0, ϕ̇ = ∇I h̄(I). (2.2)

Accordingly, in the original coordinates (p, q) solutions of the system are

(p, q)(t) = Θ−1(I0, ϕ0 +∇I h̄(I0)t).

On O × Tn, consider the 1-form Idϕ =
∑n
j=1 Ijdϕj , then d(Idϕ) = dI ∧ dϕ.

For any vector I ∈ O, and for j = 1, . . . , n, denote by Cj(I) the cycle
{(I, ϕ) ∈ O × Tn : ϕj ∈ [0, 2π] and ϕi = const, if i 6= j}. Then

1

2π

∫
Cj

Idϕ =
1

2π

∫
Cj

Ijdϕj = Ij .

Consider a disc Dj ⊂ O × Tn such that ∂Dj = Cj . For any 1-form ω1, satisfying
dω1 = dI ∧ dϕ, we have

1

2π

∫
Cj

(Idϕ− ω1) =
1

2π

∫
Dj

d(Idϕ− ω1) = 0.

So

Ij =
1

2π

∫
Cj(I)

ω1, if dω1 = dI ∧ dϕ. (2.3)

This is the Arnold formula for actions.

2.2. Birkhoff Integrable systems

We denote by J the standard symplectic matrix J = diag
{(

0 −1
1 0

)}
, operating in

any R2n (e.g. in R2). Assume that the origin is an elliptic critical point of a smooth
Hamiltonian h, i.e. ∇h(0) = 0 and that the matrix J∇2h(0) has only pure imagine
eigenvalues. Then there exists a linear symplectic change of coordinates which puts h
to the form

h =

n∑
i=1

λi(p
2
i + q2

i ) + h.o.t, λj ∈ R ∀j.

If the frequencies (λ1, . . . , λn) satisfy some non-resonance conditions, then this
normalization process can be carried out to higher order terms. The result of this
normalization is known as the Birkhoff normal form for the Hamiltonian h.
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Definition 2.2 The frequencies λ1, . . . , λn are non-resonant up to order m > 1 if∑n
i=1 kiλi 6= 0 for each k ∈ Zn such that 1 6

∑n
i=1 |ki| 6 m. They are called non-

resonant if k1λ1 + . . .+ knλn = 0 with integers k1, . . . , kn only when all kj’s vanish.

Theorem 2.3 (Birkhoff normal form, see [61, 62]) Let H = N2+· · · be a real analytic
Hamiltonian in the vicinity of the origin in (R2n

(p,q), dp ∧ dq) with the quadratic part

N2 =
∑n
i=1 λi(q

2
i + p2

i ). If the (real) frequencies λ1, . . . , λn are non-resonant up to
order m > 3, then there exists a real analytic symplectic trasformation Ψm = Id+ · · ·,
such that

H ◦Ψm = N2 +N4 + . . .+Nm + h.o.t.

Here Ni are homogeneous polynomials of order i, which are actually smooth functions
of variables p2

1 + q2
1 , . . . , p

2
n + q2

n. If the frequencies are non-resonant, then there exists
a formal symplectic transformation Ψ = Id+ · · ·, represented by a formal power series,
such that H ◦Ψ = N2 +N4 + · · · (this equality holds in the sense of formal series).

If the transformation, converting H to the Birkhoff normal form, was convergent,
then the resulting Hamiltonian would be integrable in a neighborhood of the origin
with the integrals p2

1 + q2
1 , . . . , p

2
n + q2

n. These functions are not independent when
pi = qi = 0 for some i. So the system is not integrable in the sense of Liouville. But
it is integrable in a weaker sense:

Definition 2.4 Functions f1, . . . , fk are functionally independent if their differentials
df1, . . . , dfk are linearly independent on a dense open set. A 2n-dimensional
Hamiltonian is called Birkhoff integrable near an equilibrium m ∈ R2n, if it admits
n functionally independent integrals in involution in the vicinity of m.

Birkhoff normal form provides a powerful tool to study the dynamics of
hamiltonian PDEs, e.g. see [49, 6] and references in [6] . However, in this paper
we shall not discuss its version for KdV, since for that equation there exists a stronger
normal form. Now we pass to its counterpart in finite dimension.

2.3. Vey theorem

The results of this section hold both in the C∞-smooth and analytic categories.

Definition 2.5 Consider a Birkhoff integrable system, defined near an equilib-
rium m ∈ R2n, with independent commuting integrals F = (F1, . . . , Fn). Its Poisson

algebra is the linear space A(F ) =
{
G : {G,Fi} = 0, i = 1, . . . , n

}
.

Note that although the integrals of an integrable system are not defined in a unique
way, the corresponding algebra A(F ) is.

Definition 2.6 A Poisson algebra A(F ) is said to be non-resonant at a point m ∈
R2n, if it contains a Hamiltonian with a non-resonant elliptic critical point at m (i.e.,
around m one can introduce symplectic coordinates (p, q) such that the quadratic part of
that Hamiltonian at m is

∑
λj(p

2
j +q2

j ), where the real numbers λj are non-resonant).

It is easy to verify that if some F1 ∈ A(F) is elliptic and non-resonant at the
equilibrium m, then all other functions in A(F) are elliptic at m as well.
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Theorem 2.7 (Vey’s theorem). Let F = (F1, . . . , Fn) be n functionally independent
functions in involution in a neighbourhood of a point m ∈ R2n. If the Poisson
algebra A(F ) is non-resonant at m, then one can introduce around m symplectic
coordinates (p, q) so that A(F ) consists of all functions, which are actually functions
of p2

1 + q2
1 , . . . , p

2
n + q2

n.

Example. Let F = (f1, . . . , fn) be a system of smooth commuting Hamiltonians,
defined in the vicinity of their joint equilibrium m ∈ R2n, such that the hessians
∇2fi(m), 1 6 i 6 n, are linear independent. Then the theorem above applies to the
Poisson algebra A(F ).

In [71] Vey proved the theorem in the analytic case with an additional non-
degeneracy condition, which was later removed by Ito in [28]. The results in [71, 28]
also apply to non-elliptic cases. The smooth version of Theorem 2.7 is due to Eliasson
[21]. There exists an infinite dimensional extension of the theorem, see [47].

3. Integrability of KdV

The KdV equation (1.1) admits infinitely many integrals in involution, and there are
different ways to obtain them, see [23, 60, 63, 52, 73]. Below we present an elegant way
to construct a set of Poisson commuting integrals by considering the spectrum of an
associated Schrödinger operator, due to Piter Lax [52] (see [53] for a nice presentation
of the theory).

3.1. Lax pair

Let u(x) be a L2-function on T. Consider the differential operators Lu and Bu, acting
on 2-periodic functions‖

Lu = − d2

dx2
+ u(x), Bu = −4

d3

dx3
+ 3u(x)

d

dx
+ 3

d

dx
u(x),

where we view u(x) as a multiplication operator f 7→ u(x)f . The operators Bu and Lu
are called the Lax pair for KdV. Calculating the commutator [Bu, Lu] = BuLu−LuBu,
we see that most of the terms cancel and the only term left is −uxxx+6uux. Therefore
if u(t, x) is a solution of (1.1), then the operators L(t) = Lu(t,·) and B(t) = Bu(t,·)
satisfy the operator equation

d

dt
L(t) = [B(t), L(t)]. (3.1)

Note that the operator B(t) are skew-symmetric, B(t)∗ = −B(t). Let U(t) be the
one-parameter family of unitary operators, defined by the differential equation

d

dt
U = B(t)U, U(0) = Id.

Then L(t) = U−1(t)L(0)U(t). Therefore, the operator L(t) is unitary conjugated to
L(0). Consequently, its spectrum is independent of t. That is, the spectral data of the
operator Lu provide a set of conserved quantities for the KdV equation (1.1). Since
Lu is the strurm-Liouville operator with a potential u(x), then in the context of this
theory functions u(x) are called potentials.

‖ note the doubling of the period.
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It is well known that for any L2-potential u the spectrum of the Sturm-Liouville
operator Lu, regarded as an unbounded operator in L2(R/2Z), is a sequence of simple
or double eigenvalues {λj : j > 0}, tending to infinity:

spec(u) = {λ0 < λ1 6 λ2 < · · · ↗ ∞}.
Equality or inequality may occur in every place with a ”6” sign (see [57, 31]). The
segment [λ2j−1, λ2j ] is called the n-th spectral gap. The asymptotic behaviour of the
periodic eigenvalues is

λ2n−1(u), λ2n(u) = n2π2 + [u] + l2(n),

where [u] is the mean value of u, and l2(n) is the n-th number of an l2 sequence.
Let gn(u) = λ2n(u) − λ2n−1(u) > 0, n > 1. These quantities are conserved under
the flow of KdV. We call gn the n-th gap-length of the spectrum. The n-th gap is
called open if gn > 0, otherwise it is closed. However, from the analytic point of view
the periodic eigenvalues and the gap-lengths are not satisfactory integrals, since λn
is not a smooth function of the potential u when gn = 0. Fortunately, the squared
gap lengths g2

n(u), n > 1, are real analytic functions on L2, which Poisson commute
with each other (see [58, 53, 31]). Moreover, together with the mean value, the gap
lengths determine uniquely the periodic spectrum of a potential, and their asymptotic
behavior characterizes the regularity of a potential in exactly the same way as its
Fourier coefficients [57, 24].

This method applies to integrate other hamiltonian systems in finite or infinite
dimension. It is remarkably general and is referred to as the method of Lax pair.

3.2. Action-angle coordinates

We denote by Iso(u0) the isospectral set of a potential u0 ∈ H0:

Iso(u0) =
{
u ∈ H0 : spec(u) = spec(u0)

}
.

It is invariant under the flow of KdV and may be characterized by the gap lengths

Iso(u0) =
{
u ∈ H0 : gn(u) = gn(u0), n > 1

}
.

Moreover, for any n > 1, u0 ∈ Hn if and only if Iso(u0) ⊂ Hn.
In [58], McKean and Trobwitz showed that the Iso(u0) is homemorphic to a

compact torus, whose dimension equals the number of open gaps. So the phase space
H0 is foliated by a collection of KdV-invariant tori of different dimensions, finite or
infinite. A potential u ∈ H0 is called finite-gap if only a finite number of its spectral
gaps are open. The finite-dimensional KdV-invariant torus Iso(u0) is called a finite-gap
torus. For any n ∈ N let us set

J n =
{
u ∈ H0 : gj(u) = 0 if j > n

}
. (3.2)

We call the sets J n, n ∈ N, the finite-gap manifolds.

Theorem 3.1 For any n ∈ N, the finite gap manifold (J n, ωG2 ) is a smooth symplectic
2n-manifold, invariant under the flow of KdV (1.1), and

T0J n =
{
u ∈ H0 : ûk = 0 if |k| > n+ 1

}
,

(see (1.3)). Moreover, the square gap lengths g2
k(u), k = 1, . . . , n, form n commuting

analytic integrals of motions, non-degenerated everywhere on the dense domain
J n0 = {u ∈ J n : g1(u), . . . , gn(u) > 0}.
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Therefore, the Liouville-Arnold-Jost theorem applies everywhere on J n0 , n ∈ N.
Furthermore, the union of the finite gap manifolds ∪n∈NJ n is dense in each space
Hs (see [57]). This hints that on the spaces Hs, s > 0, it may be possible to construct
global action-angle coordinates for KdV. In [22], Flaschka and McLaughlin used the
Arnold formula (2.3) to get an explicit formula for action variables of KdV in terms of
the 2-period spectral data of Lu. To explain their construction, denote by y1(x, λ, u)
and y2(x, λ, u) the standard fundamental solutions of the equation −y′′ + uy = λy,
defined by the initial conditions

y1(0, λ, u) = 1, y2(0, λ, u) = 0,

y′1(0, λ, u) = 0, y′2(0, λ, u) = 1.

The quantity 4(λ, u) = y1(1, λ, u) + y′2(1, λ, u) is called the discriminant, associated
with this pair of solutions. The periodic spectrum of u is precisely the zero set of the
entire function 42(λ, u) − 4, for which we have the explicit representation (see e.g.
[73, 58])

42(λ, u)− 4 = 4(λ0 − λ)
∏
n>1

(λ2n − λ)(λ2n−1 − λ)

n4π4
.

This function is a spectral invariant. We also need the spectrum of the differential

operator Lu = − d2

dx2 + u under Dirichlet boundary conditions on the interval [0, 1]. It
consists of an unbounded sequence of single Dirichlet eigenvalues

µ1(u) < µ2(u) < . . .↗∞,
which satisfy λ2n−1(u) 6 µn(u) 6 λ2n(u), for all n ∈ N. Thus, the n-th Dirichlet
eigenvalue µn is always contained in the n-th spectral gap. The Dirichlet spectrum
provides coordinates on the isospectral sets (see [58, 57, 31]). For any z ∈ T, denote by
{µj(u, z), j > 1} the spectrum of the operator Lu under the shifted Dirichlet boundary
conditions y(z) = y(z + 1) = 0 (so µj(u, 0) = µj(u)); still λ2n−1 6 µn(u, z) 6 λ2n(u).
Jointly with the spectrum {λj}, it defines the potential u(x) via the remarkable trace
formula (see [73, 20, 31, 58]):

u(z) = λ0(u) +

∞∑
j=1

(λ2j−1(u) + λ2j(u)− 2µj(u, z)).

Define

fn(u) = 2 log(−1)ny′2(1, µn(u), u), ∀n ∈ N.

Flashka and McLaughlin [22] observed that the quantities {µn, fn}n∈N form canonical
coordinates of H0, i.e.

{µn, µm} = {fn, fm} = 0, {µn, fm} = δn,m, ∀n,m ∈ N.

Accordingly, the symplectic form ωG2 (see (1.7)) equals dω1, where ω1 is the 1-form∑
n∈N fndµn. Now the KdV action variables are given by the Arnold formula (2.3),

where Cn is a circle on the invariant torus Iso(u), corresponding to µn(u). It is shown
in [22] that

In =
2

π

∫ λ2n

λ2n−1

λ
4̇(λ)√
42(λ)− 4

dλ, ∀n ∈ N.

The analytic properties of the functions u 7→ In and of the mapping u 7→ I =
(I1, I2, . . .) were studied later by Kappeler and Korotyaev (see references in [31, 36]
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and below). In particular, it was shown that In(u), n ∈ N, are real analytic functions
on H0 of the form In = g2

n+ higher order terms, and In = 0 if and only if gn = 0, see
in [31]. For any vector I = (I1, I2, . . .) with non-negative components we will denote

TI = {u(x) ∈ H0 : In(u) = In ∀n}. (3.3)

The angle-variables ϕn on the finite-gap manifolds J n were found in 1970’s by
Soviet mathematicians, who constructed them from the Dirichlet spectrum {µj(u)}
by means of the Abel transform, associated with the Riemann surface of the function√
42 − 4, see [20, 57, 73], and see [29, 19, 39, 7] for the celebrated explicit formulas for

angle-variables ϕn and for finite-gap solutions of KdV in terms of the theta-functions.
In [42] and [44], Section 7, the action-angle variables (In, ϕn) on a finite-gap

manifold J n and the explicit formulas for solutions of KdV on manifolds JN , N ≥ n,
from the works [19, 39, 7] were used to obtain an analytic symplectic coordinate system
(In, ϕn, y) in the vicinity of J n in Hp. The variable y belongs to a ball in a subspace
Y ⊂ Hp of co-dimention 2n, and in the new coordinates the KdV Hamiltonian (1.6)
reads

H = const + hn(In) + 〈A(In)y, y〉+O(y3). (3.4)

The selfadjoint operator A(In) is diagonal in some fixed symplectic basis of Y . The
nonlinearity O(y3) defines a hamiltonian operator of order one. That is, the KdV’s
linear operator, which is an operator of order three, mostly transforms to the linear
part of the new hamiltonian operator and “does not spread much” to its nonlinear
part. This is the crucial property of (3.4). The normal form (3.4) is instrumental for
the purposes of the KAM-theory, see below Section 4.1.

McKean and Trubowitz in [58, 59] extended the construction of angles on
finite-gap manifolds to the set of all potentials, thus obtaining angle variables ϕ =
(ϕ1, ϕ2, . . .) on the whole space Hp, p > 0. The angles (ϕk(u), k ≥ 1) are well defined
Gato-analytic functions of u outside the locus

a = {u(x) : gj(u) = 0 for some j}, (3.5)

which is dense in each space Hp. The action-map u 7→ I was not considered in
[58, 59], but it may be shown that outside a, in a certain weak sense, the variables
(I, ϕ) are KdV’s action-angles (see the next section for a stronger statement). This
result is nice and elegant, but it is insufficient to study perturbations of KdV since
the transformation to the variables (I, ϕ) is singular at the dense locus a.

3.3. Birkhoff coordinates and nonlinear Fourier transform

In a number of publications (see in [31]), Kappeler with collaborators proved that
the Birkhoff coordinates v = {vn, n = ±1,±2, . . .}, associated with the action-angles
variables (I, ϕ),

vn =
√

2In cos(ϕn), v−n =
√

2In sin(ϕn), ∀n ∈ N, (3.6)

are analytic on the whole of H0 and define there a global coordinate system, in which
the KdV Hamiltonian (1.6) is a function of the actions only. This remarkable result
significantly specifies the normal form (3.4). To state it exactly, for any p ∈ R, we
introduce the Hilbert space hp,

hp :=
{
v = (v1,v2, · · ·) : |v|2p =

+∞∑
j=1

(2πj)2p+1|vj |2 <∞, vj = (vj , v−j)
t ∈ R2, j ∈ N

}
,
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and the weighted l1-space hpI ,

hpI :=
{
I = (I1, . . .) ∈ R∞ : |I|∼p = 2

+∞∑
j=1

(2πj)2p+1|Ij | < +∞
}
.

Define the mappings

πI : hp → hpI , v 7→ I = (I1, I2, . . .), where Ik =
1

2
|vk|2 ∀ k,

πϕ : hp → T∞, v 7→ ϕ = (ϕ1, ϕ2, . . .), where ϕk = arctan(
v−k
vk

)

if vk 6= 0, and ϕk = 0 if vk = 0.

Since |πI(v)|∼p = |v|2p, then πI is continuous. Its image hpI+ = πI(h
p) is the positive

octant in hpI . When there is no ambiguity, we write I(v) = πI(v).
Consider the mapping

Ψ : u(x) 7→ v = (v1,v2, . . .), vn = (vn, v−n)t ∈ R2,

where v±n are defined by (3.6) and {In(u)}, {ϕn(u)} are the actions and angles as in
Section 3.2. Clearly πI ◦Ψ(u) = I(u) and πϕ ◦Ψ(u) = ϕ(u). Below we refer to Ψ as
to the nonlinear Fourier transform.

Theorem 3.2 (see [31, 30]) The mapping Ψ defines an analytical symplectomorphism
Ψ : (H0, ωG2 )→ (h0,

∑∞
k=1 dvk ∧ dv−k) with the following properties:

(i) For any p ∈ [−1,+∞), it defines an analytic diffeomorphism Ψ : Hp 7→ hp.

(ii) (Percival’s identity) If v = Ψ(u), then |v|0 = ||u||0.

(iii) (Normalisation) The differential dΨ(0) is the operator
∑
uses 7→ v, where

vs = |2πs|−1/2us for each s.

(iv) The function Ĥ(v) = H(Ψ−1(v)) has the form Ĥ(v) = HK(I(v)), where the
function HK(I) is analytic in a suitable neighborhood of the octant h1

I+ in h1
I , such

that a curve u ∈ C1(0, T ;H0) is a solution of KdV if and only if v(t) = Ψ(u(t))
satisfies the equations

v̇j = J
∂HK

∂Ij
(I)vj , vj = (vj , v−j)

t ∈ R2, j ∈ N. (3.7)

The assertion (iii) normalizes Ψ in the following sense. For any θ = (θ1, θ2, . . .) ∈ T∞
denote by Φθ the operator

Φθv = v′, v′j = Φ̄θjvj , ∀j ∈ N, (3.8)

where Φ̄α is the rotation of the plane R2 by the angle α. Then Φθ ◦ Ψ satisfies all
assertions of the theorem except (iii). But the properties (i)-(iv) jointly determine Ψ
in a unique way.

The theorem above can be viewed as a global infinite dimensional version of
the Vey Theorem 2.7 for KdV, and eq. (3.7) – as a global Birkhoff normal form for
KdV. Note that in finite dimension a global Birkhoff normal form exists only for very
exceptional integrable equations, which were found during the boom of activity in
integrable systems, provoked by the discovery of the method of Lax pair.
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Remark 3.3 The map Ψ simultaneously transforms all Hamiltonians of the KdV
hierarchy to the Birkhoff normal form. The KdV hierarchy is a collection of
hamiltonian functions Jl, l > 0, commuting with the KdV Hamiltonian, and having
the form

Jl(u) =

∫ (1

2
(u(l))2 + Jl−1(u)

)
dx.

Here J−1 = 0 and Jl−1(u), l ≥ 1, is a polynomial of u, . . . , u(l−1). The functions from
the KdV hierarchy form another complete set of KdV integrals. E.g. see [20, 31, 53].

Properties of the nonlinear Fourier transform Ψ may be specified in two important
respects. One of this specifications – the quasilinearity of Ψ – is presented in the
theorem below. Another one – its behaviour at infinity – is discussed in the next
section.

The nonlinear Fourier transform Ψ is quasi-linear. Precisely,

Theorem 3.4 If m > 0, then the map Ψ− dΨ(0) : Hm → hm+1 is analytic.

That is, the non-linear part of Ψ is 1-smoother than its linearisation at the origin.
See [47] for a local version of this theorem, applicable as well to other integrable
infinite-dimensional systems, and see [32, 33] for the global result. We note that the
transformation to the normal form (3.4) also is known to be quasi-linear, see [42, 44].

Problem 3.5 Does the mapping Ψ − dΨ(0) analytically maps Hm to hm+1+γ with
γ > 0?

It is proved in [47] that for γ > 1 the answer to this problem is negative and is
conjectured there that it also is negative for γ > 0.

3.4. Behaviour of Ψ near infinity and large solutions of KdV

By the assertion (ii) of Theorem 3.2, |Ψ(u)|0 = ||u||0. It was established by Korotyayev
in [36] that higher order norms of u and v = Ψ(u) are related by both-sides polynomial
estimates:

Theorem 3.6 For any m ∈ N, there are polynomials Pm(y) and Qm(y) such that if
u ∈ Hm and v = Ψ(u), then

|v|m 6 Pm(||u||m), ||u||m 6 Qm(|v|m).

The polynomials Pm and Qm are constructed in [36] inductively. From a personal
communication of Korotyayev we know that one can take

Pm(y) = Cmy(1 + y)
2(m+2)

3 . (3.9)

Estimating a potential u(x) via its actions¶ is more complicated. Corresponding
polynomials Qm may be chosen of the form

Qm(y) = C ′my(1 + y)am , (3.10)

where a1 = 5
2 , a2 = 3 and am has a factorial growth as m→∞.

¶ Note that any |v|2m is a linear combinations of the actions Ij , j > 1.
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Problem 3.7 Prove that there exist polynomials P1
m and Q1

m, m ∈ N, such that for
any u ∈ Hm, we have

||dΨ(u)||m,m 6 P1
m(||u||m), ||dΨ−1(v)||m,m 6 Q1

m(||v||m),

where v = Ψ(u). Prove similar polynomial bounds for the norms of higher differentials
of Ψ and Ψ−1.

It seems that to solve the problem a new proof of Theorem 3.2 has to be found (note
that the existing proof is rather bulky and occupies half of the book [31]).

The difficulty in resolving the problem above streams from the fact that Ψ(u) is
constructed in terms of spectral characteristics of the Strum-Liouville operator Lu,
and their dependence on large potentials u(x) is poorly understood. Accordingly, the
following question seems to be very complicated:

Problem 3.8 Let u(t, x) = u(t, x;λ) be a solution of (1.1) such that u(0, x) = λu0(x),
where u0 6≡ 0 is a given smooth function with zero mean-value, and λ > 1 is a large
parameter. The task is to study behaviour of u(t, x;λ) when λ→∞.

Let u(t, x) be as above. Then ||u(0, x)||m = λC(m,u0). By Theorem 3.6, |v(0)|m 6
Pm(λC(m,u0)). Since |v(t)|m is an integral of motion, then using again the theorem
we get that

||u(t)||m 6 Qm
(
Pm(λC(m,u0))

)
.

In particular, by (3.9) and (3.10) we have ||u(t)||1 6 C(1 + λ)21/2. A lower bound for
the Sobolev norms comes from the fact that ||u(t)||0 is an integral of motion. So

||u(t)||m > ||u(0)||0 = λC(0, u0).

We have demonstrated:

Proposition 3.9 Let u(t, x) be a solution of (1.1) such that u(0, x) = λu0(x), where
0 6≡ u0 ∈ C∞ ∩H0 and λ > 1. Then for m ≥ 1 we have

1 + (λC(m,u0))Am > lim sup
t→∞

||u(t)||m > lim inf
t→∞

||u(t)||m > c(u0)λ, (3.11)

for a suitable Am > 1. E.g. A1 = 21/2.

The third estimate in (3.11) is optimal up to a constant factor as

lim inf
t→∞

||u(t)||m 6 λC(m,u0),

since the curve u(t) is almost periodic. The first estimate with the exponent Am
which follows from Theorem 3.6 certainly is not optimal. But the assertion that
lim supt→∞ ||u(t)||m grows with λ as λAm , where Am goes to infinity with m, is correct.
It follows from our next result:

Theorem 3.10 Let k > 4. Then there exists α > 0 and, for any λ > 1 there exists
t∗ = t∗(u0, λ) such that

||u(t∗)||k > c′u0
λ1+αk. (3.12)
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In [43] (see there Theorem 3 and Appendix 2), the theorem is proved for a class
of non-linear Schrödingier equations which includes the defocusing Zakharov-Shabat
equation. The proof applies to KdV. See [8], where the argument is applied to the
multidimensional Burgers equation, similar to KdV for the proof of this result. We
mention that (in difference with majority of results in this work) the assertion of
Theorem 3.10 remains true for other boundary conditions.

Problem 3.8 may be scaled as the non-dispersive limit for KdV. Indeed, let us
substitute u = λw and pass to fast time τ = λt. Then the function w(τ, x;λ) satisfies

wτ + λ−1wxxx − 6wwx = 0, w(0, x) = u0(x), (3.13)

and we are interested in w(λt, x;λ) when λ → ∞. For λ = ∞ the equation above
becomes the Hopf equation. Since u0(x) is a periodic non-constant function, then the
solution of (3.13)λ=∞ developes a shock at time τ∗, 0 < τ∗ < ∞. Accordingly, the
elementary perturbation theory allows to study solutions of (3.13) when λ → ∞ for
τ < τ∗, but not for τ > τ∗. The problem to study this limit for τ > τ∗ is addressed
by the Lax-Levermore theory (mostly for the case when x ∈ R and u0(x) vanishes at
infinity). There is vast literature on this subject, e.g. see [54, 18] and references in
[18]. The existing Lax-Levermore theory does not allow to study solutions w(τ, x) for
τ ∼ λ−1, as is required by Problem 3.8.

3.5. Properties of frequency map

Let us denote

W (I) = (W1(I), W2(I), . . .), Wi(I) =
∂HK

∂Ii
, i ∈ N. (3.14)

This is the frequency map for KdV. By Theorem 3.2 each its component is an analytic
function, defined in the vicinity of h1

I+ in h1
I .

Lemma 3.11 a) For i, j ≥ 1 we have ∂2W (0)/∂Ii∂Ij = −6δi,j.
b) For any n ∈ N, if In+1 = In+2 = . . . = 0, then

det
((∂Wi

∂Ij

)
16i,j6n

)
6= 0.

For a) see [9, 31, 44]. For a proof of b) and references to the original works of
Krichever and Bikbaev-Kuksin see Section 3.3 of [44].

Let l∞i , i ∈ Z, be the Banach spaces of all real sequences l = (l1, l2, . . .) with
norms

|l|∞i = sup
n>1

ni|ln| <∞.

Denote κ = (κn)n∈N, where κn = (2πn)3. For the following result see [31],
Theorem 15.4.

Lemma 3.12 The normalized frequency map I 7→ W (I) − κ is real analytic as a
mapping from h1 to l∞−1.

From these two lemmata we known that the Hamiltonian HK(I) of KdV is non-
degenerated in the sense of Kolmogorov and its nonlinear part is more regular than
its linear part. These properties are very important to study perturbations of KdV.
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3.6. Convexity of Hamiltonian HK(I)

By Theorem 3.2, the dynamics of KdV is determined by the Hamiltonian HK(I).
To understand the properties of the latter is an important step toward the study of
perturbations of KdV.

Denote by Pj the moments of the actions, given by

Pj =
∑
i>1

(2πn)jIi, j ∈ Z.

Due to Theorem 3.2, the linear part of HK(I) at the origin dHK(0)(I) equals to
1
2

∫
T( ∂
∂x (Ψ−1v))2dx = P3. So we can write HK(I) as

HK(I) = P3(I)− V (I), V (I) = O(|I|21).

(The minus-sign here is convenient since, as we will see, V (I) is non-negative.) For
any N > 1, denote l̃N ⊂ l2 the N -dimensional subspace

l̃N = {l = (l1, . . .) ∈ R∞ : ln = 0, ∀n > N},
and set l̃∞ = ∪N∈N l̃N . Clearly the function V is analytic on each octant l̃N+ .

So it is Gato-analytic on the octant l̃∞+ . That is, it is analytic on every interval

{(ta+ (1− t)c) ∈ l̃∞+ : 0 ≤ t ≤ 1}, where a, c ∈ l̃∞+ .
By Lemma 3.11 a), d2V (0)(I) = 6||I||22. This suggests that the Hilbert space l2

rather than the Banach space h1
I (which is contained in l2) is a distinguished phase

space for the Hamiltonian HK(I). This guess is justified by the following result:

Theorem 3.13 (see [37]). (i) The function V : l̃∞+ → R extends to a non-negative
continuous function on the l2-octant l2+, such that V (I) = 0 for some I ∈ l2+ iff I = 0.
Moreover 0 6 V (I) 6 8P1P−1.

(ii) For any I ∈ l2+, the following estimates hold true:

π

10

||I||22
1 + 2P

1/2
−1

6 V (I) 6 (83(1 + P
1/2
−1 )1/2P 2

−1 + 6πeP
1/2
−1 /2||I||2)||I||2.

(iii) The function V (I) is convex on l2+.

Note that the assertion (iii) follows from (i) and Lemma 3.11. Indeed, since V (I)

is analytic on l̃N+ , then Lemma 3.11 assures that the Hessian { ∂2V
∂Ii∂Ij

}16i,j6N is positive

definite on l̃N+ . Thus V is convex on l̃N+ , for each N ∈ N. Then the assertion (iii) is

deduced from the fact the l̃∞+ = ∪N∈N l̃N+ is dense in l2+, where V (I) is continuous.

Assertion ii) of the theorem shows that l2 is the biggest Banach space on which
V (I) is continuous+. Jointly with the convexity of V (I) on l2, this hints that l2 is the
natural space to study the long-time dynamics of actions I(u(t)) for solutions u(t) of
a perturbed KdV.

This theorem and the analyticity of the KdV Hamiltonian (1.6) do not leave
much doubts that V (I) is analytic on l2+. If so, then by Lemma 3.11, this function is
strictly convex in a neighbourhood of the origin in l2. Most likely, it is strictly convex
everywhere on l2+.

In difference with V (I), the total Hamiltonian HK(I) is not continuous on l2+ since
its linear part P3(I) is there an unbounded linear functional. But P3(I) contributes

+ That is, if V (I) continuously extends to a Banach space B of the sequences (I1, I2, . . .), then B
may be continuously embedded in l2.
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to equation (3.7) the linear rotation v̇k = J(2πn)3vk, k ∈ N. So the properties of
equation (3.7) essentially are determined by the component V (I) of the Hamiltonan.
Note that since P3(I) is a bounded linear functional on the space h1 ⊂ l2, then the
Hamiltonian HK(I) is concave in h1.

Problem 3.14 Is it true that the function V (I) − 3|I|2l2 extends analytically (or
continuously) to a space, bigger than l2?

4. Perturbations of KdV

In the theory of integrable systems in finite dimension, there are two types of
perturbative results concerning long-time stability of solutions. The first type is the
KAM theory. Roughly, it says that among a family of invariant tori of the unperturbed
system, given by the Liouville-Arnold-Jost theorem, there exists (under generic
assumptions) a large set of tori which survive under sufficiently small hamiltonian
perturbations, deforming only slightly. In particular, the perturbed system admits
plenty of quasi-periodic solutions [1, 2]. Results of the second type are obtained
by the techniques of averaging which applies to a larger class of dynamical systems,
characterized by the existence of fast and slow variables. This method has a much
longer history which dates back to the epoch of Lagrange and Laplace, who applied
it to the problems of celestial mechanics, without proper justifications. Only in the
last fifty years rigorous mathematical justification of the principle has been obtained,
see in [64, 1, 56]. If the unperturbed system is hamiltonian integrable, then for the
slow-fast variables one can choose the action-angle variables. The averaging theorems
say that under appropriate assumptions, the action variables, calculated for solutions
of the perturbed system, can be well approximated by solutions of a suitable averaged
vector field, over an extended time interval. If the perturbation is hamiltonian, then
the averaged vector filed vanishes. The strongest result in this direction is due to
Nekhoroshev [66, 55], who proved that in the hamiltonian case the action variables
vary just a bit over exponentially long time intervals.

Concerning instability of solutions, also two types of phenomena are known. One
is called the Arnold diffusion. In [3], Arnold observed that despite most of the phase
space of near integrable hamiltonian systems with more than two degrees of freedom
is foliated by invariant KAM tori, still there can exist solutions such that their actions
admit increments of order one during sufficiently long time. Arnold conjectured that
this phenomenon is generic. Though there are many developments in this direction in
the last ten years, the mechanism of the Arnold diffusion still is far from being well
understood. Another instability mechanism is known as the capture in resonance.
The essence of this phenomenon is that a solution of a perturbed system reaches a
resonant zone and begins drifting along it in such a way that the resonance condition
approximately holds. Therefore, solutions of the original perturbed system and the
averaged one diverge by a quantity of order one on a time interval of order ε−1 (see
e.g. [65]).

Now return to PDEs. Two types of perturbations of the KdV equation (1.1) have
been considered: when the boundary condition is perturbed but the equation is not,
and other way round. Problems of the first type lie outside the scope of our work,
and very few results (if any) are proved there rigorously, see [39] for discussion and
some related statements. Problems of the second type are much closer to the finite-
dimensional situation and they are discussed below. Several attempts were made to
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establish stability results for perturbed integrable PDEs, e.g. for perturbed KdV,
analogous to those in finite dimension. Among them, the KAM theory was the most
successful [17]. The first results in this direction are due to Kuksin [41, 42] and Wayne
[72]. Despite there are no rigorously proven instability results for the perturbed KdV,
we mention our believe that to study the instability, Theorem 3.2, 3.4 and 3.13 should
be important.

4.1. KAM theorem for perturbed KdV

Consider the hamiltonian perturbation of KdV, corresponding to a Hamiltonian
Hε = H(u) + εF (u):

u̇+ uxxx − 6uux − ε
∂

∂x
∇F (u) = 0, u(0) ∈ H1. (4.1)

Here F (u) is an analytic functional on H1 and ∇F is its L2-gradient in u. Let n ∈ N,
and Γ ⊂ Rn+ be a compact set of positive Lebesgue measure. Consider a family of the
n-gap tori:

TΓ = ∪I∈ΓT nI ⊂ J n, T nI = T(I,0,...),

where I = (I1, . . . , In), see (3.2) and (3.3). It turns out that most of them persist as
invariant tori of the perturbed equation (4.1):

Theorem 4.1 For some M > 1, assume that the Hamiltonian F analytically extends
to a complex neighbourhood U c of TΓ in HM ⊕ C and satisfies there the regularity
condition

∇F : U c → HM ⊗ C, sup
u∈Uc

(|F (u)|+ ||∇F (u)||M ) 6 1.

Then, there exists an ε0 > 0 and for ε < ε0 there exist
(i) a nonempty Cantor set Γε ⊂ Γ with mes(Γ \ Γε)→ 0 as ε→ 0;
(ii) a Lipshcitiz mapping Ξ : Tn × Γε → U ∩ HM , such that its restriction to

each torus Tn × I, I ∈ Γε, is an analytical embedding;
(iii) a Lipschitz map χ : Γε → Rn, |χ− Id| 6 Const · ε,

such that for every (ϕ, I) ∈ Tn × Γε, the curve u(t) = Ξ(ϕ + χ(I)t, I) is an quasi-
periodic solution of (4.1) winding around the invariant torus Ξ(Tn × {I}). Moreover,
these solutions are linearly stable.

Proof: In the coordinates v as in Theorem 3.2, the Hamiltonian Hε becomes
HK(I) + εF (v). For any I0 ∈ hMI , using Taylor’s formula, we write

HK(I0 + I) = HK(I0) +
∑
i>1

∂HK

∂Ii
(I0)Ii +

∫ 1

0

(1− t)
∑ ∂2HK

∂Ii∂Ij
IiIjdt

:= const+
∑
i>1

Wi(I0)Ii +Q(I0, I),

(4.2)

where W is the frequency map, see (3.14). Now we introduce the symplectic polar
coordinates around the tori in the family TΓ. Namely, for each ξ0 ∈ Γ, we set{

vi =
√
ξ0 + yi cosϕ, v−i =

√
ξ0 + yi sinϕ, 1 6 i 6 n,

bi = vi, b−i = v−i, i > n+ 1.
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Denote b = (bn+1, b−n−1, . . .). The transformation above is real analytic and
symplectic on

D(s, r) = {|Imϕ| < s} × {|y| < r2} × {|b|M < r},
for all s > 0 and r > 0 small enough. Using the expansion (4.2), setting I0 = (ξ0, 0)
and neglecting an irrelevant constant we see that the integrable Hamiltonian in new
coordinates is given by

HK = N +Q = N(y, ξ0, b) +Q(y, ξ0, b),

where N =
∑

16i6nWi(ξ0)yi+
1
2

∑
i>1Wn+i(b

2
n+i+b

2
−n−i), with Ii = yi for 1 6 i 6 n,

and 2Ii = b2i + b2−i for i > n. Then the whole Hamiltonian of the perturbed equation
(4.1) can be written as

Hε = N +Q+ εF. (4.3)

We consider the new perturbation term P = Q+εF . By Lemma 3.12 and the regularity
assumption, if r2 =

√
ε, then

sup
D(s,r)

||XP ||M−1 6 c
√
ε.

Using the non-degeneracy Lemma 3.11, we can take the vector {Wi(ξ0), 1 ≤ i ≤ n} for
a free n-dimensional parameter of the problem and apply an abstract KAM theorem
(see Theorem 8.3 in [44] and Theorem 18.1 in [31]) to obtain the statements of the
theorem. For a complete proof, see [44, 31]. �

Example. The theorem applies if (4.1) is the hamiltonian PDE with the local
Hamiltonian

H(u) + ε

∫
T
g(u(x), x) dx =

∫
T

(u2
x

2
+ u3 + εg(u(x), x)

)
dx,

where g(u, x) is a smooth function, periodic in x and analytic in u. In this case in
(4.1) we have ∂

∂x∇F (u(·))(x) = ∂
∂xgu(u(x), x). �

It is easy to see that for the proof of Theorem 4.1, explained above, the normal
form (3.4) (weaker and much simpler than that in Theorem 3.2) is sufficient, see
[42, 44]. Normal forms, similar to (3.4), exist for integrable PDEs for which a normal
form as in Theorem 3.2 does not hold, e.g, for the Sine-Gordon equations, see [44].

Remark. Recently Berti and Baldi announced a KAM-theorem, similar to
Theorem 4.1, which applies to perturbations of KdV, given by operators of order
higher than one.

Theorem 4.1 allows to perturb a set of KdV-solutions which form a null-set for
any reasonable measure in the function space (in difference with the finite-dimensional
KAM theory which insures the persistence of a set of almost-periodic solutions which
occupy the phase space up to a set of measure . εγ , γ > 0). It gives rise to a natural
question:

Problem 4.2 Do typical tori TI as in (3.3), where I = (I1, I2, . . .) ∈ hpI , p < ∞,
persist in the perturbed equation (4.1)? If they do not, what happens to them?

Though there are KAM-theorems for perturbations of infinite-dimensional
invariant tori, e.g. see [68, 13], they are not applicable to the problem above since,
firstly, those works do not apply to KdV due to the strong nonlinear effects and
long-range coupling between the modes and, secondly, they only treat invariant tori
corresponding to the actions I1, I2, . . ., decaying very fast (faster than exponentially).
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4.2. Averaging for perturbed KdV

Compare to KAM, averaging type theorems for perturbed KdV are more recent
and less developed. Their stochastic versions, which we discuss in Section 4.3, are
significantly stronger than corresponding deterministic statements in Section 4.4. We
will explain reasons for that a bit later. Let us start with the ‘easiest’ case, where
KdV is stabilized by small dissipation:

u̇+ uxxx − 6uux = εuxx, u(0) ∈ H3. (4.4)

A simple calculation shows that a solution u(t) satisfies

||u(t)||0 6 e−εt||u(0)||0.
So u(t) becomes negligible for t � ε−1. But what happens during time intervals of
order ε−1? Let us pass to the slow time τ = εt and apply to equation (4.4) the nonlinear
Fourier transform Ψ, denoting for k = 1, 2, . . ., Ψk(u) = vk if Ψ(u) = v = (v1, . . .):

d

dτ
vk = ε−1JWk(I)vk+dΨk(Ψ−1(v))(4Ψ−1(v)) =: ε−1JWk(I)vk+Pk(v), k ∈ N.(4.5)

Since Ik = 1
2 |vk|

2 is an integral of motion for KdV, then

d

dτ
Ik =

(
Pk(v),vk

)
:= Fk(v), k ∈ N, (4.6)

where (·, ·) stands for the Euclidian scalar product in R2. Using (4.5) we get

d

dτ
ϕk = ε−1Wk(I) + 〈term of order 1〉, if vk 6= 0, k ∈ N. (4.7)

We have written equation (4.4) in the action-angle variables (I, ϕ). Consider the
averaged equation for actions:

d

dτ
Jk = 〈Fk〉(J), 〈Fk〉(J) =

∫
T∞

Fk(J, ϕ)dϕ, k ∈ N, J(0) = I(u(0)) , (4.8)

where Fk(I, ϕ) = Fk(v(I, ϕ)), k ∈ N, and dϕ is the Haar measure on the infinite
dimensional torus T∞. The main problem of the averaging theory is to see if the
following holds true:

Averaging principle: Fix any T > 0. Let (I(τ), ϕ(τ)) be a solution of (4.6), (4.7),
and J(τ) be a solution of (4.8). Then (either for all or, for ’typical’ initial data u(0))
we have

||I(τ)− J(τ)|| 6 ρ(ε), ∀ 0 6 τ 6 T,

where || · || is a suitable norm, and ρ(ε)→ 0 with ε→ 0.

The main obstacles to prove this for the perturbed equation (4.4) are the following:

(1) The KdV-dynamics on some tori is resonant.

(2) The well-posedness of the averaged equation (4.8) is unknown.

(3) Equations (4.7) are singular at the locus a (see (3.5)).

To handle the third difficulty observe that eq. (4.7) with a specific k is singular
when Ik is small. But then vk is small, the k-th mode does not affect much the
dynamics, so the equation for ϕk may be excluded from the considereation. Concerning
the second difficulty, in [46] the second author of this work established that the
averaged equation (4.8) may be lifted to a regular system in the space hp, which
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is well posed, at least locally. More specifically, note that equation (4.8) may be
written as follows:

d

dτ
Jk = 〈Fk〉 =

∫
T∞

(Φ̄θkvk, Pk(Φθv))dθ = (vk, Rk(v)), (4.9)

Rk =

∫
T∞

Φ̄−θkPk(Φθv)dθ,

where the maps Φθ and Φ̄θk are defined in (3.8). Now consider equation

d

dτ
v = R(v). (4.10)

Then relation (4.9) implies:

Lemma 4.3 If v(τ) satisfies (4.10), then I(v(τ)) satisfies (4.8).

Equation (4.10) is called the effective equation for the perturbed KdV equation (4.4).
It is rotation-invariant: if v(τ) is a solution of (4.10), then for each θ ∈ T∞, Φθ(v(τ))
also is a solution. Since the map Ψ is quasilinear by Theorem 3.4, we may write
R(v) more explicitly. Namely, denote by 4̂ the Fourier-image of the Laplacian,

4̂ = diag{−k2, k ∈ N}, and set

L = dΨ(0), Ψ0 = Ψ− L, G = Ψ−1 = L−1 +G0.

Then G0 : hs → Hs+1 is analytic for any s > 0, and direct calculation shows that

R(v) = 4̂v +R0(v),

where

R0(v) =

∫
T∞

[Φ−θL4(G0Φθv) + Φ−θdΨ0(GΦθv)4(GΦθv)]dθ.

Hence R0(v) is an operator of order one and the effective equation (4.10) is a Fourier
transform of a quasi-linear heat equation with a non-local nonlinearity of first order.
Such equations are locally well posed. Due to the direct relation between the effective
equation and the averaged equation, the former can be used to study the latter.

The first difficulty is serious. Sometime it cannot be overcome, and then the
averaging fails. A way to handle it is discussed in the next section.

4.3. Stochastic averaging.

A way to handle the first obstacle – the resonant tori – is to add to the perturbed
equation (4.4) a random force which would shake solutions u(t) off a resonant torus
(as well as off any other invariant torus TI). So let us consider a randomly perturbed
KdV:

u̇+ uxxx − 6uux = εuxx +
√
ε η(t, x), u(0) = u0 ∈ C∞ ∩H0, (4.11)

η(t, x) =
∂

∂t

∑
j∈Z0

bjβj(t)ej(x).

Here Z0 is the set of all non-zero integers, {ej(x)}j∈Z0
is the basis (1.2) and

• all bj > 0 and decay fast when |j| → ∞.

• {βj(t)}j∈Z0
are independent standard Wiener processes (so βj(t) = βωj (t), where

ω is a point in a probability space (Ω,F ,P)).
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The scaling factor
√
ε in the r.h.s is natural since only with this scaling do solutions

of equation (4.11) remain of order one when t→∞ and ε→ 0. To simplify formulas
we assume that bj = b−j for all j.

In [48, 46], Kuksin and Piatnitski justified the averaging principle for the
stochastic equation (4.11). To explain their result we pass to the slow time τ = εt and
use Itô’s formula (e.g. see in [35]) to write the corresponding equation for the vector
of actions I(u(ε−1τ)) = Iω(τ):

dIk
dτ

= Fk(I, ϕ) +Kk(I, ϕ) +
∑
j

Gjk(I, ϕ)
∂

∂τ
βj(τ), k ≥ 1. (4.12)

Here F is defined as in (4.6), K is the Ito term

Kk =
1

2

∑
j∈Z0

b2j
(
(d2Ψk(u)[ej , ej ],vk) + |dΨk(u)ej |2

)
,

and G is the dispersion matrix, Gjk = bjdΨk(u)ej .
Let us average the equation above:

dJ

dτ
= 〈F 〉(J) + 〈K〉(J) +

∑
j

〈Gj〉(J)
∂

∂τ
βj(τ). (4.13)

Here 〈F 〉 are the same as in (4.8), 〈K〉 is the average of K and 〈Gj〉(J), j ∈ Z0,
are column-vectors, forming an infinite matrix 〈G〉(J). The latter is defined as a
square root of the averaged diffusion matrix

∫
T∞ G(J, ϕ)GT (J, ϕ)dϕ, where G(J, ϕ) is

formed by the columns Gj(J, ϕ). Similar to Section 4.2, equation (4.11) also admits
an effective equation of the form

dvk
dτ

= −k2vk +R′k(v) +
∑
j

(R′′)jk(v)
∂

∂t
βj(τ), k ≥ 1,

where R′(v) is an operator of first order, R′′(v) is a Hilbert-Schmidt matrix, which
is an analytic function of v, and {βj(·), j > 1} are standard independent Wiener
processes. This is a quasilinear stochastic heat equation with a non-local nonlinearity,
written in the Fourier coordinates. It is well posed in the spaces hp, p ≥ 1.

Similar to above, if v(τ) is a solution of (4.9), then I(v(τ)) is a weak solution of
(4.13). See [48, 46] for details.

We recall (e.g. see [35]) that a random process J = Jω(τ) is a weak solution (in
the sense of stochastic analysis) of equation (4.13), if for almost every ω it satisfies the
integrated version of equation (4.13), where the processes βj ’s are replaced by some

other independent standard Brownian motions β̂j ’s:

Jω(τ) =

∫ τ

0

(〈F 〉+ 〈K〉)(Jω(s))ds+

∫ τ

0

∑
j

〈Gj〉(Jω(s))dβ̂ωj (s), ∀τ ∈ [0, T ].

Fix any T > 0. Let uε(t), 0 6 t 6 ε−1T , be a solution of (4.11). Introduce slow
time τ = εt and denote Iε(τ) = I(uε(ε−1τ)). Consider the distribution of this random
process. This is a measure in the space C([0, T ], hpI). We assume p > 3.

Theorem 4.4 (i) The limiting measure limε→0D(Iε(·)) exists. It is the law of a weak
solution I0(τ) of (4.13) with the initial data I0(0) = I(u0).
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(ii)The law D(I0(τ)) equals to that of I(v(τ)), where v(τ), 0 6 τ 6 T , is a regular
solution of the corresponding effective system (4.9) with the initial data v0 = Ψ(u0).

(iii) Let f > 0 be a continuous function such that
∫ T

0
f(s)ds = 1. Then

the measure
∫ T

0
f(τ)D(Iε(τ), ϕε(τ))dτ on the space hpI × T∞ weakly converges, as

ε → 0, to the measure
( ∫ T

0
f(τ)D(I0(τ))ds

)
× dϕ. In particular, the measure∫ T

0
f(τ)D(ϕε(τ))ds weakly converges to dϕ, where dϕ is the Haar measure on the

infinite dimensional torus T∞.
(iv) Every sequence ε′j → 0 contains a subsequence εj → 0 such that the double

limit limεj→0 limt→∞D
(
Ψ(uε(t))

)
exists for any solution uε(t) and is a stationary

measure∗ for the effective equation (4.9).

For the proof see [48, 46]. For the last assertion also see the argument Section 4
in [51]. The proof of the theorem applies to other stochastic perturbations of KdV. In
particular, assertions (i)-(iii) hold for equations

u̇+ uxxx − 6uux = εg(u(x), x) +
√
ε η,

where η is the same as in (4.11) and g is a smooth function, periodic in x, which has
at most a linear growth in u, and is such that g(u(·), x) ∈ Hp if u ∈ Hp (this holds
e.g. if g(u, x) is even in u and odd in x).

The key to the proof of Theorem 4.4 is the following result (see Lemma 5.2 in
[48]), where for any m ∈ N, K > 0 and δ > 0 we denote

Ω(δ,m,K) :=
{
I : |W1(I)k1+ . . .+Wm(I)km| < δ,

for some k ∈ Zm such that 1 6 |k| 6 K
}
.

(4.14)

Lemma 4.5 For any m ∈ N, K > 0, T > 0 and δ > 0 we have∫ T

0

P{I(τ) ∈ Ω(δ,m,K)}dτ 6 κ(δ,K,m, T ),

where κ(δ,K,m, T ) goes to zero with δ, for any fixed K, m and T .

This lemma assures that in average, solutions of (4.11) do not spend much time in
the vicinity of resonant tori. The stochastic nature of the equation is crucial for this
result.

4.4. Deterministic averaging.

It is plausible that the averaging principle also holds for equation (4.4). But without
randomness, it is unclear how to assure that solutions of (4.4) ‘pass the resonant zone
quickly’ (in analogy with Lemma 4.5). This naturally leads to the question: for which
deterministic perturbations of KdV it is possible to prove the property of fast crossing
the resonant zones and verify the averaging principle? Some results in this direction
are obtained by the first author in [26, 27]. Now we discuss them.

Consider a deterministically perturbed KdV equation:

u̇+ uxxx − 6uux = εf(u), x ∈ T, u ∈ Hp, (4.15)

∗ For this notion and its discussion see [50]. We are certain that eq. (4.11) has a unique stationary
measure. When this is proven, it would imply that the convergence in (iv) holds as ε→ 0.
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where p > 3 and the perturbation f(u) = f(u(·)) may be non-local. I.e., f(u)(x) may
depend on values of u(y), where |y− x| ≥ κ > 0. We are going to discuss solutions of
(4.15) on time-intervals of order ε−1. Accordingly we fixe some ζ0 ≤ 0, p > 3, T > 0
and make the following assumption:

Assumption A. (i) There exists p′ = p′(p) < p, such that for any q ∈ [p′, p] the
perturbation in (4.15) defines an analytic mapping of order ζ0:

Hq → Hq−ζ0 , u(·) 7→ f(u(·)).
(ii) For any u0 ∈ Hp, there exists a unique solution u(t) ∈ Hp of (4.15) with

u(0) = u0. For 0 ≤ t 6 Tε−1 its norm satisfies ||u(t)||p 6 C(T, p, ||u0||p).
It will be convenient for us to discuss equation (4.15) in the v-variables. We will

denote

Bp(M) = {v ∈ hp : |v|p 6M}.
With some abuse of notation we will denote by St, 0 6 t 6 Tε−1, the flow-maps of
equation (4.15), both in the u- and in the v-variables.

Definition 4.6 1) A Borelian measure µ on hp is called regular if for any analytic
function g 6≡ 0 on hp, we have µ({v ∈ hp : g(v) = 0}) = 0.

2) A measure µ on hp is said to be ε-quasi-invariant for equation (4.15) if it is
regular and for any M > 0 there exists a constant C(T,M) such that for every Borel
set A ⊂ Bp(M) we have ]

e−εtC(T,M)µ(A) 6 µ(St(A)) 6 eεtC(T,M)µ(A), ∀ 0 ≤ t 6 ε−1T. (4.16)

Similarly, these definitions can be carried to measures on the space Hp and the flow
maps of equation (4.15) on Hp.

For an ε-perturbed finite-dimensional hamiltonian system the Lebesgue measure is
ε-quasi-invariant by the Liouville theorem. This fact is crucial for the Anosov approach
to justify the classical averaging principle (see in [1, 56]). In infinite dimension there
is no Lebesgue measure, and existence of an ε-quasi-invariant measure is a serious
restriction.

If equation (4.15) has an ε-quasi-invariant measure µ, then the argument, invented
by Anosov for the finite dimensional averaging, insures the required analogy of
Lemma 4.5 for equation (4.15). Indeed, let us define the resonant subset B of hp × R
as

B :=
{

(v, t) : v ∈ Bp(M), t ∈ [0, ε−1T ] and Stv ∈ Ω(δ,m,K)
}

(see (4.14)), and consider the measure µ on hp×R, where dµ = dµdt. Then by (4.16)
we have

µ(B) =

∫ ε−1T

0

µ
(
Bp(M) ∩ S−t

(
Ω(δ,m,K)

))
dt 6 ε−1TeC(T,M)µ(Ω(δ,m,K)).

For any v ∈ Bp(M), define Res(v) as the set of resonant instants of time for a
trajectory, which starts from v:

Res(v) = {τ ∈ [0, ε−1T ] : St(v) ∈ Ω(δ,m,K)}.

] This specifies the usual definition of a quasi-invariant measure. We recall that if a flow {St} of
some equation exists for all t ≥ 0 (or for all t ∈ R), then a measure m is called quasi-invariant for this
equation if the measures St ◦m are absolutely continuous with respect to m for all t ≥ 0 (respectively
for all t ∈ R).
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Then

µ(B) =

∫
Bp(M)

mes
(
Res(v)

)
dµ(v)

by the Fubini theorem, where mes(·) stands for the Lebesgue measure on [0, ε−1T ]. If
for ρ > 0 we denote

VRes(ρ) := {v ∈ Bp(M) : mes (Res(v)) > ε−1ρ} ,
then in view of the Chebyshev inequality

µ(VRes(ρ)) 6
ε

ρ
µ(B) 6

TeC(M,T )

ρ
µ(Ω(δ,m,K)).

By Theorem 3.2 the functions v 7→W1(I(v))k1 + . . .+Wm(I(v))km, k ∈ Zm \ {0}, are
analytic on hp. Since they do not vanish identically by Lemma 3.11 and the measure
µ is regular, then µ(Ω(0,m,K)) = 0. Accordingly µ(Ω(δ,m,K)) goes to zero with δ,
and

µ(VRes(ρ))→ 0 as δ → 0, (4.17)

for any ρ. This gives us a sought for analogy of Lemma 4.5 for deterministic
perturbations of KdV which have ε-quasi-invariant measures.

The averaged equation for actions, corresponding to (4.15), reads

dJk
dτ

= 〈Fk〉(J), k = 1, 2, . . . , (4.18)

where Fk =
(
dΨk(Ψ−1(v))(f(Ψ−1(v)(·)),vk

)
(cf. (4.6)). Due to item (i) of

Assumption A, the r.h.s. of (4.18) defines a Lipschitz vector filed on hpI , so the
averaged equation is well posed locally on hpI . We denote by JI0(τ) a solution of
(4.18) with an initial data JI0(0) = I0 ∈ hpI . It is shown in [26, 27] that relation (4.17)
and the well-posedness of the averaged equation jointly allow to establish an averaging
theorem for equation (4.15), provided that it has an ε-quasi-invariant mesure.

In the statement below uε(t) stand for solutions of equation (4.15) and vε(τ) – for
these solutions, written using the v-variables and slow time τ = εt. By Assumption A,
for τ ∈ [0, T ] we have |I(vε(τ))|∼p 6 C1

(
T, |I(vε(0))|∼p

)
. Denote

T̃ (I0) := min{τ ∈ R+ : |JI0(τ)|∼p > C1(T, |I0|∼p ) + 1}.

Theorem 4.7 Fix some M > 0. Suppose that Assumption A holds and equation (4.15)
has an ε-quasi-invariant measure µ on hp such that µ(Bp(M)) > 0. Then

(i) For any ρ > 0 and any q < p − 1
2 max{ζ0,−1}, there exist ερ,q > 0 and a

Borel subset Γερ,q ⊂ Bp(M), satisfying limε→0 µ(Bp(M)\Γερ,q) = 0, with the following
property:
if ε 6 ερ,q and vε(0) ∈ Γερ,q, then

|I(vε(τ))− JIε0 (τ)|∼q 6 ρ for 0 6 τ 6 min{T, T̃ (Iε0)}, (4.19)

where Iε0 = I(vε(0)).
(ii) Let λv0ε be a probability measure on T∞, defined by the relation∫

T∞
f(ϕ) dλv0ε (dϕ) =

1

T

∫ T

0

f(ϕ(vε(τ))dτ, ∀f ∈ C(T∞),
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where v0 := vε(0) ∈ Bp(M). Then the measure µ
(
Bp(M)

)−1 ∫
Bp(M)

λv0ε dµ(v0)

converges weakly, as ε→ 0, to the Haar measure dϕ on T∞††
Proposition 4.8 If Assumption A holds with ζ0 < 0, then for ρ < 1, p 6 q and
ε 6 ερ,q, we have T̃ := T̃

(
I(vε(0))

)
> T for vε(0) ∈ Γερ,q. So (4.19) holds for

0 ≤ τ ≤ T .

Proof: Assume that T̃ 6 T . By (4.19) for 0 ≤ τ ≤ T̃ we have |Iε(τ) − JIε0 (τ)|∼p 6 ρ.
Therefore |JIε0 (τ)|∼p 6 C1(T, |Iε0|∼p ) + ρ < C1(T, |Iε0|∼p ) + 1. This contradicts the

definition of T̃ , so T̃ > T . �

Remark. Assume that ε-quasi-invariant measure µ depends on ε, i.e., µ = µε, and
a) µε(Ω(δ,m,K)) goes to zero with δ uniformly in ε,
b) the constants C(T,M) in (4.16) are bounded uniformly in ε.

Then assertion (i) holds with µ replaced by µε. For assertion (ii) to hold, more
restrictions should be imposed, see [27].

Theorem 4.7 gives rise to the questions:

Problem 4.9 Does a version of the averaging theorem above holds without assuming
the existence of an ε-quasi-invariant measure?

Problem 4.10 Which equations (4.15) have ε-quasi-invariant measures?

See the next subsection for some results in this direction.

Problem 4.11 Find an averaging theorem for equations (4.15), where the
nonlinearity defines an unbounded operator, i.e. in Assumption A(i) we have ζ0 > 0
(note that in the equation from Example in Section 4.1 we have ζ0 = 1, and in equation
(4.4) ζ0 = 2).

It is unlikely that the assertion of Theorem 4.7 holds for all initial data, and we believe
that the phenomenon of capture in resonance happens for some solutions of (4.15):

Problem 4.12 Prove that (4.19) does not hold for some solutions of (4.15).

4.5. Existence of ε-quasi-invariant measures

Clearly every regular measure, invariant for equation (4.15), is ε-quasi-invariant.
Gibbs measures for some equations of the KdV type are regular and invariant,
they were studied by a number of people (e.g., see [12, 74]). However, for generic
hamiltonian perturbations of KdV it is difficult, probably impossible, to construct
invariant measures in higher order Sobolev spaces due to the lack of high order
conservation laws. Below we give some examples of ε-quasi-invariant measures for
smoothing perturbations of KdV, which are Gibbs measures of KdV (so they are
KdV-invariant). Note that some of these perturbed equations do not have non-trivial
invariant measures. For example, our argument applies to equations which in the
v-variables reed as

v̇j = JWj(I)vj − εj−ρvj , j ∈ N,
where ρ > 1. But all trajectories of this equation converge to zero, so the only
its invariant measure is the δ-measure at the origin. That is, for averaging in the
perturbed KdV (4.15) (various) Gibbs measures of KdV play the same role as the
Lebesgue measure plays for the classical averaging.

†† In [26] a stronger assertion was claimed. Namely, that the measure λv0ε converges to dϕ for µ-a.a.
v0 in Bp(M). Unfortunately, the proof in [26] contains a gap which we still cannot fix.
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Definition 4.13 For any ζ ′0 < −1, a Gaussian measure µ0 on the Hilbert space hp

is called ζ ′0-admissible if it has zero mean value and a diagonal correlation operator
(v1, . . .) 7→ (σ1v1, . . .), where 0 < jζ

′
0/σj 6 Const for each j.

For any ζ ′0 < −1 a ζ ′0-admissible measure µ0 is a well-defined probability measure
on hp, which can be formally written as

µ0 =

∞∏
j=1

(2πj)1+2p

2πσj
exp{− (2πj)1+2p|vj |2

2σj
}dvj , (4.20)

where dvj , j > 1, is the Lebesgue measure on R2
vj . It is known that (4.20) is a

well-defined measure on hp if and only if
∑
σj < ∞ (see [10]). It is regular and

non-degenerate in the sense that its support equals hp (see [10, 11]). Writing KdV
in the v-variables we see that µ0 is invariant under the KdV flow. Note that µ0 is a
Gibbs measure for KdV, written in the form (3.7), since formally it may be written
as µ0 = Z−1 exp{−〈Qv, v〉}dv, where 〈Qv, v〉 =

∑
cj |vj |2 is an integrals of motion for

KdV (the statistical sum Z =∞, so indeed this is a formal expression).
For a perturbed KdV (4.15) we define P(v) = dΨ(u)(f(u)), where u = Ψ−1(v).

A non-complicated calculation (see in [26]) shows that:

Theorem 4.14 If Assumption A holds and
(i)′ the operator P analytically maps the space hp to hp−ζ

′
0 with some ζ ′0 < −1,

then every ζ ′0-admissible Gaussian measure on hp is ε-quasi-invariant for equa-
tion (4.15) on the space hp.

However, due to the complexity of the nonlinear Fourier transform Ψ, it is not easy
to verify the condition (i)′ of Theorem 4.14 for specific equation (4.15). Now we will
give other examples of ε-quasi-invariant measures on the space Hp, by strengthening
the restrictions in Assumption A. Suppose that there p ∈ N. Let µp be the centered
Gaussian measure on Hp with the correlation operator 4−1. Since 4−1 is an operator
of the trace type, then µp is a well-defined probability measure on Hp.

We recall (see Remark 3.3) that KdV has infinitely many conservation laws Jn(u),
n > 0, of the form Jn = 1

2 ||u||
2
n + Jn−1(u), where J−1(u) = 0 and for n > 1,

Jn−1(u) =

∫
T

{
cnu(∂n−1

x u)2 +Qn(u, . . . , ∂n−2
x u)

}
dx . (4.21)

Here cn are real constants and Qn are polynomial in their arguments. From (4.21),
we know that the functional Jp is bounded on bounded sets in Hp. We consider a
Gibbs measure ηp for KdV, defined by its density against µp,

ηp(du) = e−Jp(u)µp(du).

It is regular and non-degenerated in the sense that its support contains the whole
space Hp (see [10]). Moreover, it is invariant for KdV [74]. The following theorem
was shown in [27]:

Theorem 4.15 If Assumption A holds with ζ0 6 −2, then the measure ηp is ε-quasi-
invariant for perturbed KdV (4.15) on the space Hp.

Corollary 4.16 If ζ0 6 −2, then the assertions of Theorem 4.7 hold with µ = ηp,

and we have T̃ > T .
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In particular, this corollary applies to the equation

u̇+ uxxx − 6uux = εf(x), x ∈ T, u ∈ Hp,

where f(x) is a smooth function with zero mean-value. This equation may be viewed
as a model for shallow water wave propagation under small external force. Note that
the KAM-Theorem 4.1 also applies to it.

Problem 4.17 Besides the class of ζ ′0-admissible Gaussian measures and Gibbs
measure ηp, there are many other KdV-invariant measures. How to check if a measure
like that is ε-quasi-invariant for a given ε-perturbation of KdV?

4.6. Nekhoroshev type results (long-time stability)?

In the finite dimensional case, the strict convexity of the unperturbed integrable
Hamiltonian assures the long-time stability of solutions for perturbed hamiltonian
equations ([66, 55, 69]). Theorem 3.13 tells us the the KdV Hamiltonian HK(I) is
convex in l2 and hints that it is strictly convex (at least) in a neighborhood of the
origin in l2. This suggests that an Nekhoroshev type stability may hold for perturbed
KdV under hamiltonian perturbations (see equation (4.1)), at least for initial data
in a neighborhood of the origin, where the strict convexity should hold. But at the
moment of writing no exact statement is available.

There are several ad hoc quasi-Nekhoroshev theorems for hamiltonian PDEs, see
[5, 14] and references therein. However, these results only apply in a small (of the
size of the perturbation) neighborhood of the origin. Nonetheless, we believe that
the corresponding technique and the results in Theorem 3.13 will lead to results on
long-time stability (at least in time interval of order ε−p, p ≥ 1,) for some solutions of
perturbed KdV (4.1). Note that Theorem 4.7 and Corollary 4.16 imply such a stability
for p = 1 and for typical initial data, if the perturbation f is smoothing. Stability on
time-intervals of order ε−2 seems to be a much harder question.

Problem 4.18 Is it possible to prove a long-time stability result for perturbed KdV
under hamiltonian perturbations, e.g. for equation (4.1), that holds for all ‘smooth’
initial data?
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