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Abstract. For a class of random dynamical systems which describe dissipa-

tive nonlinear PDEs perturbed by a bounded random kick-force, we propose
a “direct proof” of the uniqueness of the stationary measure and exponential

convergence of solutions to this measure, by showing that the transfer opera-
tor acting in the space of probability measures given the Kantorovich metric,

defines a contraction of this space. Next we use results of [Kuk97, Kuk99]
to study properties of this measure in the turbulence limit (as the viscosity

goes to zero), for some nonlinear PDEs.

0. Introduction

In [KS00]1 (see also [KS02]) A. Shirikyan and the author of this paper con-
sidered a class of nonlinear dissipative PDEs perturbed by smooth in space random
forces. We proved that these equations, treated as random dynamical systems in a
function space, have unique stationary measures. The forces considered in [KS00]
have the form of bounded random kicks and satisfy some nondegeneracy assump-
tion; the class of equations includes the 2D Navier–Stokes equations:

u̇− ν∆u+ (u · ∇)u+∇p = η(t, x) , x ∈ T2;

divu = 0 ,
∫
u dx =

∫
η dx = 0.

(NS)

Here η is a kick-force; see Section 1. In particular, the results of [KS00] imply that if
η “contains noise in each Fourier mode”, then (for any positive ν) solutions of (NS),
treated as random processes in a function space H of divergence-free vector fields,
converge in distribution to a unique measure µν on H . This measure comprises
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asymptotic in time properties of solutions. For ν � 1 it describes the 2D turbulence;
see [VF88, Gal01] and the Introduction in [KS00].

The proof in [KS00] is based on a reduction of the original infinite-dimensional
random dynamical system (defined by a PDE we consider) to a 1D Gibbs system
with a finite-dimensional phase space. Later, E. Mattingly, Sinai [EMS01] and
Bricmont, Kupiainen, Lefevere [BKL00] used similar approaches to show that the
(NS) system perturbed by a white (in time) force η also has a unique stationary
measure. In [KS01b] the (NS) equation with an unbounded kick-force is studied
and the scheme of [KS00] is used to prove the uniqueness and ergodicity of a
stationary measure.

J.-P. Eckmann and M. Hairer have recently considered another class of ran-
domly forced nonlinear PDEs and obtained for them similar results; see [EH01].

In [KS01a, KPS01] the author of this paper and his collaborators developed
a coupling approach to study the systems under discussion. This approach gives a
shorter proof of the uniqueness and implies that any solution of the system converges
in distribution exponentially fast to the stationary measure.2 Independently a
similar coupling approach to the study (NS) was proposed by N. Masmoudi and
L.-S. Young in [MY01].

The main result of this work is Theorem 1.2, where we present a “direct
proof” of the uniqueness and exponential convergence by showing that the transfer-
operator, corresponding to a random dynamical system as above and acting in the
space of probability measures, given the Kantorovich(–Wasserstein) metric, defines
a contraction of this space.

In Section 5 we consider complex Ginzburg–Landau equations and evoke results
of [Kuk97, Kuk99] to study some properties of their stationary measures in the
turbulence-limit (as the coefficient of the Laplacian goes to zero). The results of
this section do not apply to the equations (NS).

The proof of Theorem 1.2 presented in this work can be treated as reinterpreting
of the arguments from [KS01a, KPS01]: it is based on the coupling approach and
uses essentially Lemma 3.2 of [KS01a] (which is the heart of the proof in [KS01a]).
In addition to the coupling techniques, we now use some ideas originated in the
works by Kantorovich on the mass-transfer problem in the 1940’s; see [KA77,
Dud89].

Notation. We denote by (Ω,F ,P) and (Ω′,F ′,P′) different probability spaces,
and abbreviate them to Ω and Ω′, respectively. All metric spaces are given Borel
sigma-algebras. D(·) signifies the distribution of a random variable.

A Hilbert space H with a norm ‖ · ‖ is fixed in this work. We use the following
notation for objects related to H :
B = B(H), the sigma-algebra of Borel subsets of H ;
Cb, the space of bounded continuous functions on H , given the sup-norm;
P, the space of Borel probability measures on H ;
P(A), measures from P supported by a subset A ⊂ H ;
B(R), the closed ball of radius R in H centered at the origin.

2In [BKL00] the exponential convergence is proven for almost all (with respect to stationary

measure) initial conditions.



CONVERGENCE TO A STATIONARY MEASURE AND THE TURBULENCE–LIMIT 3

Acknowledgements. A preliminary short version [Kuk01] of this paper was
written and typed during my visit to IHES in June 2001, and I sincerely thank the
institute for hospitality.

1. A class of random dynamical systems

Let H be a Hilbert space with a norm ‖ · ‖ and an orthonormal basis {ej}, and
let S : H → H be a continuous map such that S(0) = 0.

Let {ηk, k ∈ Z} be a sequence of i.i.d. random variables Ω→ H of the form

ηk = ηωk =
∞∑
j=1

bj ξjk ej ,(1.1)

where bj ≥ 0 are constants and
∑
b2j < ∞. It is assumed that {ξjk = ξωjk} are

independent random variables such that |ξjk| ≤ 1 for all j, k, ω and

D(ξjk) = pj(r) dr ∀ j, k .(1.2)

Here p1, p2, . . . are functions of bounded variation, supported by the segment
[−1, 1], and ∫ ε

−ε
pj(r) dr > 0 ∀ j ≥ 1 , ε > 0 .(1.3)

We consider the following random dynamical system (RDS) in H :

u(k) = S (u(k − 1)) + ηk =: F ωk (u(k − 1)) , k ≥ 1 .(1.4)

This RDS defines a family of Markov chains in H with the transition function

P (k, v,Γ) = P {u(k) ∈ Γ} , Γ ∈ B(H) ,

where u(·) = u(·; v) is a solution for (1.4) such that u(0) = v. Let {Sk} and
{S∗k} be the corresponding Markov semigroups, acting in the space Cb of bounded
continuous functions on H , and in the space P of Borel probability measures,
respectively:

Skf(v) = E f (u(k; v)) , f ∈ Cb ,

S
∗
k µ(Γ) =

∫
H

P {u(k; v) ∈ Γ} µ(dv) , µ ∈ P ,

where u is the solution for (1.4) as above.
For any v ∈ H and k = 0, 1, . . . we abbreviate

µv(k) = P (k, v, ·) = D (u(k; v)) .

Now we impose some assumptions on the map S. The “right” ones are given
in [KS01a]; see conditions A–C there. In this work we replace them by shorter
and stronger conditions A′) and B′). The new conditions hold for the RDS which
corresponds to the 2D Navier–Stokes equations (see the example below). Our proof
of the Main Theorem works under the conditions A–C, but it becomes somewhat
longer, and the notation is more cumbersome.

A′) The map S is Lipschitz uniformly on bounded subsets of H , and there
exists a positive constant γ0 < 1 such that

‖S (u)‖ ≤ γ0‖u‖ ∀u ∈ H .(1.5)
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B′) For any R > 0 there is a sequence γN (R) > 0 (N ≥ 1) which converges to
zero as N →∞, such that

‖QN(S (u1) − S (u2))‖ ≤ γN (R) ‖u1 − u2‖ for all u1, u2 ∈ B(R) .

Here QN stands for the orthogonal projector H → span {eN+1, eN+2, . . .}.

Example 1.1. Let us consider the 2D Navier–Stokes equations perturbed by
a random kick-force η:

u̇− ν∆u+ (u · ∇)u+ ∇ p = η(t, x) ≡
∑
k∈Z

ηk(x) δ(t− k) ,(1.6)

divu = 0 ,
∫
u d x ≡

∫
η dx ≡ 0 ; x ∈ T2.

Let H be the L2-space of divergence-free vector fields on T2 with zero space-average,
and let {ej} be the usual trigonometric basis of H . Let us assume that the kicks ηk
are random variables in H having the form (1.1) and satisfying (1.3). By normal-
izing solutions u(t) ∈ H of (1.6) to be continuous from the right, we observe that
the equation can be written in the form (1.4), where u(k) = u(k, ·) ∈ H , k ∈ Z,
and the operator S is the time-one shift along trajectories of the free Navier–Stokes
system. The condition A′) obviously holds with γ0 = e−λ, where λ is the minimum
eigenvalue of −ν∆ in H . It is also well known that S satisfies B′); see e.g. [KS00].

A measure µ ∈ P is called a stationary measure for the RDS (1.4) if S
∗
k µ =

µ ∀ k. The goal of this work is to prove the following result:

Theorem 1.2. There exists a constant N ≥ 1 such that if

bj 6= 0 ∀ j ≤ N ,(1.7)

then the RDS (1.4) has a unique stationary measure µ. Moreover, there exists a
constant κ ∈ (0, 1) such that

|(µu(t), f) − (µ, f)| ≤ C κt for t = 1, 2, . . . ,(1.8)

for every Lipschitz function f on H such that |f | ≤ 1 and Lip f ≤ 1. The constant
C depends only on ‖u‖.

The theorem applies to the 2D NS equation (1.6). Moreover, it is known
that if the sequence {bj} decays faster than every negative degree of j, then the
corresponding measure µ is concentrated on the set of smooth functions:

µ(H ∩ C∞) = 1.(1.9)

This property immediately follows from the Chapman–Kolmogorov relation since
the corresponding map S sends the space H to H ∩ C∞ (see in [KS00]).

2. Preliminaries

2.1. Estimates for solutions. Since |ξjk| ≤ 1, we have

‖ηωk ‖ ≤ K1 = (b21 + b22 + · · · )1/2 <∞ for all k and ω.(2.1)

So
‖F ωk (u)‖ ≤ γ0‖u‖+ K1 ,
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and any ball B(R) with R ≥ K1/(1−γ0) is invariant for the RDS (1.4).3 The same
estimate above implies that

‖u(k; v)‖ ≤ γk0 ‖v‖ +K1(1 + · · ·+ γk−1
0 ) ≤ γk0 ‖v‖+

K1

1− γ0
,(2.2)

for all k ≥ 0, v ∈ H and all ω.

2.2. The coupling. Let µ1, µ2 ∈ P.

Definition 2.1. A pair of random variables ξ1, ξ2, defined on the same prob-
ability space and valued in H , is called a coupling for (µ1, µ2) if D ξ1 = µ1 and
D ξ2 = µ2.

For basic results on the coupling see [Lin92] and the Appendix in [KS01a].
The following Lemma 2.2 claims that the measures µu1(1), µu2(1) admit a

coupling which possesses some special properties if ‖u1−u2‖ � 1. The lemma was
first proved in [KS01a]. For the reader’s convenience we repeat its proof here.

Let us take any positive R.

Lemma 2.2. There is a probability space (Ω,F ,P), an integer N = N(R) ≥ 1
and a constant C∗ = C∗(R) > 0 such that if (1.7) holds, then for any u1, u2 ∈ B (R)
the measures µu1(1), µu2(1) admit a coupling (V1, V2), where Vj = Vj(u1, u2;ω), j =
1, 2, possess the following properties:

(i) the maps V1, V2 : B(R)2 ×Ω→ H are measurable;
(ii) denoting d = ‖u1 − u2‖, we have

P {‖V1 − V2‖ ≥ d/2} ≤ C∗ d .(2.3)

Proof. Below, ‖µ − ν‖var signifies variational distance between measures µ
and ν (see [Dud89, KA77]). We recall that if the measures have densities pµ(x)
and pν(x) against a measure dm(x), then

‖µ− ν‖var =
1
2

∫
|pµ(x)− pν(x)| dm(x).(2.4)

By PN we denote the orthogonal projector

PN : H → span {e1, . . . , eN} =: HN ,

and recall that QN is the orthogonal projector to span {eN+1, eN+2, . . .}.
We abbreviate pairs of the form V1, V2 to V1,2.
Let (Ω1,F1,P1) be the probability space on which the random variables {ηk}

are defined, and let (Ω2,F2,P2) be the probability space, where a coupling is defined
for the measures ν1, ν2, specified below. We shall show that the set Ω = Ω1 × Ω2

endowed with the σ-algebra and the probability of direct product is the required
probability space.

The random variables V1, V2 are sought in the form

V1 = S(u1) + ξ1, V2 = S(u2) + ξ2,

where ξ1,2 are some random variables on Ω such that D(ξ1) = D(ξ2) = D(η1). It is
clear that D(V1,2) = µu1,2(1). To define the random variables ξ1,2, we specify their
projections PNξ1,2 and QNξ1,2, where N ≥ 1 is a sufficiently large integer to be
chosen below.

3A set A ⊂ B(H) is said to be invariant for the RDS (1.4) if v ∈ A implies that u(k; v) ∈ A
a.s. for all k. That is, P (k, u, A) = 1 for k ≥ 0 and u ∈ A.
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We set
QNξ1 = QN ξ2 = QN η̃1,

where η̃1 is the natural extension of η1 to Ω, i.e., η̃1(ω) = η1(ω1) for ω = (ω1, ω2) ∈
Ω. To define PNξ1,2, let us write ν1,2 := PNµu1,2(1) and assume that we have
proved the inequality

‖ν1 − ν2‖var ≤ C∗d,(2.5)

where C∗ > 0 is a constant not depending on u1,2 ∈ B(R). Then the measures
ν1,2 admit a coupling Ξ1,2(ω2) depending on the parameter (u1, u2) (i.e., Ξ1,2 =
Ξ1,2(ω2; u1, u2)), such that4

P{Ξ1 6= Ξ2} = ‖ν1 − ν2‖var ≤ C∗d.(2.6)

Moreover, the maps Ξ1,2 are measurable with respect to (ω2, u1, u2) ∈ Ω2×B2 ; see
[Lin92] and Theorem 4.2 in [KS01a].

Retaining the same notation for the natural extensions of Ξ1 and Ξ2 to Ω, we
now set

PN ξ1,2 = Ξ1,2 − PNS(u1,2)

and note that PNV1 6= PNV2 if and only if Ξ1 6= Ξ2. Let N ≥ 1 be large enough
that γN (R) ≤ 1/2 (see condition B′)). In this case, if PNV1 = PNV2, then

‖V1 − V2‖ =
∥∥QN (V1 − V2)

∥∥ =
∥∥QN(S(u1)− S(u2))

∥∥ ≤ ‖u1 − u2‖/2 = d/2.

Inequality (2.3) now follows from (2.6). Clearly, the coupling V1,2 satisfies (i).
Thus, it remains to establish (2.5). To this end, we set v1,2 = PNS(u1,2) and

note that, in view of condition A′),

‖v1 − v2‖ ≤ C(R)d.(2.7)

Since bj 6= 0 for 1 ≤ j ≤ N , (1.2) implies that D(PNη1) = p(x) dx, where dx is
Lebesgue measure on the finite-dimensional space HN and

p(x) =
N∏
j=1

qj(xj), qj(xj) = b−1
j pj(xj/bj), x = (x1, . . . , xN) ∈ HN ,

is a bounded function with compact support. It follows that

ν1,2 = D(v1,2 + PNη1) = p(x− v1,2) dx.

Therefore, by (2.4),

‖ν1 − ν2‖var =
1
2

∫
HN

|p(x− v1)− p(x− v2)| dx.

We claim that∫
HN

|p(x− v1)− p(x− v2)| dx ≤ |v1 − v2|
N∑
j=1

b−1
j Var(pj),(2.8)

where Var(pj) stands for the total variation of pj . The desired inequality (2.5)
follows immediately from (2.7) and (2.8).

4A coupling that satisfies the first relation in (2.6) is called maximal.
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To prove (2.8), we first assume that the pj are C1-smooth functions. In this
case, we have∫

HN

|p(x− v1)− p(x− v2)| dx

≤ |v1 − v2|
∫
HN

∫ 1

0

∣∣(∇p)(x− θv1 − (1− θ)v2)
∣∣dθdx

= |v1 − v2|
∫
HN

∣∣(∇p)(x)
∣∣dx ≤ |v1 − v2|

N∑
j=1

∫
R

∣∣∂xjqj(xj)∣∣ dxj
= |v1 − v2|

N∑
j=1

Var(qj).

It remains to note that Var(qj) = b−1
j Var(pj).

Inequality (2.8) in the general case can be easily derived by a standard approx-
imation procedure; we omit the corresponding arguments.

2.3. A metric on the space P. Let us take any number

R′ > K1/(1− γ0).

We fix it from now on and abbreviate B(R′) = B. Due to the results of Section 2.1,
the ball B is invariant for the RDS (1.4). Next we take any γ1 ∈ (γ0, 1) and any
positive d0 such that

d0 ≤ min
{

1
4C∗

,
1− γ1

2C∗
, 1
}
,(2.9)

where the constant C∗ = C∗(R′) is as in Lemma 2.2. For k ∈ Z we set

dk = γk1 d0 .

We may assume that d0 and R′ are chosen so that
1
2 d−L = R′

for some L ≥ 1. Below we consider only the numbers dk with k ≥ −L.
Let us introduce an equivalent metric d in the space H :

d (u1, u2) = ‖u1 − u2‖ ∧ d0 ,

and consider the set O ⊂ Cb formed by all functions f such that

|f(u1)− f(u2)| ≤ d (u1, u2) for all u1, u2 .

Clearly,
1
2 d0f ∈ O if |f | ≤ 1 and Lipf ≤ 1 .(2.10)

For any two measures µ1, µ2 ∈ P we define the Kantorovich distance dK(µ1, µ2)
as

dK(µ1, µ2) = sup
g∈O
{(µ1 − µ2, g)} .(2.11)

It is known that the space P is complete with respect to this distance (see [KA77],
[Dud89]), and it is easy to see that P(B) is a closed subset of P.
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Lemma 2.3. Suppose that there exists a sequence ζk → 0 such that for k ≥ 1
and u, v ∈ B we have dK(µu(k), µv(k)) ≤ ζk. Then there exists a unique measure
µ ∈ P(B) such that

dK (µu(k), µ) ≤ ζk for k ≥ 1, u ∈ B .(2.12)

Proof. Let us take any function f ∈ O. Since the set B is invariant for (1.3),
we can use the Chapman–Kolmogorov relation and the assumption of the lemma
to get, for ` ≥ k ≥ 0 and u, v ∈ B, that

(µv(`) − µu(k), f) =
∫
B

P (`− k, v, dz)
∫
B

(P (k, z, dw)− P (k, u, dw))f(w)

≤ ζk
∫
B

P (`− k, v, dz) = ζk .

Hence

dK(µv(`), µu(k)) ≤ ζk.(2.13)

Since the space (P, dK) is complete, there exists a unique measure µ ∈ P such that
dK(µu(k), µ) → 0 as k → ∞, for every u ∈ B. Passing to the limit in (2.13) as
` → ∞ we recover (2.12). It is clear that supp µ ⊂ B. Thus µ ∈ P(B) and the
lemma is proved.

3. A Kantorovich-type functional

First we shall construct a special bounded measurable function fK on B × B,
vanishing on the diagonal. To define the function, we consider a partition of B×B
into sets Q`, −L ≤ ` ≤ ∞. Here Q∞ is the diagonal of B ×B,

Qr = {(u1, u2) ∈ B × B | dr+1 < ‖u1 − u2‖ ≤ dr}
if 0 ≤ r <∞, and

Qr =
{

(u1, u2) ∈ B × B | ‖u1 − u2‖ > d0,
1
2 γ1 dr < ‖u1‖ ∨ ‖u2‖ ≤ 1

2 dr
}

if −L ≤ r < 0.
Now we define the function fK :

fK(u1, u2) =
{
dr if (u1, u2) ∈ Qr, 0 ≤ r ≤ ∞ ,

d̃` if (u1, u2) ∈ Q`, ` < 0 ,

where d∞ = 0 and the numbers {d̃`} such that

d0 ≤ d̃−1 ≤ · · · ≤ d̃−L(3.1)

are constructed below. Clearly,

d̃−L ≥ fK (u1, u2) ≥ d (u1, u2)(3.2)

for all u1, u2.
For any pair of measures µ1, µ2 ∈ P(B) we define a Kantorovich-type functional

K(µ1, µ2) as follows:

K(µ1, µ2) = inf {E fK(U1, U2)} ,(3.3)

where the infimum is taken over all couplings (U1, U2) for (µ1, µ2).
Everywhere below (and also in Theorem 1.2), N = N(R′) is the constant of

Lemma 2.2.
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Theorem 3.1. Let us assume that the assumption (1.7) holds. Then there
exists κ < 1 such that

K(S∗1(µ1),S∗1(µ2)) ≤ κK(µ1, µ2)(3.4)

for all µ1, µ2 ∈ P(B) (provided that the numbers d̃−1, . . . , d̃−L are chosen accord-
ingly).

The theorem is proved in the next section. Now we continue to study the RDS
(1.4), taking the theorem for granted.

Let (U1, U2) be a coupling for (µ1, µ2). Using (3.2), for any g ∈ O we get

(µ1 − µ2, g) = E (g (U1) − g (U2)) ≤ E d (U1, U2) ≤ E fK(U1, U2) .

Taking supremum in g ∈ O and using (2.11), next taking infimum in (U1, U2) and
using (3.3) we find that5

dK(µ1, µ2) ≤ K(µ1, µ2) .(3.5)

Let us take any u1, u2 ∈ B. Then µu1(k), µu2(k) ∈ P(B) for all k ≥ 0.
Iterating (3.4) and using (3.5) together with the first inequality in (3.2), we obtain

dK(µu1(k), µu2(k)) ≤ K(µu1(k), µu2(k))

≤ κkK(µu1(0), µu2(0))

= κkfK (u1, u2) ≤ κk d̃−L .(3.6)

Applying Lemma 2.3 we get that there exists a unique measure µ ∈ P(B) such that

dK(µu(k), µ) ≤ κk d̃−L ∀ k ≥ 0, u ∈ B.
Let us take a measure ν ∈ P(B). For a function f ∈ O we have

(S∗k(ν)− µ, f) =
∫

(µu(k)− µ, f) dν(u) ≤ κk d̃−L .

Hence,

dK(S∗k(ν), µ) ≤ κk d̃−L ∀ k ≥ 0 , ν ∈ P(B) .(3.7)

Now let us take any u ∈ H . Due to (2.2) there exists ` = ` (‖u‖) such that
µu(`) ∈ P(B) . Since µu(k+ `) = S

∗
k µu(`), we denote k+ ` = t and get from (3.7)

that

dK(µu(t), µ) ≤ κt−` d̃−L ,(3.8)

for any u ∈ H , where ` = ` (‖u‖). Due to (2.10) and (2.11) with g = d0
2 f , (3.8)

implies (1.8) with C = 2
d0
d̃−L κ

−`.
The estimate (1.8) easily implies that µ is the unique stationary measure. In-

deed, if µ̃ is another one, then for any function f as in (1.8) we have

|(µ̃, f)− (µ, f)| =
∣∣∣∣∫ (µu(k), f) µ̃(du)−

∫
(µ, f) µ̃(du)

∣∣∣∣
≤

∫
|(µu(k) − µ, f)| µ̃(du) .

5A celebrated theorem of Kantorovich says that the inequality (3.5) transforms to the equality

if in (3.3) we replace f(U1, U2) by d(U1, U2). See [Dud89, KA77].
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The integrand is bounded by 2 and goes to zero as k → ∞ due to (1.8). Thus,
the integral goes to zero as k → ∞ as well and (µ̃, f) = (µ, f) for all functions as
above. Hence, µ = µ̃.

Theorem 1.2 is proved.

4. Proof of Theorem 3.1

Let us take any A′ > K(µ1, µ2). Then there exists a coupling (U ′1, U ′2) for
(µ1, µ2) such that E fK(U ′1, U ′2) ≤ A′. The random variables U ′1, U ′2 are defined on
some probability space (Ω′,F ′,P′). Since the supports of µ1, µ2 belong to B, we
may assume that U ′1, U

′
2 ∈ B for all ω′.

Applying Lemma 2.2 with R = R′, we find measurable maps V1, V2 : B2×Ω→
H which satisfy (2.3) and

D (Vj(u1, u2, ·)) = µuj(1) = P (1, uj, ·)(4.1)

for j = 1, 2. Consider the following random variables U1, U2, defined on the proba-
bility space Ω× Ω′:

Uj(ω, ω′) = Vj(U ′1(ω′), U ′2(ω′);ω) , j = 1, 2 .

We take any f ∈ Cb. Using (4.1) and the fact that D(U ′1) = µ1, we get

Eω,ω
′
f(U1) = Eω

′
[Eωf(V1(U ′1(ω′), U ′2(ω′);ω)]

= Eω
′
∫
P (1, U ′1(ω′), du) f(u)

=
∫
µ1(dv)

∫
P (1, v, du) f(u)

= (S∗1(µ1), f) .

Therefore, D(U1) = S
∗
1(µ1). Similarly, D(U2) = S

∗
1(µ2), so (U1, U2) is a coupling

for (S∗1(µ1),S∗1(µ2)).
If we can prove that

EωfK(V1(u1, u2;ω), V2(u1, u2;ω)) ≤ κ fK (u1, u2)(4.2)

for all u1, u2 ∈ B, then

E fK(U1, U2) = Eω
′
[EωfK(V1(U ′1, U

′
2;ω), V2(U ′1, U

′
2;ω))]

≤ κEω
′
fK(U ′1 , U

′
2) ≤ κA′.

Thus, K(S∗1(µ1),S∗1(µ2)) ≤ κA′ and (3.4) would follow since A′ is an arbitrary
number bigger than K(µ1, µ2). It remains to check (4.2).

Let us find k ∈ [−L,∞] such that (u1, u2) ∈ Qk. If k = ∞, then u1 = u2, so
V1 = V2 and (4.2) holds trivially. Now let 0 ≤ k <∞. Then, due to (2.3),

P
{

(V1, V2) ∈
⋃

r≥k+1

Qr

}
≥ 1−C∗ dk .

Since fK ≤ dk+1 for (V1, V2) ∈ ∪
r≥k+1

Qr and fK ≤ sup fK = d̃−L for all (V1, V2), it

follows that
E fK(V1, V2) ≤ dk+1(1− C∗ dk) + d̃−L C∗ dk .

As fK(u1, u2) = dk, then in this case
E fK(V1, V2)
fK(u1, u2)

≤ γ1(1−C∗ dk) + C∗ d̃−L .
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Therefore, (4.2) holds with some k-independent κ < 1 if

C∗ d̃−L < 1− γ1 .(4.3)

If −L ≤ k ≤ −1, then ‖u1‖, ‖u2‖ ≤ 1
2 dk and ‖S(uj)‖ ≤ γ0

1
2 dk for j = 1, 2. As

dk > d0, γ0 < γ1 and the random variable η is smaller, with a positive probability,
than any fixed positive constant (see (1.3)), we have

P {‖V1‖, ‖V2‖ ≤
1
2
dk+1} ≥ θ > 0 .(4.4)

If k ≤ −2, then this means that

P
{

(V1, V2) ∈
⋃

r≥k+1

Qr

}
≥ θ .

Since f ≤ d̃−L, we then have

E fK(V1, V2) ≤ θ d̃k+1 + (1− θ) d̃−L .(4.5)

As fK(u1, u2) = d̃k, then (4.2) holds for −L ≤ k ≤ −2 if

θ d̃k+1 + (1− θ) d̃−L = κ d̃k .(4.6)

If k = −1, then for any ω from the event on the left-hand side of (4.4) we have
‖V1‖, ‖V2‖ ≤ 1

2 d0. Therefore ‖V1 − V2‖ ≤ d0 and (V1, V2) ∈
⋃
r≥0 Qr. Thus, the

relation (4.5) still holds for k = −1 if we denote

d̃0 = d0 .

With this choice of d̃0, (4.2) holds for all negative k if so does (4.6).
The relations (4.6) are equivalent to

d̃−L+1 =
κ+ θ − 1

θ
d̃−L

and
d̃−L+r =

1
θ

(κ d̃−L+r−1 − (1− θ) d̃−L)

for r ≥ 2. That is,

d̃−L+r =
d̃−L
θ

[(κ
θ

)r−1
(
κ+ θ− 1− θ(1 − θ)

κ− θ

)
+
θ(1− θ)
κ− θ

]
for 1 ≤ r ≤ L− 1.

Let us assume that κ = 1− ε, where 0 < ε� 1. Then

d̃−L+r =
d̃−L
θ

[(
−
(

1
θ

)r−1
ε

1− θ + O (ε2)

)
+

θ(1 − θ)
1− θ − ε

]
,(4.7)

where O (ε2) depends on r ≤ L. Choosing ε = εL sufficiently small, we see that
the numbers d̃−L+r (0 ≤ r ≤ L) decay when r grow from 0 to L; so they satisfy all
relations in (3.1) (if d̃0 = d0).

We have seen that a function fK , constructed using the numbers {d̃`} as above,
satisfies (4.2) and (3.1) if it satisfies (4.3) and if d̃0 = d0. Due to (4.7), d̃−L =
d̃0 (1 + O (ε)). Taking d̃0 = d0, we have d̃−L = d0 (1 + O (ε)). Due to (2.9),
d0 ≤ (1 − γ1)/2C∗. Thus, (4.3) is satisfied if ε is sufficiently small.

We have constructed constants d̃k such that the corresponding function fK
satisfies (3.4) with some κ = 1− ε < 1. The theorem is proved.
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5. A kick-forced CGL equation

Let us consider the following complex Ginzburg–Landau (CGL) equation:

−iu̇ + ν∆u− |u|2u = η(t, x) ≡
∑
k

ηk(x)δ(t− k), 0 < ν ≤ 1,(5.1)

which we shall study under the odd 2-periodic boundary conditions:

u(t, x) = u(t, x1, . . . , xj + 2, . . . , xn) = −u(t, x1, . . . ,−xj, . . . , xn)(5.2)

for each j. For simplicity we restrict ourselves to the case

n ≤ 3.

Clearly, any function satisfying (5.2) vanished at the boundary of the cube Kn of
half-periods,

Kn = {0 ≤ xj ≤ 1 ∀ j}.
Since the equation (5.1) has no nonlinear dissipation, it is sometimes called a non-
linear Schrödinger equation.

We denote by {ej} the L2-normalized trigonometric basis (over reals) of the
space of odd 2–periodic complex functions. It is assumed that the force η has the
form (1.1), (1.2), where the densities pj satisfy the assumptions of Section 1, and

0 < bj ≤ C ′mj−m ∀ j,m,(5.3)

with some positive constants C ′m. These relations imply that

|ηk(x)| ≤ C∗ for all k, x, ω,

and

‖ηk‖m ≤ Km for all k, ω,(5.4)

for each m ∈ N. Here C∗ and Km are finite constants and

‖u(x)‖2m =
∫
Kn

(−∆)mu ū dx.

Let us normalize the solutions for (5.1), (5.2) to be continuous from the right.
Then for any m ≥ 2 this equation defines a RDS (1.4) in the space H = Hm,
where Hm stands for the space of odd 2-periodic complex Sobolev functions with
L2-integrable derivatives up to order m. This RDS satisfies the conditions A–C
of [KS00], mentioned in Section 1. Accordingly, the RDS has a unique stationary
measure µ = µν. This measure is supported by smooth functions (cf. (1.9)), so it
is m-independent by the uniqueness. Moreover, if u(t, x) is a solution for (5.1) such
that u(0, x) ∈ Hm is a nonrandom function, then

Ef(u(j, ·))→
∫
Hm

f(u)µδ (du)(5.5)

exponentially fast, where f is a bounded Lipschitz function on Hm.
Writing a solution u for (5.1), (5.2) in the polar coordinate form u = reiφ, we

see that outside the zero-set {u = 0}, r satisfies the equation

ṙ = ν∆r− νr|∇φ|2 + Re (ηe−iφ).

Therefore,

ṙ ≤ ν∆r+C∗
∑
k

δ(t− k).(5.6)
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Our formal derivation of the differential inequality (5.6) can be easily justified by
approximating the measure

∑
k δ(t − k) in the formula for η by regular functions

fε(t) supported by the union of small intervals centered at integers (then the ap-
proximating function ηε(t, x) equals fε(t)ηk(x) if t is close to some integer k, and
vanishes if t is distant from the set of integers).

Let us consider a solution u for the equation (5.1), (5.2) supplemented by zero
initial conditions

u(0, x) = 0.(5.7)

Applying the Maximum Principle [Lan97] to (5.6) we get that

|u(j + t)|∞ ≤ 2n/2|u(j)|∞e−νtc, 0 ≤ t < 1,

and

|u(j)|∞ ≤ C
j∑
l=1

e−νlc <
C

1− e−νc ≤ C1ν
−1,

for j = 0, 1, . . . . Here C = 2n/2C∗, c = nπ2/4 and |u(t)|∞ = |u(t, ·)|L∞; see
[Kuk99] for details. In particular,

|u(t)|∞ ≤ C2δ
−1 ∀ t ≥ 0.

For j = 0, 1, . . ., the solution u satisfies equation (5.1) with η = 0 in the interval
[j, j + 1). Therefore, for t ∈ [j, j + 1) and any m ∈ N we have

d

dt
‖u‖2m ≤ −ν‖u‖2m+1 +

∑
|α|=m

∑
α1+α2+α3=α

∫
Kn

|u1| · · · |u4| dx,

where ul = ∂αju/∂xαj for j ≤ 3 and u4 = ∂αu/∂xα. Applying the Gagliardo–
Nirenberg inequality to estimate the integral on the right-hand side, we get that

d

dt
‖u‖2m ≤ −ν‖u‖2m+1 + C|u|4−R∞ ‖u‖Rm+1 ≤ −ν‖u‖2m+1 +C1ν

R−4‖u‖Rm+1,

where R = 2m
m+1 (see [Kuk99]). Estimating the second term on the right-hand side

via the Young inequality we have
d

dt
‖u‖2m ≤ −

ν

2
‖u‖2m+1 + C2ν

−3m−4 ≤ −ν
2
‖u‖2m + Cmν

−3m−4,

since ‖u‖m ≤ ‖u‖m+1 for any odd periodic function u. Therefore,

‖u(j + 1− 0)‖2m ≤ e−ν/2‖u(j)‖2m + C ′mν
−3m−5.

Using (5.4) we arrive at the inequality

‖u(j + 1)‖m ≤ e−ν/4‖u(j)‖m +Cmν
−(3m+5)/2 + Km ,

valid for any j = 0, 1, . . . and any ω. This relation implies upper bounds for the
Sobolev norms of the solution:

‖u(t)‖m ≤ Cmν−(3m+7)/2 ∀m ∀ω,(5.8)

for any t ≥ 0.
On the other hand, the solution for (5.1), (5.2), (5.7) satisfies the following

lower bound:

L−1
L∑
l=0

E‖u(l)‖2m ≥ cmν−Am,(5.9)
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where L ≥ ν−1, m ≥ 6 and A > 0 is a constant. This estimate is proven in
[Kuk97] (see also [Kuk99], pp. 171–173), for equation (5.1), (5.2) perturbed by a
random force η which is smooth in x, bounded for t in finite intervals, and satisfies
some mixing condition. The arguments of these two works apply to equations with
random kick-force as above (and even simplify in this case).

Applying (5.5) to the solution u of (5.1), (5.2), (5.7) and using (5.8) we see
that in (5.5) the integrating over Hm can be replaced by integrating over the
ball {‖u‖m ≤ Cmν

−(3m+7)/2}. Accordingly, (5.5) holds for functions f which are
bounded and Lipschitz on bounded subsets of Hm, in particular, for f(u) = ‖u‖2m.
Using (5.8) and (5.9) with sufficiently large L = Lν , we arrive at the following
result:

Theorem 5.1. There exists A > 0 such that for any ν ∈ (0, 1] and m ≥ 6 the
stationary measure µν satisfies the following estimates:

cmν
−Am ≤

∫
‖u‖2m µν(du) ≤ Cmν−3m+7.(5.10)

The estimates (5.10) can be reformulated in spectral terms. To do this we write
any function u ∈ Hm as the Fourier series u =

∑
ûse

iπs·x. We view the Fourier
coefficients ûs as functionals on Hm and set

Es =
∫
|ûs|2µν(du).

(In hydrodynamics the quantity Es is called the energy of the wave-vector s.)
Let us take any numbers a < b such that

b > 3
2 , a < 1

2A,

and denote
A = {s ∈ Zn | ν−a ≤ |s| ≤ ν−b}.

Applying to (5.10) the general results of [Kuk99] (see Theorem A2.2 there), we
get:

Theorem 5.2. For a and b as above and any M ≥ 1 there exist positive num-
bers ν0 = ν0(a, b,M) and ν1 = ν1(a, b) such that∑

|s|≥ν−b
Es ≤ νMb, ∀ ν < ν0,

and
νC ≤ |A|−1

∑
s∈A

Es ≤ νc, ∀ ν < ν1,

where c ≤ C are some finite real constants.

This result can be treated as a weak form of the Kolmogorov–Obukhow law
from the theory of turbulence [LL87]; see more in [Kuk99].

The approach of [Kuk97, Kuk99] to get results similar to statements of The-
orems 5.1, 5.2, does not apply to the NS equations, but applies to many other
equations with a small coefficient ν of the Laplacian. E.g., see [Bir01], where it is
proved that any odd periodic solution of a generalized 1D Burgers equation with
zero force, satisfies the estimates

cmν
−2m+1 ≤ 1

T

∫ T

0

‖u(t)‖2m dt ≤ Cmν−2m+1 ,



CONVERGENCE TO A STATIONARY MEASURE AND THE TURBULENCE–LIMIT 15

where m ≥ 1 and T = const /|u0|L2 .

The 1D Burgers equation perturbed by a white in time random force was
considered in [EKMS00]:

u̇− νuxx + uux = η(t, x).

It is known that the RDS corresponding to this equation converges as ν → 0 to the
RDS corresponding to viscosity solutions of the Hopf equation

u̇+ uux = η(t, x) .

It is proven in [EKMS00] that the latter has a unique stationary measure, and
a half-explicit description of this measure is given. In [IK01] similar results are
obtained for the multidimensional Burgers equation. Unfortunately, techniques of
[EKMS00, IK01] do not apply to the NS and CGL equations since for them
limiting dynamics as ν → 0 is unknown.
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