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Abstract Lie antialgebras is a class of supercommutative algebras recently appeared
in symplectic geometry. We define the notion of enveloping algebra of a Lie antial-
gebra and study its properties. We show that every Lie antialgebra is canonically
related to a Lie superalgebra and prove that its enveloping algebra is a quotient of
the enveloping algebra of the corresponding Lie superalgebra.
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1 Introduction

In 2007, Ovsienko [10] introduced a class of non-associative superalgebras called
Lie antialgebras. The axioms were established after encountering two “unusual”
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algebraic structures in a context of symplectic geometry: the algebras, named asl2
and the conformal antialgebra AK(1). Ovsienko found that both of them are related
to an odd bivector fields on R2|1 invariant under the action of the orthosymplectic
Lie superalgebra osp(1|2). The algebra AK(1) is also related to the famous Neveu-
Schwartz Lie superalgebra.

It turns out that the Lie antialgebras asl2 and AK(1) are particular cases of
Jordan superalgebras, known as tiny Kaplansky superalgebra K3 and full derivation
superalgebra, respectively. The algebra K3 appears in the classifications of Jordan
superalgebras made in the middle of 70’s by Kac [4] and Kaplansky [3], while the
full derivation superalgebra is the main example of the article of McCrimmon on
Kaplansky superalgebras [8]. The axioms of Lie antialgebras appear throughout [8]
but no general theory is developed. Lie antialgebras are somehow a combination of
Kaplansky and Jordan superalgebras.

The basics for the representation theory of Lie antialgebras and their relation
to Lie superalgebras was also developed in [10]. The theory is specific for Lie
antialgebras and cannot be applied to the more general class of Jordan super-
algebras.

The present paper is a representation theoretic approach to Lie antialgebras in
continuation of [10]. We show that every Lie antialgebra canonically corresponds to
a Lie superalgebra, this construction was given in [10] without proof. We define the
notion of universal enveloping algebra of a Lie antialgebra and establish a universal
property. We show that the PBW property is not satisfied in general. Our main result
is a realization of the enveloping algebra of a Lie antialgebra as a quotient of the
universal enveloping algebra of the corresponding Lie superalgebra. We deduce that
every representation of a Lie antialgebra can be extended to a representation of the
corresponding Lie superalgebra as announced in [10].

Representations and modules of Jordan superalgebras, in particular of the tiny
Kaplansky superalgebra, have been studied by several authors [6, 7, 11] (see also [9]).
In this paper, we compare different approaches and definitions.

The paper is organized as follows.
In Section 2, we recall the definitions of Jordan superalgebras and Kaplansky

superalgebras. We explain the relation between these algebras and the Ovsienko
Lie antialgebras. The relation is based on results appearing in [8]. We also recall the
notions of representations and modules for these algebras.

In Section 3, we define the universal enveloping algebra U(a) of a Lie antialgebra.
We establish a universal property and discuss the Poincaré-Birkhoff-Witt theorem
for U(a). The PBW property fails in general but holds true for K3.

In Section 4, we recall the construction [10] of the adjoint Lie superalgebra
ga associated to a. We formulate and prove our main theorem stating that the
enveloping algebra U(a) is a quotient of U(ga). As a consequence, we obtain the
relation between representations of a and those of ga as announced in [10]. We
illustrate the constructions in the case of the tiny Kaplansky algebra.

Section 5 is entirely devoted to the case of the algebra AK(1), the conformal
antialgebra, also known as full derivation algebra. We study its enveloping algebra
and the representations.

Appendix section contains the computations establishing the Jacobi identity in ga.
The computations are not straightforward and were missing in [10].
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2 Jordan, Kaplansky and Ovsienko Superalgebras

2.1 Definitions

First recall that a superalgebra A is an algebra with a grading over Z2, i.e

A = A0 ⊕A1, Ai · A j ⊂ Ai+ j.

Elements in the subspaces Ai, i = 0, 1 are called homogeneous elements. For a ∈ Ai,
the value i is called the parity of a that we denote by ā ∈ {0, 1}.

A superalgebra is called supercommutative if it satisfies

a · b = (−1)āb̄ b · a,

for all homogeneous elements a, b .
A superalgebra is called half-unital (cf [8]) if it contains an even element ε

such that

ε · a = a, a ∈ A0, ε · a = 1
2

a, a ∈ A1.

Throughout this paper we consider algebras over the field K = R or C.

Lie antialgebras A Lie antialgebra is a superalgebra a = a0 ⊕ a1 with a supercom-
mutative product satisfying the following cubic identities:

(LA0) associativity of a0

x1 · (x2 · x3) = (x1 · x2) · x3,

for all x1, x2, x3 ∈ a0,
(LA1) half-action

x1 · (x2 · y) = 1
2

(x1 · x2) · y,

for all x1, x2 ∈ a0 and y ∈ a1,
(LA2) Leibniz identity

x · (y1 · y2) = (x · y1) · y2 + y1 · (x · y2) ,

for all x ∈ a0 and y1, y2 ∈ a1,
(LA3) odd Jacobi identity

y1 · (y2 · y3) + y2 · (y3 · y1) + y3 · (y1 · y2) = 0,

for all y1, y2, y3 ∈ a1.

A weak version of Lie antialgebras is also considered by replacing the axiom
(LA1) by:

(LA1’) “full action”

x1 · (x2 · y) + x2 · (x1 · y) = (x1 · x2) · y,

for all x1, x2 ∈ a0 and y ∈ a1.
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Note that, in the case where the even part of a Lie antialgebra is generated by
the odd part, the associativity axiom (LA0) follows from the axioms (LA1)–(LA3)
(cf. Section 2.4).

Jordan (super)algebras An algebra J is a Jordan algebra if it satisfies

(J1) commutativity, a · b = b · a, for all a, b ∈ J,
(J2) Jordan identity, a2 · (b · a) = (a2 · b) · a, for all a, b ∈ J.

A superalgebra J = J0 ⊕ J1 is a Jordan superalgebra if it satisfies

(SJ1) supercommutativity,
(SJ2) super Jordan identity

(a · b) · (c · d) + (−1)b̄ c̄ (a · c) · (b · d) + (−1)(b̄+c̄)d̄(a · d) · (b · c)

=((a·b)·c)·d+(−1)(b̄+c̄)d̄+b̄ c̄((a·d)·c)·b +(−1)(b̄+c̄+d̄)ā+c̄d̄((b ·d)·c)·a,

for all a, b , c, d homogeneous elements in J.

We refer to [5] (see also the references therein) for the general theory of Jordan
superalgebras.

Kaplansky superalgebras In an unpublished work [3], Irving Kaplansky considered
the following class of half-unital supercommutative superalgebras:

• let K0 be a unital commutative associative algebra,
• let " : K0 ×K1 → K1 be a representation of K0,
• let <, >: K1 ×K1 → K0 be a K0-valued skew-symmetric bilinear form,

define a structure of algebra on the space K = K0 ⊕K1 by:

x · y = xy, x, y ∈ K0,

x · a = 1
2

x " a, x ∈ K0, a ∈ K1,

a · x = 1
2

x " a, x ∈ K0, a ∈ K1,

a · b = < a, b >, a, b ∈ K1.

2.2 Kaplansky-Jordan Superalgebras

Kaplansky superalgebras were studied by McCrimmon [8]. The axioms of Lie
antialgebras appear separately in different places of his work. For instance, the
McCrimmon’s Theorem 1.2 states: A half-unital superalgebra is a Jordan superal-
gebra if and only if it satisf ies the identities (LA1’), (LA2) and (LA3). Indeed, using
the half-unit one can check that the quartic identities (SJ2) of Jordan superalgebras
imply the cubic identities (LA1’), (LA2) and (LA3). The proof of the “if” part of the
theorem is more involved.
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From Theorem 1.2 and its proof and Theorem 3.7 of [8], we can immediately
establish the following relations between the above classes of algebras.

• Every (weak) Lie antialgebra is a Jordan superalgebra.
• Every Jordan superalgebra which is half-unital and which has an associative even

part is a weak Lie antialgebra.
• A Kaplansky superalgebra is a Jordan superalgebra if and only if it is a Lie

antialgebra.
• Half-unital Lie antialgebras are exactly Kaplansky-Jordan superalgebras.

2.3 Two Main Examples

The main examples of Kaplansky-Jordan-Ovsienko algebras are:

(a) The tiny Kaplansky algebra. It is a 3-dimensional algebra K3 (denoted by asl2 in
[10]) with basis vectors ε (even) and a, b (odd) satisfying:

ε · ε = ε,

ε · a = a · ε = 1
2

a, ε · b = b · ε = 1
2

b ,

a · b = −b · a = 1
2

ε, a · a = b · b = 0.

(2.1)

(b) The full derivations algebra, AK(1), (called the conformal Lie antialgebra in
[10]). This algebra is generated by even elements {εn, n ∈ Z} and odd elements
{ai, i ∈ Z + 1

2 } satisfying

εn · εm = εn+m

εn · ai = 1
2

an+i

ai · a j = 1
2
(i− j)εi+ j.

(2.2)

The algebra K3 is the unique commutative superalgebra such that Der(K3) =
osp(1|2), see [10]. Similarly, Der(AK(1)) = K(1), where K(1) is the conformal Lie
superalgebra, but the uniqueness is still a conjecture.

2.4 Remark on the Axioms of Lie Antialgebra

Unlike Kaplansky algebras, the even part of Lie antialgebras is not required to
contain a unit.

One can always add a unit ε in a0. The algebra a′ = (Kε ⊕ a0)⊕ a1 obtained from
a non-unital Lie algebra a = a0 ⊕ a1 by extending the multiplication to

ε · a = a, a ∈ a0, ε · a = 1
2

a, a ∈ a1,

is still a Lie antialgebra.
The condition of associativity of the even part of Lie antialgebras seems to be

natural due to the following proposition.
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Proposition 2.1 If the even part a0 of a Lie antialgebra a is generated by the odd part
a1, then the property of associativity (LA0) follows from (LA1)–(LA3).

Proof Assume the axioms (LA1)–(LA3). Using the commutativity, it is equivalent
to show that (xy)z = (xz)y, for all x, y, z ∈ a0.

Write x = ab with a, b ∈ a1.

((ab)y)z = ((ay)b)z + (a(b y))z

= ((ay)z)b + (ay)(b z) + (az)(b y) + a((b y)z)

= 1
2
(a(yz))b + 1

2
a(b(yz)) + (ay)(b z) + (az)(b y)

= 1
2
(ab)(yz) + (ay)(b z) + (az)(b y)

The last expression is symmetric in y, z. Therefore, we deduce ((ab)y)z = ((ab)z)y
and hence the associativity. ()

A similar statement holds for Lie superalgebras generated by odd elements. This
fact will be established further in the proof of Theorem 4.4.

2.5 Representations and Modules

Any associative superalgebra A is a Jordan superalgebra with respect to the product
given by so-called anti-commutator or Jordan superproduct:

[a, b ]+ = 1
2

(
a · b + (−1)āb̄ b · a

)
(2.3)

for all homogeneous elements a, b ∈ A.
Recall that a Jordan superalgebra J is called special if there exist an associative

algebra A and a faithful homomorphism from J into (A, [ , ]+).
A (bi)module over a Jordan superalgebra J is a vector space V together with

left and right actions such that the split null extensions J⊕ V and V ⊕ J are Jordan
superalgebras.

Lie antialgebras are particular cases of Jordan superalgebras. However, we will
adopt a slightly different definition of specialization and module in the particular
case of Lie antialgebras. It turns out that a nice theory can be developed after making
this change. To avoid any confusion we will be talking of LA-modules and LA-
representations. The definitions are the following.

Definition 2.2 [10] Let a be an arbitrary Lie antialgebra.

(1) An LA-module of a is a Z2-graded vector space V together with an even linear
map ρ : a→ End(V), such that the direct sum a⊕ V equipped with the product

(a + v) · (b + w) = a · b +
(
ρ(a) (w) + (−1)b̄ v̄ ρ(b) (v)

)
, (2.4)

where a, b ∈ a and v, w ∈ V are homogeneous elements, is again a Lie anti-
algebra.
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(2) An LA-representation of a is a Z2-graded vector space V together with an even
linear map ρ : a→ End(V), such that

ρ(a · b) = [ρ(a), ρ(b)]+, (2.5)

for all elements a, b in a, and

ρ(x)ρ(y) = ρ(y)ρ(x), (2.6)

for all even elements x, y in a0.

Remark 2.3 In other words, an LA-representation is a specialization in the usual
sense of Jordan superalgebras with the additional condition of commutativity
(Eq. 2.6). This condition is crucial to link the representations of Lie antialgebras to
representations of Lie superalgebras. This condition was first assumed in [10]; this is
the main difference from the traditional works on Jordan superalgebras.

The modules of the tiny Kaplansky algebra K3, considered as a Jordan superal-
gebra, were studied and classified in [6, 7, 11]. The LA-representations of K3 were
studied independently in [9].

Example: modules over K3 The classification of finite-dimensional irreducible LA-
modules over K3 can be deduced from [7]. Let us consider the adjoint module over
K3, i.e the 3-dimensional vector space

Vad := K < w > ⊕ K < u, v >,

together with the following action:

ε · v = 1
2
v , ε · w = w , ε · u = 1

2
u,

a · v = w , a · w = u , a · u = 0,

b · v = 0 , b · w = 1
4
v , b · u = −1

4
w.

(2.7)

Proposition 2.4 Up to isomorphism, Vad is the only non-trivial f inite dimensional
irreducible LA-module of K3.

Proof One can easily check that the property (Eq. 2.4) in the definition of LA-
module holds for Vad. From Corollary 2.2 in [7] one knows that the finite dimensional
irreducible modules of K3 are the modules Irr(σ, 1

2 , m), σ ∈ {0, 1}, m ∈ Z≥0, in which
there exists a vector v of parity σ satisfying:

ε · v = 1
2

v

b · v = 0

b · (a · v) = m
4

v

(2.8)

Suppose Irr(σ, 1
2 , m) is also an LA-module. One necessarily has σ = 1. If not the

condition ε · v = 1
2 v leads to a contradiction with the associativity of even elements.
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Consider the odd element v ∈ Irr(1, 1
2 , m) satisfying (Eq. 2.8). In one hand, using the

axiom (LA3) one has

b · (a · v) = −a · (v · b)− v · (b · a)

= −v

(
−1

2
ε

)
= 1

4
v

But in the other hand, by Eq. 2.8 one should have

b · (a · v) = m
4

v.

This is possible if and only if m = 1. And in this case Irr(1, 1
2 , 1) + Vad. ()

3 Universal Enveloping Algebra

3.1 Notations

Let a be a vector space. We denote by T (a), resp. S(a), the universal tensor, resp.
symmetric, algebra over a. Recall briefly, as a vector space

T (a) :=
⊕

n≥0

a⊗n.

The product of T (a) is given by

a1 ⊗ · · · ⊗ an · b 1 ⊗ · · · ⊗ b m = a1 ⊗ · · · ⊗ an ⊗ b 1 ⊗ · · · ⊗ b m

on a⊗n × a⊗m into a⊗n+m, and extended by bilinearity on T (a)× T (a). The algebra
T (a) is naturally N-graded. For all n ∈ N we denote by

T n(a) := a⊗n

the homogeneous component of degree n.
The symmetric algebra is the following quotient

S(a) := T (a)/ < a⊗ b − b ⊗ a, a, b ∈ a > .

We denote by a- b the class of a⊗ b in S(a). We denote by Sn(a) the homogeneous
component of degree n, that is the image of T n(a) in S(a).

In addition, if a = a0 ⊕ a1 is a Z2-graded vector space, then T (a) is also a Z2-
graded algebra with respect to the following grading

T (a)i :=
⊕

n≥0

⊕

i1+···+in=i

ai1 ⊗ · · · ⊗ ain , i = 0, 1.

This grading also induces a Z2-grading on the algebra S(a).

3.2 Definitions

Given a Lie antialgebra a = a0 ⊕ a1, one associates an associative Z2-graded algebra
U(a) called the universal enveloping algebra of a. The construction of U(a) is as
follows.
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Consider the tensor algebra T (a) and denote by P the subset





1
2

(
a⊗ b − b ⊗ a

)
− ab ,

1
2

(
a⊗ x + x⊗ a

)
− ax ,

x⊗ y− xy,

(3.9)

where a, b ∈ a1 and x, y ∈ a0. We define

U(a) := T (a)/ < P >,

where < P > denotes the two-sided ideal generated by P .
We introduce the canonical projection

π : T (a) ! U(a).

When no confusion occurs, we use the same notation for the element x1 ⊗ x2 ⊗ · · · ⊗
xn in T (a) and its class in U(a).

We also introduce the canonical embedding of a into U(a):

ι : a ↪→ a⊗1 = T 1(a) ↪→ T (a) ! U(a). (3.10)

3.3 Universal Property

The couple (U(a), ι) satisfies a universal property.

Proposition 3.1 Let A be a Z2-graded associative algebra and φ be a linear morphism
φ : a→ A satisfying

φ(xy) = 1
2

(
φ(x)φ(y) + (−1)x̄ȳφ(y)φ(x)

)
,

for all x, y ∈ a0 ∪ a1 and φ(x)φ(y) = φ(y)φ(x) for all x, y ∈ a0. There exists a unique
morphism of algebras φ′ : U(a)→ A such that the following diagram is commutative:

U(a)

φ′

!!
!!

!!
!!

!!

a
φ

""

ι
##""""""""

A

Proof The universal property of T (a) gives an homomorphism of algebra ) from
T (a) to A such that )|a = φ. SinceP ⊂ Ker()), the morphism ) induces a morphism
φ′ from U(a) to A such that φ = φ′ ◦ ι.

T (a) "" ""

)
$$######### U(a)

φ′

!!
!!

!!
!!

!!

a
!"

%%

φ

""

ι
&&$$$$$$$$$

A
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Since U(a) is generated by the elements ι(x), x ∈ a, the condition φ′ ◦ ι = φ uniquely
determines φ′. ()

3.4 The Poincaré-Birkhoff-Witt Property

The natural N-filtration of U(a) inherited from the natural filtration of T (a), is
given by

Un := π
( ⊕

0≤k≤n

a⊗k
)
, n ∈ N.

The associated graded algebra is

GrU :=
⊕

n≥0

Un/Un−1,

with the usual conventions U0 = K and U−1 = {0}.
Consider the algebra

G(a) = T (a)/ < R >,

where R is the set of homogeneous quadratic relations obtained from the relations
(Eq. 3.9) by projection onto a⊗ a. More precisely,

R = {a⊗ b − b ⊗ a , a⊗ x + x⊗ a , x⊗ y} ,

where x, y ∈ a0, a, b ∈ a1.
The algebra U(a) satisfies the Poincaré-Birkhoff-Witt (PBW) property if

GrU ∼= G(a).

We will show that, in general, the universal enveloping algebra of a Lie antialgebra
does not satisfy the PBW property.

Proposition 3.2 One has an isomorphism of algebra

G(a) + (K⊕ a0)⊗ S(a1),

where the product on (K⊕ a0)⊗ S(a1) is given by

(λ + x)⊗ a · (µ + y)⊗ b = (λµ + λy + µx)⊗ a- b ,

for all λ, µ ∈ K, x, y ∈ a0, a, b ∈ S(a1).

Proof If {xi, i ∈ I} is a basis of a0 and {a j, j ∈ J} is a basis of a1, where the index set
and J is totally ordered, then a basis of G(a) is given by the set of monomials,

xia j1 · · · a jp, and a j1 · · · a jp,

where i ∈ I, p ∈ N, and j1 ≤ · · · ≤ jp is an increasing sequence of indices in J. The
multiplication of basis elements in G(a) is

{
xia j1 · · · a jp · xi′a j′1 · · · a j′q = 0,

a j1 · · · a jp · xi′a j′1 · · · a j′q = (−1)pxi′a j1 · · · a jp a j′1 · · · a j′q .
(3.11)

Hence the result. ()
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Proposition 3.3 For a Lie antialgebra a, the algebra GrU(a) is not necessarily isomor-
phic to G(a).

Proof This can be deduced by using a necessary condition given by Braverman and
Gaitsgory in [2]. Following [2], denote by α : SpanKR→ a the linear map

α(a⊗ b − b ⊗ a) = 2 ab

α(a⊗ x + x⊗ a) = 2 ax

α(x⊗ y) = xy,

for a, b ∈ a1 and x, y ∈ a0.
The set of relations P then can be described as

P = { q− α(q) , q ∈ R }.
Let us refer to BG-conditions the following two conditions:

(i) Im(α ⊗ Id− Id⊗ α) ⊂ SpanKR (where α ⊗ Id− Id⊗ α is defined on the space
SpanK(R⊗ a) ∩ SpanK(a⊗R)),

(ii) α ◦ (α ⊗ Id− Id⊗ α) = 0.

According to [2], if U(a) has the PBW-property, then the BG-conditions are
satisfied.

Let us show that in our situation the BG-conditions fail. Indeed, the space
SpanK(R⊗ a) ∩ SpanK(a⊗R) is generated by the following elements:






u0 = (x⊗ y)⊗ z
= x⊗ (y⊗ z),

u1 = (a⊗ x + x⊗ a)⊗ y + (x⊗ y)⊗ a
= a⊗ (x⊗ y) + x⊗ (a⊗ y + y⊗ a),

u2 = x⊗ (a⊗ b − b ⊗ a)− b ⊗ (x⊗ a + a⊗ x) + a⊗ (b ⊗ x + x⊗ b)

= (x⊗ a + a⊗ x)⊗ b − (x⊗ b + b ⊗ x)⊗ a + (a⊗ b − b ⊗ a)⊗ x,

u3 = (a⊗ b − b ⊗ a)⊗ c + (b ⊗ c− c⊗ b)⊗ a + (c⊗ a− a⊗ c)⊗ b
= a⊗ (b ⊗ c− c⊗ b) + b ⊗ (c⊗ a− a⊗ c) + c⊗ (a⊗ b − b ⊗ a),

(3.12)

where a, b , c are elements in a1 and x, y, z in a0.
One can check that the elements (α ⊗ Id− Id⊗ α)(ui) are not elements of SpanR

in general, see Section 5 below for a counterexample. ()

Remark 3.4 In the case of a = K3, the BG-conditions hold. Indeed, the set of
generators described above in Eq. 3.12 simplifies to






u0 = ε ⊗ ε ⊗ ε

u1 = (t ⊗ ε + ε ⊗ t)⊗ ε + (ε ⊗ ε)⊗ t,
= t ⊗ (ε ⊗ ε) + ε ⊗ (t ⊗ ε + ε ⊗ t), t = a, b ,

u2 = ε ⊗ (a⊗ b − b ⊗ a)− b ⊗ (ε ⊗ a + a⊗ ε) + a⊗ (b ⊗ ε + ε ⊗ b)

= (ε ⊗ a + a⊗ ε)⊗ b − (ε ⊗ b + b ⊗ ε)⊗ a + (a⊗ b − b ⊗ a)⊗ ε,

where ε, a, b are the elements of the standard basis of K3.
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Using the relations in K3, one easily gets,

(α ⊗ Id− Id⊗ α)(ui) = 0,

for every generators ui, i = 0, 1, 2. This implies the BG-conditions.
In [2], it is shown that in the case where G(a) is of Koszul type the BG-conditions

are sufficient to imply the PBW property. We do not know if G(K3) is of Koszul type
so we will show by hand that U(K3) satisfies the PBW theorem (see Proposition 3.7).

3.5 Example: The Enveloping Algebra U(K3)

The algebra U(K3) is the associative algebra generated by two odd elements A, B
and one even element E subject to the relations






AB− BA = E
AE + EA = A

BE + EB = B

E2 = E .

(3.13)

One can easily establish the following useful formulae by induction:

Lemma 3.5 For any integers p, q, k, l, one has

(1) A2pE = EA2p and A2p+1E = A2p+1 − EA2p+1,
(2) B2qE = EB2q and B2q+1E = B2q+1 − EB2q+1,
(3) if k + l is even then Ak BlE = EAk Bl,
(4) if k + l is odd then Ak BlE = Ak Bl − EAk Bl, in particular EAk BlE = 0,
(5) BA2p = A2p B− pA2p−1 and BA2p+1 = A2p+1 B− EA2p − pA2p,
(6) B2q A = AB2q − qB2q−1 and B2q+1 A = AB2q+1 − EB2q − qB2q.

Proposition 3.6 The following set of monomials
{
EAk Bl , k, l ∈ N

}
∪

{
Ak Bl , k, l ∈ N

}

is a basis of U(K3).

Proof Using Lemma 3.5, one can see that the above set of monomials is spanning
the vector space U(K3). To see that they are linearly independent we use weight
and order functions, and a representation of U(K3) in the space D of differential
operators over the algebra C[x, ξ ]/ < ξ 2 >.

Let us introduce the following weight function

wt(A) = 1, wt(E) = 0, wt(B) = −1.

The relations (Eq. 3.13) are homogeneous with respect to the weight function. There-
fore, linear dependence of the monomials could only occur between monomials of
same weight. Let us fix a weight w in Z and show that the monomials

{
EAk Bl , k− l = w

}
∪

{
Ak Bl , k− l = w

}
(3.14)

are linearly independent.



Universal Enveloping Algebras of Lie Antialgebras

Let us consider the following operator D of order 1
2 in D

D := ∂ξ + ξ∂x.

It is easy to check (cf. [9]) that the map defined by

A 3→ xD, B 3→ D, E 3→ ξD

is a representation of U(K3) into the space D . In this representations, one has
{
EAk Bl 3→ ξxkDk+l+1 + operators of order < (k + l + 1)/2

Ak Bl 3→ xkDk+l + operators of order < (k + l)/2.

Therefore, all of the differential operators corresponding to the monomials of the
set (Eq. 3.14) have different orders. It follows that these monomials are linearly
independent and thus form a basis of U(K3). ()

Proposition 3.7 The enveloping algebra U(K3) satisf ies the PBW property.

Proof Using Lemma 3.5, one can see that
{
EAk Bl · EAk′ Bl′ = (−1)k+lEAk+k′ Bl+l′ + terms of length ≤

(
k + l + k′ + l′ + 1

)

Ak Bl · EAk′ Bl′ = (−1)k+lEAk+k′ Bl+l′ + terms of length <
(
k + l + k′ + l′

)
.

So, in Gr U(K3) one gets
{
EAk Bl · EAk′ Bl′ ≡ 0

Ak Bl · EAk′ Bl′ ≡ (−1)k+lEAk+k′ Bl+l′

what is the same multiplication rules as in G(K3), see Eq. 3.11. ()

Remark 3.8 The enveloping algebra U(a) endowed with the Jordan superproduct

[x, y]+ = 1
2

(
x⊗ y + (−1)x̄ȳ y⊗ x

)
.

is not a Lie antialgebra. One can notice that in our example the axiom (LA1) fails.
Indeed, using Lemma 3.5 one checks

[
EAB,

[
EB2, EB

]
+

]

+
= 1

2

[
EAB, EB2EB + EBEB2]

+

= 1
2

[
EAB, EB2EB

]
+

= 1
4

(
EABEB2EB + EB2EBEAB

)

= 1
4
EAB4,



S. Leidwanger, S. Morier-Genoud

whereas
[[
EAB, EB2]

+ , EB
]

+
= 1

2

[
EABEB2 + EB2EAB , EB

]
+

= 1
4

(
EABEB2EB+EB2EABEB+EBEABEB2+EBEAB

)

= 1
4

(
EAB4 + EB2 AB2)

= 1
4

(
EAB4 + E(AB2 − B)B2)

= 1
2
EAB4 − 1

4
EB3.

Thus one gets [EAB, [EB, EB2]+]+ 5= 1
2 [[EAB, EB2]+, EB]+.

4 Links Between Lie Superalgebras and Lie Antialgebras

4.1 Adjoint Lie Superalgebra

In this section, we study the construction of the Lie superalgebra associated to a Lie
antialgebra [10]. We provide the missing proofs of [10] in Appendix.

Given a Lie antialgebra a, the adjoint Lie superalgebra ga is defined as follows. As
a vector space ga = (ga)0 ⊕ (ga)1, where

(ga)1 := a1, (ga)0 := a1 ⊗ a1/S

and S is the ideal generated by

{a⊗ b − b ⊗ a, ax⊗ b − a⊗ b x | a, b ∈ a1, x ∈ a0}.

We denote by a- b the image of a⊗ b in (ga)0. Therefore, we have the following
useful relations in (ga)0:

{
a- b = b - a,

ax- b = a- b x = b - ax = b x- a, a, b ∈ a1, x ∈ a0.
(4.15)

The Lie bracket on ga is given by:

[a, b ] = a- b ,

[a- b , c] = −[c, a- b ] = a(bc) + b(ac),

[a- b , c- d] = 2 a(bc)- d + 2 b(ad)- c,

(4.16)

where a, b , c and d are elements of (ga)1 = a1.

Example 4.1 In the a = K3 case the above construction leads to ga = osp(1|2). More
precisely,

(ga)1 =< a, b >, (ga)0 =< a- a, a- b , b - b > .
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Rescale the basis elements as follows:

E := 2a- a, F := −2b - b , H := −4a- b , A := 2a, B := 2b .

Then using the definitions of the bracket and the relations in K3 one checks

[H, E] = 2E, [H, F] = −2F, [E, F] = H,

[H, A] = A, [E, A] = 0, [F, A] = B,

[H, B] = −B, [E, B] = A, [F, B] = 0,

[A, B] = −H, [A, A] = 2E, [B, B] = −2F.

(4.17)

The above system is a presentation of osp(1|2).

Remark 4.2 This construction differs from the Kantor-Koecher-Tits construction.
For instance, the Lie superalgebra associated to K3 through KKT is psl(2, 2), see [4].
In general, if one applies KKT to a Jordan superalgebra a = a0 ⊕ a1, the odd
subspace of the resulting Lie superalgebra is much bigger than a1.

In [10], the following statements are formulated.

Proposition 4.3 The def inition of the bracket on ga given in Eq. 4.16 is compatible
with the relations Eq. 4.15 in (ga)0.

Theorem 4.4 The bracket given in Eq. 4.16 is a Lie superbracket on ga.

We give the direct proofs of these statements in Appendix.

4.2 Relations Between the Enveloping Algebras

The following proposition relates the universal enveloping algebra of an arbitrary Lie
antialgebra a to the universal enveloping algebra of the adjoint Lie superalgebra ga.

Theorem 4.5 Let a be a Lie antialgebra such that the odd part a1 spans the even part
a0. If g := ga is the Lie superalgebra associated to a then,

U(a) + U(g)/Ia

for some ideal Ia of U(g).

Proof Recall that U(g) is the quotient of the universal associative algebra

T(g) :=
⊕

n≥0

g⊗n

by the the 2-sided ideal

J :=
〈

1
2

(
x⊗ y− (−1)x̄ȳ y⊗ x

)
− [x, y]

〉
, x, y homogeneous in g.
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The algebra T(g) is spanned by the elements of g. We define an homomorphism of
algebra

π : T(g)→ U(a)

by setting

π(a) = a, π(a- b) = 1
2
(a⊗ b + b ⊗ a) (4.18)

for all odd elements a and b (recall they can be viewed as elements of a1 or g1). The
application π is well defined. Indeed, one can check that π(ax- b) = π(a- b x) for
all a, b ∈ a1 and x ∈ a0:

π(ax- b)− π(a- b x) = 1
2
(ax⊗ b + b ⊗ ax− a⊗ b x− b x⊗ a)

= 1
2

(
1
2
(a⊗ x + x⊗ a)⊗ b + b ⊗ 1

2
(a⊗ x + x⊗ a)

−a⊗ 1
2
(b ⊗ x + x⊗ b)− 1

2
(b ⊗ x + x⊗ b)⊗ a

)

= 1
4
(x⊗ a⊗ b + b ⊗ a⊗ x− a⊗ b ⊗ x− x⊗ b ⊗ a)

= 1
4
(x⊗ (a⊗ b − b ⊗ a)− (a⊗ b − b ⊗ a)⊗ x)

= 1
2
(x⊗ ab − ab ⊗ x)

= 0. (4.19)

Lemma 4.6 The morphism π is surjective.

Proof We are under the assumption that the odd part of a spans the algebra. By
definition of π all the odd elements are reached. ()

Lemma 4.7 With the above notations, one has

J ⊂ Ker(π).

Proof One needs to check

π

(
1
2

(
x⊗ y− (−1)x̄ȳ y⊗ x

))
= π([x, y]) (4.20)

for all homogeneous elements of g. The more involved case is the one where x and y
are both even elements i.e

π(a- b ⊗ c- d− c- d⊗ a- b) = 2 π([a- b , c- d]). (4.21)
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Let us expand the the left hand side (LHS) of Eq. 4.21 using the definition of π ,
we get:

LHS = 1
2
(a⊗ b +b ⊗ a)⊗ 1

2
(c⊗ d+d⊗ c)− 1

2
(c⊗ d+d⊗ c)⊗ 1

2
(a⊗ b +b ⊗ a)

= 1
4
(a⊗ b ⊗ c⊗ d + a⊗ b ⊗ d⊗ c + b ⊗ a⊗ c⊗ d + b ⊗ a⊗ d⊗ c

−c⊗ d⊗ a⊗ b − c⊗ d⊗ b ⊗ a− d⊗ c⊗ a⊗ b − d⊗ c⊗ b ⊗ a).

Now let us expand the right hand side (RHS) of Eq. 4.21 using the equivalent
expression (Eq. 6.30) of the bracket and then the definition of π . We get:

RHS = 2π(a(bc)- d− c(da)- b + b(ac)- d− c(db)- a)

= a(bc)⊗ d + d⊗ a(bc)− c(da)⊗ b − b ⊗ c(da) + b(ac)⊗ d + d⊗ b(ac)

−c(db)⊗ a− a⊗ c(db).

Now using the relations in U(a) we can rewrite each terms as tensor products of four
elements. For instance

a(bc)⊗ d = 1
2
(a⊗ bc + bc⊗ a)⊗ d

= 1
4
(a⊗ b ⊗ c− a⊗ c⊗ b)⊗ d.

Hence we write

4.RHS = (a⊗ b ⊗ c− a⊗ c⊗ b + b ⊗ c⊗ a− c⊗ b ⊗ a)⊗ d

+d⊗ (a⊗ b ⊗ c− a⊗ c⊗ b + b ⊗ c⊗ a− c⊗ b ⊗ a)

−(c⊗ d⊗ a− c⊗ a⊗ d + d⊗ a⊗ c− a⊗ d⊗ c)⊗ b

−b ⊗ (c⊗ d⊗ a− c⊗ a⊗ d + d⊗ a⊗ c− a⊗ d⊗ c)

+(b ⊗ a⊗ c− b ⊗ c⊗ a + a⊗ c⊗ b − c⊗ a⊗ b)⊗ d

+d⊗ (b ⊗ a⊗ c− b ⊗ c⊗ a + a⊗ c⊗ b − c⊗ a⊗ b)

−(c⊗ d⊗ b − c⊗ b ⊗ d + d⊗ b ⊗ c− b ⊗ d⊗ c)⊗ a

−a⊗ (c⊗ d⊗ b − c⊗ b ⊗ d + d⊗ b ⊗ c− b ⊗ d⊗ c).

Some of the above terms obviously cancel. The remaining terms can be reorganized
as follows:

4.RHS = 4.LHS+(b ⊗ c−c⊗ b)⊗ (a⊗ d−d⊗ a)−(a⊗ d−d⊗ a)⊗ (b ⊗ c−c⊗ b)

−(b ⊗ d− d⊗ b)⊗ (a⊗ c− c⊗ a)− (a⊗ c− c⊗ a)⊗ (b ⊗ d− d⊗ b).
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Using relations in U(a) this simplify to

RHS = LHS + bc⊗ ad− ad⊗ bc− ac⊗ bd + bd⊗ ac.

But, in U(a) even elements of order 1 commute so the last terms cancel and we have
established (Eq. 4.20) in the case where x and y are two even elements. The other
cases are straightforward. ()

Since J ⊂ Ker(π), the homomorphism π induces a surjective homomorphism π̃

from U(g) to U(a). One has U(a) + U(g)/Ker(π̃).
Theorem 4.5 is proved. ()

Example 4.8 In the case a = K3 it was already noticed in [9] that

U(K3) = U(osp(1|2)) / < C >,

where C is the usual Casimir element of U(osp(1|2)). Using the generators E, F
and H and A, B of U(osp(1|2)) subject to the relations (Eq. 4.17) for the Lie
superbracket, we express C as

C = EF + F E + 1
2

H2 + 1
2

(AB− BA) .

An alternative presentation of the ideal is also given in terms of ghost Casimir (see
[9] for more details). The ghost casimir . of U(osp(1|2)) can be expressed as

. = AB− BA− 1
2
.

It is the unique element invariant for the twisted adjoint action

ãdXY := XY − (−1)X̄(Ȳ+1) Y X. (4.22)

for X, Y in U(osp(1|2)).
Equivalently, one has

U(K3) = U(osp(1|2))

/〈
.2 − 1

4

〉
.

This presents U(K3) as a generalized Weyl algebra as given in [1].

4.3 Extension of Representations

In [10], Ovsienko claimed that any representation of a Lie antialgebra a can be
extended to a representation of the Lie superalgebra ga. This property can be viewed
as a consequence of Theorem 4.5.

Corollary 4.9 Let (V, ρ) be a representation of a Lie antialgebra a. We def ine a map
ρ̃ on ga by setting for all a, b ∈ a1:

ρ̃(a) := ρ(a)

ρ̃(a- b) := 1
2
( ρ(a)ρ(b) + ρ(b)ρ(a) ).

(4.23)

The map ρ̃ is a representation of ga.
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Proof By universal property of U(a), the representation ρ induces an algebra homo-
morphism ρ ′ from U(a) to End(V). The map ρ̃ ′ := ρ ′ ◦ π , where π is the surjection
defined in Eq. 4.19, is a homomorphism from U(ga) to End(V). The restriction of ρ̃ ′

to ga is a representation of ga, namely ρ̃.

U(a)

ρ ′

''
%%

%%
%%

%%
%

U(ga)
π

((((

ρ̃ ′

))&&&&&&&&& **

# $''
''

''
''

a
ρ

""

%
&

ι
##((((((((

End(V) ga
ρ̃

(() ) ) ) ) ) ) ) )

Hence the result. ()

5 The Conformal Lie Antialgebra AK(1)

An interesting example of Lie antialgebra which plays an important role in [10] is
the infinite-dimensional algebra AK(1) called the conformal Lie antialgebra. This
algebra is generated by even elements {εn, n ∈ Z} and odd elements {ai, i ∈ Z + 1

2 }
satisfying






εn εm = εn+m

εn ai = 1
2

an+i

ai a j = 1
2
( j− i)εi+ j.

(5.24)

It contains infinitely many subalgebras isomorphic to K3. Note that (a slightly
different version of) AK(1) was considered in [8] under the name of full derivation
algebra.

5.1 The Universal Enveloping Algebra U(AK(1))

The universal enveloping algebra U(AK(1)) is the associative algebra generated by
{En, n ∈ Z, Ai, i ∈ Z + 1

2 } and the relations:





EnEm = En+m

En Ai + AiEn = An+i

Ai A j − A j Ai = ( j− i)Ei+ j .

(5.25)

A remarkable additional relation is satisfied in U(AK(1)).

Proposition 5.1 One has

Ai A j + A j Ai = Ak Al + Al Ak, (5.26)

for all i + j = k + l.
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Proof Fix i, j, k, l such that i + j = k + l, one gets

Ai A j + A j Ai = (Ei−k Ak + AkEi−k)A j + A j (Ei−k Ak + AkEi−k)

= Ei−k Ak A j + AkEi−k A j + A jEi−k Ak + A j AkEi−k

= Ei−k Ak A j + Ak(Ei−k A j + A jEi−k)− Ak A jEi−k

+(A jEi−k + Ei−k A j)Ak − Ei−k A j Ak + A j AkEi−k

= Ei−k(Ak A j − A j Ak) + Ak Al + Al Ak − (Ak A j − A j Ak)Ei−k

= (k− j)Ei−kEk+ j + Ak Al + Al Ak − (k− j)Ek+ jEi−k

= Ak Al + Al Ak.

Hence the result. ()

Corollary 5.2 The algebra U(AK(1)) does not satisfy the PBW property.

Proof The identity (Eq. 5.26) can be written as

2Ai A j − (i− j)Ei+ j = 2Ak Al − (k− l)Ek+l, ∀ i + j = k + l.

Therefore, in Gr(U(AK(1)) one has Ai A j = Ak Al for all i + j = k + l and this is
not true in G(AK(1)) = (K⊕ < En, n ∈ Z >)⊗ S(< Ai, i ∈ 1

2 + Z >). ()

Remark 5.3 The canonical mapping ι : AK(1)→ U(AK(1)) introduced in Eq. 3.10 is
injective. Indeed, if one associates the following weights to the generators

wt(Ai) = i, wt(En) = n,

one can see that the relations in U(AK(1)) are homogeneous with respect to
this weight function. Therefore, the elements {Ai, i ∈ 1

2 + Z, En, n ∈ Z} are linearly
independent.

5.2 Adjoint Lie Superalgebra

One can check (cf. [10]) that the adjoint Lie super algebra of AK(1) is the conformal
(or centerless Neveu-Schwartz) Lie algebra K(1) generated by

{
xn, n ∈ Z; ai, i ∈ Z + 1

2

}

with the following commutation relations





[xn, xm] = 1
2

(m− n) xn+m,

[
xn, a j

]
= 1

2

(
i− n

2

)
an+i,

[
ai, a j

]
= xi+ j.

(5.27)
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The corresponding universal enveloping algebra U(K(1)) is the associative algebra
generated by {Xn, n ∈ Z, Ai, i ∈ Z + 1

2 } and the relations:





Xn Xm − Xm Xn = (m− n)Xn+m

Xn Ai − Ai Xn =
(

i− n
2

)
An+i

Ai A j + A j Ai = 2Xi+ j.

(5.28)

Proposition 5.4 One has

U(AK(1)) ∼= U(K(1))

/〈 An−i Ai − Ai An−i = (n− 2i)En ,

EnEm = En+m, n, m ∈ Z, i ∈ 1
2

+ Z

〉

. (5.29)

Proof By Lemma 4.7, π(Ai) = Ai defines a homomorphism from U(K(1)) to
U(AK(1)). In other words, the relations (Eq. 5.28) are satisfied in U(AK(1)) (see
Remark 5.1 and Example 5.5 below for direct verifications).

Conversely, in U(K(1)), let us denote for all n ∈ Z,

En := 1
n− 1

(
An− 1

2
A 1

2
− A 1

2
An− 1

2

)
.

The result follows. ()

Example 5.5 The isomorphism (Eq. 5.29) can be checked by direct computations.
For instance, one can use the following relations

Xn Ai − Ai Xn = 1
2
(An−i Ai + Ai An−i)Ai −

1
2

Ai(An−i Ai + Ai An−i)

= 1
2
(An−i Ai − Ai An−i)Ai + 1

2
Ai(An−i Ai − Ai An−i)

= 1
2
(n− 2i)(En Ai + AiEn).

5.3 Representations

Let us consider a well-known particular class of representations of K(1) called the
density representations. We will determine under what condition a given density
representation is a representation of AK(1).

The density representations are denoted by Fλ, where λ ∈ C is the parameter. The
basis in Fλ is { fn, n ∈ Z, φi, i ∈ Z + 1

2 } and the action of K(1) is given by
χxn( fm) = (m + λn) fn+m,

χxn(φi) =
(

i +
(

λ + 1
2

)
n
)

φn+i,

χai( fn) =
(n

2
+ λi

)
φi+n,

χai(φ j) = 2 fi+ j.



S. Leidwanger, S. Morier-Genoud

Remark 5.6 The adjoint representation of K(1) is precisely the module F−1.

Proposition 5.7 The K(1)-module Fλ is a representation of AK(1) if and only if λ = 0,
or λ = 1

2 .

Proof Suppose that Fλ is a representation of AK(1). By definition, the odd genera-
tors of AK(1) are represented by χai . Surprisingly, one can check that operators on
Fλ of the form:

1
j− i

(
χaiχa j − χa jχai

)

only depends on i + j and not on the couple (i, j).
We define the even generators by:

χεn := 1
j− i

(
χaiχa j − χa jχai

)

with i + j = n. One then obtains

χεn( fm) = 2λ fn+m, χεn(φi) = (1− 2λ)φn+i.

The relation

χεnχai + χaiχεn = χan+i

is always satisfied. The operators χεn and χεm obviously commute, but the relation

χεnχεm = χεn+m

is true if and only if λ = 0, 1
2 . ()

Appendix: The Technical Proofs

Theorem 4.4 and Proposition 4.3 are formulated in [10] without proofs. These
statements are crucial for the whole theory and their proofs are far of being evident.
We think that it is important to have these proofs in a written form.

Proof of Proposition 4.3

We will need to use all the axioms (LA1)–(LA3) of Lie antialgebras.

(i) The definition of [a- b , c] is compatible with relations (Eq. 4.15):
The expression a(bc) + b(ac) is symmetric in a, b . Therefore, one immedi-
ately has

[a- b , c] = [b - a, c].

Now, we want to show that for a, b , c ∈ a1, x ∈ a0 we have

[a- b x, c] = [ax- b , c].
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That is, we want to show that the expression

(∗) = a((b x)c) + (b x)(ac)− (ax)(bc)− b((ax)c)

cancels.
Using the identity (LA2) we rewrite the first and last terms:

a((b x)c) = a( x(bc)− b(xc) )

b((ax)c) = b( x(ac)− a(xc) ).

So, now we have

(∗) = a(x(bc))− a(b(xc)) + (b x)(ac)− (ax)(bc)− b(x(ac)) + b(a(xc)).

Using the identity (LA3) for the odd elements a, b and (xc) we can change the
2nd and last term of (*) to:

−a(b(xc)) + b(a(xc)) = (xc)(ab).

Finally, we have

(∗) = a(x(bc)) + (b x)(ac)− (ax)(bc)− b(x(ac)) + (xc)(ba).

We can factor out the element x in each term. Indeed, using (LA1) we get

a(x(bc)) = 2(a(bc))x

(b x)(ac) = (b(ac))x

(ax)(bc) = (a(bc))x

b(x(ac)) = 2(b(ac))x

(xc)(ab) = ((ab)c)x.

Replacing the above expressions in (*) we obtain

(∗) = (a(bc))x− (b(ac))x + ((ab)c)x.

And we can see that (*)=0 by the Jacobi identity (LA3).
(ii) The definition of [a- b , c- d] is compatible with relations (Eq. 4.15):

To see that the expression in Eq. 4.16 is well-defined one expands it using some
relations. Using the Jacobi identity for the elements of a1 as well as the relations
(Eq. 4.15) in ga one can express [a- b , c- d] in different ways.

Lemma 6.1 One has the following equivalent expressions

[a- b , c- d] = a(bc)- d + b(ad)- c + b(ac)- d + a(bd)- c

= d(bc)- a + c(ad)- b + d(ac)- b + c(bd)- a. (6.30)
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Proof To get the first expression of Eq. 6.30 one uses the Jacobi identity on the odd
elements of a1:

b(ac)- d + a(bd)- c =
(
a(bc) + c(ab)

)
- d +

(
b(ad)− d(ab)

)
- c

= a(bc)- d + b(ad)- c + c(ab)- d− d(ab)- c.

The last two terms cancel by the relations (Eq. 4.15) in ga. Thus,

a(bc)- d + b(ad)- c + b(ac)- d + a(bd)- c = 2 a(bc)- d + 2 b(ad)- c.

This establishes the first identity of Eq. 6.30. The second expression is immediately
deduced using the equivalence relations (Eq. 4.15) in ga. ()

Now, from Eq. 6.30 it is easy to check that the expression of [a- b , c- d] is
symmetric in a, b and symmetric in c, d. So, the definition is compatible with the
relations a- b = b - a and c- d = d- c.

We also check the compatibility with the relations ax- b = a- b x and cx- d =
c- dx. Indeed, from Eq. 6.30 one can write

[a- b , c- d] = [a- b , c] - d + [a- b , d] - c. (6.31)

Thus, using point (i), we deduce the compatibility with ax- b = a- b x.
Now using the expressions of Eq. 6.30 we can see that [a- b , c- d] is skew-

symmetric in (a, b), (c, d). In other words, one has

[a- b , c- d] = −[c- d, a- b ]. (6.32)

Therefore, we also deduce the compatibility with cx- d = c- dx.
We have proved Proposition 4.3.

Proof of Theorem 4.4

(i) One needs to check the property of antisymmety of the bracket:

[X, Y] = −(−1)X̄Ȳ [Y, X] .

In the case of two odd elements or one odd and one even, this property is
immediate from the definitions (Eq. 4.16). In the case of two even elements
this property has already been observed in Eq. 6.32.

(ii) One checks the generalized Jacobi identity of the bracket

(−1)X̄ Z̄ [[X, Y] , Z ] + (−1)Ȳ X̄ [[Y, Z ] , X] + (−1)Z̄ Ȳ [[Z , X] , Y] = 0.

– The case of three odd elements is immediate from the definitions (Eq. 4.16).
– The case of two odd elements and one even is quite immediate. Indeed, we

can rewrite Eq. 6.31 as

[a- b , [c, d]] = [ [a- b , c], d] + [ [a- b , d], c],

that is equivalent to Jacobi identity.
– The case of two even elements and one odd is less involved.
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Denote by J the expression

J = [ [a- b , c- d], e] − [ a- b , [c- d, e]] + [ c- d, [ a- b , e]].

Using the first expression of Eq. 6.30 for [a- b , c- d] and the definition
(Eq. 4.16), we can expand J to

J = (a(bc))(de) + d((a(bc))e) + (b(ad))(ce) + c((b(ad))e)

+(b(ac))(de) + d((b(ac))e) + (a(bd))(ce) + c((a(bd))e)

−a(b(c(de)))− b(a(c(de)))− a(b(d(ce)))− b(a(d(ce)))

+c(d(a(be))) + d(c(a(be))) + c(d(b(ae))) + d(c(b(ae))).

One can split J into symmetric expressions in c, d

J = J1(a, b , c, d, e) + J1(a, b , d, c, e)− J2(a, b , c, d, e)− J2(a, b , d, c, e),

where

J1(a, b , c, d, e) = (a(bc))(de)− a(b(c(de))) + (b(ac))(de)− b(a(c(de)))

J2(a, b , c, d, e) = c(e(b(ad)))− c(d(b(ae))) + c(e(a(bd)))− c(d(a(be))).

We show that J2(a, b , c, d, e)− J1(a, b , c, d, e) = 0. By symmetry in c, d, this
will imply that J = 0.

All the terms involved are elements of the Lie antialgebra a. Once again we use
all the axioms (LA1)–(LA3) to prove that the terms vanish. One has

2(a(bc))(de) = a
(
(bc)(de)

)

= a(b(c(de))) + a((b(de))c)

= a(b(c(de))) + c((b(de))a) + (b(de))(ac)

= a(b(c(de)))− c(a(b(de))) + (b(ac))(de)

= a(b(c(de)))− c(a(b(de))) + (a(bc))(de) + (c(ab))(de).

Thus, one has

(a(bc))(de)− a(b(c(de))) = −c(a(b(de))) + (c(ab))(de).

By inverting the role of a and b in the above identity we also deduce

(b(ac))(de)− b(a(c(de))) = −c(b(a(de))) + (c(ba))(de).

Hence, adding the two above identities we deduce

J1(a, b , c, d, e) = −c(a(b(de)))− c(b(a(de))).
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We have factored out c in J1. We then have

1
c
(J2 − J1) = e(b(ad))− d(b(ae)) + e(a(bd))− d(a(be)) + a(b(de)) + b(a(de))

= e(b(ad))− {(db)(ae)− (d(ae))b} + {(ea)(bd)− (e(bd))a}

−d(a(be)) + a(b(de)) + b(a(de))

= e(b(ad)) + (d(ae))b − (e(bd))a− d(a(be)) + a(b(de))− (a(de))b

= e(b(ad)) +
(
d(ae)− a(de)

)
b + a

(
e(bd) + b(de)

)
− d(a(be))

= e(b(ad)) + (e(ad))b + a(d(be)) + (a(be))d

= (eb)(ad) + (ad)(be)

= 0.

The case of three even elements follows now from the fact that even elements are
products of two odd elements and from the fact the Jacobi identities in the other
cases hold. Indeed, denote by K

K =
[
[a- b , c- d], e- f

]
−

[
a- b , [c- d, e- f ]

]
+

[
c- d, [ a- b , e- f ]

]
.

We rewrite each terms using the property (Eq. 6.31).
[
[a- b , c- d], e- f

]
=

[
[a- b , c- d], e

]
- f +

[
[a- b , c- d], f

]
- e

[
a- b , [c- d, e- f ]

]
=

[
a- b , [c- d, e] - f + [c- d, f ] - e

]

=
[

a- b , [c- d, e]
]
- f +

[
a- b , f

]
- [c- d, e]

+
[

a- b , [c- d, f ]
]
- e +

[
a- b , e

]
- [c- d, f ]

[
c- d, [a- b , e- f ]

]
=

[
c- d, [a- b , e] - f + [a- b , f ] - e

]

=
[

c- d, [a- b , e]
]
- f +

[
c- d, f

]
- [a- b , e]

+
[

c- d, [a- b , f ]
]
- e +

[
c- d, e

]
- [a- b , f ]

We replace in the expression of K, we get

K =
[
[a- b , c- d], e

]
- f −

[
a- b , [c- d, e]

]
- f +

[
c- d, [a- b , e]

]
- f

+
[
[a- b , c- d], f

]
- e−

[
a- b , [c- d, f ]

]
- e +

[
c- d, [a- b , f ]

]
- e.

From the previous case, we deduce that K = 0.
Theorem 4.4 is proved.
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