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Abstract
We use a simple argument to extend the microlocal proofs of meromorphicity
of dynamical zeta functions to the nonorientable case. In the special case of
geodesic !ow on a connected non-orientable negatively curved closed surface,
we compute the order of vanishing of the zeta function at the zero point to be
the "rst Betti number of the surface.
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1. Background

In this note we use a simple geometric argument to extend the results of Dyatlov and Zworski
[5, 6] and of Dyatlov and Guillarmou [3, 4] to Axiom A !ows with nonorientable stable and
unstable bundles. It is classically known that on a closed manifold there are countably many
closed orbits of such !ows, and therefore one can de"ne the Ruelle zeta function

ζR(λ) =
∏

γ$

(
1 − eiλT$

γ

)
,

where the product is taken over all primitive closed geodesics γ$ with corresponding periods
T$
γ . Note that by [3, lemma 1.17] and [4, section 3], this product converges for Im(λ) # 1 large

enough. The meromorphic continuation of ζR to all of C was conjectured by Smale [13], and
proved by Fried [8] under analyticity assumptions. The case of smooth Anosov !ows was "rst
answered by Giulietti, Liverani and Policott [9] and then with microlocal methods by Dyatlov
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and Zworski [5] for manifolds with orientable stable and unstable bundles, and was extended
to Axiom A !ows by Dyatlov and Guillarmou [3, 4] under the same orientability assumptions.
In [9, appendix B], the authors also outlined ideas for removing the orientability assumptions.

We remove the orientability assumption and give a full proof for Axiom A !ows. Speci"-
cally, we shall show

Theorem 1. If (φt)t∈R is an Axiom A !ow on a closed manifold, the Ruelle zeta function ζR
extends to a meromorphic function on C.

The de"nition of an Axiom A !ow is given as de"nition 1.3.
We then restrict to the case of contact Anosov !ow on a three-manifold, and study the order

of vanishing of ζR at λ = 0. An important example is when M = S∗Σ, the cosphere bundle of
a connected negatively curved closed surface Σ, and (φt)t∈R is geodesic !ow [1]. This problem
was treated in [6] in the case where the stable bundle is orientable, and it was shown that the
order of vanishing is b1(M) − 2, where b1(M) is the "rst Betti number of M.

We shall show that for nonorientable stable bundle, the analogous result is the following:

Theorem 2. Let (φt)t∈R be the Reeb !ow on a connected contact closed three-manifold. If
(φt)t∈R is Anosov with nonorientable stable bundle Es, the Ruelle zeta function has vanish-
ing order at λ = 0 equal to b1(O(Es)), the dimension of the "rst de Rham cohomology with
coef"cients in the orientation line bundle of Es.

The orientation line bundle is reviewed in de"nition 1.5.
In the special case of the geodesic !ow on M = S∗Σ with Σ nonorientable, the vanishing

order at λ = 0 is given by b1(Σ), as is shown in proposition 3.10. This is in contrast to the
orientable case, in which it is b1(Σ) − 2.

More precisely, let χ′(Σ) be the derived Euler characteristic of Σ, i.e.,

χ′(Σ) =
2∑

i=0

(−1)iibi(Σ) =

{
−b1(Σ) + 2, if Σ is orientable,

−b1(Σ), otherwise.

Corollary 3. If (φt)t∈R is the geodesic !ow on the cosphere bundle of a connected negatively
curved closed surface (orientable or not), the Ruelle zeta function has vanishing order atλ = 0
equal to −χ′(Σ).

1.1. Axiom A flows

Let M be a compact manifold without boundary of dimension n, and let (φt)t∈R be a !ow on M
generated by the vector "eld V ∈ C∞(M; TM).

Definition 1.1. A φt-invariant set K ⊆ M is called hyperbolic for the !ow (φt)t∈R if V does
not vanish on K and for each x ∈ K the tangent space T xM can be written as the direct sum

TxM = E0(x) ⊕ Es(x) ⊕ Eu(x)

where E0(x) = span(V(x)), Es, Eu are continuous φt-invariant vector bundles on K, and for
some Riemannian metric | · |, there are C, θ > 0 such that for all t > 0,

|dφt(x)v|φt(x) ! Ce−θt|v|x v ∈ Es(x)

|dφ−t(x)w|φ−t (x) ! Ce−θt|w|x w ∈ Eu(x). (1)

In the important case where all of M is hyperbolic, we call (φt)t∈R an Anosov !ow.
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There is an analogous notion of hyperbolicity at "xed points.

Definition 1.2. A "xed point x ∈ M, i.e., V(x) = 0, is called hyperbolic if the differential
DV(x) has no eigenvalues with vanishing real part.

A generalization of Anosov !ows is the following, given "rst by Smale [13, II.5,
de"nition 5.1]:

Definition 1.3. The !ow (φt)t∈R is called Axiom A if

(a) All "xed points of (φt)t∈R are hyperbolic,
(b) The closure K of the union of all closed orbits of (φt)t∈R is hyperbolic,
(c) The nonwandering set ([4, de"nition 2.2]) of (φt)t∈R is the disjoint union of the set of "xed

points and K.

We now recall the de"nition of a locally maximal set, given in [4, de"nition 2.4].

Definition 1.4. A compact φt-invariant set K ⊆ M is called locally maximal for (φt)t∈R if
there is a neighbourhood V of K such that

K =
⋂

t∈R
φt(V).

We may then state the key proposition, which generalises [4, proposition 3.1] to the case
where Es or Eu is not necessarily orientable on K.

Proposition 1.4. Let K ⊆ M be a locally maximal hyperbolic set for (φt)t∈R, and let ζK be
de"ned as the Ruelle zeta function where we only take the product over trajectories in K. Then
ζK has a continuation to a meromorphic function on all of C.

Theorem 1 follows from proposition 1.4, as we may remark that by [13, II.5, Theorem 5.2]
we can write K = K1 ) · · · ) KN with Kj basic hyperbolic.3 Then the product

ζR(λ) =
N∏

j=1

ζK j(λ),

which a priori holds for Im(λ) # 1, gives that ζR also has a meromorphic continuation to all
of C.

The goal of section 2 is to prove proposition 1.4.

1.2. The orientation bundle

To "x notation we recall the de"nition of transition functions of a vector bundle. Given a con-
tinuous real vector bundle E of rank k over a manifold M with projection map π, let Uα, Uβ ⊆
M be two small open sets with nonempty intersection, and let ψα : π−1Uα → Uα × Rn,
ψβ : π−1Uβ → Uβ × Rn be local trivializations. Then the map ψα ◦ ψ−1

β : (Uα ∩ Uβ) × Rn →
(Uα ∩ Uβ) × Rn is of the form

ψα ◦ ψ−1
β (p, v) = (p, ταβ(p)v)

where ταβ ∈ C0(Uα ∩ Uβ , GLk(R)) is called a transition function. If the local trivializations
can be chosen such that ταβ are smooth, then E is a smooth vector bundle. Similarly, if ταβ
can be chosen to be locally constant functions, then E is a !at vector bundle.

3 These are locally maximal hyperbolic by de"nition (see [4, de"nition 2.5]).
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Furthermore, suppose we are given an open cover (Uα)α∈A of M together with a set of
continuous (resp. smooth, resp. locally constant) GLk(R)-valued functions (ταβ) α,β∈A

Uα∩Uβ .=∅
with

ταα = I on Uα. Then there exists a continuous (resp. smooth, resp. !at) vector bundle E with
transition functions ταβ , provided the following triple product property holds:

ταβ(p)τβγ(p)τγα(p) = I

for any p ∈ Uα ∩ Uβ ∩ Uγ .

Definition 1.5. If E is a continuous (but not necessarily smooth) real vector bundle over M
with transition functions ταβ , the orientation bundle of E is a smooth !at line bundle O(E)
with transition functions

σαβ(p) = sgn det(ταβ(p)) =

{
1 det(ταβ(p)) > 0

−1 det(ταβ(p)) < 0.

Recall that if f : M → M is a map, we say f lifts to a bundle map F : E → E if π ◦ F = f ◦ π.
Since O(E) is a !at vector bundle, using the associated !at connection, we can lift the !ow

(φt)t∈R to a !ow ( Φ̃t)t∈R on O(E). If the !ow (φt)t∈R on M lifts to a !ow (Φt)t∈R on E, if ψ, η
are distinct trivializations of E near p, φt(p) respectively, and ψ̃, η̃ are trivializations of O(E)
near p, φt(p) respectively, we have for p ∈ M and l ∈ O(E)p:

Φ̃t(l) = η̃ −1
(
φt(p), sgn

(
det

(
ηΦtψ

−1)∣∣
p

)
proj2ψ̃(l)

)
, (2)

where proj2 is the obvious projection to the second component.

1.3. Geodesic flows

Let Z be a negatively curved closed Riemannian manifold. Let M = S∗Z be the cosphere bundle
on Z. It is classical that the geodesic !ow on M is Anosov [1].

Let π : M → Z be the canonical projection. For x ∈ M, we have a morphism of linear spaces

π∗ : TxM → Tπ(x)Z. (3)

The following proposition is classical [1, section 22] and [12, proposition 6]. We include a
proof for the sake of completeness.

Proposition 1.5. The morphism π∗ induces an isomorphism of continuous vector bundles
on M,

Es ⊕ E0 0 π∗(TZ). (4)

Proof. Since both sides of [4] have the same dimension, it is enough to show that π∗|Es⊕E0 is
injective. We will show this using Jacobi "elds. It is convenient to work on the sphere bundle
M′ = SZ. We identify M′ with M via the Riemannian metric on Z.

We follow [7, section II.H]. Let M be the total space of TZ. Denote still by π : M → Z
the obvious projection. Let TVM ⊂ TM be the vertical subbundle of TM. The Levi-Civita
connection on TZ induces a horizontal subbundle THM ⊂ TM of TM, so that

TM = TVM ⊕ THM. (5)

Since TVM 0 π∗(TZ) and THM 0 π∗(TZ), by [5], we can identify the smooth vector bundles,

TM = π∗(TZ ⊕ TZ).
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For x = (z, v) ∈ M, let γx be the unique geodesic on Z such that (γx(0), γ̇x(0)) =
(z, v). For w ∈ TxM, let Jx,w ∈ C∞(γx, TZ|γx ) be the unique Jacobi "eld along γx such that(
Jx,w(0), J̇x,w(0)

)
= w, where J̇x,w is the covariant derivation of Jx,w in the direction γ̇x .

Recall that a Jacobi "eld J is called stable, if there is C > 0 such that for all t " 0,

|J(t)| ! C.

By [7, proposition VI.A], given x ∈ M, for any Y1 ∈ TzZ, there exists one and only one stable
Jacobi "eld J along γx such that J(0) = Y1.

For x = (z, v) ∈ M′, we have

TxM′ = {(Y1, Y2) ∈ TzZ ⊕ TzZ : 〈Y2, v〉 = 0}.

The morphism π∗ in [3] is just

w ∈ TxM′ → Jx,w(0) ∈ TzZ.

By [7, proposition VI.B], w ∈ Es(x) ⊕ E0(x) if and only if the Jacobi "elds Jx,w is stable. By
the uniqueness of stable Jacobi "elds, we see that π∗|Es⊕E0 is injective. #

Since E0 is a trivial line bundle, our proposition implies immediately:

Corollary 1.6. We have the isomorphism of smooth !at line bundles

O(Es) 0 π∗(O(TZ)).

2. Proof of proposition 1.4

We use the notation of [5]. If 0 ! k ! n − 1, let Ek
0 ⊂ Λk(T∗M) denote the subbundle of k-

forms ω such that ιVω = 0, where ι denotes interior multiplication.
Let Ẽk

0 = Ek
0 ⊗ O(Es). We consider the pullback φ∗

−t on sections of Ẽk
0 . Note that the !ow

(φt)t∈R lifts to a !ow (Φt)t∈R on Ek
0 . Indeed, for p ∈ M, ω ∈ Ek

0,p, Φtω ∈ Ek
0,φt(p) is de"ned for

v1, . . . , vk ∈ Tφt (p)M by

Φtω(v1, . . . , vk) = ω
(
(dφt|p)−1v1, . . . , (dφt|p)−1vk

)
. (6)

Note that from the above formula, it is easy to check that ιVΦtω = 0. Recall also that the !ow
(φt)t∈R lifts to a !ow Φ̃t on O(Es) (see [2]). For a section s in Ẽk

0 , we have

φ∗
−ts (p) =

(
Φt ⊗ Φ̃t

)
(s(φ−t(p))) . (7)

Let χ ∈ C∞(M) be a smooth function whose support is contained in a small neighbour-
hood of K such that χ(x) = 1 for all x ∈ K. We now invoke the Guillemin trace formula
(see [11, pp 501–502], [5, appendix B], [3, (4.6)]) which says that the !at trace
tr1χφ∗

−tχ|
C∞

(
M; Ẽk

0

) is a distribution on (0,∞) given by

tr1χφ∗
−tχ|

C∞
(

M;Ẽk
0

) =
∑

γ⊂K

T$
γ trẼ

k
0,y

(
ΦTγ ⊗ Φ̃Tγ

)

|det(I − Pγ)| δt−Tγ , (8)

where the sum is taken over all the periodic trajectories γ in K with period Tγ and primitive
period T$

γ , y is any point on γ, and Pγ = dφ−Tγ |(Es⊕Eu)y is the linearized Poincaré map at y.
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Note that as trace and determinant are invariant under conjugation, the right-hand side does
not depend on y.

By [6], the trace of ΦTγ on Ek
0,y is just tr

(∧kPγ

)
. By [2], we may take trivializations

ψ, ψ̃ of Es, O(Es) in a neighbourhood of y and have the induced lifting on O(Es) to be
sgn

(
det

(
ψdφTγ |Es,yψ

−1
)∣∣). By de"nition we get this to be equal to

sgn
(

detdφTγ

∣∣
Es,y

)
= sgn

(
detdφ−Tγ

∣∣
Es,y

)
= sgn det

(
Pγ |Es

)
,

and as it is a map between one dimensional spaces, the trace is given by that expression as
well. By the above consideration, we can rewrite [8] as

tr1χφ∗
−tχ|

C∞
(

M;Ẽk
0

) =
∑

γ⊂K

T$
γ tr

(∧kPγ

)
sgn(det Pγ|Es )

|det(I − Pγ)| δt−Tγ . (9)

Let us follow [4, section 3]. By [4, lemma 3.2], we may and we will assume that near
K, (φt)t∈R is an open hyperbolic system in the sense of [3, assumptions (A1)–(A4)]. By
[3, lemma 1.17], there is C > 0 such that for all t " 0,

|{γ closed trajectory in K : Tγ ! t}| ! CeCt. (10)

For Im(λ) # 1 big enough, set

ζK,k(λ) = exp



−
∑

γ⊂K

T$
γ

Tγ

tr
(∧kPγ

)
sgn(det Pγ |Es )

|det(I − Pγ)| eiλTγ



 . (11)

Lemma 2.1. For Im(λ) # 1 big enough, we have

∂λ log ζK,k(λ) = −i
∫ ∞

0
eiλttr1χφ∗

−tχ|
C∞

(
M;Ẽk

0

)dt. (12)

The function ζK,k(λ) has a holomorphic extension to C.

Proof. Let us "rst remark that by [9, 10], the right-hand side of [12] is well de"ned. Taking
a logarithm and differentiating [11] and using Guillemin trace formula [9], we get [12]. The
last part of the lemma follows from the arguments of [3, section 4]. #

Recall that for Im(λ) # 1 big enough, we have

ζK(λ) =
∏

γ$⊂K

(
1 − eiλT$

λ

)
= exp

(
−
∑

γ⊂K

T$
γ

Tγ
eiλTγ

)
. (13)

Proposition 1.4 is a consequence of the following lemma. This lemma was stated in [2], but
we restate and prove it for convenience.

Lemma 2.2. The following identity of meromorphic functions on C holds,

ζK(λ) =
n−1∏

k=0

(
ζK,k(λ)

)(−1)k+dim Es
. (14)
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Proof. Following [5, (2.4) and (2.5)], since det(I − Pγ) =
∑n−1

k=0(−1)ktr
(∧kPγ

)
, by

[11, 13], it is enough to show

|det(I − Pγ)| = (−1)dim Es sgn
(

detPγ |Es

)
det(I − Pγ). (15)

Remark that

det(I − Pγ) = det(I − Pγ |Eu) det(I − Pγ |Es )

= (−1)dim Es det(I − Pγ |Eu) det(I − P−1
γ |Es ) det(Pγ|Es ). (16)

As time is running in the negative direction, we have by [1] that the eigenvaluesλ of Pγ|Eu have
|λ| < 1, and the eigenvalues µ of P−1

γ |Es have |µ| < 1. This gives any eigenvalues of I − Pγ|Eu

to be either 1 − λ for λ ∈ (−1, 1) or conjugate pairs 1 − λ, 1 − λ when λ is not real. In any
case, we get by multiplying that

det(I − Pγ|Eu ) > 0

and similarly

det(I − P−1
γ |Es) > 0.

Then taking signs in (16), we get (15). #
Remark. The key point of our argument is based on the smoothness of O(Es). Thanks to
this property, most of the analytic arguments in the proof of proposition 1.4 are reduced to [3].
In [2, section 2], Baladi and Tsujii used the orientation bundle in a different way for the !ow
with discrete time.

3. Vanishing order at zero on a contact three-manifold

In this section, we assume that M is a connected closed three-manifold with a contact form
α, and that V is the associated Reeb vector "eld. We suppose also that the !ow (φt)t∈R of V
is Anosov. One such example would be when M = S∗Σ, the cosphere bundle of a connected
closed surface Σ with negative (variable) curvature, and (φt)t∈R is geodesic !ow.

The following result was proven in [6]:

Theorem 3.1. If (φt)t∈R is a contact Anosov !ow on a connected closed three-manifold with
orientable Eu and Es, the Ruelle zeta function has vanishing order atλ = 0 equal to b1(M) − 2,
where b1(M) denotes the "rst Betti number of M.

The goal of this section is to determine the order of vanishing of ζR at 0 in the case that
Es, Eu are not orientable, and hence give a proof of theorem 2. We remark that since a contact
manifold is orientable, orientability of Es is equivalent to orientability of Eu.

3.1. The twisted cohomology

Let us recall some background and general facts on the twisted cohomology of a !at vector
bundle. Let X be a closed manifold. Let F be a !at vector bundle on X with !at connection ∇.
It induces a sheaf F on X de"ned by locally constant sections, i.e., if U ⊂ X is an open set,
then

F (U) = {s ∈ C∞(U; F|U) : ∇s = 0}.
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The twisted cohomology H•(X; F) is de"ned by the cohomology of the sheaf F [10, section
II.4.4]. They are the algebraic invariants which describe the rigidity properties of the global
!at sections of F. Let bk(F) be the twisted Betti number

bk(F) = dim Hk(X; F).

If F is the trivial line bundle, we get the classical de Rham cohomology with real coef"cients.
To evaluate H•(X; F), one can use the twisted de Rham complex. Indeed, if we denote Fk =

Λk(T∗X) ⊗ F, the !at connection ∇ extends to an operator dk : C∞(X; Fk) → C∞(X; Fk+1) by
Leibniz rule: if α ∈ C∞(X;Λk(T∗X)) and s ∈ C∞(X; F), we have

dk(α · s) = dα · s + (−1)kα ∧ ∇s.

By the !atness of∇, we have dk+1dk = 0, so that (C∞(X; F•), d•) is a complex. By the de Rham
isomorphism [10, théorème II.4.7.1], we have

Hk(X; F) = ker dk/Im dk−1. (17)

As an analogue of [6, lemma 2.1], using the theory of elliptic operators, we can evalu-
ate H•(X; F) using the complex of twisted currents, or more generally twisted currents with
wavefront conditions.

More precisely, let Γ ⊂ T∗X be a closed cone. We denote by D′
Γ(X; Fk) the space of

Fk-valued distributions whose wavefront set is contained in Γ (see [6, section 2.1]). By
microlocality, we have

dk : D′
Γ

(
X; Fk)→ D′

Γ

(
X; Fk+1) .

For simplicity, we will write d sometimes.

Lemma 3.2. If u ∈ D′
Γ

(
X; Fk

)
and du ∈ C∞ (

X; Fk+1
)
, then there exist v ∈ C∞ (

X; Fk
)

and w ∈ D′
Γ

(
X; Fk−1

)
such that

u = v + dw.

In particular, if u ∈ D′
Γ (X; F) and du ∈ C∞ (

X; F1
)
, then u ∈ C∞ (X; F).

Proof. Take a Riemannian metric on X and a Hermitian metric on F. Remark that these two
metrics induce a "brewise scalar product 〈·, ·〉 on Fk. For u, v ∈ C∞ (

X; Fk
)
, we can de"ne the

L2-product by

〈u, v〉L2(X;Fk) =

∫

X
〈u, v〉 dvol, (18)

where dvol is a volume form. Let δk+1 : C∞ (
X; Fk+1

)
→ C∞ (

X; Fk
)

be the formal adjoint of
d with respect to the L2-product (18). De"ne the twisted Hodge Laplacian by

∆k = dk−1δk + δk+1dk : C∞ (
X; Fk)→ C∞ (

X; Fk) .

Then ∆k is an essentially self-adjoint second order elliptic differential operator. The
remainder of the proof carries over identically from that of [6, lemma 2.1]. #

Remark that if F is the orientation bundle of certain vector bundle and u ∈ C∞(X; F), then
for x ∈ X, |u(x)|2 is independent of the choice of trivializations. It de"nes a Hermitian metric
on F.
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3.2. Resonant state spaces

Let M be a connected three-dimensional closed manifold with a contact form
α ∈ C∞(M, T ∗M). Let V be the associated Reeb vector "eld. Then,

iVα = 1, ιV dα = 0. (19)

We assume that the !ow (φt)t∈R associated to V is Anosov. Let E∗
u ⊂ T∗M be the dual of Es.

We will apply the results of section 3.1 to the case where (X, F,Γ) = (M, O(Es), E∗
u).

Since the !ow (φt)t∈R is Anosov, we have K = M. For 0 ! k ! 2, we write ζk = ζK,k. By
(14), we have

ζR(λ) =
ζ1(λ)

ζ0(λ)ζ2(λ)
. (20)

We consider the operator Pk = −iLV , where LV (in a slight abuse of notation) denotes the
natural action on sections of Ẽk

0 , given by the Lie derivative on sections of Ek
0 tensored with

the !at connection on O(Es). For Imλ # 1 large enough, the integral Rk(λ) = i
∫∞

0 eiλtφ∗
−tdt

converges and de"nes a bounded operator on the L2-space; this is nothing more than the resol-
vent operator of Pk. Then by [6, section 2.3] we have that Rk extends meromorphically to the
entire complex plane,

Rk(λ) : C∞
(

M; Ẽk
0

)
→ D′

(
M; Ẽk

0

)
.

More precisely, near λ0 ∈ C, we have

Rk(λ) = Rk,H(λ) −
J(λ0)∑

j=1

(Pk − λ) j−1Πk

(λ− λ0) j

where Rk,H is a holomorphic family de"ned near λ0, J(λ0) ∈ N, and Πk has rank mk(λ0) < ∞.
By the arguments at the end of [5], we have that at λ0, the function ζk has a zero of order
mk(λ0).

We de"ne the space of resonant states at λ0 to be

Resk(λ0) =
{

u ∈ D′
E∗

u

(
M; Ẽk

0

)
: (Pk − λ0)u = 0

}
.

Then a special case of [6, lemma 2.2] gives the following:

Lemma 3.3. Suppose Pk satis"es the semisimplicity condition:

u ∈ D′
E∗

u

(
M; Ẽk

0

)
, (Pk − λ0)2u = 0 =⇒ (Pk − λ0)u = 0.

Then mk(λ0) = dim Resk(λ0).

Recall that we are trying to "nd the order at λ = 0 of ζR, which by (20) is simply

mR(0) = m1(0) − m0(0) − m2(0). (21)

We will compute each of these individually, by computing dim Resk(0) and checking that the
semisimplicity condition in lemma 3.3 holds.

We begin with twisted ‘zero-forms’, which are just sections of the orientation bundle O(Es).
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Proposition 3.4. If Es is nonorientable, the space Res0(0) is {0}.

Proof. Suppose u ∈ Res0(0), i.e.,

P0u = 0. (22)

Since the !ow (φt)t∈R preserves the contact volume form α ∧ dα, P0 : C∞(M; O(Es)) →
C∞(M; O(Es)) is a symmetric operator with respect to the L2-product (18). By [6, lemma 2.3],
u ∈ C∞ (M; O(Es)). Using ∂t

(
φ∗
−tu

)
= −φ∗

−t∇Vu (where∇ is the !at connection), we see that
u is constant on the !ow line: for all t ∈ R,

u = φ∗
−tu. (23)

Let (x, v) ∈ TM. The pairing 〈du(x), v〉 is an element of O(Es)x . By [7] and (23), we have

〈du(x), v〉 = 〈φ∗
−t(du)(x), v〉 = Φ̃t〈du(φ−t(x)), dφ−t(x)v〉.

If v ∈ Eu(x), then sending t →∞ gives 〈du(x), v〉 = 0 by [1]. Similarly, if v ∈ Es(x), then
sending t →−∞ gives 〈du(x), v〉 = 0. This shows that

du|Es⊕Eu = 0. (24)

By Cartan’s formula and by (22), we have ιVdu = 0, i.e.,

du|E0 = 0. (25)

By (24) and (25), we have du = 0. So u ∈ H0(M; O(Es)). Since Es is nonorientable, we have
H0(M; O(Es)) = 0, so u = 0 and Res0(0) is trivial. #

Corollary 3.5. If Es is nonorientable, the multiplicity for zero-forms is m0(0) = 0.

Proof. If P2
0(u) = 0, then P0u ∈ Res0(0). By proposition 3.4, P0u = 0, so u ∈ Res0(0). This

shows semisimplicity, so by lemma 3.3 we see that m0(0) = dim Res0(0) = 0. #

Proposition 3.6. If Es is nonorientable, the space Res2(0) is {0}.

Proof. We claim that

α∧ : E2
0 → E3 (26)

is a bundle isomorphism. Indeed, using (19), it is easy to see that the inverse of (26) is given
by ιV . Tensoring with O(Es), we get a bundle isomorphism

α∧ : Ẽ2
0 → Ẽ3. (27)

Let u ∈ Res2(0). Since E3 is generated byα ∧ dα, by (27), there is v ∈ D′
E∗

u
(M; O(Es)) such

that α ∧ u = vα ∧ dα. Applying ιV and using ιV u = 0, we have u = vdα. Then

0 = P2(u) = (P0v)dα.

But this gives P0v = 0, so by proposition 3.4 we have v = 0. Therefore, u = 0. #
The following is then clear for the same reason as corollary 3.5.
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Corollary 3.7. If Es is nonorientable, the multiplicity for two-forms is m2(0) = 0.

We now turn to the case of P1 acting on the space of twisted one-form-valued distributions
D′

E∗
u

(
M; Ẽ1

0

)
. We can now state the analogous proposition for one-forms:

Proposition 3.8. If Es is nonorientable, the space Res1(0) has dimension b1(O(Es)).

Proof. The proof is analogous to that of [6, lemma 3.4], but slightly easier due to the holo-
morphy of the resolvent R0 near 0. Let u ∈ Res1(0). Then du ∈ Res2(0) by proposition 3.6, so
du = 0. By lemma 3.2 there is a φ ∈ D′

E∗
u
(M; O(Es)) such that

u − dφ ∈ C∞
(

M; Ẽ1
)

, d(u − dφ) = 0.

We shall show that the map:

Θ : u 8→ [u − dφ] ∈ H1(M; O(Es))

is well-de"ned, linear and bijective, which is enough to prove the lemma.
Well-De!nedness and linearity. Suppose there is another section ψ ∈ D′

E∗
u

(M; O(Es))

with u − dψ ∈ C∞
(

M; Ẽ1
)

. Then subtracting gives d(φ− ψ) ∈ C∞
(

M; Ẽ1
)

, so φ− ψ ∈
C∞ (M; O(Es)) by lemma 3.2. This shows that the map Θ is well-de"ned. It is also easy to see
that Θ is linear.

Injectivity. If Θ(u) = 0, then u − dφ is exact, so without loss of generality we can assume
that u = dφ. Combining with ιV u = 0, we get φ ∈ Res0(0), so φ = 0 by proposition 3.4.
Therefore u = 0, and this shows Θ to be injective.

Surjectivity. Let v ∈ C∞
(

M; Ẽ1
)

with dv = 0. Then as m0(0) = 0, the resolvent R0 is

holomorphic near 0. Take φ = iR0(0)ιVv ∈ D′
E∗

u
(M; O(Es)). Then P0φ = iιVv. This rearranges

to ιV (v + dφ) = 0, so v + dφ ∈ Res1(0). This gives that Θ is surjective, and completes the
proof of our proposition. #
Proposition 3.9. If Es is nonorientable, the multiplicity for one-forms is m1(0) =
b1(O(Es)).

Proof. By lemma 3.3, we must only check that the semisimplicity condition is satis"ed. Take
u ∈ D′

E∗
u

(
M; Ẽ1

0

)
such that (P1)2u = 0. Then v = ιVdu ∈ Res1(0). It is enough to show that

v = 0.
Recall that in the proof of proposition 3.8, we have seen that elements in Res1(0) are closed.

In particular,

dv = 0. (28)

Note that α ∧ du ∈ D′
E∗

u
(M; Ẽ3). We claim that

α ∧ du = 0. (29)

Indeed, there is some a ∈ D′
E∗

u
(M; O(Es)) such that

α ∧ du = aα ∧ dα.

Since LV (α) = 0, by (28), we have

(LV a)α ∧ dα = α ∧ LV(du) = α ∧ dιV du = α ∧ dv = 0.
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Then LV a = 0, so a = 0 by proposition 3.4. This gives (29).
Since α(V) = 1, we have (α∧) ◦ ιV + ιV ◦ (α∧) = id. By (29), we have

du = ((α∧) ◦ ιV + ιV ◦ (α∧))du = α ∧ v. (30)

By lemma 3.2 and by (28), there are w ∈ C∞
(

M; Ẽ1
)

, φ ∈ D′
E∗

u
(M; O(Es)) such that

v = w + dφ, dw = 0. (31)

Then

ιVw = ιV (v − dφ) = −LVφ. (32)

In particular, LVφ is smooth. We compute by Stokes’ Theorem and by (30)–(32),

0 = Re
∫

M
du ∧ w = Re

∫

M
α ∧ dφ ∧ w = Re

∫

M
φw ∧ dα

= Re
∫

M
ιV (φw)α ∧ dα = −Re

∫

M
φ(LVφ)α ∧ dα

= −Re 〈LVφ,φ〉L2(M;O(Es)),

where the fourth equality comes from the fact the

(α∧) ◦ ιV(φw ∧ dα) = ((α∧) ◦ ιV + ιV ◦ (α∧))(φw ∧ dα) = φw ∧ dα.

In the above formula, we use the fact that a product of two twisted forms is untwisted. By [6,
lemma 2.3] we have φ ∈ C∞ (M; O(Es)), so v ∈ C∞

(
M; Ẽ1

0

)
. Then by the same argument as

in proposition 3.4 (see [6, lemma 3.5]) we have v = 0. #
Now theorem 2 is a consequence of (21), corollaries 3.5, 3.7, and proposition 3.9.
Let Σ be a connected negatively curved closed surface. Take M = S∗Σ. By corollary 1.6,

we have

H1(M; O(Es)) = H1(M;π∗O(TΣ)).

Proposition 3.10. If Σ is a connected negatively curved closed surface (oriented or not),
we have

dim H1(M;π∗O(TΣ)) = dim H1(Σ). (33)

Proof. By the Gysin long exact sequence, we have the exact sequence

0 −→ H1(Σ; O(TΣ)) π∗−−→H1(M;π∗O(TΣ))
π∗−−→H0(Σ) e∧−−→H2(Σ; O(TΣ)) −→,

where π∗ is the pullback,π∗ is the integration along the "bre of M → Σ, and e ∈ H2(Σ; O(TΣ))
is the Euler class of TΣ.

We claim that the last map

e∧ : H0(Σ) → H2(Σ; O(TΣ))

in the Gysin exact sequence is an isomorphism. Indeed, since Σ is connected, we have
dim H0(Σ) = 1, and by Poincaré duality, dim H2(Σ; O(TΣ)) = 1. It is enough to show that
e ∈ H2(Σ; O(TΣ)) is non zero, or equivalently

∫
Σe .= 0. This is a consequence of the fact that
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Σ has negative curvature, as e = Kµ where µ is the Riemannian density and K < 0 is the Gauss
curvature.

Therefore, we get an isomorphism

π∗ : H1(Σ; O(TΣ)) 0 H1(M;π∗O(TΣ)). (34)

By Poincaré duality, we have

H1(Σ; O(TΣ)) 0
(
H1(Σ)

)∗
. (35)

By (34) and (35), we get (33). #
Now corollary 3 is a consequence of theorem 2 and proposition 3.10.
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