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Problem 1 :
Let R be a unitary commutative ring such that 1 ≠ 0 and S ⊆ R be closed under multi-
plication (i.e. ∀x, y ∈ S, xy ∈ S) and contain 1. We define the relation E on R × S by
(a, s)E(b, t) if and only if there exists x ∈ S such that xat = xbs.

1. Show that E is an equivalence relation.

Solution: Let a, b, c ∈ R and s, t, u ∈ S. We have 1as = 1as so (a, s)E(a, s) and
E is reflexive. If (a, s)E(b, t), then there exists x ∈ S such that xat = xbs and
xbs = xat so (b, t)E(a, s) and E is symmetric. Finally, assume (a, s)E(b, t) and
(b, t)E(c, u), then there exists x and y ∈ S such that xat = xbs and ybu = yct.
We then have (xyt)au = yxbsu = (xyt)cs where xyt ∈ S, so (a, s)E(c, u) and E is
transitive.

2. Let RS denote the set (R × S)/E (it is the set of E-classes). If (a, s) ∈ R × S, we
denote by (a, s) ∈ RS the E-class of (a, s). Show that the map ((a, s), (b, t)) ↦
(ab, st) is well defined. We denote this map ⋆.

Solution:Assume (a1, s1)E(a2, s2) and (b1, t1)E(b2, t2), then there exists x and
y ∈ S such that xa1s2 = xa2s1 and yb1t2 = yb2t1. It follows that (xy)(a1b1)(s2t2) =
(xy)(a2b2)(s1t1) and ⋆ is well defined.

3. Show that the map ((a, s), (b, t)) ↦ (at + bs, st) is well defined. We denote this
map ◻.

Solution:Assume (a1, s1)E(a2, s2) and (b1, t1)E(b2, t2), then there exists x and
y ∈ S such that xa1s2 = xa2s1 and yb1t2 = yb2t1. It follows that xy(a1t1+b1s1)t2s2 =
xya1t1s2t2+xyb1s1t2s2 = xya2s1t1t2+xyb2t1s1s2 = xy(a2t2+b2s2)s1t1, so ◻ is well-
defined.

4. Show that (RS ,◻,⋆) is a unitary commutative ring.

Solution: Let us start by showing associativity of ◻. We have

((a, s) ◻ (b, t)) ◻ (c, u) = (at + bs, st) ◻ (c, u)

= ((at + bs)u + cst, stu)

= (atu + bsu + cst, stu)

= (atu + (bu + ct)s, stu)

= (a, s) ◻ (bu + ct, tu)

= (a, s) ◻ ((b, t) ◻ (c, u)).

We have commutativity of ◻: (a, s) ◻ (b, t) = (at + bs, st) = (bs + at, ts) = (b, t) ◻
(a, s); (0,1) is the additive identity: (a, s) ◻ (0,1) = (a ⋅ 1 + 0 ⋅ s, s ⋅ 1) = (a, s) and
we have an additive inverse: (a, s) ◻ (−a, s) = (as − as, s2) = (0, s2) = (0,1). The
last equality comes from the fact that 1 ⋅ 0 ⋅ 1 = 0 = 1 ⋅ 0 ⋅ s2.
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Let us now show associativity of ⋆: ((a, s) ⋆ (b, t)) ⋆ (c, u) = (ab, st) ⋆ (c, u) =
(abc, stu) = (a, s)⋆(bc, tu) = (a, s)⋆((b, t)⋆(c, u)). Also ⋆ is commutative: (a, s)⋆
(b, t) = (ab, st) = (ba, ts) = (b, t) ⋆ (a, s) and (1,1) is the multiplicative identity:
(a, s) ⋆ (1,1) = (a ⋅ 1, s ⋅ 1) = (a, s).

Finally ⋆ distributes over ◻:

(a, s) ⋆ ((b, t) ◻ (c, u)) = (a, s) ⋆ (bu + ct, tu)

= (a(bu + ct), stu)

= (abu + act, stu)

= (absu + acst, stsu)

= (ab, st) ◻ (ac, su)

= ((a, s) ⋆ (b, t)) ◻ ((a, s) ⋆ (c, u)).

The fourth equality comes from the fact that 1 ⋅(absu+acst)stu = 1 ⋅(abu+act)s2tu.

5. Show that the map a↦ (a,1) is a unitary ring homomorphism from ϕ ∶ R → RS .

Solution: Let us show it respects addition: ϕ(a+ b) = (a + b,1) = (a ⋅ 1 + b ⋅ 1,12) =
(a,1) ◻ (b,1); multiplication: ϕ(ab) = (ab,1) = (ab,12) = (a,1) ⋆ (b,1) and multi-
plicative identity: ϕ(1) = (1,1).

6. Show that if S contains 0 then RS is the trivial ring.

Solution: Let a ∈ R and s ∈ S, we have 0 ⋅a ⋅1 = 1 ⋅0 ⋅s, it follows that (a, b) = (0,1)
and that S contains only one element.

7. Show that ϕ is not injective if and only if S contains a zero-divisor.

Solution: Let us first assume that S contains a zero divisor s. So there exists y ∈ R
such that sy = 0. Now s ⋅ y ⋅ 1 = 0 = s ⋅ 0 ⋅ 1. So ϕ(y) = (y,1) = (0,1) = ϕ(0). So ϕ is
not injective.

Conversely, assume ϕ is not injective, then there exists y ∈ ker(ϕ)∖{0}, i.e. ϕ(y) =
(y,1) = (0,1). Hence there exists s, S such that s ⋅ y = s ⋅ y ⋅ 1 = s ⋅ 0 ⋅ 1 = 0. So s ∈ S
is a zero divisor.

8. Show that R ∖ {0} is closed under multipication if and only if R is an integral
domain.

Solution: Let us assume that R is an integral domain and let s, t ∈ R ∖ {0}. Then
because neither s or t are zero divisors, st ≠ 0 and st ∈ R ∖ {0}.

Conversely, if R ∖ {0} is closed under multiplication and s, t ∈ R ∖ {0}, then st ≠ 0,
so s is not a zero divisor and the only zero divisor in R is 0: R is an integral domain
(we already know it is unitary, commutative and non trivial).

9. Assume that R is an integral domain. Show that R
(R∖{0}) is a field.

Solution: Let (a, s) ∈ RR∖{0}. If a = 0, as we saw above, (a, s) = (0,1). If follows
that if (a, s) ≠ (0,1), we must have a ≠ 0 and hence (s, a) ∈ RR∖{0}. We have
(a, s)⋆(s, a) = (as, as) = (1,1). The last equality comes from the fact that 1 ⋅as ⋅1 =
1 ⋅ 1 ⋅ as. So every non zero element in RR∖{0} is invertible, i.e. it is a field.
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10. Show that Z
(Z∖{0}) is isomorphic (as a unitary ring) to Q.

Solution: Let ϕ((m,n)) = mn−1. Let us show that ϕ is well defined. If (m,n) =
(p, q), then there exists s ∈ Z ∖ {0} such that smq = snp. But Z is an integral
domain and s ≠ 0 so we have mq = np and thus mn−1 = pq−1.

Let us now show that ϕ is a unitary ring homomorphism. We have ϕ((m,n) ◻
(p, q)) = ϕ((mq + pn,nq)) = (mq + pn)(nq)−1 = mqq−1n−1 + pnq−1n−1 = mn−1 +
pq−1 = ϕ((m,n)) + ϕ((p, q)); also ϕ((m,n) ⋆ (p, q)) = ϕ((mp,nq)) = (mp)(nq)−1 =
mn−1pq−1 = ϕ((m,n))ϕ((p, q)) and ϕ(1,1) = 1 ⋅ 1−1 = 1.

If mn−1 = ϕ((m,n)) = 0 then, because n ≠ 0, we have m = 0 and (m,n) = (0,1). So
ker(ϕ) = {(0,1)} and ϕ is injective. Finally, pick any q ∈ Q. We have q = mn−1 =
ϕ((m,n)) for some m ∈ Z and n ∈ Z ∖ {0} so ϕ is surjective.

3


