Calculus and submanifold

S. Allais, M. Joseph

Exercise 1 (Calculus). Show that the following maps are differentiable, and compute their differentials.

1. $(f, g) \longmapsto g \circ f$ from $\mathcal{L}(E, F) \times \mathcal{L}(F, G)$ to $\mathcal{L}(E, G)$.
2. det: $\mathcal{M}_{n}(\mathbb{R}) \rightarrow \mathbb{R}$.
3. $f \longmapsto f^{-1}$ from $G L(E)$ to itself, where E is a real vector space of finite dimension.
4. Let $\Omega \subset \mathbb{R}^{n}$ be an open set of compact closure and V a vector space of finite dimension of functions $\mathbb{R}^{n} \rightarrow \mathbb{R}$ of class \mathcal{C}^{1}. We consider ev : $(f, x) \mapsto f(x)$ from $V \times \Omega$ to \mathbb{R}.

Exercise 2 (Diffeomorphisms). 1. Let $f: U \rightarrow V$ be a homeomorphism between open sets of \mathbb{R}^{n}. Show that f is a \mathcal{C}^{1}-diffeomorphism if and only if f is \mathcal{C}^{1} and for all x in $U, d f_{x}$ is invertible.
2. Show that $B^{n}:=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{2}<1\right\}$ is diffeomorphic to $]-1 ; 1\left[n\right.$, and to \mathbb{R}^{n}.
3. Generalize the last result to any open convex nonempty set.

Exercise 3 (Study of an implicitly defined curve). Let us define the following curve:

$$
C:=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{4}+y^{3}-y^{2}+x-y=0\right\} .
$$

Give the tangent line of C and the relative position of C with reference to it at the points $(0,0)$ and $(0,1)$.
Exercise 4 (Roots of separable polynomials). Let $U \subset \mathbb{C}_{d}[X] \simeq \mathbb{C}^{d+1}$ be the open subset of separable polynomials of degree d (i.e. polynomials of degree d with distinct roots). Show that, for all $P \in U$, there exists a neighborhood $V \subset U$ of P and a smooth map $f: V \rightarrow \mathbb{C}^{d}$ such that,

$$
\forall Q \in V, \quad\left\{z_{1}, \ldots, z_{d}\right\} \text { is the set of roots of } Q \text { where }\left(z_{1}, \ldots, z_{d}\right):=f(Q) .
$$

Exercise 5 (Submanifolds). 1. Recall the four equivalent definitions of a d-dimensional submanifold of \mathbb{R}^{n} (without proving that they are equivalent).
2. Among the following sets, which ones are submanifolds of \mathbb{R}^{n} ? Give their dimensions.
(a) The sphere of radius 1 in \mathbb{R}^{n} for the euclidean norm.
(b) The set $M_{r}:=\left\{(x, y, z) \mid x^{2}+y^{2}-z^{2}+r=0\right\}$ of \mathbb{R}^{3} for a given parameter $r \in \mathbb{R}$.
(c) A disjoint union of a straight line and a plane in \mathbb{R}^{3}.
(d) The subset $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}-y^{2}=0\right\}$.
3. Let Ω be an open subset of \mathbb{R}^{d} and $h: \Omega \rightarrow \mathbb{R}^{n}$ an injective immersion, is $h(\Omega)$ always a submanifold of \mathbb{R}^{n} ?

Exercise 6 (Classical groups of matrices). Show that the following subgroups of $G L_{n}(\mathbb{R}) \subset$ $\mathcal{M}_{n}(\mathbb{R})$ are submanifolds of $\mathcal{M}_{n}(\mathbb{R})$, give their respective dimensions and their connected components.

1. $G L_{n}(\mathbb{R})$,
2. $S L_{n}(\mathbb{R})$ (subgroup of matrices of determinant 1),
3. $O_{n}(\mathbb{R})$ (subgroup of orthogonal matrices).

Exercise 7 (Quotient topology). Let X be a topological space and \sim be an equivalence relation on X. We denote by $p: X \rightarrow X / \sim$ the canonical projection.

1. Recall the definition of the quotient topology on X / \sim.
2. Let $f: X / \sim \rightarrow Y$. Show that f is continuous if and only if $f \circ p$ is.
3. Show that if G is a discrete group acting properly discontinuously on a locally compact Hausdorff space X, i.e., for all $g \in G, x \mapsto g \cdot x$ is a continuous map and

$$
\{g \in G \mid g \cdot K \cap K \neq \emptyset\} \text { is finite, } \quad \forall K \subset X \text { compact subset, }
$$

then the quotient X / G is Hausdorff.
4. Let $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ be the n-dimensional torus. Show that \mathbb{T}^{n} is compact and Hausdorff, and that p is an open map.
5. Let $f: K \rightarrow Y$ be continuous and bijective with K compact Hausdorff and Y Hausdorff. Show that f is a homeomorphism. Give a counter-example if Y is not Hausdorff.
6. We define \mathbb{S}^{1} as $\left\{z \in \mathbb{C}||z|=1\}\right.$. Show that \mathbb{T}^{1} is homeomorphic to \mathbb{S}^{1}. More generally, show that \mathbb{T}^{n} is homeomorphic to $\left(\mathbb{S}^{1}\right)^{n} \subset \mathbb{C}^{n}$.
7. Let $\mathbb{R} \mathbb{P}^{n}$ be the space defined as the quotient of $\mathbb{R}^{n+1} \backslash\{0\}$ by the equivalence relation "belonging to the same vector line". Show that $\mathbb{R P}^{n}$ is compact Hausdorff and that p is open.

