Exercise 1 (Calculus). Show that the following maps are differentiable, and compute their differentials.

- 1. $(f,g) \mapsto g \circ f$ from $\mathcal{L}(E,F) \times \mathcal{L}(F,G)$ to $\mathcal{L}(E,G)$.
- 2. det : $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$.
- 3. $f \mapsto f^{-1}$ from GL(E) to itself, where E is a real vector space of finite dimension.
- 4. Let $\Omega \subset \mathbb{R}^n$ be an open set of compact closure and V a vector space of finite dimension of functions $\mathbb{R}^n \to \mathbb{R}$ of class \mathcal{C}^1 . We consider $\operatorname{ev} : (f, x) \mapsto f(x)$ from $V \times \Omega$ to \mathbb{R} .
- **Exercise 2** (Diffeomorphisms). 1. Let $f: U \to V$ be a homeomorphism between open sets of \mathbb{R}^n . Show that f is a \mathcal{C}^1 -diffeomorphism if and only if f is \mathcal{C}^1 and for all x in U, df_x is invertible.
 - 2. Show that $B^n := \{x \in \mathbb{R}^n \mid ||x||_2 < 1\}$ is diffeomorphic to $]-1; 1[^n,$ and to \mathbb{R}^n .
 - 3. Generalize the last result to any open convex nonempty set.

Exercise 3 (Study of an implicitly defined curve). Let us define the following curve:

$$C := \{ (x, y) \in \mathbb{R}^2 \mid x^4 + y^3 - y^2 + x - y = 0 \}.$$

Give the tangent line of C and the relative position of C with reference to it at the points (0,0) and (0,1).

Exercise 4 (Roots of separable polynomials). Let $U \subset \mathbb{C}_d[X] \simeq \mathbb{C}^{d+1}$ be the open subset of separable polynomials of degree d (*i.e.* polynomials of degree d with distinct roots). Show that, for all $P \in U$, there exists a neighborhood $V \subset U$ of P and a smooth map $f: V \to \mathbb{C}^d$ such that,

 $\forall Q \in V, \{z_1, \ldots, z_d\}$ is the set of roots of Q where $(z_1, \ldots, z_d) := f(Q)$.

- **Exercise 5** (Submanifolds). 1. Recall the four equivalent definitions of a *d*-dimensional submanifold of \mathbb{R}^n (without proving that they are equivalent).
 - 2. Among the following sets, which ones are submanifolds of \mathbb{R}^n ? Give their dimensions.
 - (a) The sphere of radius 1 in \mathbb{R}^n for the euclidean norm.
 - (b) The set $M_r := \{(x, y, z) \mid x^2 + y^2 z^2 + r = 0\}$ of \mathbb{R}^3 for a given parameter $r \in \mathbb{R}$.
 - (c) A disjoint union of a straight line and a plane in \mathbb{R}^3 .
 - (d) The subset $\{(x, y) \in \mathbb{R}^2 \mid x^2 y^2 = 0\}.$
 - 3. Let Ω be an open subset of \mathbb{R}^d and $h: \Omega \to \mathbb{R}^n$ an injective immersion, is $h(\Omega)$ always a submanifold of \mathbb{R}^n ?

Exercise 6 (Classical groups of matrices). Show that the following subgroups of $GL_n(\mathbb{R}) \subset \mathcal{M}_n(\mathbb{R})$ are submanifolds of $\mathcal{M}_n(\mathbb{R})$, give their respective dimensions and their connected components.

- 1. $GL_n(\mathbb{R})$,
- 2. $SL_n(\mathbb{R})$ (subgroup of matrices of determinant 1),
- 3. $O_n(\mathbb{R})$ (subgroup of orthogonal matrices).

Exercise 7 (Quotient topology). Let X be a topological space and \sim be an equivalence relation on X. We denote by $p: X \to X/ \sim$ the canonical projection.

- 1. Recall the definition of the quotient topology on X/\sim .
- 2. Let $f: X/ \sim \to Y$. Show that f is continuous if and only if $f \circ p$ is.
- 3. Show that if G is a discrete group acting properly discontinuously on a locally compact Hausdorff space X, *i.e.*, for all $g \in G$, $x \mapsto g \cdot x$ is a continuous map and

 $\{g \in G \mid g \cdot K \cap K \neq \emptyset\}$ is finite, $\forall K \subset X$ compact subset,

then the quotient X/G is Hausdorff.

- 4. Let $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ be the *n*-dimensional torus. Show that \mathbb{T}^n is compact and Hausdorff, and that p is an open map.
- 5. Let $f: K \to Y$ be continuous and bijective with K compact Hausdorff and Y Hausdorff. Show that f is a homeomorphism. Give a counter-example if Y is not Hausdorff.
- 6. We define \mathbb{S}^1 as $\{z \in \mathbb{C} \mid |z| = 1\}$. Show that \mathbb{T}^1 is homeomorphic to \mathbb{S}^1 . More generally, show that \mathbb{T}^n is homeomorphic to $(\mathbb{S}^1)^n \subset \mathbb{C}^n$.
- 7. Let \mathbb{RP}^n be the space defined as the quotient of $\mathbb{R}^{n+1} \setminus \{0\}$ by the equivalence relation "belonging to the same vector line". Show that \mathbb{RP}^n is compact Hausdorff and that p is open.