Examples of manifolds S. Allais, M. Joseph

Exercise 1. Show that a submanifold $M \subset \mathbb{R}^n$ of dimension m is a manifold of dimension m.

- **Exercise 2** (The sphere). 1. Define a differential structure on $\mathbb{S}^n = \{x \in \mathbb{R}^{n+1} \mid ||x||_2 = 1\}$ by using stereographic projections.
 - 2. The Euclidean sphere \mathbb{S}^n is also a manifold as a submanifold of \mathbb{R}^{n+1} . Show that the differentiable structure built in question 1 is the same as the one induced by \mathbb{R}^{n+1} .
 - 3. (bonus) What happens if the Euclidean norm $\|\cdot\|_2$ is replaced by another norm $\|\cdot\|_2$?

Exercise 3 (Product manifolds). Let M and N be smooth manifolds, show that $M \times N$ is a smooth manifold. What is its dimension?

- **Exercise 4** (The torus). 1. Let $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ be the *n*-dimensional torus. Show that \mathbb{T}^n is compact and Hausdorff, and that the canonical projection $p : \mathbb{R}^n \to \mathbb{T}^n$ is an open map.
 - 2. Let \mathbb{S}^1 be the set $\{z \in \mathbb{C} \mid |z| = 1\}$. Show that \mathbb{T}^1 is homeomorphic to \mathbb{S}^1 . More generally, show that \mathbb{T}^n is homeomorphic to $(\mathbb{S}^1)^n \subset \mathbb{C}^n$. hint : prove that a continuous bijection $K \to Y$ with K compact Hausdorff and Y Hausdorff is a homeomorphism.
 - 3. Build a differentiable structure on $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ such that p is a local diffeomorphism.
 - 4. Prove that the homeomorphism $\mathbb{T}^n \to (\mathbb{S}^1)^n$ built in question 2 is in fact a diffeomorphism.

Exercise 5 (The projective space). Let \mathbb{RP}^n be the space defined as the quotient of $\mathbb{R}^{n+1} \setminus \{0\}$ by the equivalence relation "belonging to the same vector line". For $(x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \setminus \{0\}$, we denote by $[x_0 : \cdots : x_n]$ its class in \mathbb{RP}^n .

- 1. Show that \mathbb{RP}^n is compact Hausdorff and that the canonical projection $p : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ is open.
- 2. Let $i \in \{0, \ldots, n\}$. Show that $U_i = \{[x_0 : \cdots : x_n] \in \mathbb{RP}^n \mid x_i \neq 0\}$ is open in \mathbb{RP}^n , and construct an homeomorphism $\varphi_i : U_i \to \mathbb{R}^n$.
- 3. Show that \mathbb{RP}^n equipped with the atlas $(\varphi_i)_{i \in \{0,...,n\}}$ is a smooth manifold.
- 4. Show that p is smooth.
- 5. Show that the restriction of p to \mathbb{S}^n is a local diffeomorphism.
- 6. Show that \mathbb{RP}^1 is diffeomorphic to \mathbb{S}^1 .

Exercise 6 (Klein Bottle). Let G be the group \mathbb{Z}^2 where the group law is defined by $(n, m) \star (p,q) = ((-1)^m p + n, m + q)$. The group (\mathbb{Z}^2, \star) acts on \mathbb{R}^2 by the following formula: $(n,m) \cdot (x,y) = ((-1)^m x + n, y + m)$

1. Prove that this action is properly discontinuous.

- 2. Let K be the quotient $[0,1] \times [0,1]/\sim$, where \sim is the equivalence relation defined by $(x,0) \sim (1-x,1)$ and $(0,y) \sim (1,y)$ for all $x, y \in [0,1]$. Show that K is homeomorphic to the quotient \mathbb{R}^2/G . Show that \mathbb{R}^2/G is compact Hausdorff.
- 3. Build a differential structure on \mathbb{R}^2/G such that the canonical projection $p: \mathbb{R}^2 \to \mathbb{R}^2/G$ is a local diffeomorphism.

Correction: Hausdorff property and groups acting properly discontinuously S. Allais, M. Joseph

Exercise. Show that if G is a discrete group acting properly discontinuously on a locally compact Hausdorff space X, *i.e.* for all $g \in G, x \mapsto g \cdot x$ is a continuous map, and

 $\{g \in G \mid g \cdot K \cap K \neq \emptyset\}$ is finite, $\forall K \subset X$ compact subset,

then the quotient X/G is Hausdorff.

Proof. Let x and y be two distinct points in X/G. Let z be an element of $p^{-1}(\{x\})$ and t be an element of $p^{-1}(\{y\})$. By local compactness of X, there exists two disjoint open sets of X U and V of compact closure with $z \in U$ and $t \in V$. Since G acts properly discontinuously on X, there exists a finite subset F of G such that for all $g \in G \setminus F$,

$$(\overline{U}\cup\overline{V})\cap g\cdot(\overline{U}\cup\overline{V})=\varnothing.$$

This implies that for all g in $G \setminus F$, the set $\overline{U} \cap g \cdot \overline{V}$ is empty.

Lemma. For all $g \in F$, there exists two open sets $U_g \subset U$ and $V_g \subset V$ with $z \in U_g$ and $t \in V_g$ such that $U_g \cap g \cdot V_g$ is empty.

Proof. Since X is Hausdorff, there exist two disjoint open sets U'_g and V'_g with $z \in U'_g$ and $g \cdot t \in V'_g$. Set $U_g = U'_g \cap U$ and $V_g = g^{-1}(V'_g) \cap V$.

Finally, define

$$A = \bigcap_{g \in F} U_g, \quad B = \bigcap_{g \in F} V_g.$$

The sets A and B are nonempty, since $z \in A$ and $t \in B$. To conclude, the sets $p(G \cdot A)$ and $p(G \cdot B)$ are open disjoint neighborhood of x and y in X/G.