Partitions of Unity and Vector Fields S. Allais, M. Joseph

Exercise 1. A vector field X on M is singular if X(p) = 0 for some $p \in M$, otherwise X is non-singular.

- 1. Find non-singular smooth vector fields on \mathbb{T}^n , \mathbb{S}^{2n-1} and \mathbb{RP}^{2n-1} .
- 2. Is there such a vector field on the Möbius band?
- 3. Find a smooth vector field in \mathbb{S}^{2n} with one singularity.

Exercise 2 (Extension of a vector field). Let M be a compact submanifold of \mathbb{R}^n and X a smooth vector field on M. Show that there exist a smooth vector field Y on \mathbb{R} such that $X = Y|_M$.

Exercise 3 (Lie bracket). 1. Let (x_1, \ldots, x_n) be a local system of coordinates on a smooth manifold M, prove that

$$\left[\sum_{i=1}^{n} X_i \frac{\partial}{\partial x_i}, \sum_{j=1}^{n} Y_j \frac{\partial}{\partial x_j}\right] = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} X_j \frac{\partial Y_j}{\partial x_j} - Y_j \frac{\partial X_j}{\partial x_j}\right) \frac{\partial}{\partial x_i},$$

where X_i 's and Y_i 's are smooth real maps.

- 2. Let $\varphi : M \to N$ be a diffeomorphism. Given a vector field X on M, we denote by φ_*X the vector field on N defined by $T\varphi \circ X$ (why is it well defined?). Prove that $\varphi_*([X,Y]) = [\varphi_*X, \varphi_*Y]$ for all vector fields X and Y on M.
- 3. Let $f, g \in \mathcal{C}^{\infty}(M, \mathbb{R})$, prove that for all vector fields X and Y on M,

$$[fX,gY] = f(X \cdot g)Y - g(Y \cdot f)X + fg[X,Y].$$