# Vector Fields, Flows and Lie Bracket 

S. Allais, M. Joseph

Exercise 1 (Straightening theorem for vector fields). Let $M$ be a manifold and $X$ be a smooth vector field on $M$. Prove that for all $p$ in $M$ such that $X(p) \neq 0$, there exists a chart $(U, \varphi)$ of $M$ with $p \in U$ such that $X_{\mid U}=\partial / \partial x_{1}$.

Exercise 2 (Lie Bracket and commuting flows). Let $M$ be a manifold, $X, Y$ two smooth vector fields on $M$. Prove that $[X, Y]=0$ if and only if the flows of $X$ and $Y$ commute: $X^{t} \circ Y^{s}=Y^{s} \circ X^{t}$ whenever the flows $\left(X^{t}\right)$ and $\left(Y^{s}\right)$ are well defined.

Exercise 3. Let $M$ be a manifold and $X$ a vector field on $M$ such that for all vector fields $Y$ on $M,[X, Y]=0$. What can you say about $X$ ?

Exercise 4 (Transitivity of $\operatorname{Diff}(M)$ ). 1 . Let $a$ and $b$ be two points in the open ball $\mathbb{B}=$ $\left\{x \in \mathbb{R}^{n} \mid\|x\|_{2}<1\right\}$. Prove that there exists a diffeomorphism $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $f(a)=b$ and $f \equiv i d$ outside $\mathbb{B}$.
2. Let $M$ be a connected manifold. Prove that $\operatorname{Diff}(M)$ acts transitively on $M$.
3. Is this action $k$ transitive (for $k \geqslant 1$ )?

Exercise 5 (Pseudo-gradient). Let $f: M \rightarrow \mathbb{R}$ be a smooth function defined on a smooth manifold $M$. A pseudo-gradient of $f$ is a vector field $X$ of $M$ such that, for all $x \in M \backslash \operatorname{Crit}(f)$, $d f(x) \cdot X(x)>0$.

1. Let $M \subset \mathbb{R}^{n}$ be a submanifold of $\mathbb{R}^{n}$ and $\tilde{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth function. Use the gradient of $\tilde{f}$ to produce a pseudo-gradient of $\left.\widetilde{f}\right|_{M}$.
2. Let $M$ be a submanifold of $\mathbb{R}^{n}$ and $f: M \rightarrow \mathbb{R}$ be the projection on the first coordinate ("height function"). What are the critical points of $f$ ? Give an integrable pseudogradient.
3. Show the existence of pseudo-gradients in the general case.
4. Given an integrable pseudo-gradient $X$ of $f: M \rightarrow \mathbb{R}$, let $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ be its flow. For all $x \in M$, show that $t \mapsto f \circ \phi_{t}(x)$ is increasing and that

$$
\bigcap_{T>0} \overline{\left\{\phi_{t}(x) \mid t>T\right\}} \subset \operatorname{Crit}(f)
$$

5. Suppose that $f$ has only isolated critical points, show that, for all $x \in M$, there exist critical points $\alpha, \omega \in M$ such that $\phi_{t}(x) \rightarrow \alpha$ as $t \rightarrow-\infty$ and $\phi_{t}(x) \rightarrow \omega$ as $t \rightarrow+\infty$.
6. Let $M$ be a closed submanifold of $\mathbb{R}^{n}$, and $f: M \rightarrow \mathbb{R}$ a smooth function. Let $M_{t}=$ $\{x \in M \mid f(x) \leqslant t\}$. Let $a, b \in \mathbb{R}$ be such that $M \cap f^{-1}([a, b])$ and $\operatorname{Crit}(f)$ are disjoint. Prove that $M_{a}$ and $M_{b}$ are diffeomorphic.
