Exterior algebra
S. Allais, M. Joseph

Exercise 1 (Tensor products over \mathbb{R}). Reminder: Let V and W be two vector spaces. Then there exists a unique (up to isomorphism) vector space $V \otimes W$ and a bilinear map $\varphi: V \times W \rightarrow$ $V \otimes W$ such that any bilinear map $V \times W \rightarrow Z$ from $V \times W$ to any vector space Z factors through φ.
Let E and F be two \mathbb{R}-vector spaces of dimension n and m, respectively. We denote by $e=\left(e_{j}\right)$ a basis of E and by $f=\left(f_{i}\right)$ a basis of F.

1. Let $\alpha \in \bigotimes^{k} E^{*}$. Identify the coordinates of α in the basis of $\bigotimes^{k} E^{*}$ associated with e.
2. Give a natural isomorphism between $E^{*} \otimes F$ and $\mathcal{L}(E, F)$.
3. Let $L: E \rightarrow F$ be a linear map whose matrix is $M=\left(m_{j}^{i}\right)$ in the bases e and f. We define $L^{*}: \alpha \mapsto \alpha \circ L$ from F^{*} to E^{*}. Give the matrix of L^{*} in the dual bases e^{*} and f^{*}.
Exercise 2 (Pullback). Let E and F be two vector spaces and $L: E \rightarrow F$ be a linear map.
4. Show that $L^{*}(\alpha \wedge \beta)=L^{*}(\alpha) \wedge L^{*}(\beta)$, where α and β are exterior forms on E.
5. Let $\left(e_{j}\right)$ be a basis of E and $\left(f_{i}\right)$ a basis of F. We denote by $M=\left(m_{j}^{i}\right)$ the matrix of L in these bases. Let $J=\left\{j_{1}, \ldots, j_{k}\right\} \subset\{1 \ldots, n\}$ be such that $1 \leqslant j_{1}<\cdots<j_{k} \leqslant n$, we denote $e_{J}^{*}=e_{j_{1}}^{*} \wedge \cdots \wedge e_{j_{k}}^{*}$ and use similar notations for F. Let $\omega=\sum \omega_{I} f_{I}^{*}$, where the sum is taken over subsets $I \subset\{1, \ldots, n\}$ of cardinal k. Express $L^{*}(\omega)$ in the basis $\left(e_{J}^{*}\right)$.

Exercise 3 (Exterior algebra). 1. Is there an exterior form α on a vector space E such that $\alpha \wedge \alpha \neq 0$?
2. Is there a non-zero exterior form commuting with any other?

Exercise 4 (Decomposable forms). Let E be a vector space of dimension n. An exterior form of degree k on E is decomposable if it can be written as a exterior product of k linear forms.

1. Prove that linear forms as well as exterior forms of degree n are decomposable.
2. Let $\alpha \in E^{*} \backslash\{0\}$. Prove that a non zero exterior form ω of degree k is divisible by α (i.e. can be written as $\alpha \wedge \beta$) if and only if $\alpha \wedge \omega=0$.
3. Let $(\alpha, \beta, \gamma, \delta)$ a linearly independant family of E^{*}. Is the exterior form $\alpha \wedge \beta+\gamma \wedge \delta$ decomposable?
4. Is an exterior form of degree $(n-1)$ decomposable?

Hint: consider the map $\phi_{\omega}: \alpha \mapsto \alpha \wedge \omega$ from E^{*} to $\wedge^{n} E^{*}$.
Exercise 5 (Bilinear alternating forms). Let E be a vector space of dimension n, and ω a bilinear alternating form.

1. Prove that there exists a basis $\left(e^{i}\right)$ of E^{*} such that

$$
\omega=e^{1} \wedge e^{2}+e^{3} \wedge e^{4}+\cdots+e^{2 p-1} \wedge e^{2 p}
$$

where $n-2 p$ is the dimension of $\operatorname{ker}(\omega)=\{x \in E \mid \omega(x, \cdot)=0\}$.
2. Prove that p is the smallest integer such that $\omega^{p+1}=0$.

Exercise 6 (Pfaffian). Reminder : If A is a skew matrix in $\mathcal{A}_{2 n}(\mathbb{R})$, then there exist $a_{1}, \ldots, a_{n} \in$ \mathbb{R} and $P \in \mathcal{O}_{2 n}(\mathbb{R})$ such that $A=P \operatorname{Diag}\left(\begin{array}{cc}0 & -a_{i} \\ a_{i} & 0\end{array}\right) P^{-1}$.
To any skew matrix $A \in \mathcal{A}_{2 n}(\mathbb{R})$ one can associate a 2 -linear form ω_{A} on $\mathbb{R}^{2 n}$ defined by

$$
\omega_{A}=\sum_{i<j} a_{i, j} e_{i}^{*} \wedge e_{j}^{*},
$$

where $\left(e_{i}\right)$ is the canonical basis of $\mathbb{R}^{2 n}$.

1. Prove that $\omega_{A} \in \bigwedge^{2}\left(\mathbb{R}^{2 n}\right)^{*}$.
2. Prove that there exists a polynomial map, called the Pfaffian, Pf: $\mathcal{A}_{2 n}(\mathbb{R}) \rightarrow \mathbb{R}$ such that for all $A \in \mathcal{A}_{n}(\mathbb{R})$, we have $\omega^{n} / n!=P f(A) e_{1}^{*} \wedge \cdots \wedge e_{2 n}^{*}$.
3. Prove that $\operatorname{Pf}(A)^{2}=\operatorname{det}(A)$.
4. Prove that $\operatorname{Pf}(A)=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \varepsilon(\sigma) \prod_{i=1}^{n} a_{\sigma(2 i-1), \sigma(2 i)}$.
