Differential forms S. Allais, M. Joseph

Exercise 1. 1. Let $f: t \mapsto e^t$ from \mathbb{R} to \mathbb{R}^*_+ and let $\alpha = \frac{\mathrm{d}x}{x}$, compute $f^*\alpha$.

2. Same question with $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $(r, \theta) \mapsto (r \cos \theta, r \sin \theta)$ and $\alpha = dx \wedge dy$.

Exercise 2 (tangent and cotangent bundles). We recall that a Riemannian metric on a manifold M is a map $x \mapsto g_x$ such that, for all $x \in M$, g_x is a scalar product on $T_x M$ and such that for all chart (U, φ) , the map $U \to \mathcal{M}_n(\mathbb{R})$:

$$x \mapsto \left(g_x \left(\mathrm{d}\varphi(x)^{-1} \cdot e_i, \mathrm{d}\varphi(x)^{-1} \cdot e_j \right) \right)_{1 \leq i, j \leq n}$$

is smooth, where (e_i) is the canonical basis of \mathbb{R}^n .

- 1. Recall why every manifold admits Riemannian metrics.
- 2. Show that TM is diffeomorphic to T^*M . More precisely, show that there exists a diffeomorphism $\Psi: TM \to T^*M$ such that $\Psi|_{T_xM}$ is a linear isomorphism $T_xM \to T^*_xM$, for all $x \in M$.

Let us recall the definition of volume form.

Definition (Volume form). Let M be a *n*-dimensional manifold, a volume form on M is a *n*-form $\nu \in \Omega^n(M)$ such that $\forall x \in M, \nu_x \neq 0$.

Exercise 3 (Spheres and real projective spaces). 1. Let $\nu = dx^0 \wedge \cdots \wedge dx^n$ denote the standard volume form on \mathbb{R}^{n+1} (that is the (n+1)-form equal to the determinant at each point) and let X be the radial vector field $: x \mapsto \sum x_i \frac{\partial}{\partial x_i}$.

Compute $\omega := X \lrcorner \nu$ (recall that $(Y \lrcorner \alpha)(Y_1, \ldots, Y_p) = \alpha(Y, Y_1, \ldots, Y_p)$).

- 2. Show that ω is invariant under the action of $SO_{n+1}(\mathbb{R})$.
- 3. Let $i: \mathbb{S}^n \to \mathbb{R}^{n+1}$ be the canonical embedding, show that $\mu := i^*(\omega)$ is a volume form.
- 4. What is $f^*\mu$, where $f: x \mapsto -x$ denotes the antipodal map? Does \mathbb{RP}^n admit a volume form?

Exercise 4 (Contact form). Let M be a 3-dimensional manifold. Let $\alpha \in \Omega^1(M)$ be a 1-form. Given a vector field $X \in \mathcal{X}(M)$, by $X \in \ker \alpha$ we mean $X_x \in \ker \alpha_x$ for all $x \in M$. We say that the family of planes $(\ker \alpha_x)_{x \in M}$ is *involutive* if for all $x \in M$,

$$[X,Y] \in \ker \alpha, \quad \forall X,Y \in \ker \alpha.$$

1. Show that for all 1-form $\alpha \in \Omega^1(M)$ and all vector fields X and Y, one has

$$d\alpha(X,Y) = X \cdot \alpha(Y) - Y \cdot \alpha(X) - \alpha([X,Y]).$$

2. Show that the family of planes $(\ker \alpha_x)_{x \in M}$ is involutive if and only if $\alpha \wedge d\alpha$ is a volume form. We say that α is then a contact form. If M is (2n + 1)-dimensional, a *contact* form is a 1-form α such that $\alpha \wedge (d\alpha)^n$ is a volume form.

3. Let $\alpha \in \Omega^1(M)$ be a contact form. Show that there exists a unique vector field $R \in \mathcal{X}(M)$ such that

$$\begin{cases} R \lrcorner \alpha := \alpha(R) = 1, \\ R \lrcorner \, \mathrm{d}\alpha := \mathrm{d}\alpha(R, \cdot) = 0 \end{cases}$$

This vector field is called the *Reeb vector field* associated to α .

4. Let (x, y, z) be the coordinates functions of \mathbb{R}^3 , show that $\alpha := dz - y dx$ is a contact form and give its Reeb vector field.

Exercise 5 (Liouville form). Let M be a n-dimensional manifold. Recall that local coordinates (q_1, \ldots, q_n) on M induce local coordinates $(q_1, \ldots, q_n, p_1, \ldots, p_n)$ on T^*M by

$$\begin{cases} U \times \mathbb{R}^n \to T^* U\\ (q, p) \mapsto \sum_{i=1}^n p_i \, \mathrm{d}q_i |_q. \end{cases}$$

The *Liouville form* λ of T^*M is defined by

$$\lambda_{(q,p)} := p \circ \mathrm{d}\pi_q \in T^*_{(q,p)}(T^*M), \quad \forall (q,p) \in T^*M,$$

where $\pi: T^*M \to M$ is the canonical projection.

1. Show that λ is well defined and that in the local coordinates (q, p) of T^*M defined above one has

$$\lambda = \sum_{i=1}^{n} p_i \, \mathrm{d} q_i.$$

that is $\lambda = \sum_i f_i(q, p) dq_i + g_i(q, p) dp_i$ with $f_i(q, p) = p_i$ and $g_i(q, p) = 0$.

2. A 1-form $\alpha \in \Omega^1(M)$ can be seen in particular as a smooth map $\alpha : M \to T^*M$, so that we can pullback a form of T^*M by α . Show that λ is characterized by the property

$$\alpha^* \lambda = \alpha, \quad \forall \alpha \in \Omega^1(M).$$

- 3. Show that $\omega := d\lambda$ is a symplectic form that is a 2-form such that $d\omega = 0$ and ω_x is a non-degenerated skew-symmetric bilinear form for all $x \in T^*M$.
- 4. Let $X \in \mathcal{X}(T^*M)$ be the vector field defined in local coordinates by

$$X(q,p) := \sum_{i=1}^{n} p_i \frac{\partial}{\partial p_i}.$$

Show that $X \sqcup \omega = \lambda$ and that ω^n is a volume form of T^*M .

5. Let $\Sigma^{2n-1} \subset T^*M$ be a hypersurface of T^*M which is transversal to X, that is $X(x) \notin T_x\Sigma$, for all $x \in \Sigma$. Show that $i^*\lambda$ is a contact form of Σ where $i : \Sigma \hookrightarrow T^*M$ denotes the inclusion map (see Exercise 4).