
A CONTACT CAMEL THEOREM
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Abstract. We provide a contact analogue of the symplectic camel theorem that holds
in R2n × S1, and indeed generalize the symplectic camel. Our proof is based on the
generating function techniques introduced by Viterbo, extended to the contact case by
Bhupal and Sandon, and builds on Viterbo’s proof of the symplectic camel.

1. Introduction

In 1985, Gromov made a tremendous progress in symplectic geometry with his theory
of J-holomorphic curves [13]. Among the spectacular achievements of this theory, there
was his famous non-squeezing theorem: if a round standard symplectic ball B2n

r of radius
r can be symplectically embedded into the standard symplectic cylinder B2

R × R2n−2 of
radius R, then r ≤ R (here and elsewhere in the paper, all balls will be open). Other
proofs were given later on by the means of other symplectic invariants: see Ekeland and
Hofer [7, 8], Floer, Hofer and Viterbo [11], Hofer and Zehnder [14] and Viterbo [21]. In
1991, Eliashberg and Gromov discovered a more subtle symplectic rigidity result: the camel
theorem [9, Lemma 3.4.B]. In order to remind its statement, let us first fix some notation.
We denote by q1, p1, . . . , qn, pn the coordinates on R2n, so that its standard symplectic form
is given by ω = dλ, where λ = p1 dq1 + · · · + pn dqn = p dq. We consider the hyperplane
P := {qn = 0} ⊂ R2n, and the connected components P− := {qn < 0} and P+ := {qn > 0}
of its complement R2n \ P . We will denote by B2n

r = B2n
r (x) the round Euclidean ball of

radius r in R2n centered at some point x ∈ R2n, and by PR := P \ B2n
r (0) the hyperplane

P with a round hole of radius R > 0 centered at the origin. The symplectic camel theorem
claims that, in any dimension 2n > 2, if there exists a symplectic isotopy φt of R2n and
a ball B2n

r ⊂ R2n such that φ0(B2n
r ) ⊂ P−, φ1(B2n

r ) ⊂ P+, and φt(B
2n
r ) ⊂ R2n \ PR for

all t ∈ [0, 1], then r ≤ R. The purpose of this paper is to prove a contact version of this
theorem.

We consider the space R2n × S1, where S1 := R/Z. We will denote the coordinates on
this space by q1, p1, . . . , qn, pn, z, and consider the 1-form λ defined above also as a 1-form
on R2n × S1 with a slight abuse of notation. We denote by α := λ − dz the standard
contact form on R2n × S1. The set of contactomorphisms of (R2n × S1, α) will be denoted
by Cont(R2n × S1) and the subset of compactly supported contactomorphisms isotopic to
the identity will be denoted by Cont0(R2n × S1). As usual, by a compactly supported
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contact isotopy of (R2n × S1, α) we will mean a smooth family of contactomorphisms
φt ∈ Cont(R2n × S1), t ∈ [0, 1], all supported in a same compact subset of R2n × S1.
In 2006, Eliashberg, Kim and Polterovich [10] proved an analogue and a counterpart of
Gromov’s non-squeezing theorem in this contact setting; given any positive integer k ∈ N
and two radii r, R > 0 such that πr2 ≤ k ≤ πR2, there exists a compactly supported
contactomorphism φ ∈ Cont(R2n × S1) such that φ (B2n

R × S1) ⊂ B2n
r × S1 if and only

if r = R; however, if 2n > 2 and R < 1/
√
π, then it is always possible to find such

a φ. In 2011, Sandon [15] extended generating function techniques of Viterbo [21] and
deduced an alternative proof of the contact non-squeezing theorem. In 2015, Chiu [6] gave
a stronger statement for the contact non-squeezing: given any radius R ≥ 1/

√
π, there is

no compactly supported contactomorphism isotopic to identity φ ∈ Cont0(R2n × S1) such
that φ(Closure(B2n

R × S1)) ⊂ B2n
R × S1. The same year, an alternative proof of this strong

non-squeezing theorem was given by Fraser [12] (the technical assumption “φ is isotopic
to identity” is no longer needed in her proof).

Our main result is the following contact analogue of the symplectic camel theorem:

Theorem 1.1. In dimension 2n+ 1 > 3, if πr2 < ` < πR2 for some positive integer ` and
B2n
R × S1 ⊂ P− × S1, there is no compactly supported contact isotopy φt of (R2n × S1, α)

such that φ0 = id, φ1(B2n
R × S1) ⊂ P+ × S1, and φt(B

2n
R × S1) ⊂ (R2n \ Pr) × S1 for all

t ∈ [0, 1].

Notice that the squeezing theorem of Eliashberg-Kim-Polterovich implies that Theo-
rem 1.1 does not hold if one instead assumes that πR2 < 1.

Theorem 1.1 implies the symplectic camel theorem. Indeed, suppose that there exists a
symplectic isotopy ψt of R2n and a ball B2n

R ⊂ R2n such that ψ0(B2n
R ) ⊂ P−, ψ1(B2n

R ) ⊂ P+,
and ψt(B

2n
R ) ⊂ R2n \Pr for all t ∈ [0, 1], and assume by contradiction that r < R. Without

loss of generality, we can assume that ψ0 = id (see [17, Prop. on page 14]) and that
the isotopy ψt is compactly supported. By conjugating ψt with the dilatation x 7→ νx, we
obtain a new compactly supported symplectic isotopy ψ′t with ψ′0 = id and a ball B2n

νR ⊂ P−
such that ψ′1(B2n

νR) ⊂ P+, and ψ′t(B
2n
νR) ⊂ R2n \ Pνr for all t ∈ [0, 1]. If we choose ν > 0

large enough, we have π(νr)2 > ` > π(νR)2 for some ` ∈ Z, and the contact lift of ψ′t to
R2n × S1 contradicts our Theorem 1.1.

Our proof of the contact camel theorem is based on Viterbo’s proof [21, Sect. 5] of
the symplectic version, which is given in terms of generating functions. Viterbo’s proof is
rather short and notoriously difficult to read. For this reason, in this paper we provide
a self-contained complete proof of Theorem 1.1, beside quoting a few lemmas from the
recent work of Bustillo [3]. The generalization of the generating function techniques to the
contact setting is largely due to Bhupal [2] and Sandon [15]. In particular, the techniques
from [15] are crucial for our work.

Organization of the paper. In Section 2, we provide the background on generating
functions and the symplectic and contact invariants constructed by means of them. In
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Section 3, we prove additional properties of symplectic and contact invariants that will be
key to the proof of Theorem 1.1. In Section 4, we prove Theorem 1.1.

Acknowledgments. I thank Jaime Bustillo who gave me helpful advice and a better
understanding of reduction inequalities. I am especially grateful to my advisor Marco
Mazzucchelli. He introduced me to generating function techniques and gave me a lot of
advice and suggestions throughout the writing process.

2. Preliminaries

In this section, we remind to the reader some known results about generating functions
that we will need.

2.1. Generating functions. Let B be a closed connected manifold. We will usually write
q ∈ B points of B, (q, p) ∈ T ∗B for the cotangent coordinates, (q, p, z) ∈ J1B for the 1-jet
coordinates and ξ ∈ RN for vectors of some fiber space. A generating function on B is a
smooth function F : B×RN → R such that 0 is a regular value of the fiber derivative ∂F

∂ξ
.

Then,

ΣF :=

{
(q, ξ) ∈ B ×RN | ∂F

∂ξ
(q; ξ) = 0

}
,

is a smooth submanifold called the level set of F .
Generating functions give a way of describing Lagrangians and Legendrians of T ∗B and

J1B respectively. Indeed,

ιF : ΣF → T ∗B, ιF (q; ξ) = (q, ∂qF (q; ξ))

and

ι̂F : ΣF → J1B, ι̂F (q; ξ) = (q, ∂qF (q; ξ), F (q; ξ))

are respectively Lagrangian and Legendrian immersions. We say that F generates the
immersed Lagrangian L := ιF (ΣF ) and the immersed Legendrian L1 := ι̂F (ΣF ). In this
paper, we will only consider embedded Lagrangians and Legendrians.

We must restrict ourselves to a special category of generating functions:

Definition 2.1. A function F : B × RN → R is quadratic at infinity if there exists a
quadratic form Q : RN → R such that the differential dF − dQ is bounded. Q is unique
and called the quadratic form associated to F .

In the following, by generating function we will always implicitly mean generating func-
tion quadratic at infinity. In this setting, there is the following fundamental result:

Theorem 2.2 ( [16, Sect. 1.2], [21, Lemma 1.6]). If B is closed, then any Lagrangian
submanifold of T ∗B Hamiltonian isotopic to the 0-section has a generating function, which
is unique up to fiber-preserving diffeomorphism and stabilization.
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The existence in this theorem is due to Sikorav, whereas the uniqueness is due to Viterbo
(the reader might also see [19] for the details of Viterbo’s proof). The contact analogous
is the following (with an additional statement we will need later on):

Theorem 2.3 ( [4, Theorem 3], [5, Theorem 3.2], [18, Theorems 25, 26]). If B is closed,
then any Legendrian submanifold of J1B contact isotopic to the 0-section has a generating
function, which is unique up to fiber-preserving diffeomorphism and stabilization. More-
over, if L1 ⊂ J1B has a generating function and φt is a contact isotopy of J1B, then there
exists a continuous family of generating functions F t : B × RN → R such that each F t

generates the corresponding φt(L1).

2.2. Min-max critical values. In the following, F : B ×RN → R is a smooth function
quadratic at infinity of associated quadratic form Q (generating functions are a special
case). Let q be Morse index of Q (that is the dimension of its maximal negative subspace).
We will denote by E the trivial vector bundle B ×RN and, given λ ∈ R, Eλ the sublevel
set {F < λ} ⊂ E.

In this paper, H∗ is the singular cohomology with coefficients in R and 1 ∈ H∗(B) will
always denote the standard generator of H0(B) (B is connected). Let C > 0 be large
enough so that any critical point of F is contained in {|F | < C}. A classical Morse theory
argument implies that

(
EC , E−C

)
is homotopy equivalent to B × ({Q < C}, {Q < −C})

and the induced isomorphism given by Künneth formula:

T : Hp(B)
'−→ Hp+q

(
EC , E−C

)
(2.1)

does not depend on the choice of C. So we define H∗ (E∞, E−∞) := H∗
(
EC , E−C

)
. We

also define H∗
(
Eλ, E−∞

)
:= H∗

(
Eλ, E−C

)
.

Given any non-zero α ∈ H∗(B), we shall now define its min-max critical value by

c(α, F ) := inf
λ∈R

{
Tα 6∈ ker

(
H∗
(
E∞, E−∞

)
→ H∗

(
Eλ, E−∞

))}
.

One can show that this quantity is a critical value of F by classical Morse theory.

Proposition 2.4 (Viterbo [21]). Let F1 : B × RN1 → R and F2 : B × RN2 → R be
generating functions quadratic at infinity normalized so that F1(q0, ξ

′
0) = F2(q0, ξ

′′
0 ) = 0 at

some pair of critical points (q0, ξ
′
0) ∈ crit(F1) and (q0, ξ

′′
0 ) ∈ crit(F2) that project to the

same q0. Then:

(1) if F1 and F2 generate the same Lagrangian, then c(α, F1) = c(α, F2) for all non-zero
α ∈ H∗(B),

(2) if we see the sum F1 + F2 as a generating function of the form

F1 + F2 : B ×RN1+N2 → R, (F1 + F2)(q; ξ1, ξ2) = F1(q; ξ1) + F2(q; ξ2),

then

c(α ^ β, F1 + F2) ≥ c(α, F1) + c(β, F2),

for all α, β ∈ H∗(B) whose cup product α ^ β is non-zero.
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(3) if µ ∈ Hdim(B)(B) denotes the orientation class of B, then

c(µ, F1) = −c(1,−F1).

Proof. Point (1) follows from the uniqueness statement in theorem 2.2 See [21, Prop. 3.3]
for point (2) and [21, cor. 2.8] for point (3). �

When the base space is a product B = V ×W , one has the following

Proposition 2.5 ( [21, Prop. 5.1], [3, Prop. 2.1]). Let F : V × W × RN → R be
a generating function and let w ∈ W . Consider the restriction Fw : V × RN → R,
Fw(v; ξ) = F (v, w; ξ) (quadratic at infinity on the base space V ), then

(1) if µ2 is the orientation class of W , then for all non-zero α ∈ H∗(V ),

c(α⊗ 1, F ) ≤ c(α, Fw) ≤ c(α⊗ µ2, F ),

(2) if F does not depend on the w-coordinate, for all non-zero α ∈ H∗(V ) and non-zero
β ∈ H∗(W ),

c(α⊗ β, F ) = c(α, Fw).

2.3. Generating Hamiltonian and contactomorphism. Let Hamc (T ∗M) be the set
of time-1-flows of time dependent Hamiltonian vector field. Given ψ ∈ Hamc (T ∗M), its
graph grψ = id×ψ : T ∗M ↪→ T ∗M × T ∗M is a Lagrangian embedding in T ∗M × T ∗M . In
order to see grψ(T ∗M) as the 0-section of some cotangent bundle, let us restrict ourselves

to the case M = Rn ×Tk. First we consider the case k = 0 then we will quotient Rn+k by
Zk in our construction. Consider the linear symplectic map

τ : T ∗Rn × T ∗Rn → T ∗R2n, τ(q, p;Q,P ) =

(
q +Q

2
,
p+ P

2
, P − p, q −Q

)
which could also be seen as (z, Z) 7→

(
z+Z

2
, J(z − Z)

)
where J is the canonical complex

structure of R2n ' Cn. The choice of the linear map is not important to deduce results of
Subsections 2.1 and 2.4 (in fact, [15], [20] and [21] give different choices). However, we do
not know how to show the linear invariance of Subsection 3.2 without this specific choice.

The Lagrangian embedding Γψ := τ ◦ grψ defines a Lagrangian Γψ(T ∗M) ⊂ T ∗R2n

isotopic to the zero section through the compactly supported Hamiltonian isotopy s 7→
τ ◦ grψs ◦ τ−1 where (ψs) is the Hamiltonian flow associated to ψ. As Γψ(T ∗M) coincides
with the 0-section outside a compact set, one can extend it to a Lagrangian embedding on
the cotangent bundle of the compactified space Lψ ⊂ T ∗S2n.

In order to properly define Lψ for ψ ∈ Hamc

(
T ∗(Rn × Tk)

)
, let ψ̃ ∈ HamZk(T

∗(Rn+k))

be the unique lift of ψ which is also lifting the flow (ψs) with ψ̃0 = id. The application Γψ̃
gives a well-defined Γψ : T ∗(Rn×Tk) ↪→ T ∗(R2n×Tk ×Rk). We can then compactify the
base space: R2n × Tk × Rk ⊂ B where B equals either S2n × Tk × Sk or S2n × T2k and
define Lψ ⊂ T ∗B.
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In order to define Fψ : B × RN → R, take any generating function of Lψ normalized
such that the set of critical points outside (R2n ×Tk ×Rk)×RN has critical value 0 (the
set is connected since Lψ coincides with 0-section outside T ∗(R2n × Tk ×Rk)).

We now extend the construction of Lψ to the case of contactomorphisms. Let Cont0(J1M)
be the set of contactomorphisms isotopic to identity through compactly supported contac-
tomorphisms. Given any ψ ∈ Hamc (T ∗M), its lift

ψ̂ : J1M → J1M, ψ̂(x, z) = (ψ(x), z + aψ(x))

belongs to Cont0(J1M), where aψ : T ∗M → R is the compactly supported function satis-
fying

ψ∗λ− λ = daψ.

In [2], Bhupal gives a mean to define a generating function Fφ associated to such contac-

tomorphism φ for M = Rn × Tk in a way which is compatible with ψ 7→ ψ̂ in the sense
that Fψ̂(q, z; ξ) = Fψ(q; ξ). Given any φ ∈ Cont0(J1Rn) with φ∗( dz − λ) = eθ( dz − λ),

ĝrφ : J1Rn → J1Rn × J1Rn ×R, ĝrφ(x) = (x, φ(x), θ(x))

is a Legendrian embedding if we endow J1Rn × J1Rn × R with the contact structure
ker(eθ( dz−λ)−( dZ−Λ)), where (q, p, z;Q,P, Z; θ) denotes coordinates on J1Rn×J1Rn×R
and Λ =

∑
i Pi dQi.

For our choice of τ , we must take the following contact identification

τ̂ : J1Rn × J1Rn ×R→ J1R2n+1,

τ̂(q, p, z;Q,P, Z; θ) =

(
q +Q

2
,
eθp+ P

2
, z;P − eθp, q −Q, eθ − 1;

1

2
(eθp+ P )(q −Q) + Z − z

)
so that Γφ := τ̂ ◦ ĝrφ is an embedding of a Legendrian compactly isotopic to the 0-section

of J1R2n+1. The construction of Γφ descends well from Rn+k to Rn ×Tk taking the lift of
φ ∈ Cont0(J1(Rn × Tk)) which is contact-isotopic to identity.

In fact we will rather be interested by T ∗M×S1 ' J1M/Z ∂
∂z

and φ ∈ Cont0(T ∗M×S1)

which can be identified to the set of Z ∂
∂z

-equivariant contactomorphism of J1M isotopic to
identity. The construction descends well to the last quotient and we obtain a well-defined
Legendrian embedding Γφ : T ∗(Rn × Tk)× S1 ↪→ J1

(
R2n × Tk ×Rk × S1

)
.

We can then compactify the base space R2n × Tk × Rk × S1 ⊂ B × S1, define Lψ ⊂
J1(B × S1) and take as Fφ any generating function of Lφ normalized such that the set of
critical points outside (R2n × Tk ×Rk × S1)×RN has critical value 0.

2.4. Symplectic and contact invariants. The symplectic invariants presented here are
due to Viterbo [21]. The generalization to the contact case is due to Sandon [15].

throughout this subsection, B denotes a compactification of T ∗(Rn × Tk). Given any
ψ ∈ Hamc

(
T ∗(Rn × Tk)

)
and any non-zero α ∈ H∗(B), consider

c(α, ψ) := c (α, Fψ) .
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Proposition 2.6 (Viterbo, [21, Prop. 4.2, Cor. 4.3, Prop. 4.6]). Let (ψt) be a compactly
supported Hamiltonian isotopy of T ∗(Rn × Tk) with ψ0 = id and ψ := ψ1. Let Ht :
T ∗(Rn × Tk)→ R be the Hamiltonians generating (ψt). Given any non-zero α ∈ H∗(B),

(1) There is a one-to-one correspondence between critical points of F and fixed points
x of ψ such that t 7→ ψt(x) is a contractible loop when t ∈ [0, 1] given by (x, ξ) 7→ x.
Moreover, if (xα, ξα) ∈ crit(Fψ) satisfies Fψ(xα, ξα) = c(α, Fψ), then

c(α, ψ) = aψ(xα) =

∫ 1

0

(〈p(t), q̇(t)〉 −Ht(ψt(xα))) dt,

where (q(t), p(t)) := ψt(xα). The value aψ(x) will be called the action of the fixed
point x.

(2) If Ht ≤ 0, then c(α, ψ) ≥ 0.
(3) If (ϕs) is a symplectic isotopy of T ∗(Rn × Tk), then s 7→ c(α, ϕs ◦ ψ ◦ (ϕs)−1) is

constant.
(4) If µ is the orientation class of B,

c(1, ψ) ≤ 0 ≤ c(µ, ψ) with c(1, ψ) = c(µ, ψ) ⇔ ψ = id,

c(µ, ψ) = −c(1, ψ−1).

These results were not stated with this generality in [21] but the proofs given by Viterbo
immediately generalize to this setting.

Given any open bounded subset U ⊂ T ∗(Rn×Tk) and any non-zero α ∈ H∗(B), Viterbo
defines the symplectic invariant

c(α, U) := sup
ψ∈Hamc(U)

c(α, ψ).

This symplectic invariant extends to any unbounded open set U ⊂ T ∗(Rn×Tk) by taking
the supremum of the c(α, V ) among the open bounded subsets V ⊂ U .

Proposition 2.7 (Bustillo, Viterbo). For all open bounded sets U, V ⊂ T ∗(Rn×Tk) and
any non-zero α ∈ H∗(B),

(1) if (ϕs) is a symplectic isotopy of T ∗(Rn × Tk), then s 7→ c(α, ϕs(U)) is constant,
(2) U ⊂ V implies c(α, U) ≤ c(α, V ),
(3) if µ1 and µ2 are the orientation classes of the compactification of T ∗(Rn×Tk) and

Rk respectively, then for any neighborhood W of 0 ∈ Rk,

c(µ1, U) 6 c(µ1 ⊗ µ2 ⊗ 1, U ×W × Tk).

(4) if B2n+2k
r ⊂ T ∗(Rn × Tk) is an embedded round ball of radius r and µ is the

orientation class of B, then c(µ,B2n+2k
r ) = πr2.

Proof. Point (1) is a consequence of Proposition 2.6 (3). Point (2) is a consequence of
the definition as a supremum. Point (3) is proved in the proof of [3, Prop. 2.3]. Indeed,
Bustillo makes use of (3) to deduce his Proposition 2.3 by taking the infimum of c(µ1⊗µ2⊗



8 S. ALLAIS

1, U × V × Tk) among neighborhoods U ⊃ X and W ⊃ {0} (using Bustillo’s notations).
We refer to [1, Sect. 3.8] for a complete proof of (4). �

Now, we give the contact extension of these invariants. Given any φ ∈ Cont0

(
T ∗(Rn × Tk)× S1

)
and any non-zero α ∈ H∗(B × S1), consider

c(α, φ) := c (α, Fφ) .

The following Proposition is due to Sandon. Since our setting is slightly different, we
provide precise references for the reader’s convenience.

Proposition 2.8 (Sandon, [15]). (1) Given any φ ∈ Cont0(T ∗(Rn ×Tk)× S1), if µ is
the orientation class of B × S1, then

c(µ, φ) = 0 ⇔ c(1, φ−1) = 0.

(2) Given any φ ∈ Cont0(T ∗(Rn × Tk)× S1) and any non-zero α ∈ H∗(B × S1), if Fφ
is a generating function of φ, then⌈

c
(
α, φ−1

)⌉
= dc (α,−Fφ)e .

(3) Given any φ ∈ Cont0(T ∗(Rn × Tk)× S1), any non-zero α ∈ H∗(B × S1), if (ψs) is
a contact isotopy of T ∗(Rn×Tk)×S1, then s 7→ dc(α, ψs ◦φ ◦ (ψs)−1)e is constant.

(4) For each ψ ∈ Hamc(T
∗(Rn × Tk)) for each non-zero cohomology class α ∈ H∗(B),

if dz denotes the orientation class of S1, then

c
(
α⊗ 1, ψ̂

)
= c

(
α⊗ dz, ψ̂

)
= c (α, ψ) .

Proof. Let Fφ be the generating function of φ ∈ Cont0(T ∗(Rn × Tk) × S1). According to
duality formula in Proposition 2.4 (3), c(µ, φ) = −c(1,−Fφ). Points (1) and (2) then follow
from [15, lemmas 3.9 and 3.10] taking L = 0-section and Ψ = τ̂ ◦ ĝrφ−1 ◦ τ̂−1:

c(1, Fφ−1) = 0 ⇔ c(1,−Fφ) = 0

and

dc (1, Fφ−1)e = dc (1,−Fφ)e .

Point (3) is a consequence of [15, lemma 3.15] applied to ct = c(α, ψt◦φ◦(ψt)−1). Point (4)

is given by the proof of [15, Prop. 3.18]. Indeed, let ia : (Ea, E−∞) ↪→ (E∞, E−∞) and ĩa :

(Ẽa, Ẽ−∞) ↪→ (Ẽ∞, Ẽ−∞) be the inclusion maps of sublevel sets of Fψ and Fψ̂ respectively.

Then Ẽa = Ea × S1 and, after identifying H∗(Ẽa, Ẽ−∞) with H∗(Ea, E−∞)⊗H∗(S1), the

induced maps in cohomology ĩa
∗

is given by

ĩa
∗

= i∗a ⊗ id.

Thus ĩa
∗
(α⊗β) = (i∗aα)⊗β is non-zero if and only if i∗aα is non-zero, where β ∈ { dz, 1}. �
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Let µ be the orientation class of B × S1, given any open bounded subset U ⊂ T ∗(Rn ×
Tk)× S1 and any non-zero α ∈ H∗(B × S1), consider

c(α, U) := sup
φ∈Cont0(U)

dc(α, φ)e

and

γ(U) := inf
{⌈
c
(
µ, φ

)⌉
+
⌈
c
(
µ, φ−1

)⌉
| φ ∈ Cont0

(
T ∗(Rn × Tk)× S1

)
such that φ(U) ∩ U = ∅

}
,

These contact invariants extend to any unbounded open set U ⊂ T ∗(Rn × Tk) × S1 by
taking the supremum among the open bounded subsets V ⊂ U .

Proposition 2.9 (Sandon [15]). For all open bounded sets U, V ⊂ T ∗(Rn×Tk)×S1 and
any non-zero α ∈ H∗(B × S1),

(1) if (ϕs) is a contact isotopy of T ∗(Rn ×Tk)× S1, then s 7→ c(α, ϕs(U)) is constant,
(2) U ⊂ V implies c(α, U) ≤ c(α, V ),
(3) given any open subset W ⊂ T ∗(Rn×Tk), for each non-zero class β ∈ H∗(B), if dz

denotes the orientation class of S1, then

c(β ⊗ dz,W × S1) = dc(β,W )e.

Proof. Point (1) is a direct consequence of Proposition 2.8 (3). Point (2) is a consequence
of the definition as a supremum. Point (3) follows from the proof of [15, Prop. 3.20].
Indeed, inequality c(β⊗ dz,W ×S1) ≥ dc(β,W )e is due to Proposition 2.8 (4) whereas the
other one is due to the fact that, for all φ ∈ Cont0(W × S1), one can find ψ ∈ Hamc(W )

such that φ ≤ ψ̂ in Sandon’s notations (see her proof for more details). �

3. Some properties of symplectic and contact invariants

3.1. Estimation of γ
(
T ∗C ×B2n−2

R × S1
)
. Here, we will prove the following

Lemma 3.1. Let R > 0 be such that πR2 6∈ Z, b > 0, n > 1 and C := R/dZ. Then

γ
(
T ∗C ×B2n−2

R × S1
)
≤
⌈
πR2

⌉
.

Remark 3.2. This Lemma fails for n = 1. The use of Lemma 3.1 will be the step where
we will need the assumption that 2n+ 1 > 3 in the proof of Theorem 1.1.

In order to prove Lemma 3.1, we will need the following elementary fact:

Lemma 3.3. Let x0 ∈ ∂B2n−2
R , x ∈ B2n−2

R and r := |x − x0|. We set θ(r) ∈ [0, π] to be
such that

cos

(
θ(r)

2

)
=

r

2R

Then any rotation ρ : R2n−2 → R2n−2 of angle θ(r) centered at x0 sends x outside B2n−2
R ,

i.e. ρ(x) 6∈ B2n−2
R .
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b

x

x0

aa′ α

∂D

∂B2n−2
r (x0)

c

ρ(x)

Figure 1. Configuration in the plane P

πR2 + ε

4R2 4R2 + δ

h+ ε
2

hε

0

ε
2

δ 4R2 − δ

Figure 2. Approximating h+ ε
2 by a smooth compactly supported hε.

Proof. Let x0 ∈ ∂B2n−2
R , x ∈ B2n−2

R and r := |x−x0|. Take any rotation ρ : R2n−2 → R2n−2

of angle θ(r), where θ(r) is defined as above. Let P ⊂ R2n−2 be the affine plane spanned
by x0, x and ρ(x). The round disk B2n−2

R ∩ P has a radius smaller than R and lies in an
open round disk D of radius R with x0 ∈ ∂D centered at c ∈ P . Therefore, it is enough
to show that ρ(x) 6∈ D. Let a, a′ be the two points of ∂D ∩ ∂B2n−2

r (x0), b be the second

point of ∂D ∩ (x0c) and α be the unoriented angle âx0a′ ∈ [0, π] (see Figure 1). As [x0b] is

a diameter of ∂D, the triangle abx0 is right at a, thus α
2

= âx0b satisfies

cos
(α

2

)
=
ax0

bx0

=
r

2R
.

Hence, α = θ(r) and ρ(x) 6∈ D. �

Proof of Lemma 3.1. We exhibit a family of ψε ∈ Hamc(R
2n−2) satisfying

• ψε
(
B2n−2
R

)
∩B2n−2

R = ∅,
• c(1, ψε) = 0,
• ∀ε > 0, c(µ, ψε) ≤ πR2 + ε,
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where µ is the orientation class of the compactified space S2n−2. Consider the radial
Hamiltonian H(x) = −h(r2) where h : [0,+∞)→ R is defined by:

h(u) =
1

2

∫ 4R2

0

θ(
√
v) dv − 1

2

∫ min(u,4R2)

0

θ(
√
v) dv

If ψ designates the time-1-flow associated to H, for all r ∈ [0, R] and any x ∈ B2n−2
R such

that |x| = r, ψ(x) is the image of x by some 0-centered rotation of angle −2h′(r2) = θ(r).
Thus ψ(x) 6∈ B2n−2

R and ψ(B2n−2
R ) ∩ B2n−2

R = ∅. Nevertheless, ψ is not well defined as H
is not smooth in the neighborhood of x = 0 and |x| = 2R. For every small ε > 0, we then
construct a family of smooth hε : [0,+∞)→ R approximating h in the following way (see
Figure 2): there exists δ = δ(ε) ∈ (0, 2R2) such that

• hε is compactly supported on [0, 4R2 + δ],
• h′(u) ≤ h′ε(u) ≤ π

2
for all u ∈ [0,+∞),

• hε(u) = πR2 + ε− π
2
u for all u ∈

[
0, δ

2

]
,

• hε(u) = h(u) + ε
2

for all u ∈ [δ, 4R2 − δ].
Hamiltonians Hε(x) := −hε(|x|2) are smooth functions so their time-1-flow ψε are well
defined. As Hε ≤ 0, c(1, ψε) = 0. The only fixed point with non-zero action is 0 so
c(µ, ψ) ≤ −Hε(0) = −H(0) + ε (0 has action −Hε(0)) and

−H(0) = h(0) =
1

2

∫ 4R2

0

θ(
√
v) dv + ε.

Changing the variable x =
√
v

2R
and writing θ(s) = 2 arccos

(
s

2R

)
,

1

2

∫ 4R2

0

θ(
√
v) dv = 8R2

∫ 1

0

x arccos(x) dx

Then, an integration by parts and writing x = sinα give∫ 1

0

x arccos(x) dx =
1

2

∫ 1

0

x2

√
1− x2

dx =
1

2

∫ π
2

0

sin2 α dα =
π

8
,

thus c(µ, ψε) ≤ πR2 + ε as expected.
Now, from the family ψε we deduce a second, ϕε ∈ Hamc(T

∗C ×R2n−2), satisfying:

(1) ϕε
(
C ×

(
−1
ε
, 1
ε

)
×B2n−2

R

)
∩
(
C ×

(
−1
ε
, 1
ε

)
×B2n−2

R

)
= ∅,

(2) c(1, ϕε) = 0,
(3) ∀ε > 0, c(µ, ϕε) ≤ πR2 + ε,

where µ is the orientation class of the compactified space C × S1 × S2n−2. Let U ε :=
C ×

(
−1
ε
, 1
ε

)
× B2n−2

R and χ : R → [0, 1] be a smooth compactly supported function
with χ|[− 1

ε
, 1
ε ]
≡ 1. We then introduce the compactly supported negative Hamiltonians

Kε : C ×R×R2n−2 → R defined by:

Kε(q1, p1, x) := χ(p1)Hε(x), ∀(q1, p1, x) ∈ C ×R×R2n−2,

so that ϕε(q1, p1, x) = (q1, p1, ψ
ε(x)) for p1 ∈

(
−1
ε
, 1
ε

)
, thus ϕε(U ε) ∩ U ε = ∅ as wanted.

Moreover, since Kε is negative, c(1, ϕε) = 0. The function χ can be chosen so that it



12 S. ALLAIS

is even and decreasing inside suppχ ∩ (1
ε
,+∞) with an arbitrarily small derivative. For

|p1| > 1
ε

and (q1, p1, x) ∈ suppϕε, the q1-coordinate of ϕε(q1, p1, x) is thus slightly different

from q1. Thus, the only fixed points with a non-zero action are the (q1, p1, 0)’s for |p1| ≤ 1
ε
.

The action is still given by −Kε(0) = h(0) + ε = πR2 + ε, thus c(µ, ϕε) ≤ πR2 + ε.
Take the contact lift of the previous family: ϕ̂ε ∈ Cont0(T ∗C × R2n−2 × S1). Property

(1) of ϕε implies

ϕ̂ε
(
C ×

(
−1

ε
,
1

ε

)
×B2n−2

R × S1

)
∩
(
C ×

(
−1

ε
,
1

ε

)
×B2n−2

R × S1

)
= ∅. (3.1)

On the one hand, Proposition 2.8 (4) and property (2) of ϕε gives

c
(
1, ϕ̂ε

)
= c(1, ϕε) = 0.

Thus, if dz denotes the orientation class of S1, Proposition 2.8 (1) gives

c
(
µ⊗ dz,

(
ϕ̂ε
)−1
)

= 0. (3.2)

On the other hand, Proposition 2.8 (4) and property (3) of ϕε gives,

c
(
µ⊗ dz, ϕ̂ε

)
= c(µ, ϕε) ≤ πR2 + ε. (3.3)

Equations (3.2) and (3.3) then imply⌈
c
(
µ⊗ dz, ϕ̂ε

)⌉
+
⌈
c
(
µ⊗ dz,

(
ϕ̂ε
)−1
)⌉
≤
⌈
πR2 + ε

⌉
.

Thus, since ϕ̂ε verifies (3.1),

γ
(
U ε × S1

)
≤
⌈
πR2 + ε

⌉
.

Since πR2 6∈ Z, x 7→ dxe is continuous at πR2 and any open bounded set V ⊂ T ∗C ×
B2n−2
R × S1 is included in U ε × S1 for a small ε, we conclude that

γ
(
T ∗C ×B2n−2

R × S1
)
≤
⌈
πR2

⌉
.

�

3.2. Linear symplectic invariance. A symplectomorphism ϕ : T ∗(Rn×Tk)→ T ∗(Rn×
Tk) will be called linear when it can be lifted to a linear map ϕ̃ : R2(n+k) → R2(n+k).
Throughout this subsection, we fix a linear symplectomorphism ϕ : T ∗(Rn×Tk)→ T ∗(Rn×
Tk) of the form

ϕ(q1, q2) = (ϕ1(q1), ϕ2(q2)), ∀(q1, q2) ∈ R2n+k × Tk,
for some linear maps ϕ1 : R2n+k → R2n+k and ϕ2 : Tk → Tk. Let B be either S2n × Tk or
S2n+k, such that B × Tk is a compactification of T ∗(Rn × Tk). We denote by µ ∈ H∗(B)
the orientation class of B.

Proposition 3.4. For any open subset U ⊂ T ∗(Rn×Tk) and for any non-zero α ∈ H∗(Tk),
we have

c(µ⊗ α, ϕ(U)) = c(µ⊗ ϕ∗2α, U).
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Proposition 3.4 is a consequence of the following statement:

Lemma 3.5. For any ψ ∈ Hamc(T
∗(Rn × Tk)) and for any non-zero α ∈ H∗(Tk),

c(µ⊗ α, ψ) = c(µ⊗ ϕ∗2α, ϕ−1 ◦ ψ ◦ ϕ).

In order to prove Lemma 3.5, we will need suitable generating functions for ψ and
ϕ−1 ◦ ψ ◦ ϕ:

Lemma 3.6. Let F1 : B ×Tk ×RN → R be a generating function of ψ ∈ Hamc(T
∗(Rn ×

Tk)). There exists a diffeomorphism ϕ′1 : B → B such that, if Φ : B × Tk × RN →
B×Tk×RN denotes the diffeomorphism Φ(q1, q2; ξ) = (ϕ′1(q1), ϕ2(q2); ξ), then F2 := F1◦Φ
is a generating function of ϕ−1 ◦ ψ ◦ ϕ ∈ Hamc(T

∗(Rn × Tk)).

Proof of Lemma 3.6. Let ψ ∈ Hamc(T
∗(Rn×Tk)) and R > 0 such that suppψ ⊂ B2n+k

R ×
Tk. Since ϕ1 : R2n+k → R2n+k is linear and invertible, one can find a diffeomorphism
ϕ′1 : R2n+k → R2n+k such that ϕ′1(x) = ϕ1(x) for all x ∈ B2n+k

R ∪ ϕ−1
1 (B2n+k

R ) and ϕ′1(x) =
(x1, . . . , x2n+k−1,±x2n+k) outside some compact set, thus ϕ′1 can naturally be extended
into a diffeomorphism ϕ′1 : B → B. Let F1 : B × Tk × RN → R be a generating
function of ψ, we then define the diffeomorphism Φ : B × Tk × RN → B × Tk × RN

by Φ(q1, q2; ξ) := (ϕ′1(q1), ϕ2(q2); ξ). The function F2 := F1 ◦ Φ is a generating function
since ∂F2

∂ξ
= ∂F1

∂ξ
◦ Φ. Let (q; ξ) ∈ ΣF2 and q0 := (ϕ′1 × ϕ2)(q). First, let us assume that

q ∈ ϕ−1(B2n+k
R × Tk) (so q0 = ϕ(q)), since (q0; ξ) ∈ ΣF1 , there exists x0 ∈ T ∗(Rn × Tk)

such that

(q0; ∂qF1(q0; ξ) · v) =

(
x0 + ψ(x0)

2
; 〈J(ψ(x0)− x0), v〉

)
, ∀v ∈ R2(n+k).

Let x = ϕ−1(x0). On the one hand, by linearity of ϕ−1,

q =
x+ ϕ−1 ◦ ψ ◦ ϕ(x)

2
,

on the other hand, ∂qF2(q0; ξ) · v = 〈J(ψ(x0)− x0), ϕ(v)〉 for all v ∈ R2(n+k) and ϕ−1 is a
linear symplectomorphism, thus

∂qF2(q0; ξ) · v =
〈
Jϕ−1(ψ(x0)− x0), v

〉
=
〈
J(ϕ−1 ◦ ψ ◦ ϕ(x)− x), v

〉
, ∀v ∈ R2(n+k).

Now, let us assume that q 6∈ ϕ−1(B2n+k
R × Tk). If q is at infinity, then ∂qF2(q; ξ) = 0 since

dF1 = 0 at any point at infinity. If q ∈ R2n+k × Tk, let x0 ∈ T ∗(Rn × Tk) be associated

to q0 as above. Since x0+ψ(x0)
2

6∈ B2n+k
R × Tk, necessarily, ψ(x0) = x0 6∈ B2n+k

R × Tk so
∂qF1(q0; ξ) = 0 and (q0; ξ) is a critical value of F1. Hence (q; ξ) is a critical value of F2 and

(q; ∂qF2(q; ξ)) = (q; 0) =

(
x+ ϕ−1 ◦ ψ ◦ ϕ(x)

2
; J(ψ(x)− x)

)
,

where x = (ϕ′1 × ϕ2)−1(x0) 6∈ supp(ϕ−1 ◦ ψ ◦ ϕ).
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Conversely, if x ∈ T ∗(Rn×Tk), the associated (q; ξ) ∈ ΣF2 is given by ((ϕ′1×ϕ2)−1(q0); ξ)
where (q0; ξ) ∈ ΣF1 is associated to x0 = (ϕ′1 × ϕ2)(x) ∈ T ∗(Rn × Tk). �

Proof of Lemma 3.5. Let F1 : B × Tk × RN → R be a generating function of ψ ∈
Hamc(T

∗(Rn × Tk)). Let ϕ′1 : B → B and Φ : B × Tk × RN → B × Tk × RN be
the diffeomorphisms defined by Lemma 3.6 such that F2 := F1 ◦Φ is a generating function
of ϕ−1 ◦ψ ◦ϕ. Let us denote by E1 and E2 the domains of the generating functions F1 and
F2 respectively. For all λ ∈ R, Φ gives a diffeomorphism of sublevel sets Φ : Eλ

2 → Eλ
1 . In

particular, it induces an homology isomorphism Φ∗ : H∗(E
λ
2 , E

−∞
2 ) → H∗(E

λ
1 , E

−∞
1 ). We

thus have the following commutative diagram:

H l(B × Tk)

(ϕ′1×ϕ2)∗

��

T1 // H l+q(E∞1 , E
−∞
1 )

Φ∗

��

i∗1,λ // H l+q(Eλ
1 , E

−∞
1 )

Φ∗

��
H l(B × Tk) T2 // H l+q(E∞2 , E

−∞
2 )

i∗2,λ // H l+q(Eλ
2 , E

−∞
2 )

where the Tj’s denote the isomorphisms induced by the Künneth formula (2.1) and the
i∗j,λ’s are the morphisms induced by the inclusions ij,λ : (Eλ

j , E
−∞
j ) ↪→ (E∞j , E

−∞
j ). The

commutativity of the right square is clear. As for the left square, it commutes because
π ◦Φ = (ϕ′1×ϕ2) ◦π, where π : B×Tk×RN → B×Tk is the canonical projection. Let α
be a non-zero class of H l(Tk) and µ be the orientation class of H∗(B). Since the vertical
arrows are isomorphisms, i∗1,λT1(µ⊗ α) is non-zero if and only if i∗2,λT2(ϕ′1×ϕ2)∗(µ⊗ α) is
non-zero. Since ϕ′1 is a diffeomorphism, (ϕ′1)∗µ = ±µ, thus (ϕ′1×ϕ2)∗(µ⊗ α) = ±µ⊗ϕ∗2α
and i∗1,λT1(µ⊗ α) is non-zero if and only if ±i∗2,λT2(µ⊗ ϕ∗2α) is non-zero. Therefore,

c(µ⊗ α, F1) = c(µ⊗ ϕ∗2α, F2).

�

3.3. Reduction lemma. In this subsection, we work on the space T ∗(Rm×Tl×Tk)×S1

and the points in this space will be denoted by (q, p, z), where q = (q1, q2) ∈ (Rm×Tl)×Tk
and p = (p1, p2) ∈ Rm+l×Rk. Let B be a compactification of T ∗(Rm×Tl). Given any open
set U ⊂ T ∗(Rm×Tl×Tk)×S1 and any point w ∈ Tk, the reduction Uw ⊂ T ∗(Rm×Tl)×S1

at q2 = w is defined by

Uw := π(U ∩ {q2 = w}),
where π : T ∗(Rm ×Tl)× {w} ×Rk × S1 → T ∗(Rm ×Tl)× S1 is the canonical projection.

Lemma 3.7. Let µ be the orientation class of B × Sk × S1 and 1 be the generator of
H0(Tk). For any open bounded set U ⊂ T ∗(Rm × Tl × Tk)× S1 and any w ∈ Tk,

c(µ⊗ 1, U) ≤ γ(Uw).

It is an extension to the contact case of Viterbo-Bustillo’s reduction lemma [3, Prop.
2.4] and [21, Prop. 5.2]. We will follow Bustillo’s proof as close as contact structure allows
us to do.



A CONTACT CAMEL THEOREM 15

Let µ be the orientation class of B × Sk × S1 and 1 be the generator of H0(Tk) and
fix an open bounded set U ⊂ T ∗(Rm × Tl × Tk) × S1 and a point w ∈ Tk. Remark that
one can write µ = µ1 ⊗ µ2, where µ1 and µ2 are the orientation classes of B × S1 and Sk

respectively. By definition of the contact invariants, it is enough to show that, given any
ψ ∈ Cont0(U) and any ϕ ∈ Cont0(T ∗(Rm × Tl)× S1) such that ϕ(Uw) ∩ Uw = ∅,

dc(µ⊗ 1, ψ)e ≤
⌈
c
(
µ1, ϕ

)⌉
+
⌈
c
(
µ1, ϕ

−1
)⌉
.

Thus, we fix a contact isotopy ψt defined on T ∗(Rm × Tl × Tk) × S1 and compactly
supported in U such that ψ0 = id and ψ1 =: ψ ∈ Cont0(U) and we fix a contactomorphism
ϕ ∈ Cont0(T ∗(Rm ×Tl)× S1) such that ϕ(Uw) ∩ Uw = ∅. Let F t : (B × Sk ×Tk × S1)×
RN → R be a continuous family of generating functions for the Legendrians Lt := Lψt ⊂
J1(B × Sk × Tk × S1) given by Theorem 2.3, F := F 1 and K : (B × S1) × RN ′ → R

be a generating function of ϕ. By the uniqueness statement of Theorem 2.3, one may
suppose that F 0(x; ξ) = Q(ξ) where Q : RN → R is a non-degenerated quadratic form
without loss of generality. Recall that F t

w : (B × Sk × S1)×RN → R denotes the function

F t
w(q1, p, z; ξ) := F t(q1, w, p, z; ξ) and let K̃ : (B × Sk × S1)×RN ′ → R be the generating

function defined by K̃(x, y, z; η) := K(x, z; η). In order to prove Lemma 3.7, we will use
the following

Lemma 3.8. Given t ∈ [0, 1], let ct := c(µ, F t
w − K̃) which is a continuous R-valued

function. Then we have the following alternative:

• either ∀t ∈ [0, 1], ct 6∈ Z
• or ∃` ∈ Z such that ∀t ∈ [0, 1], ct = `.

In particular, ⌈
c
(
µ,−K̃

)⌉
=
⌈
c
(
µ, Fw − K̃

)⌉
.

Proof of Lemma 3.8. The reduced function F t
w generates Ltw ⊂ J1(B × Sk × S1). Lt is the

image of the immersion (plus points in the 0-section at infinity):

Γψt(q, p, z) =

(
q +Qt

2
,
eθ
t
p+ P t

2
, z;P t − eθtp, q −Qt, eθ

t − 1;
1

2

(
eθ
t

p+ P t
) (
q −Qt

)
+ Zt − z

)
,

writing ψt(q, p, z) = (Qt, P t, Zt). Therefore, Ltw is the set of points (plus points in the
0-section at infinity):(

q1 +Qt
1

2
,
eθ
t
p+ P t

2
, z;P t

1 − eθ
t

p1, q −Qt, eθ
t − 1;

1

2

(
eθ
t

p+ P t
) (
q −Qt

)
+ Zt − z

)

for points (q, p, z) that verify
q2+Qt2

2
= w. In the remaining paragraphs, we will use notations

p = eθp+P
2

and q = q+Q
2

.
Suppose there exists ` ∈ Z and t0 ∈ [0, 1] such that ct0 = `. Then it is enough to prove

that t 7→ ct is locally constant. In order to do so, we will follow Bustillo’s proof [3, lemma
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2.8]. Let
(
qt01 , p

t0 , zt0 ; ξt0 , ηt0
)

be the critical point of

(F t0
w − K̃)(q1, p, z; ξ, η) = F t0(q1, w, p, z; ξ)−K(q1, p1, z; η)

associated to the min-max value ct0 = `. By continuity of the min-max critical point,
we may suppose that K is a Morse function in some neighborhood of

(
qt01 , p

t0
1 , z

t0 ; ηt0
)

by

perturbing K without changing its value at this point. Writing xt0 :=
(
qt01 , p

t0 , zt0
)
, such a

critical point verifies

∂F t0
w

∂x
=
∂K̃

∂x
and

∂F t0
w

∂ξ
=
∂K̃

∂η
= 0.

These equations define two points (xt0 , ∂xF
t0
w , F

t0
w ) = (xt0 , ∂xK̃, F

t0
w ) ∈ Lt0w and (xt0 , ∂xK̃, K̃) ∈

Lϕ × 0T ∗Sk which only differ in the last coordinate by a ` ∂
∂a

factor:(
xt0 , ∂xF

t0
w , F

t0
w

)
=
(
xt0 , ∂xK̃, K̃ + `

)
=
(
xt0 , ∂xK̃, K̃

)
+ `

∂

∂a
.

We will denote by (qt0 , pt0 , zt0) ∈ T ∗(Rm×Tk+l)×S1 the point whose image is Γψt0 (qt0 , pt0 , zt0) =

((qt01 , w, p
t0 , zt0 ; ξt0), ∂xF

t0 , F t0) and we will denote (Qt0 , P t0 , Zt0) = ψt0(q
t0 , pt0 , zt0). Since

(xt0 , ∂xK̃, K̃) ∈ Lϕ × 0T ∗Sk , ∂p2K̃ = 0 so qt02 = Qt0
2 (= w).

Remark that ϕ(Uw)∩Uw = ∅ together with (xt0 , ∂xF
t0
w , F

t0
w ) ∈

(
Lϕ + ` ∂

∂a

)
×0T ∗Sk implies

that either
(
qt01 , p

t0
1 , z

t0
)
6∈ Uw or

(
Qt0

1 , P
t0
1 , Z

t0
)
6∈ Uw. In order to see it, we go back to

the definition of generating function on T ∗(Rm×Tl)× S1 given in Subsection 2.3. Let π :
J1Rm+l → T ∗(Rm×Tl)×S1 be the quotient projection and consider the Zl×Z-equivariant

lift of ϕ: ϕ̃ ∈ Cont(J1Rm+l) and Ũw := π−1(Uw) ⊂ J1Rm+l. Since ϕ(Uw) ∩ Uw = ∅, we

have that ϕ̃(Ũw) ∩ Ũw = ∅ so Lϕ̃ ∩ τ̂(Ũw × Ũw × R) = ∅. But Ũw + ∂
∂z

= Ũw and

τ̂(x,X + ∂
∂z
, θ) = τ̂(x,X, θ) + ∂

∂a
for all (x,X, a) ∈ J1Rm+l × J1Rm+l × R, intersection

Lϕ̃ ∩ τ̂(Ũw × Ũw ×R) = ∅ is thus equivalent to(
Lϕ̃ + `

∂

∂a

)
∩ τ̂

(
Ũw × Ũw ×R

)
= ∅

(definition of τ̂ : J1Rm+l × J1Rm+l ×R→ J1R2(m+l)+1 is given in Subsection 2.3). Hence,
given any point (u, v, a) ∈ Lϕ̃ + ` ∂

∂a
, the corresponding (x,X, θ) = τ̂−1(u, v, a) verifies

that either x 6∈ Ũw or X 6∈ Ũw. This property descends to quotient: (xt0 , ∂xF
t0
w , F

t0
w ) ∈(

Lϕ + ` ∂
∂a

)
× 0T ∗Sk implies that either (qt01 , p

t0
1 , z

t0) 6∈ Uw or (Qt0
1 , P

t0
1 , Z

t0) 6∈ Uw.

Since qt02 = Qt0
2 = w, it follows that either (qt0 , pt0 , zt0) 6∈ U or (Qt0 , P t0 , Zt0) 6∈ U . Since

ψt0 has its support in U , they both imply that(
Qt0 , P t0 , Zt0

)
= ψt0

(
qt0 , pt0 , zt0

)
=
(
qt0 , pt0 , zt0

)
6∈ U.

Hence, (qt0 , pt0 , zt0) is outside the support of ψt0 , thus, the associated point (qt01 , w, p
t0 , zt0 ; ξt0) ∈

ΣF t0 is critical of value F t0(qt01 , w, p
t0 , zt0 ; ξt0) = 0. Thus, we have seen that mt0 :=(

qt01 , p
t0 , zt0 ; ξt0 , ηt0

)
verifies

∂F t0
w

∂x
=
∂K̃

∂x
= 0,

∂F t0
w

∂ξ
=
∂K̃

∂η
= 0 and F t0

w = 0,
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so it is a critical point of −K̃, as wished, with the same critical value −K̃ = F t0
w − K̃.

Let t 7→ mt be the continuous path of critical value of t 7→ F t
w−K̃ obtained by min-max.

It remains to show that ct = (F t
w− K̃)(mt) is equal to ` in some neighborhood of t0. Since

K̃ does not depend on ξ,
∂F t

∂ξ

(
qt1, w, p

t, zt; ξt
)

= 0

so the point (qt1, w, p
t, zt; ξt) remains inside the level set ΣF t . If H : [0, 1]× (T ∗(Rm×Tl×

Tk)× S1)→ R denotes the compactly supported Hamiltonian map associated to (ψt),

ιF t0
(
qt01 , w, p

t0 , zt0 ; ξt0
)
∈ U c ⊂ (suppH)c,

and (suppH)c is an open set so, for all t in a small neighborhood of t0, ιF t (qt1, w, p
t, zt; ξt) ∈

(suppH)c thus F t (qt1, w, p
t, zt; ξt) = 0 and (qt1, p

t, zt; ξt) remains a critical point of F t
w.

Thus, in a small neighborhood of t0, since mt is a critical point of F t
w − K̃ and F t

w (with
a slight abuse of notation), t 7→ (qt1, p

t
1, z

t; ηt) is a continuous path of critical value for K.
But K is a Morse function in some neighborhood of

(
qt01 , p

t0
1 , z

t0 ; ηt0
)
, thus this continuous

path is constant and K (qt1, p
t
1, z

t; ηt) ≡ −`.
Finally, we have seen that, in some neighborhood of t0, F t (qt1, w, p

t, zt; ξt) ≡ 0 and
K (qt1, p

t
1, z

t; ηt) ≡ −`, thus

ct = F t
(
qt1, w, p

t, zt; ξt
)
−K

(
qt1, p

t
1, z

t; ηt
)
≡ `.

In particular, since t 7→ dcte is constant, one has⌈
c
(
µ, F 0

w − K̃
)⌉

=
⌈
c
(
µ, F 1

w − K̃
)⌉

.

But F 0
w(x; ξ) = Q(ξ) where Q is a non-degenerated quadratic form, so F 0

w − K̃ is a stabi-

lization of the generating function −K̃, thus Proposition 2.4 (1) implies c(µ, F 0
w − K̃) =

c(µ,−K̃). �

Proof of Lemma 3.7. By Proposition 2.5 (1),

c(µ⊗ 1, ψ) := c(µ⊗ 1, F ) ≤ c(µ, Fw).

The triangular inequality of Proposition 2.4 (2) applied to µ = µ ^ 1 gives us

c
(
µ, Fw

)
≤ c

(
µ, Fw − K̃

)
− c

(
1,−K̃

)
.

By Proposition 2.4 (3) and Proposition 2.5 (2), we have −c(1,−K̃) = c(µ, K̃) = c(µ1, K).
Hence

c
(
µ⊗ 1, ψ

)
≤ c

(
µ, Fw − K̃

)
+ c
(
µ1, K

)
,

and thus, ⌈
c
(
µ⊗ 1, ψ

)⌉
≤
⌈
c
(
µ, Fw − K̃

)⌉
+
⌈
c
(
µ1, K

)⌉
.

According Lemma 3.8, dc(µ, Fw − K̃)e = dc(µ,−K̃)e so⌈
c
(
µ⊗ 1, ψ

)⌉
≤
⌈
c
(
µ,−K̃

)⌉
+
⌈
c
(
µ1, K

)⌉
.



18 S. ALLAIS

Since K generates ϕ, dc(µ1,−K)e = dc(µ1, ϕ
−1)e, according to Proposition 2.8 (2). Thus

Proposition 2.5 (2) gives dc(µ,−K̃)e = dc(µ1, ϕ
−1)e. Finally, by definition, c(µ1, K) =

c(µ1, ϕ). �

4. Contact camel theorem

In this section, we will prove Theorem 1.1. We work on the space R2n×S1 in dimension
2n+ 1 > 3, we denote by q1, p1, . . . , qn, pn, z coordinates on R2n × S1 so that the Liouville
form is given by λ = p dq := p1 dq1 + · · ·+pn dqn and the standard contact form of R2n×S1

is α = p dq− dz. Let τt(x) = x+t ∂
∂qn

be the contact Hamiltonian flow of R2n×S1 associated

to the contact Hamiltonian (t, x) 7→ pn.

Lemma 4.1. Let R and r be two positive numbers and B2n
R ×S1 ⊂ P−×S1. If there exists

a contact isotopy (φt) of (R2n×S1, α) supported in [−c/8, c/8]2n×S1 for some c > 0 such
that φ0 = id, φ1(B2n

R ×S1) ⊂ P+×S1 and φt(B
2n
R ×S1) ⊂ (R2n \Pr)×S1 for all t ∈ [0, 1],

then there exists a smooth family of contact isotopy s 7→ (ψst ) with ψst ∈ Cont(R2n × S1)
and ψs0 = id associated to a smooth family of contact Hamiltonians s 7→ (Hs

t ) supported
in [−c/8, c/8]2n−2 ×R2 × S1 , such that, for all s ∈ [0, 1], all t ∈ R and all x ∈ R2n × S1,

ψsc(x) = x+ c
∂

∂qn
, (4.1)

ψst

(
x+ c

∂

∂qn

)
= ψst (x) + c

∂

∂qn
, ∀t ∈ R (4.2)

ψst+c = ψsc ◦ ψst . (4.3)

Moreover, for all t ∈ R, ψ0
t = τt whereas ψt := ψ1

t satisfies

ψt
(
B2n
R × S1

)
⊂

(
R2n \

⋃
k∈Z

(
Pr + kc

∂

∂qn

))
× S1, ∀t ∈ R. (4.4)

Proof. Assume there exists such a (φt). Let Kt : R × (R2n × S1) → R be the compactly
supported contact Hamiltonian associated to (φt). By hypothesis, Kt is supported in
[−c/8, c/8]2n, thus one can define its c ∂

∂qn
-periodic extension K ′t : R × (R2n × S1) → R

and the associated contact isotopy (φ′t). The contactomorphism φ′t : R2n× S1 → R2n× S1

satisfies φ′t

(
x+ c ∂

∂qn

)
= φ′t(x) + c ∂

∂qn
.

For all s ∈ [0, 1], consider the contact isotopy (ψst ) with ψst ∈ Cont(R2n × S1) and
ψs0 = id defined as follow (look also at Figure 3). Given x ∈ R2n, trajectory γ(t) = ψst (x)
first follows t 7→ φ′t(x) from t = 0 to t = s. Then γ follows t 7→ τt(φ

′
s(x)) from t = 0 to

t = 1/4. Then t 7→ φ̃′t(τ1/4 ◦ φ′s(x)) from t = 0 to t = s, where (φ̃t) = (τc/4 ◦ φ−1
t ◦ τ−1

c/4) is

the contact Hamiltonian flow associated to the translated contact Hamiltonian application

K̃ ′t = −K ′s−t ◦ τ−c/4. Finally, γ follows t 7→ τt(φ̃
′
s ◦ τ1/4 ◦ φ′s(x)) from t = 0 to t = 3/4. We

normalize time such that s 7→ ψst gives an isotopy of smooth contact Hamiltonian flows of
c ∂
∂t

-periodic contact Hamitonians Hs
t .
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Br × S1

PR × S1
PR × S1 + ∂

∂qn

τc/4

τ3c/4

φ′1

φ̃′1

Figure 3. Construction of ψ1.

Identity (4.1) comes from the fact that ψsc = τ3c/4 ◦ φ̃s ◦ τc/4 ◦ φs and, by definition of

(φ̃t), φ̃s = τc/4 ◦ φ−1
s ◦ τ−1

c/4. Identity (4.2) comes from the fact that contactomorphism ψst
is a composition of c ∂

∂qn
-equivariant contactomorphisms. Identity (4.3) is implied by c ∂

∂t
-

periodicity of Hamiltonian Hs
t . Inclusion (4.4) comes from the hypothesis on the contact

isotopy (φt). �

Let r, R > 0 be such that there exists a positive integer ` satisfying πr2 < ` < πR2

and let B2n
R × S1 ⊂ P− × S1. Suppose by contradiction that there exists a contact isotopy

(φt) of (R2n × S1, α) supported in [−c/8, c/8]2n × S1 for some c > 0 such that φ0 = id,
φ1(B2n

R × S1) ⊂ P+ × S1 and φt(B
2n
R × S1) ⊂ (R2n \ Pr) × S1 for all t ∈ [0, 1]. In order

to prove Theorem 1.1, it is enough to consider r ∈ (` − 1, `). Consider the family of
contact isotopy s 7→ (ψst ) given by Lemma 4.1 and denote by (Hs

t ) the associated family
of Hamiltonian supported in [−c/8, c/8]2n × R2 × S1. We define λst : R2n × S1 → R by
(ψst )

∗α = λstα. Let us consider:

Ψs : R×R×R2n+1 → R×R×R2n+1,

Ψs(t, h, x) = (t, λst(x)h+Hs
t ◦ ψst (x), ψst (x)).

According to (4.1), (4.2) and (4.3), for all (t, h, x) ∈ R×R×R2n+1,

∀k, l ∈ Z, Ψs

(
t+ lc, h, x+ kc

∂

∂qn

)
= Ψs(t, h, x) + lc

∂

∂t
+ (k + l)c

∂

∂qn
.

Thus Ψs descends to a map Ψs : T ∗C×T ∗(Rn−1×C)×S1 → T ∗C×T ∗(Rn−1×C)×S1

where C := R/cZ.

Lemma 4.2. The family s 7→ Ψs is a contact isotopy of the contact manifold (T ∗C ×
T ∗(Rn−1 × C)× S1, ker( dz − p dq + h dt)).

Proof. We write

ψst (q, p, z) = (Qt(q, p, z), Pt(q, p, z), Zt(q, p, z)),

since dZt − Pt dQt = (ψst )
∗( dz − p dq) = λst( dz − p dq), we have

(Ψs)∗ ( dz − p dq + h dt) = dZt − Pt dQt + Żt dt− PtQ̇t dt+ (λsth+Hs
t ◦ ψst ) dt
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= λst( dz − p dq + h dt) +
(
Żt − PtQ̇t +Hs

t ◦ ψst
)

dt.

But, since Hs
t is the contact Hamiltonian of the isotopy ψst supported in [−c/8, c/8]2n ×

R2 × S1, PtQ̇t − Żt = Hs
t ◦ ψst . Finally,

(Ψs)∗ ( dz − p dq + h dt) = λst( dz − p dq + h dt).

�

For technical reasons, we replace T ∗Rn × S1 by its quotient T ∗(Rn−1 × C) × S1 and
consider our B2n

R ×S1 inside this quotient (since c can be taken large while R is fixed, this
identification is well defined). Let us consider the linear symplectic map:

L : T ∗C × T ∗(Rn−1 × C)→ T ∗C × T ∗(Rn−1 × C),

L(t, h, x, qn, pn) = (qn − t,−h, x, qn, pn − h)

and denote by L̂ = L× id the associated contactomorphism of T ∗C × T ∗(Rn−1 ×C)× S1.
Let us consider

U := L̂
(
Ψ1
(
T ∗C ×B2n

R × S1
))
.

We compactify the space T ∗C × T ∗(Rn−1 × C) as

C × S1 × S2n−2 × C × S1 ' S2n−2 × T2 × C2.

Let µ and dz be the orientation class of S2n−2 × T2 and S1 respectively and dqn and dt
be the canonical base of H1(C2).

Lemma 4.3. One has the following capacity inequality:

c (µ⊗ dt⊗ dz,U) ≥
⌈
πR2

⌉
.

Proof. Let α := µ⊗ dt. Since s 7→ L̂ ◦Ψs is a contact isotopy, Proposition 2.9 (1) implies

c (α⊗ dz,U) = c
(
α⊗ dz, L̂

(
Ψ0
(
T ∗C ×B2n

R × S1
)))

.

But L̂ (Ψ0 (T ∗C ×B2n
R × S1)) = L(Φ0 (T ∗C ×B2n

R ))× S1 where Φ0 : T ∗C × T ∗(Rn−1 ×
C)→ T ∗C × T ∗(Rn−1 × C) is the linear symplectic map:

Φ0(t, h, x, qn, pn) = (t, h+ pn, x, qn + t, pn).

Thus, using Proposition 2.9 (3),

c (α⊗ dz,U) =
⌈
c
(
α,L

(
Φ0
(
T ∗C ×B2n

R

)))⌉
.

In order to conclude, let us show that

c
(
µ⊗ dt, L

(
Φ0
(
T ∗C ×B2n

R

)))
≥ πR2.

By the linear symplectic invariance stated in Proposition 3.4,

c
(
µ⊗ dt, L ◦ Φ0

(
T ∗C ×B2n

R

))
= c

(
µ⊗ A∗ dt, T ∗C ×B2n

R

)
,

where A : C2 → C2 is the linear map A(t, qn) = (qn, qn+t). We have A∗ dt = dqn, therefore

c
(
µ⊗ dt, L ◦ Φ0

(
T ∗C ×B2n

R

))
= c

(
µ⊗ dqn, T

∗C ×B2n
R

)
.
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The cohomology class µ ⊗ dqn can be seen as the tensor product of the orientation class
µ1 of the compactification S2n−2 × S1 × C of T ∗(Rn−1 × C) by the orientation class dh
of the compactification S1 of the h-coordinate and the generator 1 of H0(C) (for the t-
coordinate). Indeed, dqn ∈ H1(C2) can be identify to dqn ⊗ 1 ∈ H1(C)⊗H0(C) (writing
also dqn for the orientation class of C by a slight abuse of notation). Hence, if µS2n−2 and
dpn are the orientation classes of S2n−2 and of the compactification S1 of the pn-coordinate
respectively, then

µ⊗ dqn = (µS2n−2⊗ dh⊗ dpn)⊗ ( dqn⊗1) = (µS2n−2⊗ dqn⊗ dpn)⊗ dh⊗1 = µ1⊗ dh⊗1.

Now, according to Proposition 2.7 (3),

c
(
1⊗ dh⊗ µ1, C ×R×B2n

R

)
≥ c

(
µ1, B

2n
R

)
.

Finally, Proposition 2.7 (4) implies

c
(
µ⊗ dt, L

(
Φ0
(
T ∗C ×B2n

R

)))
≥ c

(
µ1, B

2n
R

)
= πR2.

�

Proof of Theorem 1.1. Let us apply Lemma 3.7 with m = n − 1, l = k = 1 and the
orientation class µ⊗ dt⊗ dz to the exhaustive sequence of open bounded subsets defined

by U (k) := L̂ (Ψ1 (C × (−k, k)×B2n
R )); taking the supremum among k > 0, we find:

c (µ⊗ dt⊗ dz,U) ≤ γ (U0) , (4.5)

where U0 ⊂ T ∗C×T ∗Rn−1×S1 is the reduction of U at qn = 0. Now Ψ1 (T ∗C ×B2n
R × S1) ⊂

T ∗C ×
⋃
t∈[0,c] ψt(B

2n
R × S1) so

U ⊂ L̂

T ∗C × ⋃
t∈[0,c]

ψt(B
2n
R × S1)

 . (4.6)

Let V :=
⋃
t∈[0,c] ψt (B2n

R × S1)∩ {qn = 0} and π : T ∗Rn−1 × {0} ×R× S1 → T ∗Rn−1 × S1

be the canonical projection. Since L̂ does not change the qn-coordinate and coordinates of
T ∗Rn−1, inclusion (4.6) implies

U0 ⊂ T ∗C × π(V ).

But (4.4) implies V ⊂ (B2n
r (0) ∩ {qn = 0}) × S1 and π(B2n

r (0) ∩ {qn = 0}) = B2n−2
r (0),

thus

U0 ⊂ T ∗C ×B2n−2
r (0)× S1. (4.7)

Since πr2 6∈ Z, by Lemma 3.1,

γ
(
T ∗C ×B2n−2

r (0)× S1
)
≤
⌈
πr2
⌉
,

thus, Lemma 4.3, inclusion (4.7) and inequality (4.5) gives⌈
πR2

⌉
≤ γ (U0) ≤ γ

(
T ∗C ×B2n−2

r (0)× S1
)
≤
⌈
πr2
⌉
,

a contradiction with πR2 > ` > πr2. �



22 S. ALLAIS

References
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