Solving cubic equation by paper folding

Simon Allais

November 30, 2015

< ロ > < 回 > < 回 > < 回 > < 回 >

Constructible number using ruler and compass

- Axioms
- Basic constructions
- Theorems

Constructible number using paper folding

- Axioms
- The link with cubic equation
- Solving a cubic equation

Axioms Basic constructions Theorems

Axioms

▲ロト ▲郡 ト ▲ 臣 ト ▲ 臣 ト ₃

Axioms Basic constructions Theorems

Axioms

(日)

Axioms Basic constructions Theorems

Axioms

(日)

Axioms Basic constructions Theorems

Axioms

Axioms Basic constructions Theorems

Axioms

< ロ > < 回 > < 回 > < 回 > < 回 > ,

Axioms Basic constructions Theorems

Axioms

4 ロ ト 4 回 ト 4 注 ト 4 注 ト₈

Axioms Basic constructions Theorems

Axioms

< ロ > < 回 > < 回 > < 回 > < 回 > ,

Axioms Basic constructions Theorems

Constructing an orthogonal frame

Constructing \mathbb{Z}

Constructing \mathbb{Z}

Constructing \mathbb{Z}

 ${\color{black} \bullet \hspace{0.5mm} \bullet \hspace{0mm} \bullet \hspace{0$

Constructing \mathbb{Z}

Constructing \mathbb{Z}

Axioms Basic constructions Theorems

Constructing \mathbb{Z}

Constructing \mathbb{Z}

Constructing \mathbb{Q}

Axioms Basic constructions Theorems

Constructing \sqrt{a}

Pierre Wantzel theorem

Theorem

A number is constructible with compass and ruler if, and only if, it is expressed by sums, products, fractions and square roots of integers.

Pierre Wantzel theorem

Theorem

A number is constructible with compass and ruler if, and only if, it is expressed by sums, products, fractions and square roots of integers.

Corollary

Every solution of a quadratic equation is a constructible number.

<<p>(ロト

Pierre Wantzel theorem

Theorem

A number is constructible with compass and ruler if, and only if, it is expressed by sums, products, fractions and square roots of integers.

Corollary

Every solution of a quadratic equation is a constructible number.

Proof.

Solutions of
$$ax^2 + bx + c = 0$$
 (with $a \neq 0$) are

$$rac{-b\pm\sqrt{\Delta}}{2a}$$
 with $\Delta=b^2-4ac.$

< ロ > < 回 > < 回 > <

1 Constructible number using ruler and compass

- Axioms
- Basic constructions
- Theorems

2 Constructible number using paper folding

- Axioms
- The link with cubic equation
- Solving a cubic equation

Axioms

The link with cubic equation Solving a cubic equation

New axioms

Axioms The link with cubic equation Solving a cubic equation

The link with cubic equation

<ロ > < 回 > < 臣 > < 臣 > ₂₃

Axioms The link with cubic equation Solving a cubic equation

The link with cubic equation

Simon Allais Solving cubic equation by paper folding

< ロ > < 回 > < 臣 > < 臣 > ₂₄

Axioms The link with cubic equation Solving a cubic equation

The link with cubic equation

Simon Allais Solving cubic equation by paper folding

<ロ > < 回 > < 回 > < 臣 > < 臣 > ₂₅

Axioms The link with cubic equation Solving a cubic equation

The link with cubic equation

Simon Allais Solving cubic equation by paper folding

<ロ > < 回 > < 回 > < 三 > < 三 > ₂₆

Axioms The link with cubic equation Solving a cubic equation

The link with cubic equation

<ロ > < 回 > < 臣 > < 臣 > ₂₇

Axioms The link with cubic equation Solving a cubic equation

The link with cubic equation

ENS DE LYDN

<ロ > < 回 > < 臣 > < 臣 > ₂₈

The link with cubic equation

$$A = (0, 1)$$

$$B = (x_B, y_B)$$

$$D:ax+by+c=0$$

$$C(t) = (t,0) \quad (t \in \mathbb{R})$$

<ロ > < 回 > < 回 > < 三 > < 三 > ₂₉

The link with cubic equation

$$A = (0, 1)$$

 $B = (x_B, y_B)$
 $D : ax + by + c = 0$
 $C(t) = (t, 0) \quad (t \in \mathbb{R})$
 $x_B, y_B, a, b, c?$

<ロ > < 回 > < 回 > < 三 > < 三 > ₂₉

Axioms The link with cubic equation Solving a cubic equation

The link with cubic equation

When do we have BH = HI?

The link with cubic equation

When do we have BH = HI? When

$$at^{3}+(b(y_{B}-1)+c-ax_{B})t^{2}+(2(bx_{B}+ay_{B})-a)t+ax_{B}+b(y_{B}+1)+c=0.$$

Solving a cubic equation

We can obtain a *t* such that

 $at^{3} + (b(y_{B}-1)+c-ax_{B})t^{2} + (2(bx_{B}+ay_{B})-a)t + ax_{B}+b(y_{B}+1)+c = 0$

and we want that

$$t^3 + pt + q = 0$$
 (with $p, q \in \mathbb{R}$).

Solving a cubic equation

We can obtain a t such that

 $at^{3} + (b(y_{B}-1)+c-ax_{B})t^{2} + (2(bx_{B}+ay_{B})-a)t + ax_{B}+b(y_{B}+1)+c = 0$

and we want that

$$t^3 + pt + q = 0$$
 (with $p, q \in \mathbb{R}$).

Choosing b = 0, we can take

$$D: x=-rac{q}{2} \quad ext{and} \quad B=\left(rac{q}{2},rac{p+1}{2}
ight).$$

<ロ><日><日><日</td>

Finding $\sqrt[3]{2}$

Finding $\sqrt[3]{2}$

p = 0 and q = -2

Finding
$$\sqrt[3]{2}$$

$$\sqrt[3]{2}$$
 is the solution of $X^3 - 2 = 0$

$$p = 0$$
 and $q = -2$

$$B = \left(-1, \frac{1}{2}\right)$$

D: x = 1

Finding $\sqrt[3]{2}$

Axioms The link with cubic equation Solving a cubic equation

1.5 D $\sqrt[3]{2}$ is the solution of $X^3 - 2 = 0$ 0.5 p = 0 and q = -20 -1.5 -1 -0.5 0.5 1.5 $B = (-1, \frac{1}{2})$ 0 D: x = 1-1

<ロ > < 回 > < 臣 > < 臣 > ₃₂

Trisecting the angle

$$\cos \frac{\theta}{3}$$
 is a solution of $X^3 - \frac{3}{4}X - \cos \theta = 0$

Trisecting the angle

$$\cos \frac{\theta}{3}$$
 is a solution of $X^3 - \frac{3}{4}X - \cos \theta = 0$

$$p=-rac{3}{4}$$
 and $q=-rac{\cos heta}{4}$

Trisecting the angle

$$\cos \frac{\theta}{3}$$
 is a solution of $X^3 - \frac{3}{4}X - \cos \theta = 0$

$$p = -\frac{3}{4}$$
 and $q = -\frac{\cos\theta}{4}$
 $B = \left(-\frac{\cos\theta}{8}, -\frac{1}{8}\right)$

$$D: x = \frac{\cos\theta}{8}$$

Trisecting the angle

< ロ > < 回 > < 臣 > < 臣 > ₃₃

Thank you for your attention!

