Solving cubic equation by paper folding

Simon Allais

November 30， 2015
(1) Constructible number using ruler and compass

- Axioms
- Basic constructions
- Theorems
(2) Constructible number using paper folding
- Axioms
- The link with cubic equation
- Solving a cubic equation

Axioms

Constructing an orthogonal frame

Constructing \mathbb{Z}

Constructing \mathbb{Q}

Constructing $\sqrt{2}$

$$
\sqrt{a}=\sqrt{\left(\frac{a+1}{2}\right)^{2}-\left(\frac{a-1}{2}\right)^{2}}
$$

Pierre Wantzel theorem

Theorem

A number is constructible with compass and ruler if，and only if，it is expressed by sums，products，fractions and square roots of integers．

Pierre Wantzel theorem

Theorem

A number is constructible with compass and ruler if，and only if，it is expressed by sums，products，fractions and square roots of integers．

Corollary
Every solution of a quadratic equation is a constructible number．

Pierre Wantzel theorem

Theorem

A number is constructible with compass and ruler if, and only if, it is expressed by sums, products, fractions and square roots of integers.

Corollary

Every solution of a quadratic equation is a constructible number.

Proof.

Solutions of $a x^{2}+b x+c=0$ (with $\left.a \neq 0\right)$ are

$$
\frac{-b \pm \sqrt{\Delta}}{2 a} \text { with } \quad \Delta=b^{2}-4 a c .
$$

(1) Constructible number using ruler and compass

- Axioms
- Basic constructions
- Theorems
(2) Constructible number using paper folding
- Axioms
- The link with cubic equation
- Solving a cubic equation

New axioms

The link with cubic equation

The link with cubic equation

$$
\begin{aligned}
& A=(0,1) \\
& B=\left(x_{B}, y_{B}\right) \\
& D: a x+b y+c=0 \\
& C(t)=(t, 0) \quad(t \in \mathbb{R})
\end{aligned}
$$

The link with cubic equation

$$
A=(0,1)
$$

$$
B=\left(x_{B}, y_{B}\right)
$$

$$
D: a x+b y+c=0
$$

$$
C(t)=(t, 0) \quad(t \in \mathbb{R})
$$

$$
x_{B}, y_{B}, a, b, c ?
$$

The link with cubic equation

When do we have $B H=H I$ ？

The link with cubic equation

When do we have $B H=H I$ ？
When
$a t^{3}+\left(b\left(y_{B}-1\right)+c-a x_{B}\right) t^{2}+\left(2\left(b x_{B}+a y_{B}\right)-a\right) t+a x_{B}+b\left(y_{B}+1\right)+c=0$.

Solving a cubic equation

We can obtain a t such that
$a t^{3}+\left(b\left(y_{B}-1\right)+c-a x_{B}\right) t^{2}+\left(2\left(b x_{B}+a y_{B}\right)-a\right) t+a x_{B}+b\left(y_{B}+1\right)+c=0$
and we want that

$$
\left.t^{3}+p t+q=0 \quad \text { (with } p, q \in \mathbb{R}\right) .
$$

Solving a cubic equation

We can obtain a t such that
$a t^{3}+\left(b\left(y_{B}-1\right)+c-a x_{B}\right) t^{2}+\left(2\left(b x_{B}+a y_{B}\right)-a\right) t+a x_{B}+b\left(y_{B}+1\right)+c=0$
and we want that

$$
\left.t^{3}+p t+q=0 \quad \text { (with } p, q \in \mathbb{R}\right) .
$$

Choosing $b=0$, we can take

$$
D: x=-\frac{q}{2} \quad \text { and } \quad B=\left(\frac{q}{2}, \frac{p+1}{2}\right) .
$$

Finding $\sqrt[3]{2}$

$\sqrt[3]{2}$ is the solution of
$x^{3}-2=0$

Finding $\sqrt[3]{2}$

$\sqrt[3]{2}$ is the solution of $X^{3}-2=0$

$$
p=0 \text { and } q=-2
$$

Finding $\sqrt[3]{2}$

$\sqrt[3]{2}$ is the solution of
$X^{3}-2=0$
$p=0$ and $q=-2$
$B=\left(-1, \frac{1}{2}\right)$
$D: x=1$

Finding $\sqrt[3]{2}$

$\sqrt[3]{2}$ is the solution of $x^{3}-2=0$
$p=0$ and $q=-2$
$B=\left(-1, \frac{1}{2}\right)$
$D: x=1$

Trisecting the angle

$\cos \frac{\theta}{3}$ is a solution of
$X^{3}-\frac{3}{4} X-\cos \theta=0$

Trisecting the angle

$$
\begin{aligned}
& \cos \frac{\theta}{3} \text { is a solution of } \\
& X^{3}-\frac{3}{4} X-\cos \theta=0 \\
& p=-\frac{3}{4} \text { and } q=-\frac{\cos \theta}{4}
\end{aligned}
$$

Trisecting the angle

$$
\begin{aligned}
& \cos \frac{\theta}{3} \text { is a solution of } \\
& X^{3}-\frac{3}{4} X-\cos \theta=0 \\
& p=-\frac{3}{4} \text { and } q=-\frac{\cos \theta}{4} \\
& B=\left(-\frac{\cos \theta}{8},-\frac{1}{8}\right) \\
& D: x=\frac{\cos \theta}{8}
\end{aligned}
$$

Trisecting the angle

$\cos \frac{\theta}{3}$ is a solution of
$X^{3}-\frac{3}{4} X-\cos \theta=0$
$p=-\frac{3}{4}$ and $q=-\frac{\cos \theta}{4}$
$B=\left(-\frac{\cos \theta}{8},-\frac{1}{8}\right)$
$D: x=\frac{\cos \theta}{8}$

Thank you for your attention！

