Announcement for a postdoc position starting Sep. 1, 2020.


   Research Interests:

    C0 symplectic geometry, symplectic dynamics, area-preserving homeomorphisms.
    Here is a brief introductory talk on C0 symplectic geometry and two of the most challenging problems in the field.


  1. An Arnold-type principle for non-smooth objects (with Lev Buhovsky and Vincent Humilière). ArXiv:1909.07081 pdf
  2. Barcodes and area-preserving homeomorphisms (with Frédéric Le Roux and Claude Viterbo). ArXiv:1810.03139 pdf
  3. The action spectrum and C0 symplectic topology (with Lev Buhovsky and Vincent Humilière). ArXiv:1808.09790 pdf
  4. A C0 counter example to the Arnold conjecture (with Lev Buhovsky and Vincent Humilière). Inventiones Mathematicae , 213(2):759–809, 2018 pdf
  5. Towards a dynamical interpretation of spectral invariants on surfaces (with Vincent Humilière and Frédéric Le Roux). Geometry & Topology 20-4 (2016), 2253-2334. pdf
  6. Reduction of symplectic homeomorphisms (with Vincent Humilière and Rémi Leclercq). Annales de l'ENS 49 (2016), no. 3, 633-668. pdf
  7. Spectral killers and Poisson bracket invariants. J. Mod. Dyn. 9 (2015), 51–66. pdf
  8. Coisotropic rigidity and C0-symplectic topology (with Vincent Humilière and Rémi Leclercq). Duke Mathematical Journal 164 (2015), n°4, 767-799. pdf
  9. New Energy-Capacity-like inequalities and uniqueness of continuous Hamiltonians (with Vincent Humilière and Rémi Leclercq). Commentarii Mathematici Helvetici 90 (2015), 1-21. pdf
  10. Unboundedness of the Lagrangian Hofer distance in the Euclidean ball. Electron. Res. Announc. Math. Sci. 21 (2014), 1–7. pdf
  11. The displaced disks problem via symplectic topology. C. R. Math. Acad. Sci. Paris 351 (2013), no. 21-22, 841–843. pdf
  12. C0-limits of Hamiltonian paths and the Oh-Schwarz spectral invariants. Int. Math. Res. Not. IMRN 2013, no. 21, 4920–4960. pdf
  13. A note on C0 rigidity of Hamiltonian isotopies. J. Symplectic Geom. 11 (2013), no. 3, 489–496. pdf
  14. Uniqueness of generating Hamiltonians for topological Hamiltonian flows. J. Symplectic Geom. 11 (2013), no. 1, 37–52. pdf
  15. Descent and C0-rigidity of spectral invariants on monotone symplectic manifolds. J. Topol. Anal. 4 (2012), no. 4, 481–498. pdf
  16. L2-singular dichotomy for orbital measures of classical simple Lie algebras. Math. Z. 262 (2009), no. 1, 91–124. pdf
   My papers are also available at Mathscinet and at Zentralblatt. Here, you can find my CV.


  1. PhD, Yusuke Kawamoto, ENS-Paris (co-supervision with Claude Viterbo).
    • Yusuke’s article on C0 continuity of the spectral norm.
  2. Master's (M2), Yusuke Kawamoto, ``Symplectic topology and persistence modules," ENS-Paris, 2018.
  3. Master's (M1), Ella Blair,`` Foliations on 3--manifolds: The Thurston--Wood thoerem," Sorbonne Université, 2018.

  4. © IMJ-PRG 2014