Université Denis Diderot (Paris VII) MI3

2005-2006 Groupe Concours

Feuille 9 Espaces euclidiens

Exercice 1 — Soit $q: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la forme quadratique définie par

$$q(x, y, z) = x^2 + 6y^2 + 16z^2 - 4xy + 6xz - 16yz$$
 pour tout $(x, y, z) \in \mathbb{R}^3$.

- 1. Montrer que la forme bilinéaire symétrique associée à q est un produit scalaire.
- 2. On munit \mathbb{R}^3 du produit scalaire associé à q. Orthonormaliser la base canonique selon le procédé de Gram-Schmidt.

Exercice 2 —

Soient n un entier positif et E le \mathbb{R} -espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n. Soit $B: E \times E \longrightarrow \mathbb{R}$ l'application définie par

$$B(P,Q) = \int_0^1 P(t)Q(t)dt \quad \text{ pour tous polynômes } P,Q \in E.$$

- 1. Montrer que B est un produit scalaire .
- 2. Montrer qu'il existe un unique polynôme $H \in E$ tel que pour tout polynôme P de E on ait

$$\int_0^1 H(t)P(t)dt = P'(0).$$

- 3. On suppose que n=2 et on munit E du produit scalaire B.
 - (a) Orthonormaliser la base $(1, X, X^2)$ selon le procédé de Gram-Schmidt.
 - (b) Calculer le polynôme H.

Exercice 3 —

On munit \mathbb{R}^2 du produit scalaire usuel. Soit D la droite de \mathbb{R}^2 d'équation x + 2y = 0. Soient p la projection orthogonale de \mathbb{R}^2 sur D, et s la symétrie orthogonale de \mathbb{R}^2 par rapport à D.

- 1. Ecrire les matrices de p et de s dans la base canonique.
- 2. Trouver toutes les droites Δ de \mathbb{R}^2 telles que les droites Δ et $s(\Delta)$ sont orthogonales.

Exercice 4 —

On munit \mathbb{R}^3 du produit scalaire usuel. Soit D la droite de \mathbb{R}^3 engendrée par le vecteur (3,1,2). Quelle est la matrice dans la base canonique de la projection orthogonale de \mathbb{R}^3 sur la droite D?

Exercice 5 —

Soit $q: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la forme quadratique définie par

$$q(x, y, z) = 4x^2 + 5y^2 + 7z^2 - 8xy + 8xz - 6yz$$
 pour tout $(x, y, z) \in \mathbb{R}^3$.

- 1. Montrer que la forme bilinéaire symétrique associée à q est un produit scalaire.
- 2. On munit \mathbb{R}^3 du produit scalaire associé à q. Quelle est la matrice dans la base canonique, de la projection orthogonale sur le plan d'équation z = 0?

Exercice 6 — Soit P le sous-espace vectoriel de \mathbb{R}^4 d'équations

$$\begin{cases} x + 2y - t = 0 \\ x - 3y + z + t = 0. \end{cases}$$

On munit \mathbb{R}^4 du produit scalaire usuel. Quelle est la matrice dans la base canonique de la symétrie orthogonale de \mathbb{R}^4 par rapport à P?

Exercice 7 —

On munit \mathbb{R}^4 du produit scalaire usuel. Soient u_1, u_2, u_3, u_4 les vecteurs de \mathbb{R}^4 définis par

$$u_1 = (2, 1, 0, 2)$$
 $u_2 = (0, 1, 0, 1)$ $u_3 = (2, 1, 3, 1)$ $u_4 = (1, 1, 1, 1).$

- 1. Montrer que (u_1, u_2, u_3, u_4) est une base de \mathbb{R}^4 .
- 2. Orthonormaliser la base (u_1, u_2, u_3, u_4) selon le procédé de Gram-Schmidt.
- 3. Soit P le plan de \mathbb{R}^4 engendré par les vecteurs u_1 et u_2 . Trouver la matrice dans la base canonique de la projection orthogonale sur P.

Exercice 8 —

On considère l'espace euclidien orienté usuel \mathbb{R}^3 . Soit D la droite de \mathbb{R}^3 engendrée par le vecteur (1, -2, 2).

- 1. Trouver une équation de D^{\perp} .
- 2. Trouver une base orthonormée directe dont le premier vecteur appartient à D.
- 3. Quelles sont les matrices dans la base canonique de
 - (a) la symétrie orthogonale par rapport à D?
 - (b) la rotation d'axe D et d'angle $\frac{\pi}{2}$?
 - (c) la rotation d'axe D et d'angle $\frac{2\pi}{3}$?

Pour les deux dernières questions, le plan D^{\perp} est orienté par le choix du vecteur unitaire

$$e = \frac{1}{\|(1, -2, 2)\|}(1, -2, 2).$$

Exercice 9 — On munit \mathbb{R}^3 du produit scalaire usuel. Soient a, b, c, d des nombres réels et soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \left(\begin{array}{ccc} b & a & a \\ a & c & a \\ a & a & d \end{array}\right).$$

- 1. Pour quelles valeurs de a, b, c, d la matrice A est-elle orthogonale?
- 2. Pour quelles valeurs de a, b, c, d l'endomorphisme f est-il une symétrie orthogonale par rapport à un plan? Dans ce cas, préciser par rapport à quel plan.
- 3. Pour quelles valeurs de a, b, c, d l'endomorphisme f est-il une rotation? Dans ce cas, préciser l'axe et l'angle de f.

Exercice 10 — On munit \mathbb{R}^2 du produit scalaire usuel et on note $\langle u|v\rangle$ le produit scalaire des vecteurs u, v de \mathbb{R}^2 . Soit $q:\mathbb{R}^2 \longrightarrow \mathbb{R}$ la forme quadratique définie par

$$q(x,y) = 2x^2 + 2\sqrt{2}xy + 3y^2$$
 pour tout $(x,y) \in \mathbb{R}^2$.

1. Quelle est la matrice A de q dans la base canonique?

- 2. Soit f l'endomorphisme dont la matrice dans la base canonique est A.
 - (a) Montrer que pour tout vecteur $u \in \mathbb{R}^2$ on a $q(u) = \langle f(u) | u \rangle$.
 - (b) Trouver une base orthonormée (u_1, u_2) de \mathbb{R}^2 dans laquelle la matrice de f est diagonale. Calculer $q(au_1 + bu_2)$ pour tous nombres réels a et b.
- 3. Trouver une base orthonormée de \mathbb{R}^2 qui est orthogonale pour q.
- 4. Dessiner la ligne de niveau 4 de la fonction q.

Exercice 11 —

Soit f l'endomorphisme de \mathbb{R}^3 (que l'on munit du produit scalaire usuel) dont la matrice dans la base canonique est

$$A = \frac{1}{3} \left(\begin{array}{ccc} 2 & -2 & -1 \\ -1 & -2 & 2 \\ 2 & 1 & 2 \end{array} \right).$$

- 1. Montrer que f est une isométrie.
- 2. Montrer que f a une unique valeur propre que l'on déterminera.
- 3. Trouver une base orthonormée (u_1, u_2, u_3) de \mathbb{R}^3 telle que u_1 est vecteur propre de f.
- 4. Quelle est la matrice de f dans la base (u_1, u_2, u_3) ?
- 5. Montrer qu'il existe une unique rotation r et une unique symétrie orthogonale s par rapport à un plan telles que $f = r \circ s = s \circ r$. Préciser l'axe et la mesure de r.

Exercice 12 —

Soit E un espace euclidien.

1. Montrer que pour tous $(u, v) \in E$, on a l'égalité

$$2\langle u, v \rangle = ||u + v||^2 - ||u||^2 - ||v||^2.$$

2. En déduire que pour tous $(u, v) \in E$, on a l'égalité (dite égalité de la médiane) :

$$||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2).$$

3. Montrer le théorème suivant :

Théorème de Pythagore : Les vecteurs u et v sont orthogonaux si et seulement si $||u+v||^2 = ||u||^2 + ||v||^2$.

Exercice 13 — Soit E un espace euclidien de dimension n > 2, et (e_1, e_2, \dots, e_n) une base orthonormée de E. Considérons un vecteur $u = u_1e_1 + \dots + u_ne_n$ et f l'endomrphisme de E dont la matrice dans la base (e_1, e_2, \dots, e_n) est égale à $A = (u_iu_j)$.

- 1. Montrer que f est un endomorphisme symétrique et que f est de rang 1.
- 2. Quelles sont les valeurs propres et les espaces propres de f?
- 3. A quelle condition sur u l'endomorphisme f est-il une projection orthogonale?

Exercice 14 — On munit \mathbb{R}^3 du produit scalaire usuel. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \frac{1}{3} \left(\begin{array}{ccc} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{array} \right)$$

- 1. Trouver une base orthonormée de \mathbb{R}^3 formée de vecteurs propres de f.
- 2. Montrer que pour tout vecteur non nul u, on $a\langle f(u), u \rangle > 0$.
- 3. Soit $N: \mathbb{R}^3 \to \mathbb{R}$ l'application définie par $N(u) = \sqrt{\langle f(u), u \rangle}$. Montrer que N est une norme et que pour tout vecteur $u \in \mathbb{R}^3$, on a $||u|| \le N(u) \le \sqrt{2} ||u||$.

Exercice 15 — Soit E un espace euclidien de dimension 3 et r une rotation d'axe D. Montrer que pour toute isométrie f de E, l'endomorphisme $f \circ r \circ f^{-1}$ est une rotation, dont on précisera l'axe.

Exercice 16 —

Soient E un espace euclidien de dimension 3 et a un vecteur unitaire de E. Soit f l'endomorphisme de E défini par $f(x) = x \wedge a + \langle x, a \rangle a$ pour tout $x \in e$.

- 1. Calculer $||f(x)||^2$ pour tout vecteur $x \in E$.
- 2. Montrer que f est une rotation, dont on précisera l'axe et la mesure.

Exercice 17 — Soient E un espace euclidien de dimension 3 et f un endomorphisme de E. Montrer que f est une rotation si et seulement si $f(u \wedge v) = f(u) \wedge f(v)$ pour tous vecteurs u et v dans E.

Exercice 18 —

Soit E un espace euclidien de dimension 3. Soient s une symétrie orthogonale par rapport à un plan P et r une rotation de E d'angle différent de $k\pi$ pour $k \in \mathbb{Z}$ et telle que $r \circ s = s \circ r$.

- 1. Montrer que l'axe de r est la droite D orthogonale à P.
- 2. Montrer que 1 n'est pas valeur propre de $r \circ s$.
- 3. Montrer que u est un vecteur propre de $r \circ s$ si et seulement si u appartient à D.

Exercice 19 — Soient E un espace euclidien de dimension 3 et f une isométrie de E de déterminant -1 et telle que $f \neq -\mathrm{id}_E$.

- 1. Montrer que f est diagonalisable si et seulement si f est une symétrie orthogonale par rapport à un plan.
- 2. Montrer qu'il existe une unique symétrie orthogonale s par rapport à un plan et une unique rotation r telles que $f = r \circ s = s \circ r$.

Exercice 20 — Soit E un espace euclidien de dimension 4 et f une isométrie de E ayant un vecteur propre u.

- 1. Montrer qu'il existe un vecteur v orthogonal à u et qui est aussi vecteur propre de f.
- 2. Montrer qu'il existe un plan P de E tel que P et P^{\perp} sont stables par f et tel que la restriction de l'endomorphisme f à P est diagonalisable.
- 3. Montrer qu'il existe une base de E dans laquelle la matrice de f est de la forme

$$\begin{pmatrix} \varepsilon_1 & 0 & 0 & 0 \\ 0 & \varepsilon_2 & 0 & 0 \\ 0 & 0 & \varepsilon_3 & 0 \\ 0 & 0 & 0 & \varepsilon_4 \end{pmatrix} \text{ ou bien } \begin{pmatrix} \varepsilon_1 & 0 & 0 & 0 \\ 0 & \varepsilon_2 & 0 & 0 \\ 0 & 0 & \cos\theta & -\sin\theta \\ 0 & 0 & \sin\theta & \cos\theta \end{pmatrix}$$

avec $\varepsilon_i = \pm 1$ et $\theta \in]0, 2\pi[-\{\pi\}.$