
UNIFORM NON AMENABILITY AND `2 BETTI NUMBERS
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Abstract. It is shown that β1(Γ) ≤ h(Γ) for any countable group Γ, where β1(Γ) is the
first `2 Betti number and h(Γ) the uniform Cheeger constant. In particular a countable
group with non vanishing first `2 Betti number is uniformly non amenable.

Cheeger constants are then defined in the framework of measured equivalence rela-
tions. For an ergodic measured equivalence R of type II1 the uniform Cheeger constant
h(R) of R is invariant under orbit equivalence and satisfies β1(R) ≤ h(R), where β1(R)
is the first L2 Betti number of R in the sense of Gaboriau (in particular h(R) is a non
trivial invariant). In contrast with the group case, uniformly non amenable measured
equivalence relations of type II1 always contain non amenable subtreeings.

Let Γ be a countable group and α be an essentially free ergodic and measure preserving
actions of Γ on a probability space (X, µ). Denote by Rα the associated equivalence rela-
tion on X (the partition into Γ-orbits). A well-known theorem of Gaboriau implies that
β1(Rα) = β1(Γ), while the inequality h(Rα) ≤ h(Γ) is immediate from the definitions.
It may happen that h(Rα) < h(Γ).

An ergodic version he(Γ) of the uniform Cheeger constant h(Γ) is defined as the
infimum over all essentially free ergodic and measure preserving actions α of Γ of the
uniform Cheeger constant h(Rα) of the equivalence relation Rα associated to α. By
establishing a connection with the cost of measure preserving equivalence relations one
proves that he(Γ) = 0 for any lattice Γ in a semi-simple Lie group of real rank at least 2
(while h(Γ) doesn’t vanish in general).

1. Introduction

The Cheeger constant of a graph offers a simple way to capture the isoperimetric behavior
of finite sets in this graph. For a finitely generated countable group it reflects isoperime-
try in Cayley graphs associated to finite generating sets of this group and is related to
amenability. In the present paper we introduce an analog of this constant for measured
equivalence relations of type II1. As we shall see, it behaves in a very different manner
from a measured dynamic point of view.
Let R be a measured equivalence relation of type II1 on a standard probability space (X,µ).
Our main interest lies in two geometric invariants that have recently been attached to R:
the cost and the L2 Betti numbers. The cost of R is a real number with values in [1,∞]
(assuming R to be ergodic) denoted by C(R). From its definition one can readily infer that
it is invariant under isomorphism — i.e., orbit equivalence — of R and the main problem
is to compute it. In [8] Damien Gaboriau established an explicit formula relating the cost
of an amalgamated free product (over amenable equivalence subrelations) to the costs of
their components; this allowed him to solve the long standing problem of distinguishing
the free groups up to orbit equivalence. In [9] he went further and introduced the so-
called L2 Betti numbers of R. They are non negative numbers β0(R), β1(R), β2(R), . . . in
[0,∞] defined by geometric means using an approximation process (as for their analogs
for countable groups, see Cheeger and Gromov [5]) and one of the main problem here
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(solved in [9]) was to show that the resulting numbers only depend on the isomorphism
class of R. The first L2 Betti number also allows to distinguish the free groups up to
orbit equivalence. The relation between L2 Betti numbers and the cost is still unclear,
but the inequality C(R) ≥ β1(R) + 1 is known to hold true for any ergodic equivalence
relation of type II1 [9]. Recall that L2 Betti numbers were first introduced by Atiyah [3]
in 1976 in his work on the index of equivariant elliptic operators on coverings spaces of
Riemannian manifolds. In the present paper we consider a new isomorphism invariant
for R, the uniform Cheeger constant, h(R). It takes values in [0,∞] and is defined as an
infimal value of isoperimetric ratios for ‘finite sets’ in the Cayley graphs of R (see Section
4). For compact Riemannian manifolds (and their coverings) the Cheeger constant was
considered by Cheeger when he proved his well-known ‘Cheeger inequality’ relating it to
the bottom spectrum of the Laplacian.
Our first main theorem asserts that for any measured equivalence relation of type II1, and
in fact for any r-discrete measured groupoid G of type II1, one has the inequality

β1(G) ≤ h(G).

Here we assume G to be finitely generated, in which case the uniform Cheeger constant
h(G) has a finite value (for infinitely generated groupoids G we simply set h(G) = ∞
so that, for instance, a measured equivalence relation R given by a measure preserving
and essentially free action of the free group F∞ on infinity many generators will satisfy
β1(R) = h(R) = β1(F∞) = h(F∞) = +∞ [9]). For the sake of clarity and for the
convenience of the reader only interested in the group setting we present in Section 3 a
complete proof of this result in the particular case of a finitely generated countable group.
This will also facilitate the comparison with the proof of Cheeger-Gromov’s celebrated
vanishing theorem in [5], to which our arguments owe much. The latter asserts that for
an amenable countable group Γ the sequence

β0(Γ), β1(Γ), β2(Γ), . . .

of all `2 Betti numbers vanishes identically. Note that for an amenable Γ one does have
h(Γ) = 0 but there exist non amenable groups with h(Γ) = 0 (see [16, 2]). We then show
how to handle the case of measured equivalence relations of type II1 in Section 6 and that
of measured groupoids in Section 7.
We call an ergodic measured groupoid (of type II1) uniformly non amenable if its Cheeger
constant h(G) is non zero. The class of uniformly non amenable groups is quite large and
has been studied recently by Osin (see e.g. [16, 17]) and Arzhantseva, Burillo, Lustig,
Reeves, Short, Ventura ([2]). Breuillard and Gelander [4] have shown that for an arbitrary
field K, any non amenable and finitely generated subgroup of GLn(K) is uniformly non
amenable.
The class of uniformly non amenable measured equivalence relation turns out to be “much
smaller” than its corresponding group-theoretic analog. For instance if an equivalence
relation R is the partition into the orbits of an essentially free measure preserving action
of a (non-uniform) lattice in a higher rank Lie group we have h(R) = 0 (Corollary 17)
and thus R is not uniformly non amenable (note that R has the property T of Kazhdan
in that case). As well equivalence relations which are decomposable as a direct product
of two infinite equivalence subrelation have trivial uniform Cheeger constant (Corollary
18). These results are derived by establishing a relation between the cost and the uniform
Cheeger constant and by appealing to some of Gaboriau’s results in [8]. Explicitly we show
(in Section 8) that an ergodic equivalence relation with cost 1 has a vanishing Cheeger
constant. The proof is reminiscent of the (non) concentration of measure property for
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measured equivalence relations ([20]) which is implemented here via the Rokhlin Lemma.
We also show that uniformly non amenable measured equivalence relations have trivial
fundamental groups (see Section 10, this will alternatively follow from [8]) and always
contain a non amenable subtreeing (see Section 9). The latter is related to the measure-
theoretic analog of the Day–von Neumann problem. Recall that in the group case this
problem (i.e., is it true that every non amenable group contains a non amenable free
group?) is well-know to have a negative answer, as was proved Ol’shanskii. Osin [16]
showed that the answer was negative as well for uniformly non amenable groups. To prove
that it is positive in our situation, we combine our results with the corresponding known
fact for equivalence relations with cost greater than 1 (which was proved independently
by the first author and by Kechris-Miller, see the discussion in Section 9).

Acknowledgements. The first author was supported by an EPDI Post-doctoral Fellowship
and is grateful to IHES its hospitality.

2. Cheeger constants and countable groups

Let Y be a locally finite graph and A be a subset of vertices of Y . Define the boundary
of A in Y to be the set ∂YA of edges of Y with one extremity in A and the other one in
Y \A. The Cheeger isoperimetric constant of Y is the non negative number

h(Y ) = inf
A⊂Y

#∂YA

#A
,

where the infimum runs over all finite subsets A of vertices of Y .
Let Γ be a finitely generated group and S be a finite generating set of Γ. Recall that the
Cayley graph of Γ with respect to S is the graph Y whose vertices are the elements of Γ
and whose edges are given by right multiplication by elements of S. The Cheeger constant
of this graph is called the Cheeger constant of Γ with respect to S and is denoted it by
hS(Γ). Følner’s theorem asserts that a finitely generated group Γ is amenable if and only
if hS(Γ) = 0 for some (hence every) finite genereting set S [12].
By definition the uniform Cheeger constant of Γ is the infimum

h(Γ) = inf
S
hS(Γ)

over all finite generating sets S of Γ.

Example 1. Osin [16] has given examples of non amenable groups with h(Γ) = 0. For
instance he proved that the Baumslag-Solitar groups, with presentation

BSp,q = 〈a, t | t−1apt = aq〉

where p, q > 1 are relatively prime, have vanishing uniform Cheeger constant (note that
the uniform Cheeger constant considered in [16] is defined in terms of the regular rep-
resentation of the given group: compare Section 13 in the paper of Arzhantseva et al.
[2]).

Finitely generated groups with h(Γ) > 0 are called uniformly non-amenable (see [2]). In
fact our definition slightly differs from the one given in [2] due to a different choice for
the boundary of a finite subset of vertices in a graph (basically the present paper deals
with the “external boundary” while the definition in [2] involves the “internal boundary”,
see Appendix A for more details). The Baumslag-Solitar groups have vanishing uniform
Cheeger constant for any reasonable definition of the boundary.
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3. The uniform Cheeger constant and the first `2 Betti number

The `2 Betti numbers of a countable group Γ are non negative real numbers β0(Γ),
β1(Γ), . . . coming from `2 (co-)homology as Γ-dimension (also known as Murray-von Neu-
mann dimension). We refer to [11, 5, 18, 14] for their precise definition. By a well-known
theorem due to Cheeger and Gromov [5] the `2 Betti numbers of a countable amenable
group vanish identically. By elaborating on ideas of [5] (see in particular §3 in [5]) in the
case of non amenable groups we obtain the following explicit relation between the first
`2-Betti number and the uniform Cheeger constant.

Theorem 2. Let Γ be a finitely generated group. Then β1(Γ) ≤ h(Γ).

Proof. Let S be a finite generating set of Γ and Y be the Cayley graph of Γ with respect
to S. Write C(2)

i (Y ), i = 0, 1, for the space of square integrable functions on the i-cells
(vertices and edges) of Y . Associated to the simplicial boundary ∂Y on Y we have a
bounded operator

∂
(2)
1 : C(2)

1 (Y ) → C
(2)
0 (Y ).

Denote Z1(Y ) for the space of finite 1-cycles and Z(2)
1 (Y ) square integrable 1-cycles on Y .

Thus Z(2)
1 (Y ) is the kernel of ∂(2)

1 while Z1(Y ) is space of functions with finite support in
this kernel. The first `2 Betti number β1(Γ) of Γ coincides with the Murray-von Neumann
dimension

β1(Γ) = dimΓ H̄
(2)
1 (Y )

of the orthogonal complement H̄(2)
1 (Y ) ⊂ C

(2)
1 (Y ) of the closed subspace Z1(Y ) in Z(2)

1 (Y ),
where the closure of Z1(Y ) is taken with respect to the Hilbert norm. A proof of this fact,
together with the basic definitions used here, can be found in [19, section 3] (in particular
this step takes care of the approximation process involved in Cheeger-Gromov’s definition
of `2-Betti numbers; compare to [5]).
Let Ω ⊂ Y (1) be a finite subset of edges of Y and consider the space

H̄
(2)
1 (Y )|Ω = {σ|Ω : σ ∈ H̄(2)

1 (Y )}

of restrictions of harmonic chains to Ω. This is a linear subspace of the space C1(Ω) of
complex functions on Ω. Let

P : C(2)
1 (Y ) → C

(2)
1 (Y )

be the (equivariant) orthogonal projection on H̄(2)
1 (Y ) and

χΩ : C(2)
1 (Y ) → C

(2)
1 (Y )

be the orthogonal projection on C1(Ω).
Given a finite set A of Γ we denote by AS the set of edges with a vertex in A. One has
∂SA ⊂ AS , where ∂SA is the boundary of A in Y defined in Section 2. Let us now prove
that, for every non empty finite set A of Γ,

β1(Γ) ≤ 1
#A

dimC H̄
(2)
1 (Y )|AS

.
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Write MAS
for the composition χAS

P , considered as an operator from C1(AS) to itself
with range H̄(2)

1 (Y )|AS
. We have

dimΓ H̄
(2)
1 (Y ) =

∑
s∈S

〈Pδ(e,s) | δ(e,s)〉 =
1

#A

∑
a∈A,s∈S

〈Pδ(a,as) | δ(a,as)〉

≤ 1
#A

∑
u∈AS

〈Pδu | δu〉 =
1

#A
TrMAS

≤ 1
#A

dimC H̄
(2)
1 (Y )|AS

where the last inequality follows from the fact that ‖MAS
‖ ≤ 1. This gives the desired

inequality.
We now observe that every harmonic 1-chain (i.e. element of H̄(2)

1 (Y )) which “enters” a
subset AS has to intersect its boundary ∂SA:

Lemma 3. Let A be a finite subset of Γ. The canonical (restriction) map

r : H̄(2)
1 (Y )|AS

→ H̄
(2)
1 (Y )|∂SA

is injective.

Proof. Recall that
Z

(2)
1 (Y ) = H̄

(2)
1 (Y )⊕⊥ Z1(Y ).

Let σ ∈ H̄
(2)
1 (Y ). If σ vanishes on ∂SA, then σ|AS

is a finite 1-cycle as the boundary
operator commutes with the restriction to AS in that case. Thus σ|AS

vanishes identically.
�

Back to the proof of Theorem 2. The above Lemma 3 gives

dimC H̄
(2)
1 (Y )|AS

= dimC H̄
(2)
1 (Y )|∂SA ≤ #∂SA

which immediately yields the theorem:

dimΓ H̄
(2)
1 (Y ) ≤ #∂SA

#A
and thus β1(Γ) ≤ h(Γ). �

Remark 4. Lück’s generalization of Cheeger-Gromov theorem to arbitrary module coef-
ficients (Theorem 5.1 in [15]) does not hold for groups with vanishing uniform Cheeger
constant (as these groups may contain non abelian free groups, compare Remark 5.14 in
[15]).

Remark 5. The inequality β1(Γ) ≤ h(Γ) is not optimal in general. Consider for example
the case of the free group Fk on k generators. As is well-known one has β1(Fk) = k − 1
and the uniform Cheeger constant h(Fk) = 2k − 2 can be computed by considering large
balls with respect to a fixed generating set, e.g. the usual system Sk of k free generators
(see Appendix C). Let us concentrate on the inequality

dimΓ H̄
(2)
1 (Y ) ≤ 1

#A

∑
u∈AS

〈Pδu | δu〉

(derived in the proof above) which is quite generous in the case of Fk (for k ≥ 2). Given
a ball B with respect to Sk we have

#∂Sk
B ≥ (2k − 2)#B.
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Let ∂S−k
B be the set of edges of ∂Sk

B of the form (a, as) with as ∈ B and a 6∈ B. Then

#∂S−k
B =

1
2
#∂Sk

B ≥ (k − 1)#B.

On the other hand the difference between
1

#B

∑
u∈BSk

〈Pδu | δu〉 and β1(Fk) is

1
#B

∑
∂

S−
k

B

〈Pδu | δu〉 =
β1(Fk)
k

#∂S−k
B

#B
,

where the equality comes from equidistribution on the generating edges for β1(Fk): for
any edge in the graph, one has

〈Pδu | δu〉 =
k − 1
k

.

So we get
1

#B

∑
∂

S−
k

B

〈Pδu | δu〉 ≥
k − 1
k

β1(Fk),

which is already of the order of β1(Fk). Thus one can easily propose a better inequality
than the one in Theorem 2 for free groups, but this is too particular to improve the general
case.

4. Cheeger constants and measured equivalence relations

The aim of this section is to define the uniform Cheeger constant for measured equivalence
relations of type II1.
Let (X,µ) be a standard probability space. An equivalence relation R with countable
classes on X is called Borel if its graph R ⊂ X × X is a Borel subset of X × X. It is
called a measured equivalence relation if the saturation of a negligible subset of X is again
negligible. For instance if Γ is a countable group and α is a non singular action of Γ on
(X,µ), then the associated equivalence relation Rα, defined as the partition of X into
Γ-orbits, is a measured equivalence relation on X. See [7] for more details.
Let R be a measured equivalence relation on a standard probability space (X,µ). We
endow R with the horizontal counting measure h given by

h(K) =
∫

X
#Kxdµ(x)

where K is a measurable subset of R and Kx is the subset of X × X defined as Kx =
{(x, y) ∈ K}. A partial automorphism of R is a partial automorphism of (X,µ) whose
graph is included in R. One says that R is of type II1 if the measure µ is invariant under
every partial automorphism of R.
Recall that a graphing of a measured equivalence relation can be described in either one
the following two ways (cf. [8]):

(1) a family Φ = {ϕi}i≥1 of partial automorphisms of R such that for almost every
(x, y) ∈ R, there exists a finite sequence (ϕ1, ϕ2, . . . , ϕn) of elements of Φ ∪ Φ−1

such that y = ϕn . . . ϕ1(x),
(2) a measurable subset K of R such that R coincide with ∪∞1 Kn up to a negligible

set, where Kn is the n-th convolution product of K.
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Let K be a graphing of R. Let us first define the Cheeger constant hK(R) of R with
respect to K. Consider the measurable field of graphs Σ = qx∈XΣx over X defined as
follows (see [9]): the vertices of Σx are elements of Rx and the set of edges of Σx is the
family of triple (x, y, z) ∈ R ∗ R such that (y, z) ∈ K, where R ∗ R is the fibered product
of R with itself over X. There is an obvious action of R on Σ by permutation of fibers. In
concordance with group theory we will call Σ the Cayley graph of R associated to K. This
is an example of a “quasi-periodic metric space” associated to R ([21]). The canonical
projection r : Σ → X is called the realization map. One writes Σ(0) for the set of vertices
and Σ(1) for the set of edges of Σ (thus Σ(0) = R). We define points in Σ as follows (this
strengthens the corresponding definition in [21] so as to fit our present purposes).

Definition 6. Let Σ be the Cayley graph of R with respect to a graphing K. By a point
of Σ we mean the graph in Σ(0) of an automorphism of the equivalence relation R. We
will say that two points of Σ are distinct if the corresponding graphs in Σ(0) have null
intersection (with respect to the measure h).

Given a finite set A of points of Σ one denotes by ∂KA ⊂ Σ(1) the set of edges of Σ with
one vertex in A and the other one outside of A. We endow Σ(1) with the measure ν(1)

defined by,

ν(1)(E) =
∫

X
#(E ∩ Σx)dµ(x)

for a measurable subset E of Σ(1).
A graphing K of R is said to be finite if it can be partitioned into a finite number of
partial automorphisms of R. A type II1 equivalence relation R on (X,µ) is said to be
finitely generated if it admits a finite graphing (this is equivalent to saying that R has
finite cost, see [8]; the definition of the cost of an equivalence relation is recalled in section
8).

Definition 7. Let R be a finitely generated equivalence relation of type II1 on (X,µ) and
K be a finite graphing of R. The Cheeger Constant of R with respect to K is the non
negative number

hK(R) = inf
A⊂Σ

ν(1)(∂KA)
#A

,

where the infimum is taken over all finite sets of pairwise distinct points of Σ.

The uniform Cheeger constant of a finitely generated equivalence relation R is the non
negative number

h(R) = inf
K⊂R

hK(R)

where the infimum is taken over the finite graphings K of R. Note that by definition the
uniform Cheeger constant of an equivalence relation is invariant under isomorphism.

Remark 8. Other definitions of the Cheeger constant would a priori be possible in the
measure-theoretic context, for instance

h′(R) = inf
K⊂R

inf
A⊂Σ(0)

ν(1)(∂KA)
h(A)

where the second infimum is now taken over all subsets A ⊂ Σ(0) which, say, have finite
and non zero h-measure. One has to be careful here to indeed define a non trivial invariant
in that way. For example the above definition gives h′(R) = 0 for any ergodic equivalence
relation R of type II1 (see Section 7 in [20]).
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In fact it is not clear either that our definition of h(R) can achieve non trivial numbers.
It involves an infimum over all possible (finite) graphings of R, in the spirit of the cost of
equivalence relations [8, 13], so that a proof that h(R) is a non trivial invariant requires
an homotopy invariance type argument. The one we will give below relies on Gaboriau’s
homotopy invariance theorem [9] for L2 Betti numbers (see section 5).

Definition 9. An ergodic equivalence relation of type II1 is called uniformly non amenable
if h(R) > 0.

Proposition 10. A uniformly non amenable ergodic equivalence relation of type II1 is
not amenable.

Proof. This is an easy consequence of Connes-Feldman-Weiss theorem [6]. �

5. The first L2 Betti number of a type II1 equivalence relation

We sketch the definition of the first L2 Betti numbers for measure preserving equivalence
relations. For more details and proofs see the paper of Gaboriau [9].
Let (X,µ) be a standard probability space and Σ be a measurable field of oriented 2-
dimensional cellular complexes. For i = 0, 1, 2 we write C[Σ(i)] for the algebras of functions
on the i-cells of Σ which have uniformly finite support: a function f : Σ(i) → C is in C[Σ(i)]
if and only if there exists a constant Cf such that for almost every x ∈ X, the number of
i-cell σ of Σx such f(σ) 6= 0 is bounded by Cf . The completion of C[Σ(i)] for the norm

‖f‖2
2 =

∫
X

∑
σ i−cells in Σx

|f(σ)|2dµ(x)

is a Hilbert space which we denote by C(2)
i (Σ). If Σ is uniformly locally finite, i.e. if the

number of cells attached a vertex σ ∈ Σ(0) is almost surely bounded by a constant C, then
the natural (measurable fields of) boundary operators ∂i : C[Σi] → C[Σi−1] coming from
the ‘attaching cells maps’ extend to bounded operators ∂(2)

i : C(2)
i (Σ) → C

(2)
i (Σ). The

first reduced L2 homology space of Σ is the quotient space

H
(2)
1 (Σ) = ker ∂(2)

1 /Im ∂
(2)
2

of the kernel of ∂(2)
1 by the (Hilbert) closure of the image of ∂(2)

2 . It is naturally isometric

to the orthogonal complement of Im ∂
(2)
2 in ker ∂(2)

1 .
Let now R be a measured equivalence relation of type II1 on (X,µ). Consider a measurable
field of oriented 2-dimensional cellular complex Σ endowed with a measurable action of
R with fundamental domain (a fundamental domain D in Σ is a measurable set of cells
of Σ intersecting almost each R-orbit at a single cell of D). Assume that Σ is uniformly
locally finite and denote by N the von Neumann algebra of R . The first L2 homology
space H(2)

1 (Σ) is then a Hilbert module and it has a Murray-von Neumann dimension over
N . This dimension is called the first L2 Betti number of Σ and is denoted by β1(Σ, R).
Gaboriau [9] has extended this definition to the non necessarily uniformly locally finite
case by using an approximation technique in the spirit of Cheeger-Gromov [5]. He then
proved that the associated L2 Betti number β1(Σ, R) is independent of the choice of Σ
provided that Σ is simply connected (i.e. almost each fiber is simply connected). We
refer to this result as Gaboriau’s homotopy invariance theorem (it holds for all L2 Betti
numbers, see [9, Théorème 3.13]). The number β1(Σ, R) where Σ is simply connected (for
instance one can take for Σ the Cayley graph of R with respect to a given graphing K as
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defined in the previous section), is called the first L2 Betti number of R and is denoted
by β1(R).

6. The uniform Cheeger constant and the first L2 Betti number

Theorem 11. Let R be a finitely generated measured equivalence relation of type II1 on
a probability space (X,µ). Then β1(R) ≤ h(R).

Proof. Let K ⊂ R be a finite graphing of R and Σ be the Cayley graph of R associated
to K. Denote by C

(2)
0 (Σ) and C

(2)
1 (Σ) the spaces of square integrable functions on the

vertices and edges of Y (as in section 5) and consider the bounded fibred boundary operator
∂

(2)
1 : C(2)

1 (Σ) → C
(2)
0 (Σ) coming from the graph structure of Σ. Let Z(2)

1 (Σ) be the kernel
of ∂(2)

1 (the space of square integrable 1-cycles) and Z1(Σ) the vector space of functions with
uniformly finite support in Z

(2)
1 (Σ). Then β1(R) is the Murray-von Neumann dimension

of the orthogonal complement H̄(2)
1 (Σ) ⊂ C

(2)
1 (Σ) of Z1(Σ) in Z

(2)
1 (Σ) where the closure

is understood with respect to the Hilbert norm. Let us explain how to adapt the proof of
theorem 2 to this case.
Given a measurable subset Ω ⊂ Σ(1) for which the function x 7→ #Ωx is essentially bounded
we define

H̄
(2)
1 (Σ)|Ω = {σ|Ω : σ ∈ H̄(2)

1 (Σ)}
to be the space of restrictions of harmonic chains to Ω. This is a fibred linear subspace
of the space C1(Ω) of complex functions with uniformly finite support on Ω. Let P :
C

(2)
1 (Σ) → C

(2)
1 (Σ) be the (equivariant) orthogonal projection onto H̄

(2)
1 (Σ) and χΩ :

C
(2)
1 (Σ) → C

(2)
1 (Σ) be the orthogonal projection on C1(Ω).

Let A be a finite subset of points of Σ (Def. 6). We write AK for the set of edges of Σ
with a vertex in A, and ∂KA the set of edges of Σ with exactly one extremity in A. Then
for every finite subset of pairwise disjoints points of Σ one has

β1(R) ≤ 1
#A

∫
X

dimC H̄
(2)
1 (Σ)x

|AK
dµ(x).

Indeed denote by MAK
= χAK

P (considered as a fibered operator from C1(AK) to itself
with range H̄(2)

1 (Σ)|AK
). We have

dimN H̄
(2)
1 (Σ) =

∫
K
〈P r(γ)δγ | δγ〉dh(γ)

≤ 1
#A

∫
AK

〈P r(u)δu | δu〉dν(1)(u)

=
1

#A

∫
X

TrMx
AK
dµ(x)

≤ 1
#A

∫
X

dimC H̄
(2)
1 (Σ)x

|AK
dµ(x)

where the last inequality follows from the a.e. inequality ‖Mx
AK

‖ ≤ 1. Now as the
boundary operators are fibered one can apply Lemma 3 to conclude that

dimC H̄
(2)
1 (Σ)x

|AK
= dimC H̄

(2)
1 (Σ)x

|∂AK
≤ #∂KA

x

for almost every x ∈ X. Thus β1(R) ≤ hK(R) and the Theorem follows. �
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Remark 12 (See also Section 9). Keeping the notations of the proof, the number

τ(R) = inf
K⊂R

dimN Z1(ΣK),

where the infimum is taken over all finite graphings K of R (and ΣK is the Cayley graph
of R with respect ot K) was called the rate of cycles of R in [21]. It was introduced there
because of its relations to the following (still open) question of Gaboriau [9, section 3.6]:
is it true that C(R) = β1(R) + 1 for every finitely generated ergodic equivalence relation
of type II1 ? (here C(R) is the cost of R, see section 8). One has indeed

C(R) = τ(R) + β1(R) + 1

for any finitely generated ergodic equivalence relation of type II1 (see [21], this is not
hard to show and can be seen exactly as in the group case [19]). Thus there is no known
examples of equivalence relations with non trivial rate of cycles. “Erasing cycles” of a
given graphing leads to the existence of non amenable subtreeings in equivalence relation
with non trivial cost ([21]).

Proposition 13. Let Γ be a countable group and α be an ergodic essentially free measure
preserving action of Γ on a probability space (X,µ). Let Rα be the orbit partition of X
into the orbits of α. Then β1(Γ) ≤ h(Rα) ≤ h(Γ)

Proof. The first equality follows from [9] and Theorem 11 while the second follows from
the definitions (simply note that for any Cayley graph Y of Γ and any distinct points
γ1, γ2 ∈ Γ = Y (0) the graphs of α(γ−1

1 ) and α(γ−1
2 ) are distinct points in the corresponding

Cayley graph of Rα because α is essentially free). �

7. The case of discrete groupoids

Let G be an r-discrete measured groupoid of type II1 with base space (X,µ) and counting
Haar system h = # (see [1]). We write r and s for the range and the source map,
respectively. Examples of r-discrete measured groupoids include countable groups and
measured equivalence relations with countable classes.
By a graphing of G we mean a measurable subset K of G such that ∪∞1 Kn = G up to a
negligible set, whereKn is the n-th convolution product ofK. To a graphing is associated a
Cayley graph of G, which is constructed as for measured equivalence relations and coincide
with the classical definition when G is a countable group. Let Σ be a Cayley graph of G,
associated to a graphing K. In order to define hK(G) we only need to precise the notion
of a point in Σ (compare Def. 6), as we can then copy the equivalence relations definition
(see Section 4). Recall that the vertex set Σ(0) of Σ coincides with G. By a point of Σ we
mean a subset a of Σ(0) = G such that the restrictions s|a and r|a of both the range and
the source maps are measurable isomorphisms. Note that these definitions coincide with
the ones given for groups and equivalence relations. We say that G is finitely generated
if it admits a finite graphing, i.e. a graphing K for which the functions x 7→ #Kx and
x 7→ #Kx are in L∞(X,µ), where Kx = K ∩ r−1(x) and Kx = K ∩ s−1(x). For a finitely
generated measured groupoid we set

h(G) = inf
K⊂G

hK(G)

where the infimum ranges over all finite graphings K of G. As far as quasi-periodicity is
concerned the difference between measured equivalence relations and measured groupoids
when it comes to the definition of a ‘notion of quasi-periodicity’ (see [21]) is that the
latter forces some parts of the quasi-periodic metric space under consideration to actually
be periodic.
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As noted by Gaboriau in [9] the notion of L2 Betti numbers for measured equivalence rela-
tions also extends to r-discrete measured groupoids of type II1 and gives an isomorphism
invariant.
With these definitions at hand it is now an easy exercise to adapt the proof of Theorem
11 to the present situation. As in the case of equivalence relations the above definition of
h(G) is conceived to imply the following estimate to hold,

β1(G) ≤ 1
#A

∫
X

dimC H̄
(2)
1 (Σ)x

|AK
dµ(x)

(with obvious notations), from which the desired result follows:

Theorem 14. Let G be a finitely generated r-discrete measured groupoid of type II1.
Then β1(G) ≤ h(G).

8. Ergodic Cheeger constant of countable groups

Let Γ be a finitely generated group. We define the ergodic Cheeger constant of Γ by the
expression

he(Γ) = inf
α
h(Rα)

where the infimum is taken over all ergodic essentially free measure preserving actions α
of Γ on a probability space, Rα is the partition of X into the orbits of α, and h(Rα) is the
uniform Cheeger constant of Rα. Thus we have β1(Γ) ≤ he(Γ) ≤ h(Γ) by Proposition 13.
Examples of groups for which he(Γ) < h(Γ) are given below. Let us first recall the notion
of cost of an equivalence relation [8].

Let R be an ergodic equivalence relation of type II1 on a probability space (X,µ). The
cost of a partial automorphism ϕ : A→ B of R is the measure of its domain, C(ϕ) = µ(A).
The cost of a graphing Φ = {ϕi}i≥1 of R (see section 4) is defined to be

C(Φ) =
∑
i≥1

C(ϕi)

while the cost of R is the infimum

C(R) = inf
Φ
C(Φ)

where Φ runs among all graphings Φ of R. The cost of a countable group Γ is the infimum

C(Γ) = inf
α
C(Rα)

where α runs over all ergodic essentially free measure preserving actions α of Γ on a
probability space. This definition has been introduced by Levitt. See [13] for a survey.

Proposition 15. Let R be a ergodic equivalence relation with cost 1. Then h(R) = 0.

Proof. Let R be an ergodic equivalence relation with cost 1. Let ϕ be an ergodic auto-
morphism of R and for each real number ε > 0 let ψε be a partial automorphism of R of
cost ε such that

Φε = (ϕ,ψε)
is a graphing of R. The existence of such graphings of R is proved in [8]. Denote by Rϕ

be the equivalence relation generated by ϕ and fix n0 ∈ N, ε0 > 0. By Rokhlin Lemma
there exists a family B1, . . . , Bn0 of disjoints subset of X such that

ϕ(Bi) = Bi+1 for i = 1 . . . n0 − 1 and µ(X\ ∪n0
1 Bi) ≤ ε0.
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Suppose that ε < µ(B1) and consider two partial automorphisms θε,1 and θε,2 of the
equivalence relation Rϕ such that θε,1(domψε) ⊂ B1 and θε,2(Imψε) ⊂ B1. Set

ψ′ε = θε,2ψεθ
−1
ε,1 .

It is not hard to check that Φ′ε = (ϕ,ψ′ε) is a graphing of R. By letting n0 → ∞ we get
the following property: for any integer n ∈ N and any ε > 0 sufficiently small there exists
a graphing Φε,n of R of the form Φε,n = (ϕ,ψε,n) whose cost is less than 1 + ε and such
that for almost every x ∈ X, the intersection of either the domain or the image of ψε,n

with the finite set
(x, ϕ(x), . . . , ϕn(x))

is at most one point (this should be compared to the fact that the “concentration of
measure” property fails for automorphisms of standard probability spaces by Rokhlin
Lemma, see [20]). Let us now consider the Cayley graph Σε,n associated to Φε,n as in
section 4. Let An be the finite set of pairwise disjoints points of Σε,n given by An = {ϕi}n

i=0.
Then the boundary of Ax

n in Σx
ε,n consists of at most 4 points for almost every x ∈ X. It

follows that h(R) = 0. �

Corollary 16. If a group has cost 1, then its ergodic Cheeger constant is zero.

Proof. This follows from the fact that the infimum over the actions of the group occurring
in the definition of the cost is attained [8]. Note that the infimum in [8] is taken over all
(not necessarily ergodic) measure preserving essentially free actions but this infimum is
attained (and thus is a minimum) for an ergodic action, as one easily sees by replacing
the infinite product measure by an ergodic joining [10] in the proof of Proposition VI.21
in [8]. �

Thus the class of uniformly non amenable groups appears to be much larger from the
geometric point of view than from the ergodic point of view. Breuillard and Gelander
proved in [4] that for an arbitrary field K, any non amenable and finitely generated
subgroup of GLn(K) is uniformly non amenable. This is the case for instance for SL3(Z)
while this group has cost 1 (see [8]) and thus he(SL3(Z)) = 0. More generally if Γ is a
lattice in a semi-simple Lie group of real rank at least 2, then Γ has cost 1 by Corollaire
VI.30 in [8]. Note that non uniform lattices have fixed price [8] and in that case any
measure preserving action gives an equivalence relation with trivial Cheeger constant.

Corollary 17 (Compare [4]). Lattices in a semi-simple Lie group of real rank at least 2
have trivial ergodic Cheeger constant.

For the case of direct product of groups one gets the following result.

Corollary 18. Finitely generated groups which are decomposable as a direct product of
two infinite groups have trivial ergodic Cheeger constant. Finitely generated equivalence
relation which are decomposable as a direct product of two equivalence relations with
infinite classes have trivial uniform Cheeger constant.

Proof. This follows from the fact that the cost of a direct product is 1 [8]. See also [13]. �

9. On the Day-von Neumann problem for uniformly non amenable
equivalence relations

Using Adian’s theorem, Osin [17] proved that free Burnside groups with large (odd) ex-
ponent are uniformly non amenable (and even that the regular representation has non
vanishing uniform Kazhdan’s constant). As this groups do not contain free groups he
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deduced the existence of finitely generated groups which are uniformly non amenable and
do not contain any free group on two generators [17, Theorem 1.3]. The question of the
existence of non abelian free groups in non amenable groups is often referred to as the
(Day-)von Neumann problem. It has been solved negatively by Ol’shanskii in 1980 ; Adian
(1982) has shown that the above mentioned Burnside groups are non amenable.
The Day-von Neumann problem is an open question for measured equivalence relations.
It can be formulated in the following way. Let (X,µ) be standard probability space and
R be a non amenable ergodic equivalence relation of type II1 on (X,µ). Is it true that
R contains a non amenable subtreeing ? Recall that a treeing is a graphing without non
negligible cycle (see [8]).
It has been proved independently (in 2001) by the first author [21] and by Kechris-Miller
[13] that every ergodic equivalence relation of type II1 with cost greater than 1 (and thus
non amenable) contains a non amenable subtreeing. Combining with Theorem 15 we get
the following result.

Corollary 19 (See [17] for the group case). Let R be a uniformly non amenable ergodic
equivalence relation of type II1. Then R contains a non amenable subtreeing.

10. Fundamental groups

Let (X,µ) be a probability space and R be an ergodic equivalence relation of type II1
on (X,µ). The so-called fundamental group of R is the multiplicative subgroup of R∗

+

generated by the measure of all Borel subsets Y of X such that the restricted equivalence
relation R|Y is isomorphic to R. The next proposition is a corollary of Theorem 15 and
the fact that equivalence relations with non trivial cost have trivial fundamental group,
which is proved in [8]. We now give a direct proof of this result.

Proposition 20. An ergodic equivalence relation of type II1 which is uniformly non
amenable has a trivial fundamental group.

Proof. This is straightforward from the following compression formula. LetR be an ergodic
equivalence relation on (X,µ) and Y ⊂ X be a non negligible measurable subset of X.
Let S be the restriction of R to Y . Then

h(R) ≤ µ(Y )h(S).

Note that (by definition) h(S) should be computed with respect to the normalized measure
µ1 = µ

µ(Y ) . Let us prove this formula.
Fix ε ∈ (0, µ(Y )). Let K be a graphing of S such that hK(S) ≤ h(S) + ε/4 and let A be
a finite set of pairwise distinct points of ΣK such that

ν
(1)
1 (∂KA)

#A
< hK(S) + ε/4

and #A > 12/ε, where ν
(1)
1 is the counting measure on Σ(1)

K associated to µ1. Write
A = {ψ1, . . . , ψk} where ψj ∈ [[S]], j = 1 . . . k.
Let n be an integer greater than k and {Yi}i∈Z/nZ be a partition of X\Y into n measurable
subsets of equal measure δ < ε/4. Choose Y−1 ⊂ Y such that µ(Y−1) = δ and consider
partial isomorphisms

ϕ−1 : Y−1 → Y0

and
ϕ[i] : Yi → Yi+1, i ∈ Z/nZ,
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whose graphs are included in R and such that the automorphism ϕ = qi∈Z/nZϕi induces
an action of Z/nZ on X\Y . Then

K ′ = K ∪ {ϕ−1} ∪ {ϕ}
is a graphing of R. Denote by ΣK the Cayley graph of S associated to K and ΣK′ the
Cayley graph of R associated to K ′. For j = 1 . . . k consider the automorphism of X
defined by

ψ′j = ϕj q ψj

and observe that the graphs of ψj , j = 1 . . . k, are pairwise disjoint. Set A′ = {ψ′j}j=1...k.
Then for y ∈ Y one has

#(∂K′A′)y ≤ #(∂KA)y + #{ψ ∈ A,ψ(y) ∈ Y−1}
and for y ∈ X\Y one has #(∂K′A′)y ≤ 3. Thus

ν(1)(∂K′A′) ≤ µ(Y )ν(1)
1 (∂KA) + kδ + 3µ(Y \X)

where ν(1) is the counting measure on Σ(1) associated to µ. It follows that

h(R) ≤ ν(1)(∂K′A′)
#A′

≤ µ(Y )(h(S) + ε/2) + ε/2

≤ µ(Y )h(S) + ε.

So h(R) ≤ µ(Y )h(S) as required. �

Appendix A. Comparison with alternative definitions of uniform
amenability

In this section we analyze the differences and analogies between the different notions of
uniform non amenability. In [2], Arzhantseva, Burillo, Lustig, Reeves, Short and Ventura
give a definition of Følner constants, which is very close to our definition of Cheeger
constants. The only difference in the definition is the fact that they consider the inner
boundary while we consider the geometric boundary. For a finitely generated group Γ,
with generating system S, and A a finite part of the Cayley graph of Γ, one has

FølX(Γ, A) =
#∂int

S A

#A
with ∂int

S A = {a ∈ A,∃x ∈ S ∪ S−1, ax 6∈ A},

while our boundary is ∂SA = {(a, ax), x ∈ S ∪ S−1, a ∈ A, ax 6∈ A} with (a, ax) the edge
between the vertices a and ax.
Considering sets A without isolated points, one immediately gets that

(1) FølS(Γ, A) ≤ hS(Γ, A) ≤ (2#S − 1)FølS(Γ, A)

hence one has the following proposition.

Proposition 21. Let FølS(Γ) be the Følner constant defined in [2], then one has

FølS(Γ) ≤ hS(Γ) ≤ (2#S − 1)FølS(Γ).

In particular one gets that Føl(Γ) ≤ h(Γ).

This means that a uniformly non amenable group in the sense of [2] is uniformly non
amenable in our sense. It is unclear whether the converse is true : there might exist non
amenable groups that are not uniformly non amenable in the sense of [2] but uniformly
non amenable in our sense. However, for all known examples of such groups, there exists
a maximal bound for the size of the generating systems used to reach the infimum, so
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these groups are also non uniformly non amenable in our sense. This can be summarized
as follows.

Claim 22. Suppose there exists an integer n such that inf
S

FølS(Γ) = inf
S,#S≤n

FølS(Γ), then

both notions of uniform non amenability coincide.

Another notion of uniform non amenability was introduced by Osin in [16], linked with
the Kazhdan estimates for the regular representation λ. A group is said to be uniformly
non amenable if α(Γ) = infS α(Γ, S) > 0, where S runs over all finite generating systems
of Γ and

α(Γ, S) = inf
u∈`2(Γ),u 6=0

maxx∈S
‖λ(x)u− u‖

‖u‖
·

(Note that this constant is also presented as a Kazhdan constant for the regular represen-
tation in [2] and denoted by K(ΛΓ,Γ).)
Consider the Laplacian associated with the Cayley graph Y generated by a given symetric
system of generators S, id est the operator ∆S acting on `2(Γ) by

∆S(u)(g) =
1

#S

∑
x∈S

[u(g)− u(xg)].

Let A be a finite subset in Y and consider the normalized characteristic function u = χA−1√
#A

.
Then one has

‖∆S(u)‖2 =
1

#S#A

∑
x ∈S,g∈Γ

[χA−1(g)− χA−1(xg)]2 =
#∂SA

#S#A
·

Hence, one has that

α(Γ, S)2

#S
≤ inf

u∈`2(Γ),‖u‖=1
‖∆S(u)‖2 ≤ hS(Γ)

#S
,

so we have proven the following proposition.

Proposition 23. Let α(Γ) be the constant introduced by Osin [16]. Then one has

α(Γ) ≤
√
h(Γ).

This means that a non uniformly amenable group in the sense of Osin is still non amenable
in our case, while the converse seems to be an open question [2].

Appendix B. Some properties of Cheeger constants

In this section we restate properties showed in [2] on Følner constants for the Cheeger
constants we introduce. We have ommited the proofs as they are quasi verbatim the
ones in [2]. First of all, Cheeger constants are linked to exponential growth. Recall that
the exponential growth rate of a group Γ finitely generated by S is defined as the limit
ωS(Γ) = lim

n→∞
n
√

#BS(n) where BS(n) is the ball of elements in Γ with geodesic distance
as S words at most n.

Proposition 24 (Cheeger constant and exponential growth).
Let Γ be a finitely generated group and S a finite generating system, then

h(Γ) ≤ hS(Γ) ≤ (2#S − 1)[1− 1
ωS(Γ)

].
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Note that we don’t know in general in our case if uniform non amenability implies uniform
exponential growth. This is the case when we know that the infimum can be attained for
systems of generators with uniform bound on the cardinals of these systems.
About the Cheeger constants for subgroups and quotients the theorems of [2] are exactly
the same.

Theorem 25 (Subgroups).
Let Γ be a finitely generated group and S a finite system of generators.

(1) Consider the subgroup Γ′ generated by a subsystem S′ ⊂ S. Then one has
hS(Γ) ≥ hS′(Γ′).

(2) Let H be a subgroup of γ generated by a system T with m elements and such that

the length of each element of T as a word in S is at most L. Then hS(Γ) ≥ hT (H)
1 +mL

.

Theorem 26 (Quotients). Let Γ be a finitely generated group and S a finite system of
generators. Denote by N a normal subgroup and by π : Γ → Γ/N the natural projection.
Then hS(Γ) ≥ hπ(S)(Γ/N) hence h(Γ) ≥ h(Γ/N)

Appendix C. Some bounds on Cheeger constants

In this section we give an explicit calculation for the free group, as in [2], and derive some
bounds for groups by quotient and subgroup theorems.

Proposition 27. For the free group on k generators, one has h(Fk) = 2k − 2.

First, we prove that this a lower bound.

Lemma 28. Let A be a finite part of Y the Cayley graph of Fk generated by S a system
of k free generators. Then one has

#∂SA

#A
≥ 2k − 2.

Proof. Denote by Vj the number of vertices in A which have j edges sitting completely in
A. Then A has Euler characteristic null being a tree, so that

1−
2k∑

j=1

Vj + 1/2
2k∑

j=1

Vj = 0.

Then one has #∂SA =
2k∑

j=1

(2k − j)Vj hence

#∂SA

#A
= 2k −

∑2k
j=1 jVj∑2k
j=1 Vj

= 2k − 2 +
2

#A
≥ 2k − 2.

�

Now using comparison with the exponential rate, we know that

h(Fk) ≤ (2k − 1)(1− 1
ωS(Fk)

)

and that ωS(Fk) = 2k − 1. Hence we showed that

Lemma 29.
Let Fk be the free group on k generators, then h(Fk) ≤ 2k − 2.
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To conclude we only need to know that if S′ is any generating system for Fk then it
contains k elements which generates freely a subgroup H of Fk which is isomorphic to Fk.
This is shown in proposition 5.4 of [2], and we get in the same way Proposition 27.
From this result and the quotients and subgroup theorem, we can derive a certain number
of results for groups, that are analogous to the ones in [2].

Proposition 30.
(1) Let Γ be a finitely generated group which admits a system S of k generators. Then

h(Γ) ≤ 2k − 2 with equality if only if Γ is a free group Fk.
(2) Let Γ be a finitely generated group such that h(Γ) ≤ 2k − 2 for a given k ≥ 2.

Then the rank of G is at least k.

N.B. The present paper substitutes and extends a short note by the first author circulating
during his Ph. D. under the same title, where the group case only (Theorem 2) was
considered.
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