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Abstract

We develop an abstract theory of unbounded longitudinal pseudodifferential calculus
on smooth groupoids (also called Lie groupoids) with compact basis. We analyze these
operators as unbounded operators acting on Hilbert modules over C∗(G), and we show in
particular that elliptic operators are regular. We construct a scale of Sobolev modules which
are the abstract analogues of the ordinary Sobolev spaces, and analyze their properties.
Furthermore, we show that complex powers of positive elliptic pseudodifferential operators
are still pseudodifferential operators in a generalized sense.

1 Introduction

The use of groupoids to analyze the properties of noncommutative objects goes back to the foun-
dational work of Connes [8, 9] on foliations, where the longitudinal pseudodifferential calculus
was linked with the holonomy groupoid of the foliation. Since then, groupoids have appeared as
very rich structures which encode the singularities of the considered objects. For pseudodiffer-
ential calculus in particular, a general framework was introduced by Monthubert, Pierrot and
Nistor, Weinstein, Xu in [25, 26], which allows the definition of a pseudodifferential calculus
attached to any smooth groupoid. Monthubert [24] also used this framework to show that the
b-calculus developed by Melrose for manifolds with boundary or with corners can be described
fully in terms of groupoids. This is equally true for cusp-calculus. A general aim would be to
know how singular problems can be translated in the language of groupoids, which would unify
the approach to this kind of problems.

However, both articles [25, 26] deal mainly with the case of bounded operators, i.e. of
pseudodifferential operators of order less than or equal to 0. To complete the picture, one needs
to be able to deal with unbounded calculus which is necessary, for example to treat differential
operators and their functional calculus (in particular complex powers). Understanding the
complex powers of a (pseudo)differential operator as pseudodifferential operators is a classical
problem solved by Seeley [34] for compact manifolds and extended since to various situations.
This question is also very important from the noncommutative point of view. Indeed, for the
definition of the noncommutative residue, a key tool in noncommutative geometry, one needs to
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construct zeta functions of operators, i.e. to construct the complex powers of a pseudodifferential
operator. In [38] we will give a construction of the noncommutative residue for foliations

The aim of this article is to give a general and abstract framework to develop unbounded
pseudodifferential calculus on Lie groupoids and complex powers for such operators. Recall [25,
26] that pseudodifferential operators of negative order are bounded operators on the C∗-algebra
of the groupoid C∗(G), i.e. morphisms on the Hilbert C∗(G)-module E = C∗(G). Thus positive
order operators should be treated as unbounded operators in the powerful framework of Hilbert
modules. The key result is the fact that elliptic operators are regular operators in the sense of
Baaj (see [4] and [5]). Hence an elliptic operator which is normal (as a regular operator) admits
functional calculus, and we can define the complex powers of a pseudodifferential operator.

To interpret these complex powers as pseudodifferential operators, one needs to enlarge
the class of compactly supported pseudodifferential operators. Indeed, even the resolvent of a
compactly supported pseudodifferential operator is not compactly supported. To do so we define
a new class of (non compactly supported) smoothing operators and show that this definition
is natural in the following sense. We give the definition of a natural scale of Sobolev Hilbert
modules, which are the abstract analogues of ordinary Sobolev spaces. As in the classical
case, pseudodifferential operators act naturally on these Sobolev modules as morphims and a
smoothing operator is one that acts between any pair of such Sobolev modules. Next we show
that this class of smoothing operators is stable under holomorphic functional calculus in the
C∗-algebra of the groupoid.

We then develop the theory of complex powers for a positive definite pseudodifferential
elliptic operator and show that for every s ∈ C the regular operator As can be written as the
sum of a compactly supported pseudodifferential operator and of a non compactly supported
smoothing operator.

We would like to stress the fact that though this theory might seem quite abstract, one
gets a new approach to several singular problems. Indeed, the theory of regular operators on
Hilbert modules is well behaved with respect to taking representations of the C∗-algebra. One
obtains by this procedure concrete Sobolev spaces, since the image of a regular operator by a
representation is a closed operator. This yields applications to a wide class of problems, since
the class of Lie groupoids contains for example compact manifolds, Lie groups, foliations, and
deformation objects like the tangent groupoid of a compact manifold...

We briefly sketch at the end of this paper some applications to the foliated case. We show
for example, using regularity, that an elliptic operator on a foliation is closable and that its
closure is maximal [8]. We also recover the result of Kordyukov [18] on the complex powers for
operators on a foliated manifold M , understood as acting on L2(M). We use the full force of
our approach in another paper [38] where we analyze the noncommutative residue for foliated
manifolds.

Let us briefly review the content of each section.
In section 2, we recall some basic definitions and facts (without proofs) on Lie groupoids

and regular operators.
In section 3 we deal with pseudodifferential calculus on Hausdorff Lie groupoids with com-

pact basis G(0) . We take a more general definition than [25, 26] to include holomorphic families
in the framework. Further, we introduce our class of smoothing operators, which allows to define
a “generalized” pseudodifferential calculus.

In section 4 we construct a scale (Hs)s∈R of Sobolev modules associated to each elliptic
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pseudodifferential operator of positive order, and we show that these Sobolev modules are
independent of the chosen operator. We then study their properties and get the following
analogues of classical ones.

1. The modules Hs et H−s are dual C∗-modules.

2. We have Hs ⊂ Hs′ whenever s ≥ s′. The inclusion map is a compact morphism in the
sense of C∗-modules if s > s′.

3. A pseudodifferential operator with order m ∈ C defines for any s ∈ R a morphism Hs →
Hs−m0 , where m0 = <em.

4. An operator R is smoothing if and only if it is in ∩
s,t
L(Hs,Ht).

In section 5 we construct the complex powers of a positive elliptic pseudodifferential operator
of integral order, following the strategy of Guillemin [14] for the proof in the case of a compact
manifold. We show in particular that the complex powers of such an operator are pseudodif-
ferential operators in our generalized sense. Note however that the class of smoothing operator
we defined is, in some sense, the biggest natural class. Indeed, smoothing operators are just
continuous in the transverse direction, and have a priori no better decay at infinity than any
element in the C∗- algebra of the groupoid. One can hope to find in particular cases a smaller
class of smoothing operator with a good topology and stable under holomorphic functional
calculus. We explain at the end of the paper the conditions needed for such a sub-algebra.

Finally, we briefly sketch in section 6 how to recover from our work some results of Connes
[8] and Kordyukov [18] in the case of foliated manifolds.

In an appendix, we give the proof of a technical result used to construct our class of pseu-
dodifferential operators.

2 Preliminaries

2.1 Lie groupoids

Recall that a groupoid is a small category G (this means that the morphism class of G is a
set) in which all morphisms are invertible. For the sake of simplicity, all our groupoids will be
assumed to be Hausdorff. Here is a more explicit definition.

Definition 2.1.1 — A groupoid is given by two sets G(1) = G and G(0) = M and the following
maps :

• u : M → G(1), the diagonal imbedding,

• an involution κ : G(1) → G(1) called inversion denoted by κ(γ) = γ−1,

• source (s) and range (r) maps from G(1) into M ,

• a multiplication m taking values in G(1) and defined on the set G(2) ⊂ G2 of pairs (γ, γ′) for
which r(γ′) = s(γ), denoted by m(γ, γ′) = γγ′,

satisfying the following conditions :
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1. r(u(x)) = s(u(x)) = x, and γu(s(γ)) = u(r(γ))γ = γ.

2. r(γ−1) = s(γ) and γγ−1 = u(r(γ)).

3. s(γγ′) = s(γ′) and r(γγ′) = r(γ).

4. γ1(γ2γ3) = (γ1γ2)γ3 if s(γ1) = r(γ2) and s(γ2) = r(γ3).

The set G(1) is the set of arrows, and we will often refer to it as G, by a common abuse
of notation. A topological groupoid is then a groupoid for which G and M are locally compact
topological spaces and r, s,m, u are continuous maps, κ is a homeomorphism, and r and s are
open maps.
A Lie groupoid is a groupoid where G and M are smooth manifolds, and where m,u are smooth
maps, κ is a smooth diffeomorphism, and r and s are submersions. Recall that to any Lie
groupoid G of basis M can be associated a Lie algebroid A(G) over the basis M as follows :
A(G) is the bundle over M of longitudinal tangent spaces TxGx to Gx for x ∈M . The bundle
of longitudinal cotangent spaces T ∗xGx is denoted by A∗(G), and S∗(G) denotes the quotient
by the action of R∗

+ of A∗(G)− {0}.
A continuous (respectively smooth) left invariant Haar system, is a family {λx, x ∈ M} of
positive measures on G with support in Gx such that :

1. For all f ∈ Cc(G), δ ∈ G we have
∫
f(δγ)dλs(δ)(γ) =

∫
f(γ)dλr(δ)(γ);

2. For all f ∈ Cc(G), the map x 7→
∫
γ∈Gx f(γ)dλx(γ) is continuous (respectively smooth) on

G(0).

A smooth section of the bundle of 1-densities on A(G) gives rise to a smooth Haar system λ.
Moreover the measure λx is in the Lebesgue class for all x in this case.

2.2 C∗-algebras of a groupoid

Let G be a topological groupoid which is Hausdorff and locally compact, and equipped with a
continuous Haar system. The set Cc(G) of compactly supported continuous functions on G is en-
dowed with a structure of ∗-algebra : multiplication is defined by (f∗g)(γ) =

∫
f(γ′)g(γ′−1γ)dλr(γ)(γ′)

and involution by f∗(γ) = f(γ−1). The algebra obtained from Cc(G) by completion for the norm

‖f‖1 = sup
x∈G(0)

{
∫
|f(γ)| dλx(γ),

∫ ∣∣f(γ−1)
∣∣ dλx(γ)}

is a Banach ∗-algebra denoted by L1(G,λ).
For f, g ∈ Cc(G) and x ∈ G(0), the left regular representation πx is the ‖‖1-bounded ∗-

representation of Cc(G) on L2(Gx, λx) given by (πx(f)g)(γ) = (f ∗g)(γ). The reduced C∗-algebra
of G is the completion of Cc(G) with respect to the norm ‖f‖r = supx∈G(0) ‖πx(f)‖.
The maximal (or full) C∗-algebra of G is the completion w.r.t the norm defined taking the
supremum of the norms over all ‖‖1-bounded ∗-representations of Cc(G) on Hilbert spaces.
There is a natural epimorphism C∗(G) → C∗

r (G). Note that the definitions of C∗(G) and
C∗
r (G) are independent of the choice of the Haar system in the sense that the obtained C∗-

algebras are isomorphic [32]. Furthermore, in the smooth case it is also possible to construct all
objects without having to choose a Haar system, working with half densities (see e.g. [8, 25]).
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2.3 Regular operators on a Hilbert module [36, 21, 39]

Recall that a Hilbert module on a C∗-algebra A is a right A-module E together with a sesquilin-
ear positive map 〈 , 〉 : E×E → A, such that ‖〈x, x〉‖ turns Einto a Banach space. Unlike the
case of Hilbert spaces (when A = C), a closed submodule F of a Hilbert module E does not
have an orthogonal complement F⊥ such that F ⊕ F⊥ = E. If this is nevertheless the case, we
say that F is orthocomplemented in E.
A morphism between two Hilbert modules E,E′ on A is an A-linear operator admitting an
adjoint (for the involved A-valued scalar products). Morphims from E to E′ are bounded and
we denote the space of morphisms by L(E,E′). A bounded A-linear map T : E → E′ is a
morphism if and only if the graph of T is orthocomplemented in E ⊕ E′. We will use the
following easy fact from [36].

Proposition 2.3.1 — Let T ∈ L(E, E′).

1. (a) If T is surjective then TT ∗ is invertible in L(E′) and E = KerT ⊕ ImT ∗.

(b) If T is bijective, then so is T ∗. We have T−1 ∈ L(E′, E) and (T−1)∗ = (T ∗)−1.

2. The following conditions are equivalent :
a) ImT is closed in E′ ; b) ImT ∗ is closed in E ; c) 0 is isolated in the spectrum of T ∗T.
If these conditions are satisfied, then ImT and ImT ∗ are orthocomplemented submodules of
E′ and E with ImT ⊕ KerT ∗ = E′ and ImT ∗ ⊕ KerT = E.

Regular operators are unbounded operators between Hilbert modules resembling as much as
possible to morphisms. This class of operators defined by Baaj [4] in his thesis is very rich and
useful, as the properties proved later by Woronowicz show. The reader is referred to [36, 21, 39]
for details and proofs.

An unbounded operator T : E → E′ is defined by its graph G(T ) = {(x, Tx), x ∈ DomT}
which is a sub-A-module of E ⊕ E′. If ( DomT )⊥ = 0, then there is a natural definition for T ∗

by its graph. A densely defined operator T ,with densely defined adjoint is said to be regular if
its graph G(T ) is orthocomplemented. This is the case if and only if 1 + T ∗T is surjective and
then (1 +T ∗T )−1 is a morphism. Taking the square root we have that (1 + T ∗T )−

1
2 is of image

DomT and such that Q(T ) = T (1 + T ∗T )−
1
2 is a morphism.

The map T 7→ Q(T ) is a 1-1 correspondence between regular operators and morphisms Q
with norm less than one and such that Im(1 − Q∗Q) is dense in E, called the Woronowicz
transform. A regular operator T is self-adjoint if T ∗ = T , respectively normal if T ∗T = TT ∗.
This is the case if and only if Q(T ) is self-adjoint, respectively normal.

The resolvent Rλ(T ) = (T − λ)−1 of a regular operator T is an analytic map from C− SpT
to L(E) and a regular operator T (with spectrum 6= C) is normal if and only if Rλ(T ) is. The
natural correspondence between regular operators and morphisms allows to define a continuous
functional calculus for normal regular operators [19].

Theorem 2.3.2 — Let T be a regular normal operator on a Hilbert module E and X be a closed
set in C with SpT ⊂ X. Then any map f ∈ C(X) defines a normal regular operator f(T ), with
(f(T ))∗ = f(T ∗), such that
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1. For any pair (f, g) of continuous functions, (f + g)(T ) is the closure of f(T ) + g(T ) and
(fg)(T ) the closure of f(T )g(T ).

2. If f is continuous and bounded, we have f(T ) ∈ L(E) et ‖f(T )‖ = sup {|f(λ)| , λ ∈ SpT}.

3. Spf(T ) is the closure in C of f( SpT ).

4. For f, g ∈ C(C), we have (f ◦ g)(T ) = f(g(T )).

5. idX(T ) = T and q(T ) = Q(T ) if q is the map q(z) =
z

1 + |z|2
.

6. If T ∈ L(E), the map f 7→ f(T ) coincides with the continuous functional calculus in the
C∗-algebra L(E).

Now let E be a Hilbert module on a C∗-algebra A and π : A→ L(H) a representation of A
on a Hilbert module Hon a C∗-algebra B. A morphism T ∈ L(E) can be pushed forward to a
morphism T ⊗π 1 ∈ L(E ⊗π H). This extends to regular operators.

Proposition 2.3.3 — Let T be a regular operator on E and π : A→ LH) a representation of A
on a B-Hilbert module H. Then T ⊗π 1 is a regular operator on the B-Hilbert module E⊗πH and
we have

1. Q(T ⊗π 1) = Q(T )⊗π 1, (T ⊗π 1)∗ = T ∗ ⊗π 1 , and (T ⊗π 1)∗(T ⊗π 1) = T ∗T ⊗π 1 ;

2. if T is normal or self-adjoint, then so is T ⊗π 1 ;

3. If D ⊂ DomT is a core for T , and H a dense subspace in H, then D ⊗alg H is a core for
T ⊗π 1.

4. We have Sp(T ⊗π 1) ⊂ SpT , with equality when π is injective ;

5. if T is normal and f ∈ C(X) with X closed and SpT ⊂ X then f(T ⊗π 1) = f(T )⊗π 1 ;

3 Pseudodifferential calculus on Lie groupoids

In this section, we define pseudodifferential operators on Lie groupoids following Monthubert
Pierrot [25] and Nistor, Weinstein and Xu [26]. Note that the calculus developed here is a bit
more general as we define families of operators with non-constant order, in order to include in
this framework holomorphic families of pseudodifferential operators.

3.1 Classical symbols of complex orders

Recall the definition [35], of symbols of type (1, 0). For U an open set in Rn and m0 ∈ R, denote
by Sm0(U,Rp) (the space of symbols) the set of smooth complex valued functions on U × Rp

such that : ∣∣∣∂αy ∂βξ a(y, ξ)∣∣∣ ≤ CK,α,β(1 + |ξ|)m0−|β| (1)
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for any compact K ⊂ U, α, β multi-indices, (y, ξ) ∈ K × Rp. Taking the smallest possible
constant CK,α,β in the above inequality (for fixed K,α and β ), we get a family of semi-norms
that defines a natural Fréchet topology on Sm0(U,Rp) ; the space Sm0(U,Rn) will be simply
denoted by Sm0(U). We will in fact use a particular class of symbols : the polyhomogeneous
ones. A function f ∈ C∞(Rp − {0}) is positively homogeneous of degree l ∈ C whenever
f(tξ) = tlf(ξ) for all ξ 6= 0 and all t > 0. Let m be a complex number of real part m0. We say
that a symbol a ∈ Sm0(U,Rp) admits a polyhomogeneous expansion if there exists, for every
j ∈ N, a function am−j ∈ C∞(U × (Rp − {0})) that is positively homogeneous of degree m− j
in its second variable such that if a C∞ cut-off function χ on Rp, with χ(ξ) = 0 if |ξ| < 1/2 and
χ(ξ) = 1 if |ξ| ≥ 1 then for all N ∈ N

a(y, ξ)− χ(ξ)
N−1∑
k=0

am−k(y, ξ) ∈ Sm0−N (U).

We call Smhom(U,Rp) the set of such polyhomogeneous symbols of order m. Note that this
property does not depend on the cut-off function χ. Note also that for each j, we have
χ(ξ)am−j ∈ Sm0−j(U), and that the functions am−j are uniquely determined for |ξ| ≥ 1.
We can then associate to each j a smooth function, still denoted am−j on the sphere bundle
U × Sp−1. The natural topology on C∞(U × Sp−1) is the topology of uniform convergence on
compact subsets of the function and all its derivatives. This allows us to define the correct
topology on the spaces Smhom(U,Rp). Indeed, these sets Smhom(U,Rp) are not closed in Sm(U,Rp)
for the Fréchet topology of semi-norms defined previously. Let χ be a cut-off function as above.
The topology on Smhom(U,Rp) is the weakest topology making the following maps continuous

• a 7→ am−j ∈ C∞(U × Sp−1) for all j ∈ N (with its natural topology) ;

• a 7→ a− χ
N∑
j=0

am−j ∈ Sm0−N−1(U,Rp) (for the above Fréchet topology), for all N ∈ N.

3.2 Families of classical operators

We now come to the notion of families of ordinary pseudodifferential operators. To begin we
recall the definition of a map of class C∞,k, as given by Atiyah and Singer [3]. By convention
if k ∈ N ∪ {∞} a Ck-space is a manifold of class Ck except in the case when k = 0, where we
allow M to be any Hausdorff locally compact space.

Definition 3.2.1 — Let M be a Ck-space (for any k ≥ 0) , and U an open set in Rp. A map ψ
from U ×M to Rn is said to be of class C∞,0 if the map x 7→ ψ(. , x) is continuous from M to
C∞(U,Rn), endowed with the topology of uniform convergence on compact subsets of the function
and of its derivatives. If M is a Ck-space, a map ψ from U ×M to Rn is said to be of class C∞,k,
with k ∈ N ∪ {∞} if the map v 7→ ψ(. , v) is of class Ck from M to C∞(U,Rn).

We can now define the notion of a Ck family of polyhomogeneous symbols

Definition 3.2.2 — Let M be a Ck-space and m be a map of class Ck from M to C. A Ck-family
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of polyhomogeneous symbols of order m is a map M → Sm(.)
hom (U), x 7→ a(u, ξ, x) such that for any

cut-off function χ null in a neighborhood of 0 and equal to 1 in a neighborhood of ∞, the map
M → S0

hom(U), x 7→ χ(ξ) ‖ξ‖−m(x) a(u, ξ, x) is of class Ck, where the space S0
hom(U) is endowed

with its natural topology described above.

These symbols define, as in the classical case, Ck-families of pseudodifferential operators

Definition 3.2.3 — Let U be an open set in Rp, M a locally compact Hausdorff space, and m
a map of class Ck from M to C. A Ck-family of classical pseudodifferential operators of order

m with compact support in U ×M is a family Px ∈ Pm(x)
c (U) such that for all f ∈ C∞

c (U), the
operator Pxf is given, for x ∈M , by

(Pxf)(u) =
1

(2π)p

∫
U

∫
Rp

a(u′, ξ, x)f(u′)ei〈u
′−u, ξ〉dξdu′

with the condition that the map M → Sm(.)
hom (U), x 7→ a(u′, x, ξ) is of class Ck.

Proposition 3.2.4 — We have the following analogues of classical properties

1. The adjoint of a Ck-family of classical pseudodifferential operators of order m(.) with compact
support in U ×M is still a Ck-family of classical pseudodifferential operators of order m(.)
with compact support in U ×M .

2. Let m and n be maps of class Ck from M to C then, if A ∈ Sm(.)
hom,k(U × M) and B ∈

Sn(.)
hom,k(U ×M) then AB ∈ Sm(.)+n(.)

hom,k (U ×M).

3. Let κ be a C∞-diffeomorphism from U onto itself. Take a ∈ Sm(.)
hom,k(U), and denote by A the

corresponding family of pseudodifferential operator and by aκ the map defined by

aκ(κ(x), η) = e−i〈κ(x), η〉Aei〈κ(x), η〉.

Then we have aκ ∈ Sm(.)
hom,k(U).

For a proof, the reader is referred to the appendix.

3.3 Pseudodifferential G-operators

The definition of a C∞,k- function can be extended to the situation of a groupoid in a natural
way. Let p : X →M be a submersion between smooth manifolds. We say that a function f on
X is C∞,k with respect to the submersion when for any trivializing open set for the submersion
of the form Ω ' U × V with V an open set of M , the restriction of f to U × V is C∞,k. If
G is a Lie groupoid, we say that a function on G is C∞,k, when it is C∞,k with respect to the
submersion s : G→ G(0).

In the special case of Lie groupoids, we have a notion of invariant families of operators (non
necessarily pseudodifferential). An element γ ∈ G acts by right translation in the following way

Uγ : C∞(Gr(γ)) → C∞(Gs(γ)) ; (Uγf)(γ′) = f(γ′γ).
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A G-operator of class Ck is then an operator P acting on C∞,k
c (G), the space of compactly

supported C∞,k-functions on G such that there exists a family (Px)x∈M of operators acting
respectively on C∞

c (Gx), with

(Pf)(γ) = (Ps(γ)fs(γ))(γ) (2)
Ps(γ)Uγ = UγPr(γ), (3)

with γ ∈ G, f ∈ C∞,k
c (G), and fx the restriction of f to Gx.

Such a G-operator of class Ck is characterized by a distributional kernel kP on G, which is
a Ck-family of distributions kx on Gx :

(Pf)(γ) =
∫
Gs(γ)

kP (γγ′−1)f(γ′)dλs(γ)(γ
′) =

∫
Gr(γ)

kP (γ′)f(γ′−1γ)dλr(γ)(γ′).

It is said to be compactly (or uniformly) supported when kP is compactly supported in G, and
smoothing with compact support when kP ∈ C∞,k

c (G).
Before giving the definition of a G-pseudodifferential operator in general, we begin by study-

ing the special case when the groupoid G is the groupoid of a submersion.
Let p : X → M be a submersion between smooth manifolds. To any such submersion is

naturally associated a Lie groupoid G(X, p,M) which is the closed subspace of the groupoid
of couples X × X made out of couples (y, y′) such that p(y) = p(y′). The source map is
s((y, y′)) = y′ and the range map is r((y, y′)) = y. The composition is the one of couples
(y, z) ◦ (z, t) = (y, t).
If G = G(X, p,M) is the groupoid of a submersion, then a G-operator is a family of operators
indexed by X invariant under the action of G. Hence it is in fact a family indexed by M as the
invariance condition imposes exactly that Px = Py if p(x) = p(y).

Definition 3.3.1 — Let p : X → M be a submersion and m be a C∞,k map. A (properly
supported) Ck-family of classical pseudodifferential operators of order m is a compactly supported
G(X, p,M)-operator such that the family Px ∈ Pm(p−1(x)) satisfies :

• For each trivializing open set Ω ' U × V and all φ, ψ ∈ C∞,k
c (X) with support in Ω, the

operator φPxψ viewed as an operator on U×V is a compactly supported Ck-family of classical
pseudodifferential operators of order m in the sense defined above.

• For all maps φ, ψ ∈ C∞,k
c (X) with disjoint supports, the operator φPxψ is a compactly

supported smoothing G-operator.

We denote by Pmk (X, p,M) the set of these operators.

Then we can compose two such operators.

Proposition 3.3.2 — If P ∈ Pmk (X, p,M) and Q ∈ Pnk (X, p,M) are pseudodifferential operators
then PQ ∈ Pm+n

k (X, p,M).

Proof— Consider the operator φPQψ with φ and ψ in C∞,k
c (X). Since P and Q are compactly
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supported in G(X, p,M), the operators φP and Qψ are compactly supported so that there are
functions φ′ and ψ′ ∈ C∞,k

c (X) such that φP = φPψ′ and Qψ = φ′Qψ. Hence the result is
clear, using a partition of unity and the following easy facts :

• The product PQ of two compactly supported Ck product-families of pseudodifferential
operators in a given trivializing open set is still a compactly supported Ck product-family
of pseudodifferential operators.

• The product of a compactly supported smoothing operator by a compactly supported
Ck product-family of pseudodifferential operators is a compactly supported smoothing
operator.

�

Definition 3.3.3 — We will say that a compactly supported G-operator P is a pseudodifferential
operator of class Ck if the family (Px)x∈M is a Ck-family of pseudodifferential operators of order
m for the submersion s : G→ G(0). We denote by Ψm

c,k(G) this space of operators.

Note that this definition implies that m is a Ck map on G(0), with m(x) = m(y) whenever
Gyx is non empty. For us, the case where m is constant is the more interesting. Nevertheless,
this generalization, with m varying is straightforward, and allows us to give a simpler definition
for holomorphic families of pseudodifferential operators.
This definition also implies that the pseudodifferential operators Px on Gx vary in a Ck-manner
: for any open chart Ω ⊂ G diffeomorphic to U × s(Ω), and for any φ ∈ C∞,k

c (Ω), there exists
a Ck-family (ax)x∈s(Ω) of polyhomogeneous symbols of order m on U such that the compactly
supported operator φPxφ corresponds to Op(ax) under the diffeomorphism Ω ∩Gx ' U .

3.4 Principal and total symbol of a pseudodifferential G-operator

Note that in general a Ck-family of symbols (ax)x∈s(Ω) of polyhomogeneous symbols of order
m on U in any chart Ω is not enough to define a G-operator, since this family has to satisfy
an invariance property. We can associate to any G-operator a total symbol, which is given as
a family of symbols ax ∈ Smhom(T ∗xGx), but not in a unique way. However, we can associate
canonically a principal symbol to any pseudodifferential operator.

The principal symbol ([25, 26]) of a compactly supported pseudodifferential operator is
defined by σm(P )(ξ) = σm(Px)(ξ) for ξ ∈ A∗x(G) = T ∗xGx. Note that using homogeneity, it can
be defined as an element

σm(P ) ∈ C∞,k(S∗(G)),

with S∗(G) the ”co-sphere bundle” of G, i.e. the quotient of A∗G− {0} by the action of R∗
+.

From [25, Theorem 1], we know the following analogs of classical results

Theorem 3.4.1 — [25]

1. Ψm(.)
c,k (G) ◦Ψm′(.)

c,k (G) ⊂ Ψm(.)+m′(.)
c,k (G).

2. σm+m′(PQ) = σm(P )σm′(Q),
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3. σm gives rise to the following short exact sequence.

0 → Ψm(.)−1
c,k (G) → Ψm(.)

c,k (G) σm→ C∞,k(S∗(G)) → 0.

Note that σm(P ) is a good model for a ”global” homogeneous symbol of order m on A∗(G).
We can generalize this by defining ”global” total symbols on A∗(G).

Definition 3.4.2 — Let m be a Ck map on G(0) such that m(x) = m(y) whenever Gyx is non

empty. We denote by Sm(.)
hom,k(A

∗(G)) the subspace of C∞,k(A∗(G)) such that ∀x ∈ M,ax ∈
Sm(x)
hom ({x}, T ∗xGx) and such that for any trivializing open set Ω ⊂ A∗(G), with Ω ' U × s(Ω), the

map s(Ω) → Sm(.)
hom (U), x 7→ ax is a Ck map, in the sense defined previously.

Now given such a symbol, we can define a compactly supportedG-pseudodifferential operator
associated to it. Unlike the case of manifolds, there is not a unique way to do so, since in general
there is no canonical Fourier transform on G. We can determine a formula as follows : suppose
we are given a diffeomorphism φ from a neighborhood W of G(0) in G to a neighborhood of
the 0 section in A(G), with dφ = Id, and a cut-off map χ, with support in W . Then set, for
ξ ∈ A∗x(G) and γ ∈ Gx, eξ(γ) = χ(γ)ei〈φ(γ), ξ〉. We then have the following.

Proposition 3.4.3 — Let a ∈ Sm(.)
hom,k(A

∗(G)). Denote by Op(a) the G-operator defined by its
kernel

k(γ) =
1

(2π)n

∫
A∗

r(γ)
(G)

e−ξ(γ−1)a(r(γ), ξ)dξ.

Then Op(a) is in Ψm(.)
c,k (G).

Moreover, if we denote by am the homogeneous principal symbol, then we have σm(Op(a)) = am.

Proof— By definition Op(a) is a G-operator, so it remains to show that Op(a) is locally a
Ck-family of pseudodifferential operators. To check this, we fix an open chart Ω ⊂ G, with
Ω ' U × s(Ω). Denote by κ the diffeomorphism from U × s(Ω) to Ω and by κx its restriction
from U × {x} to Ω ∩ Gx. Consider now a map ϕ ∈ C∞,k

c (Ω) and denote by Px the operator
ϕOp(a) considered as an operator on U × {x}. Then, if f ∈ C∞

c (U), one has :

(Pxf)(u) = ϕ(κx(u)
∫
Gx

ka(κx(u)γ′−1)f(κ−1
x (γ′))dλx(γ′)

= (2π)−n
∫
Gx

∫
A∗

r(κx(u))

ϕ(κx(u))χ(γ′[κx(u)]−1)a(r(κx(u)), ξ)ei〈φ(γ′[κx(u)]−1), ξ〉f(κ−1
x (γ′))dξdλx(γ′)

= (2π)−n
∫
U

∫
A∗

r(κx(u))

ϕ(κx(u))χ(κx(u′)[κx(u)]−1)a(r(κx(u)), ξ)e−i〈φ(κx(u′)[κx(u)]−1), ξ〉f(u′)
∣∣Jx(u′)∣∣ dξdu′

This shows that a priori the operator Px is a Fourier Integral Operator. It is in fact a pseudo-
differential operator, thanks to a theorem of Hörmander and Kuranishi. (theorem 2.1.2 p107 in
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[16]). Indeed, we know that there exists a smooth map ψ from U × U to GL(Rn, A∗r(κx(u))(G))
such that 〈φ(κx(u′)[κx(u)]−1), ψx(u, u′)ξ〉 = 〈u′ − u, ξ〉. Hence one can write :

(Pxf)(u) = (2π)−n
∫
U

∫
Rn

ã(u, u′, x, ξ)f(u′)ei〈u−u
′), ξ〉dξdu′

with

ã(u, u′, x, ξ) = ϕ(κx(u))χ(κx(u′)[κx(u)]−1)a(r(κx(u)), ψx(u, u′)ξ)
∣∣Jx(u′)∣∣ ∣∣Jψx(u,u′)

∣∣ .
The map ã(u, u′, x, ξ) is a Ck family of classical amplitudes and so gives rise to a pseudod-
ifferential operator, as in classical theory (see [16]). To find the principal symbol of this op-
erator, we need to take the first term in the homogeneous expansion in ξ on the diagonal
u′ = u. By G-invariance of the symbol, we can reduce this to the case where u = 0. As
ψx(0, 0) is simply given by transposition of dκx(0), and by hypothesis dφ = Id, one gets that
σm(Px)(0, ξ) = am(x,t (dκx)(0)ξ), and hence the principal symbol of Op(a) is am.

�

Remarks

1. It follows from the definition that Op(a) has compact support in W

2. As the principal symbol of Op(a) is am, different choices for φ in the above formula give
rise to pseudodifferential operators of same order m which coincide at first order, with
difference an operator of order m− 1.

3. Examples of maps eξ are given in [26]. First, fix an invariant connection ∇ on A(G) →M ,
so that one can define an exponential map exp from a neighborhood V0 of the zero section
in A(G) to a neighborhood V of M in G, which maps the zero section to M and which
is a local diffeomorphism. Then define a cut-off map χ ∈ C∞

c (V ) such that χ = 1 in a
smaller neighborhood of G. Denote by φ a local inverse of exp in the support of χ, and by
eξ(γ) = χ(γ) exp(i〈φ(γ), ξ〉), for ξ ∈ A∗s(γ)(G) = T ∗s(γ)Gs(γ). Then eξ satisfies the required
conditions.

4. The original proof of Hörmander shows that more general type of maps eξ are allowed to
provide a formula that associates a pseudodifferential operator to a symbol.

Observe that if a ∈ S−∞hom,k(A
∗(G)) then Op(a) is smoothing. Hence Op defines a map from

Sm(.)
hom,k(A

∗(G))/S−∞hom,k(A
∗(G)) to Ψm(.)

c,k (G)/Ψ−∞
c,k (G), which is injective.

Indeed if a = (am(.)−j)j∈N and b = (bm(.)−j)j∈N are two sequences of homogeneous symbols

in Sm(.)
hom,k(A

∗(G))/S−∞hom,k(A
∗(G)), then Op(a) = Op(b) implies that the principal symbol of

Op(a− b) is 0 hence am(.)−j = bm(.)−j for all j ∈ N.

Moreover, this map is surjective and admits an inverse σtot, defined as follows. Let P ∈ Ψm(.)
c,k (G),

then we can define σtot(P ) = (σm−j(Pj))j∈N with Pj ∈ Ψm(.)−j
c,k (G)/Ψ−∞

c,k (G) defined recursively
by P0 = P and

Pj = Pj−1 −Op(σm−j+1(Pj−1)).
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This defines a map from Ψm(.)
c,k (G)/Ψ−∞

c,k (G) to Sm(.)
hom,k(A

∗(G))/S−∞hom,k(A
∗(G)) such that for all

a ∈ Sm(.)
hom,k(A

∗(G)), one has σtot(Op(a)) ≡ a. Indeed, one gets in this situation that PN =
Op(a−

∑N−1
j=0 am−j). Hence we have constructed an inverse for Op.

Proposition 3.4.4 — Assume we have defined a map Op : Sm(.)
hom,k(A

∗(G))/S−∞hom,k(A
∗(G)) →

Ψm(.)
c,k (G)/Ψ−∞

c,k (G) as in Proposition 3.4.3. Then this map is a 1-1 correspondence and it admits
an inverse denoted by σtot.

As there is no canonical definition for an Op map, there is none for σtot either. Two different
formulas accord only in general on the first term, which is the principal symbol. Hence, when
we will speak later on of the total symbol of an operator, this will suppose that we have fixed
a formula for Op, what we assume from now on.

From the proposition 3.4.4 we can deduce the following lemma which will be useful for us.

Lemma 3.4.5 — Let (Pj)j∈N be a family of G-pseudodifferential operators of order m− j with
compact support in a fixed compact W . Then there exists a pseudodifferential G-operator
P ∈ Ψm(.)

c,k (G) with compact support in W such that P ∼
∑
Pj , which means that ∀N ∈ N,

P −
∑N

j=0 Pj ∈ Ψm(.)−N−1
c,k (G).

Proof of the lemma— In view of the 1-1 correspondence between symbols and G-operators, it
suffices to show that there exists a symbol aP ∈ Sm(.)

hom,k(A
∗(G)) such that aP ∼

∑
aPj . This is

a classical result showed using an analogy of the Borel lemma [1][Prop. 2.3]. �

Following the original idea of Connes in [8], we can restate the theorem proved by Monthu-
bert and Pierrot in [25] for the classical pseudodifferential operators (those with integer order),
which can immediately be extended to polyhomogeneous operators of complex order. Let E
denote the Hilbert C∗(G)-module C∗(G).

Theorem 3.4.6 — Let P ∈ Ψm(.)
c,k (G) be a compactly supported Ck- pseudodifferential operator

on G, and m0 = max<em.

1. If m0 < 0, then P extends to an operator P ∈ K(E) = C∗(G).

2. If m0 = 0, then P extends to a bounded morphism P ∈ L(E).

3.5 Ellipticity

From now on, we assume that M = G(0) is a compact set, since we want to study compactly
supported elliptic operators. Recall that an operator is elliptic when its principal symbol is
invertible. As in the classical setting, we want ellipticity to imply that there exists a parametrix,
i.e. a pseudodifferential quasi-inverse for an elliptic operator.

Proposition 3.5.1 — Let m be a complex map on G(0) constant on the orbits of G and P ∈
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Ψm(.)
c,k (G) be an elliptic operator. Then there exists an operatorQ ∈ Ψ−m(.)

c,k (G) which is a parametrix
for P :

PQ− I = R and QP − I = R′,

with R and R′ compactly supported smoothing operators.

Proof— By definition of ellipticity, we know that the principal symbol σm(P ) ∈ C∞,k(S∗(G))
is invertible. Hence we have (σm(P ))−1 ∈ C∞,k(S∗(G)). By theorem 3.4.1, this means that
there exists a G-pseudodifferential operator Q0 of order −m with principal symbol (σm(P ))−1.
Moreover, we may assume that Q0 is supported in a compact neighborhood W of M in G,
containing the support of P . We now construct a sequence (Pj)j∈N of operators supported in
W and of orders −m− j by setting Qj = Q0(I −PQ0)j . Using the lemma 3.4.5, we then know
that there exists an operator Q ∈ Ψ−m(.)

c,k (G) with support in W and such that

Q ∼
∑

Qj = Q0

∞∑
j=0

(I − PQ0)j .

For any N ∈ N, we then have that PQ − I ∈ Ψ−N
c,k (G). Indeed, we have Q −

∑N−1
j=0 Qj ∈

Ψ−m(.)−N
c,k (G), and P

(∑N−1
j=0 Qj

)
− I = −(I − PQ0)−N ∈ Ψ−N

c,k (G), from which we deduce

that PQ − I ∈ Ψ−∞
c,k (G). We can do the same for the left parametrix, and by the classical

argument, show that left and right parametrix coincide modulo a smoothing operator with
compact support in W .

�

3.6 Unbounded operators

We now wish to consider compactly supported G-pseudodifferential operators as unbounded
operators on the Hilbert C∗-module E = C∗(G). We show that in the case where the operator
is elliptic it is regular, as an unbounded operator, in the sense of Baaj [4, 5]. The material in
this subsection is taken from a graduate course by Georges Skandalis [36] and has also been
written by François Pierrot in [27].

Consider now a compactly supported pseudodifferential operator P of Ck-type on G, with
order m of real part m0 > 0. This operator with domain C∞,k(G) can be viewed as an
unbounded, densely defined operator on the Banach space E = C∗(G). Recall also that such an
operator admits a formal adjoint P \ which is again a compactly supported pseudodifferential
operator, with order m. This operator is characterized by the equality, 〈Pu, v〉 = 〈u, P \v〉,
which holds for all u, v ∈ C∞,k

c (G). As both P and P \ are densely defined operators, P and P \

are closable. We denote by P the closure of P . Recall that it is the smallest extension of P
with its graph being a closed sub-C∗(G)-module of E, and that its graph is given by

G(P ) = G(P ) =
{

(x, y) ∈ (C∗(G)2, ∃ (un) ∈ C∞,k
c (G), ‖un − x‖ → 0 and ‖Pun − y‖ → 0

}
.

Note in particular that P is a densely defined operator with a densely defined adjoint P ∗ such
that P \ ⊂ P ∗. We begin by a very useful lemma :
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Lemma 3.6.1 — Let A,B ∈ Ψc,k(G), such that max<e( ordA+ ordB) ≤ 0 and max<e ordB ≤
0. Then we have AB = AB and this operator is in L(E).

Proof of the lemma— It is enough to show that AB is a closed operator. Indeed we know
that AB ⊂ AB and that AB is of order with real part less or equal to 0 and so extends to a
continuous morphism AB ∈ L(E), of domain E, by proposition 3.4.6.
We know that G(AB) = {(x, z) ∈ E × E, (Bx, z) ∈ G(A)}. As G(A) is a closed subspace of
E × E and as the map B is continuous from E to E by proposition 3.4.6, the set G(AB) is
closed. �

We now come to the main proposition of this section.

Proposition 3.6.2 — Let P be an elliptic, compactly supported pseudodifferential operator of
Ck-type on G. Then the operator P is a regular operator on E.

Proof— It is enough to consider the case when m0 = max<em > 0, as we have seen that
P ∈ L(E) otherwise. Note that both P and P ∗ are densely defined so that we only have to
prove that G(P ) is orthocomplemented.

Now let Q be a parametrix of order −m for P , and R and S be the compactly supported
smoothing operators such that

QP = 1− S and PQ = 1−R.

Applying proposition 3.4.6 to Q, R and S, we know that these operators extend to compact
morphisms in L(E). We then have :

Lemma 3.6.3 —

a) P Q = PQ and P S = PS. Moreover these operators have domain E.

b) DomP = ImQ+ ImS .

c) P \ = P ∗.

Proof of the lemma—

a) This is a direct application of lemma 3.6.1 above.

b) Let x ∈ DomP , Px ∈ E ; there exists a sequence un in C∞,k
c (G) converging to x in norm

and such that Pun converges in norm to Px. As we have QPun = un − Sun, with Q and
S continuous, we get Q(Px) = x− Sx, from which we deduce

x = Q(Px) + Sx ∈ ImQ+ ImS.

On the other hand, we know from a) that: ImQ ⊂ DomP and ImS ⊂ DomP .
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c) We have already noticed that P \ ⊂ P ∗. It remains to show that DomP ∗ ⊂ DomP \. But
we know that PQ = I +R, and so (PQ)∗ = I +R∗. As we have Q∗P ∗ ⊂ (PQ)∗, we get,
for any x ∈ DomP ∗, that x = Q∗(P ∗x)−R∗x, and so that DomP ∗ ⊂ ImQ∗ + ImR∗. As
Q and R are negative order operators, we have Q\ = Q∗ et R\ = R∗. Applying b) to P \,
we get :

DomP \ = ImQ\ + ImR\,

which suffices to conclude.

�

We have proven that G(P ) =
{
(Qx+ Sy, PQx+ PSy), (x, y) ∈ E × E

}
. Consider now the

operator on E ⊕ E defined by

U =
(

Q S

PQ PS

)
.

It is a morphism in L(E ⊕ E) as Q, S, PQ, PS and their adjoints are compactly supported
pseudodifferential operators with real part of the order less or equal to zero, and so their closures
are elements of L(E). The range of U is then exactly equal to the graph of P , and we get the
result using proposition 2.3.1. �

We get an immediate corollary of proposition 3.4.6

Corollary 3.6.4 — Let P1 and P2 be respectively in Ψm1(.)
c,k (G) and Ψm2(.)

c,k (G), with max<e(m2−
m1) ≥ 0 and P2 elliptic. Then there exists c > 0 such that, using the norm of C∗(G), for any

u ∈ C∞,k
c (G) we have

‖P1u‖ ≤ c(‖P2u‖+ ‖u‖) and DomP2 ⊂ DomP1

Proof of the corollary— LetQ2 ∈ Ψ−m2(.)
c,k (G) be a parametrix for P2. As P1Q2 ∈ Ψm1(.)−m2(.)

c,k (G),
it is bounded and there exists c1 > 0 s.t. ‖P1Q2(P2u)‖ ≤ c1 ‖P2u‖. Moreover, P1(Q2P2−I) is a
compactly supported smoothing operator and so there exists c2 s.t. ‖P1Q2P2u− P1u‖ ≤ c2 ‖u‖.
Finally, we get

‖P1u‖ ≤ ‖P1Q2P2u− P1u‖+ ‖P1Q2(P2u)‖ ≤ c(‖P2u‖+ ‖u‖).

�

3.7 The algebra Ψk(G) of pseudodifferential operators of Ck-type

As we intend to develop functional calculus with our operators, we need a class of smoothing
operators that are not any more compactly supported. We show later that this definition is not
artificial, and that it fits well with the framework of our Sobolev modules, although this class
is quite big.
If P is a compactly supported pseudodifferential G-operator and T ∈ L(E), we write TP ∈ L(E)
when ImT ∗ ⊂ DomP ∗ which implies that TP is a morphism, as we can extend by continuity
the equality 〈TPx, y〉 = 〈x, P ∗T ∗y〉 which is true for any (x, y) ∈ C∞,k

c (G)× E.
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With the same notations, we write PT ∈ L(E) whenever T ∗P \ ∈ L(E), with P \ the formal
adjoint of P . Finally, we write P1TP2 ∈ L(E) when P1T ∈ L(E) and (P1T )P2 ∈ L(E) and
when TP2 ∈ L(E) and P1(TP2) ∈ L(E).

Definition 3.7.1 — A smoothing operator is an operator R ∈ L(E) such that for any compactly
supported pseudodifferential G-operators P1, P2 of Ck-type, we have P1RP2 ∈ L(E). We denote
by Ψ−∞(G) the algebra formed by these operators.

Remarks

1. As the property P1RP2 ∈ L(E) should be true for all pseudodifferential operators, we can
easily deduce a handier characterization of smoothing operators.

Proposition 3.7.2 — An operator R is smoothing if and only if it fulfills the two following
conditions

(a) ∀P ∈ Ψc,k(G), ImR ⊂ DomP and ImR∗ ⊂ DomP .

(b) The operator P1RP2 defined on C∞,k
c (G) is bounded on E.

2. Note that the letter k denoting the transversal class of regularity has disappeared, as we
will show this set is independent of k. Indeed, our class of smoothing operators appears
to be only continuous in the direction transverse to Gx in G. In general, we do not know
a better result, for transverse regularity, though in particular cases we can ask better
transverse regularity, provided there are enough transverse vector fields.

To give a more precise idea on this set Ψ−∞(G), we can state the following.

Proposition 3.7.3 — The set Ψ−∞(G) is a sub-algebra of L(E) and has the following properties :

1. Ψ−∞(G) ⊂ K(E);

2. ∀P1, P2 ∈ Ψc,k(G),∀R ∈ Ψ−∞(G), P1RP2 ∈ Ψ−∞(G) ;

3. ∀R1, R2 ∈ Ψ−∞(G),∀T ∈ L(E), R1TR2 ∈ Ψ−∞(G) ;

4. Ψ−∞
c,k (G) = C∞,k

c (G) ⊂ Ψ−∞(G).

Proof— The properties 2 and 3 are direct consequences of the definition of Ψ−∞(G), while
property 4 comes from the definition of compactly supported smoothing operators on G. We
show the first one. We first of all remark that the definition of Ψ−∞(G) implies that for any
P1, P2 in Ψc,k(G), we have P1RP2 ∈ K(E). Indeed, let P be an elliptic operator with order
m, with <em > 0, and denote Q a parametrix for P and S = QP − I. S is a compactly
supported smoothing operator and by theorem 3.4.6, we know that Q ∈ K(E) and S ∈ K(E).
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By hypothesis, we know that PP1RP2 ∈ L(E) so that using the closure of the equality P1RP2 =
QPP1RP2 − SP1RP2, we get P1RP2 ∈ K(E). In the case where P1 = P2 = 1, this shows that
R ∈ K(E). �

One can prove, using parametrices, that the statements

{PR ∈ K(E), for all P ∈ Ψc,k(G)}

and
{PR ∈ K(E), for all P ∈ Ψc,k(G), P elliptic }

are equivalent. Hence, for the definition of smoothing operators, we may consider only elliptic
pseudodifferential operators.

Proposition 3.7.4 — Let R ∈ L(E), and P1 and P2 two elliptic operators with constant order of
strictly positive real part. Then the following are equivalent.

1. R ∈ Ψ−∞(G).

2. ∀n ∈ N, Pn1 RPn2 ∈ L(E).

Proof—

• It is clear that 1) ⇒ 2). It remains to show that 2) ⇒ 1). We use the characterization in
proposition 3.7.2 above to show this property. Note that we need only to show that if the
two conditions in 3.7.2 are true for an operator R and for Pn1 , P

n
2 for any n ∈ N, then they

are true for all pseudodifferential operators A1 and A2. For i = 1, 2, fix a parametrix Qi(n)
for Pni , and denote by Ri(n) and Si(n) the compactly supported smoothing operators
defined by

Si(n) = I −Qi(n)Pni and Ri(n) = I − Pni Qi(n).

Note by the way that by elementary calculus we can show that Qni is a parametrix for Pni
whenever Qi is a parametrix for Pi.

• The assumption (a) in proposition 3.7.2 is then a consequence of the lemma 3.6.3 which
states that DomPni = ImQi(n) + ImSi(n). Choose A ∈ Ψm(.)

c,k and n ∈ N such that
<e ordPni > max<e ordA. Then we have ImQi(n) ⊂ DomA and ImSi(n) ⊂ DomA.
Indeed, this comes from the lemma 3.6.1 : if Q is a compactly supported pseudodiffer-
ential operator with order −m, with <em > <e ordA, then one has AQ = AQ and this
morphism has domain E. This implies in particular that ImQ ⊂ DomA.

• For assumption (b) in proposition 3.7.2, suppose we are given A1, A2 ∈ Ψm
c,k, and choose

n ∈ N such that max<e ordAi is strictly less than the minimum of n<e ordPi for i = 1, 2.
With the previous notations, we may then write

A1RA2 = (A1Q1(n))(Pn1 RP
n
2 )(Q2(n)A2) + (A1S1(n))(RPn2 )(Q2(n)A2)

+(A1Q1(n))(P1(n)R)(R2(n)A2) + (A1S1(n))R(R2(n)A2).
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As the operators A1Q1(n), A1S1(n), Q2(n)A2 and R2(n)A2 are compactly supported pseu-
dodifferential operators with order of negative real part, their closures are elements in
K(E) by proposition 3.4.6. Hence the assumptions for Pn1 and Pn2 imply the assumptions
for all compactly supported operators A1 and A2.

�

This allows us to enlarge the class of pseudodifferential G-operators of Ck-type. Set Ψk(G)
to be the linear span generated by operators of constant order in Ψc,k(G) and by operators in
Ψ−∞(G). Then, we have

Proposition 3.7.5 —

1. For any m,n ∈ C ∪ {−∞} we have : Ψm
k (G) ◦Ψn

k(G) ⊂ Ψm+n
k (G).

2. The space Ψk(G) endowed with composition is a ∗-algebra, filtered by R and graded by C/Z.
Note that the previous property turns Ψ−∞(G) into a two-sided ideal of this algebra.

3. The set ΨZ
k (G) of operators with integer order is a ∗-sub-algebra of Ψk(G).

Remark — For the sake of simplicity, we have dealt in this section only with scalar operators.
The case of operators acting on sections of vector bundles is a straightforward generalization.
For the trivial bundles Cj and Cl on G(0), a G-operator from Cj to Cl is simply a matrix l × j
of G-operators

Suppose now that we are given a smooth finite dimensional vector bundle E over G(0) = M .
We construct from E a vector bundle r∗(E) over Gx for any x, simply by pull-back of the range
map r. The fiber of γ ∈ Gx is given by r∗(E)γ = Er(γ).

The manifold M = G(0) being compact, a classical result states that any complex finite
dimensional vector bundle E admits a supplementary vector bundle E] in a trivial fibre bundle

E ⊕ E] = Cj .

Then there exists a section

e0 ∈ C∞(M,Mj(C)) 'Mj(C∞(M))

which is an orthogonal projection, with image E and with kernel E]. A map f ∈ Ck(M) acts
naturally by multiplication on C∞,k

c (G), and can so be considered, by composition with the
range map r, as an element of the multiplier algebra M(C∗(G)). We then denote by e = e0 ◦ r
the corresponding projection of Mj(M(C∗(G))), so that we have constructed a module over
C∗(G) by E ⊗C(M) C

∗(G) = e(C∗(G))j .
Suppose now we are given two smooth finite dimensional vector bundles E and E ′, over M .

We can suppose that these are subbundles of the same trivial bundle Cj . We denote by e and
e′ the corresponding projections of Mj(M(C∗(G))).

Definition 3.7.6 — A G-operator P from E to E ′ is defined by

P = e′P̌ e
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with P̌ a G-operator acting on the sections of the trivial vector bundle Cj .

In particular, a compactly supported G-operator of order m and class Ck from E to E ′ is
an operator of the form P = e′P̌ e, with P̌ a matrix in Mj(Ψm

c,k(G)). We will denote by
Ψm
c,k(G, E , E ′) the space of these operators.

To recover the results of this paper in the case of an operator acting on the sections of such a
vector bundle E , we need just to replace in the statements the Hilbert C∗(G)-module E = C∗(G)
by the projective C∗(G)-module E = e((C∗(G))j , where e is the projection corresponding to E
as above.

4 Sobolev modules

4.1 Definition

Let P be a Ck-elliptic operator of constant order m, with <em = s ≥ 0. When there is no
risk for confusion we denote by P as well the closure P of P . Since the operator P is regular,
we have DomP = (1 + P ∗P )−1/2E, so that it is clear that DomP is a sub-C∗(G)-module of
C∗(G). Moreover it can be equipped with a Hilbert module structure using the scalar product
〈x, y〉s = 〈Px, Py〉+ 〈x, y〉.
Recall that if A is a C∗-algebra and E an A-module, two scalar products 〈, 〉1 and 〈, 〉2, such that
(E , 〈, 〉1) and (E , 〈, 〉2) are Hilbert A-modules, are said to be compatible whenever there exists
an operator T , A-linear and invertible, such that for any ξ, ζ ∈ E , 〈ξ, ζ〉1 = 〈ξ, T ζ〉2. Rather
than looking at the above Sobolev module as a Hilbert module on its own, we are interested in
its equivalence class of compatible scalar products (it is a Hilbertizable module in the sense of
[15] [p75]. ) The advantage of this notion is that if E and F are two given Hilbert modules,
the spaces K(E ,F) or L(E ,F) do not vary if one takes another scalar product on E and F
provided they are compatible with the original ones. (cf. [15, 17]). Of course the adjoint of an
operator in these spaces depends on the scalar products, but then, changing the scalar products
is equivalent to composing the original ∗ -operation with bijective A-linear operators.
We begin with the definition of the Sobolev module Hs(P ) associated with an operator, and
we then show that all operators provide compatible scalar products so that the notion of Hs as
a Hilbertizable module is well-defined.

Definition 4.1.1 — Let s be a positive real number and let P be a Ck-elliptic operators of order
m, with <em = s. The Sobolev module of rank s associated with P is the Hilbert C∗(G)-module
Hs(P ) = DomP endowed with the scalar product

〈x, y〉s = 〈Px, Py〉+ 〈x, y〉.

We now prove that these Sobolev modules are in fact independent of the operator P chosen
to define them.

Proposition 4.1.2 — Let P and P ′ be two compactly supported elliptic operator of order m and
m′, with <em = <em′ = s. Then the Sobolev modules Hs(P ) and Hs(P ′) are compatible.
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Proof— We know from corollary 3.6.4 that DomP = DomP ′. Set T = (1+P ′∗P ′)−1(1+P ∗P ).
It remains to show that T is an invertible element in L(E). Using a parametrix Q for the
elliptic operator P ′∗P ′ (note that a priori 1+P ∗P is not a polyhomogeneous pseudodifferential
operator) such that P ′∗P ′Q+R = I with R a compactly supported smoothing operator, we see
that one can write (1 + P ′∗P ′)−1 = Q+ (1 + P ′∗P ′)−1R− (1 + P ′∗P ′)−1Q, and so

T = Q(1 + P ∗P ) + (1 + P ′∗P ′)−1R(1 + P ∗P )− (1 + P ′∗P ′)−1Q(1 + P ∗P )

The first part on the right hand side is a pseudodifferential of order m −m′, so that the real
part of its order is zero, and it is a bounded operator. The second part of it is the product of a
bounded operator (1 + P ′∗P ′)−1 by a smoothing operator R(1 + P ∗P ), which is also bounded,
and the third pard is also the product of two bounded operators, so that T is bounded. The
inverse of T is simply (1 + P ∗P )−1(1 + P ′∗P ′) which is bounded by the same proof. �

We can then proceed to define the negative rank Sobolev modules by duality. First observe
that E is naturally included in K(Hs, C∗(G)) by the following map ξ 7→ 〈ξ, .〉 where the scalar
product is taken in E.

Definition 4.1.3 — Let s > 0, the Sobolev (Hilbertizable) module H−s is the completion of E
with respect to the norm of K(Hs, C∗(G)).

Then to any Ck-elliptic operator P of order m, with <em = s ≥ 0, one associates the
Hilbert module H−s(P ) : it is exactly the completion of E with respect to the norm induced
by the scalar product : 〈ξ, ζ〉−s = 〈(1 + P ∗P )−

1
2 ξ, (1 + P ∗P )−

1
2 ζ〉E . Indeed , using the fact

that DomP = Im(1 + P ∗P )−
1
2 : if ξ ∈ E then, we have

‖ξ‖−s = sup {‖〈ξ, x〉‖ , ‖x‖s ≤ 1}

= sup
{
‖〈ξ, x〉‖ ,

∥∥∥(1 + P ∗P )
1
2x
∥∥∥ ≤ 1

}
= sup

{∥∥∥〈ξ, (1 + P ∗P )−
1
2 y〉
∥∥∥ , ‖y‖ ≤ 1

}
= sup

{∥∥∥〈(1 + P ∗P )−
1
2 ξ, y〉

∥∥∥ , ‖y‖ ≤ 1
}

=
∥∥∥(1 + P ∗P )−

1
2 ξ
∥∥∥ .

4.2 Properties of the Sobolev modules

We will from now on denote :

H∞ = ∩s∈RH
s and H−∞ = ∪s∈RH

s.

First note that we have, by definition, duality between Hs and H−s in this framework.
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Proposition 4.2.1 — Let s > 0. The C∗(G)-sesquilinear continuous map defined by Hs × E →
C∗(G)

(u, v) 7→ 〈u, v〉E
extends into a C∗(G)-sesquilinar continuous map Hs ×H−s → C∗(G).

As in the classical setting, we have imbeddings between Sobolev modules.

Proposition 4.2.2 — Let s > s′. The identity on Cc(G) extends to an imbedding is,s′ : Hs ↪→ Hs′ ,
which is a compact morphism between these C∗ Hilbert modules.

Proof—

1. If s > s′ ≥ 0, Let P and P ′ be respectively elliptic pseudodifferential operators of order
with real part s and s′ (in case s′ = 0 we assume that P ′ = 0). Then by corollary 3.6.4,
we have an imbedding DomP ⊂ DomP ′ so that Hs ⊂ Hs′ and the map is,s′ is well
defined. By the definition of a morphism between Hilbert modules, it suffices to show
that there exists a map i∗s,s′ : Hs′ → Hs such that for any x ∈ Hs, and any y ∈ Hs′ , one
has 〈is,s′(x), y〉s′ = 〈x, i∗s,s′(y)〉s. Rewriting this equality, we get :

〈P ′x, P ′y〉+ 〈x, y〉 = 〈Px, P i∗s,s′(y)〉 i.e. 〈x, (1 + P ′∗P ′)y〉 = 〈x, (1 + P ∗P )i∗s,s′(y)〉.

Putting i∗s,s′(y) = (1+P ∗P )−1(1+P ′∗P ′)y solves the equality. Moreover the operator (1+
P ∗P )−1(1+P ′∗P ′) is compact. Indeed, let Q be a parametrix for P ∗P , such that P ∗PQ =
I +R with R ∈ Ψ−∞

c,k . We know that Q,R ∈ K(E), and from the equality (1 +P ∗P )−1 =
Q−(1+P ∗P )−1R−(1+P ∗P )−1Q, we get that (1+P ∗P )−1 ∈ K(E). Finally we have that
(1 +P ∗P )−1(1 +P ′∗P ′) = Q(1 +P ′∗P ′)− (1 +P ∗P )−1R(1 +P ′∗P ′)− (1 +P ∗P )−1Q(1 +
P ′∗P ′). The first term on the right hand side is a pseudodifferential operator of negative
order, so it is in K(E) . The second term is in K(E) by the properties of the smoothing
operators and the third is a product of an element in K(E) by a pseudodifferential operator
of order with real part 0 (hence bounded).

2. If 0 ≥ s > s′, the result is immediate using the definition of negative rank Sobolev modules,
i.e. the duality between Hs and H−s. We have that an operator T ∈ K(Hs,Hs′) if and
only if the operator T̃ ∈ K(H−s′ ,H−s) where T̃ is defined by the following equality for
any η ∈ H−s′ and ξ ∈ Hs :

〈T̃ η, ξ〉 = 〈η, T ξ〉.

�

We will need the following lemma.

Lemma 4.2.3 — Let P be a pseudodifferential operator of order m with real part m0. Then P
is in L(Hm0 , E) and L(E,H−m0).

Proof of the lemma— The case where m0 = 0 is clear.
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1. Assume that m0 > 0. The first assertion simply comes from the definition of Hm0 and
corollary 3.6.4. Let P ′ be an elliptic pseudodifferential operator with order of real part
m0. Then we know by the corollary 3.6.4 that DomP ′ ⊂ DomP and that there exists
c > 0 for any u ∈ Hs, we have ‖Pu‖ ≤ c(‖u‖ + ‖P ′u‖), so that there exists C > 0 such
that ‖Pu‖ ≤ C ‖u‖s. The second one comes from the duality between Hm0 and H−m0 .
Let ξ ∈ E. Then Px is defined as an element in Hm0 by duality by the following equality
for any ζ ∈ Hm0

〈Px, ζ〉 = 〈x, P ∗ζ〉

and P ∈ L(E,H−m0).

2. If m0 < 0 then the second assertion comes from the fact that if P ′ is an elliptic pseudodif-
ferential operator with order of real part −m0, then P ′P is a pseudodifferential operator of
order 0 so an element in L(E). As P ′ ∈ L(H−m0 , E), and H−m0 is exactly the domain of
P ′, this implies that P ∈ L(E,H−m0). Then we can once again deduce the first inclusion
by duality.

�

We can now, using this lemma, show that our definition of smoothing operators is coherent
with the natural one arising from this Sobolev scale.

Proposition 4.2.4 — An operator R is smoothing if and only if it is in the intersection of all
L(Hs,Ht) for s, t ∈ R. Moreover, the algebra Ψ−∞ is stable under holomorphic functional calculus
and contains Ψ−∞

c,k as a dense sub-algebra.

Proof—

• Suppose that R ∈ ∩s,t L(Hs,Ht). Then, we want to show that for any two elliptic op-
erators P1 and P2 of strictly positive order s and t, the operator P1RP2 is in L(E).
We know, from the previous proposition that P1 ∈ L(Hs, E) and P2 ∈ L(E,H−t). As
R ∈ L(H−t,Hs), we can conclude that P1RP2 is in L(E).

• Suppose now that R is smoothing. Then for any t ∈ R, if P is an elliptic pseudodifferential
operator of order with real part t, then PR is a smoothing operator. In particular, for any
real s, PR ∈ Ψs

c,k(G) so that PR ∈ L(Hs, E). As above, this implies that R ∈ L(Hs,Ht)
for all s, t ∈ R.

• To show that this algebra Ψ−∞ is stable under holomorphic functional calculus, it suffices
to show that it is hereditary in K(E). This means that AXB ∈ Ψ−∞ whenever A,B ∈
Ψ−∞ and X ∈ K(E), which is clear in our case. Applying the classical formula f(z) =
az + zg(z)z (for any holomorphic function f such that f(0) = 0) to the operator R, we
then get stability under holomorphic functional calculus.

�

Finally, one can see that, as in the classical setting, the Sobolev scale is a natural framework
for the action of pseudodifferential G operators.
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Proposition 4.2.5 — Let P be a compactly supported pseudodifferential G-operator of order m
of real part m0. Then P defines for any real s a morphism from Hs into Hs−m0 .

Proof— Let P1 be an elliptic pseudodifferential operator of order of real part s and Q1 a
parametrix of P1 so that Q1P1 + R1 = I with R1 a smoothing operator. Then one can write
P = PQ1P1 + PR1. But as, P1R is smoothing it is in L(Hs,Hs−m0). On the other hand
we know by the preceding lemma that P1 ∈ L(Hs, E) as it is of order with real part s, and
that PQ1 ∈ L(E,Hs−m0), as PQ1 is of order with real part m0 − s. This gives us that
PQ1P1 ∈ L(Hs,Hs−m0) and P1R too, so that it is true for P . �

Remarks

1. We have supposed here that the order of P is constant, but it is not necessary and
the above proposition can be adapted for operators with non-constant order, if we set
m0 = max<e(m).

2. Remark that we have used here the class of classical pseudodifferential operators, as they
are the ones we are interested in, for example in the case of the complex powers, but
our results remain valid if one replaces classical symbols by (1, 0)-symbols or even (ρ, δ)-
symbols.

3. We have considered all over the section, that E = C∗(G), but we can with no change
consider that E is a Hilbert module on C∗(G) coming from a vector bundle over G as
explained at the end of the previous section, with pseudodifferential operators acting on
this vector bundle. In this case, we denote by Hs(E) the corresponding Sobolev modules.

5 Complex powers of a positive elliptic pseudodifferential op-
erator

We consider the classical problem of understanding the complex powers of a positive elliptic
pseudodifferential operator A. The problem was first solved, in the case of compact manifolds,
by Seeley [34] in a rather technical way. Shubin later on gave in his book [35] a beautiful
framework to analyze the resolvent as a pseudodifferential operator, but his approach was
limited to the powers of differential operators. Then Guillemin [14] proposed a very elegant
way to bypass the detailed analysis of the resolvent of the operator, that we will adapt to our
situation.

Various generalizations of these techniques have been used to take the complex powers in
quite different geometric situations. Let us cite, without being exhaustive, Rempel and Schulze
[29, 30, 31] for manifolds with boundary (see also Grubb [13]) ; Kordyukov for foliations [18]
; Ponge [28] for Heisenberg manifolds and contact structures (the problem here is the lack of
elliptic operators, so he studies the complex powers for hypoelliptic operators) ; Loya [23]for
manifolds with conical singularities ; Schrohe [33] and Amman, Lauter, Nistor and Vasy [2] for
some classes of noncompact manifolds and manifolds with singularities.
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Here we take a G-pseudodifferential operator A of strictly positive (fixed) order m, elliptic,
invertible and positive, with (positive definite) principal symbol σ = σm(A). We then know
that the spectrum of A is included in [ε,+∞[, for some ε > 0 . Recall that the principal symbol
σ = σm(A) of A is a map in C∞,k(S∗(G)) which is positive definite in C(S∗(G)) and so we can
define the s-th power σs of σ for s ∈ C. Moreover the map s 7→ σs is holomorphic from C to
C∞,k(S∗(G)).
Using holomorphic functional calculus for normal regular operators, we know that one can write
the complex powers of the regular unbounded operator A by putting

As =
1

2πi

∫
Γ
λs(A− λ)−1dλ

with Γ a contour of the form Γρ for ρ < ε
Γ+
ρ = {iv, v ∈ R, ρ < v < +∞}

Γ0
ρ =

{
z = ρeiθ, π/2 ≤ θ ≤ 3π/2

}
, Γ−ρ = −Γ+

ρ .

This operator is defined a priori as an unbounded regular operator on E.
We prove the following theorem.

Theorem 5.0.1 — Let A be a positive definite elliptic operator of positive order m in Ψm
k (G) as

defined above. Then, for any t ∈ R, the operator As is in L(Ht+m<e s,Ht) and there exists a
holomorphic family As of pseudodifferential operators of order ms such that the operator As −As
is a holomorphic family in Ψ−∞(G).

To achieve this, we will follow the general strategy developped by Guillemin [14].

1. We first show that there exists a family of symbols σ(s), holomorphic in s ∈ C, such
that the corresponding operators A(s) fulfill the one-parameter group relation A(s)A(t) =
A(s+ t) modulo smoothing operators, with A(0) = 1 and such that A(1)−A is smoothing.
Moreover we will show that this family is unique modulo smoothing symbols.

2. Then we show that there exists a holomorphic family of pseudodifferential operators As
which fulfills exactly the one-parameter group relation AsAt = As+t with A0 = 1 and
such that A1 −A is smoothing.

3. Finally we show that the difference between the operator As obtained via functional
calculus and the operator As is a smoothing operator depending holomorphically on s

Note that, as in the rest of the paper, we have omitted explicit reference to vector bundles, as
they do not introduce any change in the theory, except at the point where we construct the
family A(s). Indeed, we treat there explicitly the case of vector bundles as they introduce non
commutativity of the product of principal symbols. Elsewhere, the generalization to the case
of operators acting on sections of a vector bundle is a straightforward.

From now on, we consider that we are given fixed Op and symbol maps, as in section 3.
Recall that in this case, we have a bijective map between totals symbols modulo smoothing
ones and G-pseudodifferential operators modulo smoothing ones (theorem 3.4.4), and that the
operators constructed using this formula have compact support in a fixed compact set W ⊂ G.
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5.1 Holomorphic families of pseudodifferential operators

First of all, we need to define correctly the notion of an holomorphic family of (generalized)
pseudodifferential operators. Thanks to our approach in section 3 where we allowed the order
of a family to be non constant, we have a simple description for such holomorphic families.

Let K ⊂ C be a compact set and, consider the groupoid GK = G ×K with units G(0)
K =

G(0) ×K, with r and s being the identity on K.

Definition 5.1.1 — Let m : K → C, z 7→ m(z) be a holomorphic map. We consider m as a map

on G
(0)
K , constant on G(0).

1. We say that a map a : K → Sm(.)
hom,k(A

∗(G)) is a holomorphic family of polyhomogeneous

symbols when the symbol a is a Ck-family of polyhomogeneous symbols on the groupoid GK ,
and satisfies Cauchy identity for some contour Γ ⊂ K around s for any s in the interior of K.

a(s) =
1

2πi

∫
Γ

a(z)
z − s

dz.

2. Let A : K → Ψm(.)
c,k (G) be a family of pseudodifferential operators with support in a fixed

compact set W ′. We say that s 7→ A(s) is a holomorphic family of pseudodifferential op-
erators with compact support in W ′ if A is a Ck-family of pseudodifferential operators on
the groupoid GK and if for any f ∈ C∞,k

c (G) the map A(s)f satisfies Cauchy equality

A(s)f = 1
2πi

∫
Γ
A(z)f
z−s dz for any s in the interior of K.

By extension we say that these families are holomorphic on C if they are holomorphic on
any compact subset K ⊂ C (with the support not depending on K, for the operators). Then
we have the following properties.

Proposition 5.1.2 — Let m : C → C, z 7→ m(z) be a holomorphic map.

1. If a : C → Sm(.)
hom,k(A

∗(G)) is a holomorphic family of polyhomogeneous symbols, then for any

j ∈ N, the map s 7→ am(s)−j(s) is holomorphic from C to C∞,k(S∗(G)).

2. Conversely, if we are given any family (am(s)−j)j∈N such that the maps s 7→ am(s)−j(s) are

holomorphic from C to C∞,k(S∗(G)), then there exists a holomorphic family of polyhomo-

geneous symbols a : C → Sm(.)
hom,k(A

∗(G)) such that a ∼
∑

j am(s)−j modulo smoothing
symbols.

Proof—

1. First, it suffices to prove that s 7→ am(s)(s) is holomorphic, as we can repeat the argument
to deduce it inductively for any j ∈ N, considering a(x, s, ξ)− χ(ξ)

∑j−1
l=0 am(s)−l(x, s, ξ).

As a(s) is a Ck-family of symbols on G, we know that am(s) ∈ C∞,k(S∗(G)). We can
write

am(s)(x, s, ξ) = lim
t→+∞

a(x, s, tξ)
tm(s)

.
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Hence, am(s)(x, s, ξ) satisfies Cauchy identity if we can prove that ã(s, t) =
a(x, s, tξ)
tm(s)

is

continuous in s, uniformly with respect to t, i.e. that sup
t>1

|ã(s, t)− ã(z, t)| → 0 when

z → s. This comes simply from the fact that the map s 7→ χ(ξ) ‖ξ‖−m(s) a(x, s, ξ) is of
class Ck hence continuous in S0

hom,k(A
∗(G)).

2. This is a holomorphic version of the classical proof (Borel lemma). Using the usual
formula,

a(x, s, ξ) =
∑
j=0

χ(
ξ

tj
) ‖ξ‖m(s)−j am(s)−j(x, s,

ξ

‖ξ‖
),

with χ a cut-off map and tj going quickly to ∞, we get a Ck-family of polyhomogeneous
symbols. It remains to check that a(x, s, ξ) satisfies Cauchy equality, which is clear as
for fixed ξ the sum defining a is finite and all the terms in the sum satisfy the Cauchy
equality.

�

Proposition 5.1.3 — Let m : C → C, z 7→ m(z) be a holomorphic map.

1. If a : C → Sm(.)
hom,k(A

∗(G)) is a holomorphic family of polyhomogeneous symbols, then the
family s 7→ Op(a(s)) is a holomorphic family of pseudodifferential operators.

2. If s 7→ A(s) ∈ Ψm(s)
c,k (G) is a holomorphic family of pseudodifferential operators, then there

exists a holomorphic family of polyhomogeneous symbols σ̃tot(A(s)) : C → Sm(.)
hom,k(A

∗(G))
such that the class of σ̃tot(A(s)) modulo smoothing symbols is σtot(A(s)).

Proof—

1. Set A(s) = Op(a(s)). Then we have, for any f ∈ C∞,k
c (G),

(A(s)f)(γ) =
1

(2π)n

∫
Gs(γ)

∫
A∗

r(γ)
(G)

e−ξ(γ′γ−1)a(s)(r(γ), ξ)f(γ′)dξdλs(γ)(γ
′).

Using the Fubini theorem, we know that (A(s)f)(γ) =
∫
A∗

r(γ)
(G) a(s)(r(γ), ξ)g(γ, ξ)dξ

where g(γ, ξ) = 1
(2π)n

∫
Gs(γ)

e−ξ(γ′γ−1)f(γ′)dλs(γ)(γ′) belongs to the Schwartz class as

a function in ξ. The map s 7→ A(s) is of class Ck since s 7→ a(s) is. Using once again the
Fubini theorem, it is clear that A(s)f satisfies the Cauchy equality A(s)f = 1

2πi

∫
Γ
A(z)f
z−s dz

if a(s) does, which proves the holomorphicity of the family A(s).

2. In view of the previous proposition, it is enough to show that s 7→ σtot(A(s)) is holomorphic
in Sm(.)

hom,k(A
∗(G))/S−∞hom,k(A

∗(G)), i.e. that the homogeneous parts of the symbols are
holomorphic. As they are defined inductively see 3.4.4 using the principal symbol and Op
which respect holomorphicity, this is clear by induction.
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Proposition 5.1.4 — If for any j ∈ N, the family s 7→ Aj(s) ∈ Ψm(s)−j
c,k (G) is a holomorphic family

of elliptic pseudodifferential operators, there exists a holomorphic family s 7→ A(s) ∈ Ψm(s)
c,k (G) such

that for any N ∈ N, we have A(s)−
∑N−1

j=0 Aj(s) ∈ Ψm(s)−N
c,k (G).

Proof— In view of the 1− 1 correspondence between symbols and operators, it is enough to
prove the proposition for symbols. Using again the usual formula,

a(x, s, ξ) =
∑
j=0

χ(
ξ

tj
)aj(x, s, ξ),

with χ a cut-off map and tj going quickly to∞, we get a Ck-family of polyhomogeneous symbols.
It remains to check that a(x, s, ξ) satisfies the Cauchy equality, which is clear as for fixed ξ the
sum defining a is finite and all the terms in the sum satisfy the Cauchy equality. �

This implies the following proposition.

Proposition 5.1.5 — If s 7→ A(s) ∈ Ψm(s)
c,k (G) is a holomorphic family of elliptic pseudodifferential

operators, there exists a holomorphic family s 7→ B(s) ∈ Ψ−m(s)
c,k (G) such that B(s) is a parametrix

for A(s).

5.2 First step : construction of A(s)

We take a G-pseudodifferential operator A acting on the sections of a vector bundle Ẽ = r∗(E)
over G, coming from a hermitian vector bundle E over G(0) = M and we denote by E the
corresponding Hilbert module. Moreover,we suppose that A is of strictly positive order m,
elliptic, invertible and positive, with (positive definite) principal symbol σ = σm(A). So, the
spectrum of A is included in [ε,+∞[, for some ε > 0.

Recall that the principal symbol σ = σm(A) of A is a C∞,k section of the fibre bundle L(E)
pulled-back over S∗(G), i.e. σ ∈ C∞,k(S∗(G), L(E)). In our case, it follows that σ takes values
in positive definite operators in L(E). Then, by holomorphic functional calculus we know that
we can define the s-th power σs of σ for s ∈ C. Moreover, the map s 7→ σs is holomorphic from
C to C∞,k(S∗(G), L(E)).

We wish to construct a holomorphic family of pseudodifferential operators A(s) for s ∈ C
with principal symbol σ(A(s)) = σs such that A(0) = Id and A(s)A(t) ≡ A(s+ t) modulo
smoothing operators and the difference A1 − A being a smoothing operator. To construct the
family (A(s))s∈C we need to consider the cohomology of the group (C,+) with coefficients in
the representation of (C,+) on the space of sections C∞,k(S∗(G), L(E)). This construction
generalizes the cohomology considered by Guillemin in [14] for the trivial representation of
(C,+) on the space of smooth functions on S∗(M) and the extension of Bucicovschi [6] to fibre
bundles on a smooth compact manifold. To do so we consider an even more general situation :
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consider a C∗algebra A and a sub-algebra B, which is a projective limit of Banach algebras and
stable under holomorphic functional calculus (in our case we will consider A = C(S∗(G), L(E))
and B = C∞,k(S∗(G), L(E))).

Let σ be an element of B which is invertible and positive in A. The representation of (C,+)
on A that we consider is the following : any s ∈ C acts on A by s · g = σ−sgσs. ( Note that B
is stable under this action).

Let Cr = Cr(C;B) be the space of functions

f : C× C× · · · × C︸ ︷︷ ︸
r times

→ B

that are holomorphic and such that f(s1, . . . , sr) = 0 if at least one si is equal to zero.
Let δr : Cr → Cr+1 defined as:

(δrf)(s0, s1, . . . , sr) = s0 · f(s1, . . . , sr) +
r∑
i=1

(−1)if(s0, . . . , si−1 + si, . . . , sr)

+ (−1)r+1f(s0, . . . , sr−1).

Let Hr(C;B) = Kerδr/Im δr−1.

Proposition 5.2.1 —
We have H2(C;B) = 0.
Moreover, for each 2-cocycle f and each b ∈ B, there exists a unique 1-cochain h such that δh = f
and h(1) = b.

Proof— Let f : C× C → B so that for all a, b, c ∈ C{
f(0, b) = f(a, 0) = 0,

(δ2f)(a, b, c) = a · f(b, c)− f(a+ b, c) + f(a, b+ c)− f(a, b) = 0.

We try to find h : C → B such that

(δ1h)(a, b) = σ−ah(b)σa − h(a+ b) + h(a) = f(a, b).

The existence of an h as above implies:

h′(a) = σ−ah′(0)σa − ∂f

∂b
(a, 0). (4)

Consider h to be the unique solution of the previous equation with h(0) = 0 and with a fixed
prescribed value at 1, h(1). Then h can be found in the following way:

Let Φ(t) be the operator in L(A) given by u→ σ−tuσt for u ∈ A. Then

h(a) = −
∫ a

0

∂f

∂b
(t, 0) dt+

∫ a

0
Φ(t)(h′(0)) dt.

If T (a)u =
∫ a

0
Φ(t)u dt, then, in order to get any prescribed value for h(1), we need to show

that T (1)u can be any element of B. Indeed, for any t we have that Φ(t) is a strictly positive
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operator in L(A), and so this is also true for T (a), so that T (1) is invertible on A. Now it is
clear that B is stable by T (1) as it is stable by Φ(t), and this shows that T (1)|B is bijective.

Thus we obtain a holomorphic map h : C → B such that h ∈ C1. We will show that δ h = f
so f is a coboundary. To see this, let

g(a, b) = f(a, b)− (σ−ah(b)σa − h(a+ b) + h(a)).

Clearly δ h = f if and only if g ≡ 0. Denote by
∂

∂b
the partial derivative with respect to the

second variable. Then:

∂g

∂b
(a, b) =

∂f

∂b
(a, b)− σ−ah′(b)σa + h′(a+ b). (5)

From (4) we get:

h′(b) = σ−bh′(0)σb − ∂f

∂b
(b, 0) and

h′(a+ b) = σ−(a+b)h′(0)σ(a+b) − ∂f

∂b
(a+ b, 0).

These two equalities and (5) imply

∂g

∂b
(a, b) =

∂f

∂b
(a, b)− σ−a

(
σ−bh′(0)σb − ∂f

∂b
(b, 0)

)
σa + σ−(a+b)h′(0)σ(a+b)

− ∂f

∂b
(a+ b, 0)

= σ−a
∂f

∂b
(b, 0)σa − ∂f

∂b
(a+ b, 0) +

∂f

∂b
(a, b)

=
∂

∂c

[
(δ2 f)(a, b, c)

]
|c=0

.

So
∂g

∂b
= 0; hence g(a, b) is constant in b. When b = 0 we have

g(a, 0) = f(a, 0)−
(
σ−ah(0)σa − h(a) + h(a)

)
= 0.

So g ≡ 0. Because f was chosen arbitrarily we conclude H2(C;B) = 0. �

We now prove the existence of the family A(s).

Proposition 5.2.2 — There exists a holomorphic family of pseudodifferential operators A(s), s ∈ C
with compact support in W and principal symbol σ(A(s)) = σs such that A(0) = Id, A(s)A(t) ≡
A(s+ t) modulo smoothing operators and the difference A1 −A being a smoothing operator.

Proof—
As we know that an elliptic family of pseudodifferential operators admits a holomorphic

family of operators as parametrix, and as we will be working in this proof modulo smoothing
operators, we will denote by A(s)−1 a holomorphic parametrix for an elliptic, holomorphic
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A(s). The statement of the proposition is then equivalent to finding a holomorphic family of
pseudodifferential operators A(s) with compact support in W for s ∈ C with principal symbol
σ(A(s)) = σs such that: 

A(s)A(t)A(s+ t)−1 ≡ Id (mod Ψ−∞),
A−1A(1) ≡ Id (mod Ψ−∞),
A(0) ≡ Id (mod Ψ−∞).

(6)

(we denoted the space of smoothing operators by Ψ−∞).
To prove Proposition 5.2.2, we will construct A(s) inductively in k ∈ N, such that ∀s, t ∈ C

in a neighborhood of 0,
Ak(s)Ak(t)Ak(s+ t)−1 ≡ Id (mod Ψ−k),
A−1Ak(1) ≡ Id (mod Ψ−k),
Ak(0) ≡ Id (mod Ψ−k).

(7)

Let χ be a cut-off map on A∗(G), χ(x, ξ) = ω(‖ξ‖), with ω ∈ C∞(R) a positive map, null
if t < 1/2 and ω(t) = 1 if t ≥ 1. Given any element a ∈ C∞,k(S∗(G), L(E)) and any complex
number z, construct an element ã in Szhom,k(A∗(G), L(E)) by putting

ã(x, ξ) = χ(x, ξ) ‖ξ‖z a(x, ξ

‖ξ‖
).

Recall that we fixed a map Op : Szhom,k(A∗(G), L(E)) → Ψz
c,k(G, E) which associates an operator

to any given total symbol. Composing these two maps, we get a map θz from C∞,k(S∗(G), L(E))
to Ψz

c,k(G, E) which maps any a to an operator of degree z with principal symbol equal to a.
Moreover, it is clear, that if we take a holomorphic map s 7→ a(s) in C∞,k(S∗(G), L(E)), and a
holomorphic map f : C → C, the operators θf(s)(a(s)) form a holomorphic family of operators
from Ht+r(E) to Hr(E) for any real t > <e(f(s)) and any r. Indeed the Cauchy equality

A(s)u =
∫

Γ

A(z)u
z − s

dz (8)

holds for any u ∈ C∞,k
c (G), because it holds for a(s). Now, for a fixed s, both operators A(s)

and
∫
Γ
A(z)u
z−s dz define bounded operators from Ht+r(E) to Hr(E) for any real t > <e(f(s)) and

any r, provided the contour Γ is well chosen. So equation (8) extends by continuity.
For k = 1 we want (A1(s))s∈C to be a holomorphic family of pseudodifferential operators

of order ms with compact support in W , with the principal symbol equal to σs where σ is the
principal symbol of A. We can construct such a family in the following way .
Let P (s) be the family of operators with compact support in W defined by P (s) = θms(σs).
We know that P (s) is a holomorphic family of elliptic operators. We may assume that P (0) is
invertible, since we can add to it a smoothing operator without changing the holomorphicity of
the family. Denote by Q(s) a parametrix for P (s) and set

A1(s) = P (s) (sQ(1)A+ (1− s)Q(0)) .

It is clear that A1(s) satisfies all required properties (7) modulo Ψ−1, so we are done with step
one.
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Now suppose that the relations (7) hold for a certain k ∈ N. We will construct a new family
(Ak+1(s))s∈C that satisfies (7) for k + 1. We set :

Ak+1(s) = Ak(s)(Id−H(s)), H(s) ∈ Ψ−k. (9)

In this way Ak+1(s)−Ak(s) ∈ Ψms−k. We have the following equalities (mod Ψ−k−1):

Ak+1(s)Ak+1(t) Ak+1(s+ t)−1 ≡ Ak(s)(Id−H(s))Ak(t)(Id−H(t))(Id+H(s+ t))Ak(s+ t)−1

≡ Ak(s)Ak(t)Ak(s+ t)−1 −Ak(s)H(s)Ak(t)Ak(s+ t)−1 −Ak(s)Ak(t)H(t)Ak(s+ t)−1

+Ak(s)Ak(t)H(s+ t)Ak(s+ t)−1

≡ Id+ F (s, t)−Ak(s)H(s)Ak(t)Ak(s+ t)−1 −Ak(s)Ak(t)H(t)Ak(s+ t)−1

+Ak(s)Ak(t)H(s+ t)Ak(s+ t)−1

where F (s, t) = Ak(s)Ak(t)Ak(s+ t)−1 − Id , F (s, t) ∈ Ψ−k by the induction step. To proceed
with the induction we have to find a family (H(s))s∈C that makes the right hand side of the
previous equivalence equal to the identity modulo Ψ−k−1. If σpr(F (s, t)) and h(s) = σpr(H(s))
are the principal symbols, then the condition on H(s) is equivalent to:

σpr(F (s, t)) = σsh(s)σ−s + σs+th(t)σ−(s+t) − σs+th(s+ t)σ−(s+t)

or
σ−(s+t)σpr(F (s, t))σs+t = σ−th(s)σt − h(s+ t) + h(t). (10)

Set f(s, t) = σ−(s+t)σpr(F (s, t))σs+t. We show that f ∈ C2(C;C∞,k(S∗(G), L(E))) and that
δ2f = 0. Then h defined in (10) is a 1-cochain with δh = f .

We also want the second condition of (7) to be satisfied, i.e. A−1Ak+1(1) ≡ Id (mod Ψ−k−1).
We know from the induction step that (A−1Ak(1)− Id) ∈ Ψ−k , and we have

A−1Ak+1(1)− Id = A−1Ak(1)(Id−H(1))− Id = (A−1Ak(1)− Id)−A−1Ak(1)H(1).

In the last part of the equation above, both terms are operators in Ψ−k, so that (A−1Ak(1)−
Id)−A−1Ak(1)H(1) ∈ Ψ−k−1 if and only if its principal symbol is null. This holds if and only
if

h(1) = σpr(A−1Ak(1)− Id) (11)

We still have to show that f is a cocycle in C2. Obviously, f(0, t) = f(s, 0) = 0 and we have

(δ2f)(s, t, r) = σ−sf(t, r)σs − f(s+ t, r) + f(s, t+ r)− f(s, t).

Recall that f(s, t) = σ−(s+t)σpr(F (s, t))σs+t, so that (δ2f)(s, t, r) = 0 is equivalent to

σpr(F (r, t))− σpr(F (r, s+ t)) + σpr(F (t+ r, s))− σrσpr(F (t, s))σ−r = 0. (12)

As by definition F (s, t) ∈ Ψ−k, equation (12) is equivalent to the following equation for operators
:

F (r, t)− F (r, s+ t) + F (t+ r, s)−Ak(r)F (t, s)Ak(r)−1 ≡ 0. (mod Ψ)−k
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To see that this one holds, consider the following equivalences modulo Ψ−k:

(Id+ F (r, t))(Id+ F (t+ r, s))(Id− F (r, s+ t))Ak(r)(Id− F (t, s))Ak(r)−1

≡ Ak(r)Ak(t)Ak(t+ r)−1Ak(t+ r)Ak(s)Ak(s+ t+ r)−1Ak(s+ t+ r)

×Ak(s+ t)−1Ak(r)−1Ak(r)Ak(s+ t)Ak(s)−1Ak(t)−1Ak(r)−1

≡ Id

and the first term is also equivalent to

Id+ F (r, t)− F (r, s+ t) + F (t+ r, s)−Ak(r)F (t, s)Ak(r)−1

which proves (12). So f(s, t) = σ−(s+t)σpr(F (s, t))σs+t is a cocycle.
Proposition 5.2.1 provides us with a family h(s) such that δh = f . We can choose this family

so that (11) holds as well. This determines h in a unique way. If (H(s))s∈C is a holomorphic
family of pseudodifferential operators of fixed order −k with principal symbol h(s) constructed
as before, H(s) = θ−k(h(s)), then Ak+1(s) = Ak(s)(Id − H(s)) satisfies the equivalences (7)
modulo Ψ−k−1.

In this way we obtain a sequence of families of operators (Ak(s))s∈C that satisfy the re-
lations (7) for each k ∈ N. Moreover, Ak+1(s) − Ak(s) ∈ Ψms−k. Then, by proposition
5.1.4, we know that there exists a holomorphic family family (A(s))s∈C such that A(s) ∼
A1(s) +

∑
k≥1(Ak+1(s)−Aks). The family (A(s))s∈C then satisfies the following properties.

1. σ(A(s)) = σs .

2. A(s)A(t) ≡ A(s+ t) modulo smoothing operators.

3. A1 −A is a smoothing operator.

4. A(0) ≡ Id modulo smoothing operators.

Adding Id−A(0) to A(s) we can impose that A(0) = Id. Moreover, (A(s))s∈C is unique up to
smoothing operators because it must satisfy the relations (7) for all k ∈ N and so it must be
equal to (Ak(s))s∈C modulo Ψ−k. �

Suppose now that we are given a holomorphic family A(s) as constructed above. We can
ask that it satisfies the relation A∗(s) = A(s).
Indeed one observes that the family (A∗(s))s∈C fulfills exactly the relations (7) for all k ∈ N and
so we have that A∗(s) ≡ A(s) modulo smoothing operators. Hence the family Ã(s) = 1

2(A∗(s)+
A(s)) satisfies the additional condition and is equal to A(s) modulo smoothing operators. We
assume from now on that A∗(s) = A(s).

5.3 Second Step : Construction of As

We know from the previous section that there exists a holomorphic family A(s) of compactly
supported operators such that A(s+ t)−A(s)A(t) is a compactly suppported smoothing opera-
tor, and that A(0) = Id. This implies that there exists an open neighborhood Ω of 0 in C such
that A(s) is invertible if s ∈ Ω. Indeed we know that A(−s)A(s) = A(0) + R(s) = Id + R(s)
where R(s) is a compactly supported smoothing operator going to 0 when s goes to 0. Then
we know that (Id + R(s)) is invertible for s in some neighborhood Ω of 0. From the stability
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under holomorphic functional calculus of Ψ−∞(G), we can write (Id+R(s))−1 = Id+S(s) with
S(s) ∈ Ψ−∞(G). Hence A(s) is invertible in the algebra of pseudodifferential operators around
s = 0, of inverse A(s)−1 = A(−s) + S(s)A(−s).
Put F (s, t) = A(t) − A(s)−1A(s + t). By construction, this is a bi-holomorphic smoothing
operator (not compactly supported). We are now searching for a holomorphic family of pseu-
dodifferential operators As = A(s)C(s), with C(s)− Id smoothing, such that AsAt = As+t for
s and t in some neighborhood of 0. If such a C ∈ L(E) exists, then, it should fulfill :

A(s)C(s)A(t)C(t) = A(s+ t)C(s+ t) , i.e. C(s)A(t)C(t) = A(t)C(s+ t)− F (s, t)C(s+ t).

Taking the derivative in s = 0, we obtain C ′(0)A(t)C(t) = A(t)C ′(t) − ∂1F (0, t)C(t). We can
suppose that C ′(0) = 0, and then we get that for t ∈ Ω,

C ′(t) = R(t)C(t) with R(t) = A(t)−1∂1F (0, t).

Note that R(t) is smoothing, so that this differential equation holds in L(E). By standard
theory of differential equations in Banach spaces, we know it has a unique solution in a neigh-
borhood of 0 with C(0) = Id.

Proposition 5.3.1 — Put C(s) be the solution around 0 of the differential equation C ′(t) =
R(t)C(t) in L(E) with R(t) = A(t)−1∂1F (0, t) such that C(0) = Id. Then if As = A(s)C(s), we
have that AsAt = As+t and As −A(s) is smoothing.

Proof— Set C̃(t) = C(t) − Id. Then C̃ is solution of the differential equation X ′(t) =
R(t)X(t) + R(t). This equation holds in L(H−∞,H+∞) and has a unique solution satisfying
X(0) = 0, which shows that C̃(t) is smoothing. Fix s ∈ Ω and put B(t) = A(t)−1As+tA

−1
s . We

have B(t) holomorphic in L(E), B(t) − Id is smoothing( as C − Id is) and B(0) = Id. If we
show that B′(t) = R(t)B(t), we get B(t) = C(t), hence AtAs = A(t)B(t)As = As+t.
We can write B(t) = [A(s)− F (t, s)]C(s+ t)A−1

s . Differentiating in t = 0, we get

B′(t) = −∂1F (t, s)C(s+t)A−1
s +[A(s)−F (t, s)]C ′(s+t)A−1

s = [−∂1F (t, s)+A(t)−1∂1F (0, s+t)]C(s+t)A(s)−1.

On the other hand, we have

R(t)B(t) = A(t)−1[∂1F (0, t)(A(s)− F (t, s))]C(s+ t)A−1
s .

Hence B′(t) = R(t)B(t) if and only if

−A(t)∂1F (t, s) + ∂1F (0, s+ t)− ∂1F (0, t)A(s) + ∂1F (0, t)F (t, s) = 0 (13)

To prove this, observe that

A(u+t+s) = A(u+t)A(s)−A(u+t)F (u+t, s) = A(u)A(t)A(s)−A(u)F (u, t)A(s)−A(u+t)F (u+t, s).

On the other hand

A(u+t+s) = A(u)A(t+s)−A(u)F (u, t+s) = A(u)A(t)A(s)−A(u)A(t)F (t, s)−A(u)F (u, t+s).
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Subtracting these equalities, and using the fact that A(u)−1A(u+ t) = A(t)− F (u, t), we get

−F (u, t)A(s)−A(t)F (u+ t, s) + F (u, t)F (u+ t, s) +A(t)F (t, s) + F (u, t+ s) = 0 (14)

Differentiating with respect to u in 0, we get exactly (13) , and this ends the proof. �

To extend, As to s ∈ C, we simply set As = (A s
n
)n for some n ∈ N big enough.

Recall that, in previous section, we have imposed that A(s) = A(s)∗. This implies that As = A∗s.
Indeed, set B(s) = A(s)−1A∗s. We have that B(s) is in L(E) and holomorphic. Moreover
B(0) = Id and

A(s)B(s)A(t)B(t) = A∗sA
∗
t = A∗t+s = A(s+ t)B(s+ t),

hence B(s) satisfies the same differential equation as C(s) and we get B(s) = C(s), and finally

As = A(s)C(s) = A(s)B(s) = A∗s.

5.4 Last step : The operator As − As is smoothing

First of all, recall that A1 = A1/2A
∗
1/2 is a positive definite elliptic pseudodifferential operator,

so we can define its complex powers.
We then have

Proposition 5.4.2 — For any s ∈ C, we have

As1 = As

as operators in L(Ht+m<e s,Ht) for any t ∈ R

Proof— Using the facts that Ap/q = (A1/q)p and that A1/q = A
1
q

1 , we obtain that for any
r ∈ Q, we have Ar1 = Ar. This implies in particular that the domains of these operators are
equal. But for any u ∈ C∞,k

c (G), the map s 7→ (As − As1)u(γ) is holomorphic on C and null
on Q, hence null everywhere. The restriction to C∞,k

c (G) of As1 and As are equal, and as they
are both regular operators, the domain of As+s1 is a core for As1, while the domain of As+s is
a core for As. From the equality of the domains of Ar1 and Ar we deduce the fact that the
domain of each of these two operators contains a core for the other one. Finally they have same
domain Hm<e s (because As is an elliptic operator of order ms), and they are equal as operators
in L(Ht+m<e s,Ht) if t = 0. To extend this to any t ∈ R, we just write As = A−tAs+t and
As1 = A−t1 As+t1 and use the previous result and duality for Sobolev modules.

�

It remains to show that As − As1 is a smoothing operator. But we know that A − A1 = R
is a a smoothing operator, and we can write

As −As1 =
1

2πi

∫
Γ
λs[(A− λ)−1 − (A1 − λ)−1]dλ =

1
2πi

∫
Γ
λs(A− λ)−1(A1 −A)(A1 − λ)−1dλ,
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as (A − λ)−1 − (A1 − λ)−1 = (A − λ)−1(A1 − A)(A1 − λ)−1. The operator (A − λ)−1(A1 −
A)(A1−λ)−1 is smoothing and its Sobolev norm

∥∥(A− λ)−1(A1 −A)(A1 − λ)−1
∥∥
t,r

is bounded
independently from λ for any real numbers r, t so if <e s < −1, the integral converges to a
smoothing operator. Then if <e s < −1, As−As1 is a smoothing operator. But we have, for any
integer n that An−An1 is a smoothing operator, so As+n−As+n1 = An(As−As1)+ (An−An1 )As1
is a smoothing operator. This ends the proof of theorem 5.0.1.

Remark — We have constructed the complex powers of a positive pseudodifferential operator
in our framework of generalized pseudodifferential calculus which is quite a wide algebra, as we
already mentioned. Now suppose we are given an algebra P−∞(G) with the following properties.

• The algebra P−∞(G) is a sub-Ψ−∞(G)-algebra, containing Ψ−∞
c,k (G).

• The algebra P−∞(G) is stable under holomorphic functional calculus.

• For all P,Q compactly supported pseudodifferential operators and R ∈ P−∞(G), then
PQR ∈ P−∞(G).

• The algebra P−∞(G) has a Frechet topology, stronger than the topology of Ψ−∞(G).

Then we can define a ”smaller” generalized pseudodifferential calculus on G, by saying that a
pseudodifferential operator is the sum of a compactly supported pseudodifferential operator and
of an element of P−∞(G). The conditions listed above then show that the complex powers of
an operator lie in this smaller algebra of pseudodifferential. This can be useful in applications
as one can be interested in having better regularity conditions on the smoothing operators
involved. Such smaller algebras of smoothing operators, as the Schwartz algebra, appear for
example in the work of Lauter, Monthubert and Nistor [22] or in the work of Lafforgue [20].

6 Application to the foliated case

We briefly recall how to recover previous results of Connes [8, 7] and Kordyukov [18] on un-
bounded pseudodifferential calculus on smooth compact foliations. In his work [8, 7], Connes
considered G-pseudodifferential operators on the reduced C∗-algebra of the foliation, C∗

r (G),
and analyzed the operators as acting on Sobolev spaces that are defined in the ordinary way
from the Hilbert space L2(G) = ⊕xL2(Gx, λx). In the work of Kordyukov, operators are acting
in the global space L2(M) and they can be defined as G-operators acting on the full C∗-algebra
of the foliation C∗(G). Both cases can be seen as particular cases of the results above, by com-
position of our Hilbert module formulation with a representation of the considered C∗-algebra
of the foliation. To recover results of Connes on complex powers or Sobolev spaces, it suffices to
use the left-regular representation of C∗

r (G) in L2(G) = ⊕xL2(Gx, λx), whereas we recover the
complex powers and Sobolev spaces of Kordyukov using the left-regular representation of C∗(G)
on L2(M). To illustrate this machinery, let us give an example of a new proof of the fact that
a longitudinal elliptic operator which is formally self-adjoint defines a self adjoint operator in
L2(Gx). Suppose we are given such an elliptic longitudinal operator P = (Px) on the foliation.
The restriction Px|Dx

of the operator Px to Dx = C∞
c (Gx) can be considered as an unbounded

linear operator on L2(Gx).
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Proposition 6.0.1 — [8] The operator Px|Dx
is closable and the domain of its closure is maximal.

Proof— Let πx be the left regular representation of the C∗-algebra C∗
r (M,F) in

L2(Gx, λx). This representation πx is non-degenerate and the operator P is regular on Er =
C∗
r (G). We can then apply proposition 2.3.3 to the operator P : There exists an operator P0,x

from Er⊗πxL
2(Gx, λx) = L2(Gx, λx) whose domain is the image of the algebraic tensor product

DomP ⊗Dx which is closable, and whose closure P ⊗πx 1 is a regular operator. Moreover, we
know that for any f ∈ DomP , ξ ∈ Dx, we have

P ⊗πx 1(f ⊗ ξ) = P0,x(f ⊗ ξ) = P (f)⊗ ξ.

The operator P ⊗πx 1 then coincides with the operator Px on D⊗Dx, with D = C∞,k
c (G), and

so defines a closed extension of Px.
It remains to show that Px = P ⊗πx 1. It suffices to prove that the algebraic tensor product
D⊗Dx is a core for P ⊗πx 1. But D is a core for P , and from proposition 2.3.3, we know that
the image of the algebraic tensor product D ⊗Dx in Er ⊗πx L

2(Gx, λx) is a core for Px. �

These techniques can also be used to show spectral properties for operators, in more precise
geometric situations, using the results of Fack and Skandalis [10, 12, 11]. Suppose now that
the foliation is minimal (i.e. all leaves are dense) and that its holonomy groupoid is Hausdorff,
then by [10, 12, 11] we know that C∗

r (G) is simple.

• If G is amenable, the maximal and reduced C∗-algebras coincide and the spectrum of a
regular operator is the same in any representation associated to the C∗(G). In particular
the spectrum as an operator in L2(Gx) and the spectrum as an operator in L2(M) coincide.

• If the C∗-algebra has no projections, a positive definite elliptic operator has no gap in its
spectrum. Indeed, by functional calculus, a gap in the spectrum gives rise to a projection
in the C∗-algebra. What is interesting is that this result remains valid in any faithful
representation of the C∗-algebra. For example, the foliation induced by the horocyclic
flow on the quotient V = SL(2,R)/Γ, with Γ a discrete cocompact subgroup of SL(2,R),
and defined by the left action of the subgroup of lower triangular matrices of the form(

1 0
t 1

)
with t ∈ R is a minimal foliation and it can be shown that its C∗-algebra has

no non trivial projections( cf. [9], p135). Hence this gives a connectivity result for the
spectrum of positive elliptic operators on the foliation viewed as operators on each leaf.
Let i denote the injection of R in V as a generic leaf. The preceding shows in particular
a connectivity result for the spectrum of Schrödinger operators of the form − d2

dx2 + V on
L2(R) for potentials V of the form V = f ◦ i, where f is a continuous positive (or even
real valued) continuous function f on V .

A A proof of proposition 3.2.4

From classical theory (see [37]), it is easily seen that all these properties are true if the order
is constant. So we only have to prove that they respect the topology when m is not constant.
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Moreover since differentiating with respect to x ∈M does not change the estimates in S0
hom,k(U),

it suffices to show continuity of these operations. Recall that two types of continuity should be
considered : the one of the homogeneous parts of the symbol, seen as maps on C∞,k(S∗U ×M)
and the other for the topology of semi-norms for (1, 0)-symbols in Sm0 , with m0 the real part
of m.

• From classical theory we know that the homogeneous parts of the symbol are given in
all three cases by formulas which involve only a finite number of homogeneous symbols
and their derivatives, so that if these homogeneous symbols are C∞,k maps, then so is
the resulting symbol. To give an explicit example, composing two symbols a and b and
writing c = a ? b, we have that

cm(x)+n(x)−p(u, ξ, x) =
∑

j+l+|α|=p

∂αξ am(x)−j(u, ξ, x)∂αu bn(x)−l(u, ξ, x)
α!

·

So cm(x)+n(x)−p(u, ξ, x) is in C∞,k(S∗U ×M) for all p ∈ N since for all j and l, am(x)−j
and bn(x)−l belong to C∞,k(S∗U ×M).

• It remains to show the continuity for the (1, 0)-symbols topology, so we can suppose that
m(.) is real. We use the classical theory of amplitudes associated with pseudodifferential
operators (see [37]). In the same way as we defined Sm(.)

hom,k(U ×M), we define the space
Sm(.)
k (U × U ×M) of amplitudes compactly supported in U × U and depending in a Ck-

manner of a parameter x ∈M .
From the formula linking compactly supported amplitudes to compactly supported sym-
bols

σ(u, ξ, x) =
∫ ∫

a(u, u′, η, x)e−i〈u−u
′, η−ξ〉du′dη (15)

we deduce the fact that if χ(ξ) ‖ξ‖−m(x) a(u, u′, ξ, x) is a Ck-map fromM to S0
k(U×U×M),

then χ(ξ) ‖ξ‖−m(x) a(u, ξ, x) is a Ck-map from M to S0
k(U ×M). Indeed, the classical

formula
σ(u, ξ, x) ∼

∑
α

(−i)|α|∂αξ ∂αu′a(u, u, ξ, x)

shows that the homogeneous components of σ are Ck-maps if homogenous components
of a are. To show the continuity for the (1, 0)-topology, we can as well consider oper-
ators of arbitrary negative order since we may subtract the homogenous components.
Then the estimates on a and its derivatives with respect to η, u, x imply the estimates
for χ(ξ) ‖ξ‖−m(x) σ(u, ξ, x) since the formula 15 is an absolutely convergent integral for
sufficiently negative order.

This proves that the operators associated in the usual way to the Ck-amplitudes are
exactly the Ck-families of (1, 0) -pseudodifferential operators. This ends the proof for the
first property since an amplitude for A∗ is given by a(u′, u,−ξ, x) when a(u, u′, ξ, x) is an
amplitude for A.

To prove the property for composition of operators, we just use a classical trick : if
a(u, ξ, x) is an amplitude for A, not depending on u′ and b(u′, ξ, x) an amplitude for B,
not depending on u, then c(u, u′, ξ, x) = a(u, ξ, x)b(u′, ξ, x) is an amplitude for AB, and
hence satisfies the required estimates since a and b do.
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Finally, for the change of coordinates one needs to prove directly the estimates, the way
through amplitudes being more complicated than the direct one. We know from classical
computations that

aκ(u, η, x) = a(κ−1(u),tJ−1(u)η, x)

where J is the Jacobian matrix associated with κ−1. Set ξ =tJ−1(u)η. Then we have

‖η‖−m(x) aκ(u, η, x) =

(∥∥tJ(u)ξ
∥∥

‖ξ‖

)m(x)

‖ξ‖−m(x)a(κ−1(u),tJ−1(u)η, x).

Hence, from estimates on a we get estimates on aκ, using the fact that if u and x vary in
compact sets, then the expression

∥∥tJ(u)
∥∥−m(x) and its derivatives are bounded. Indeed

derivation with respect to η or x does not affect the estimates, while derivation with
respect to u introduces multiplication by η which is counterbalanced by the fact that
derivatives of a with respect to the second variable lower the order of the estimates in
ξ =tJ−1(u)η. Anyway these estimates remain uniform with respect to x (which is the
new thing here).
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[16] Lars Hörmander. Fourier integral operators. I. Acta Math., 127(1-2):79–183, 1971.

[17] Jerome Kaminker and John G. Miller. Homotopy invariance of the analytic index of
signature operators over C∗-algebras. J. Operator Theory, 14(1):113–127, 1985.

[18] Yuri A. Kordyukov. Functional calculus for tangentially elliptic operators on foliated man-
ifolds. In Analysis and geometry in foliated manifolds (Santiago de Compostela, 1994),
pages 113–136. World Sci. Publishing, River Edge, NJ, 1995.

[19] Dan Kucerovsky. Functional calculus and representations of C0(C) on a Hilbert module.
Q. J. Math., 53(4):467–477, 2002.
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