DISTRIBUTIONS FOR WHICH $\text{div} \ v = F$ HAS A CONTINUOUS SOLUTION

THIERRY DE PAUW AND WASHEK F. PFEFFER

Abstract. The equation $\text{div} \ v = F$ has a continuous weak solution in an open set $U \subset \mathbb{R}^m$ if and only if the distribution F satisfies the following condition: $F(\varphi_i)$ converge to zero for each sequence $\{\varphi_i\}$ of test functions such that the supports of φ_i are contained in a fixed compact subset of U, and in the L^1 norm, $\{\varphi_i\}$ converges to zero and $\{\nabla \varphi_i\}$ is bounded.

If F is a distribution in \mathbb{R}^m, then a vector field $v \in L^1(\mathbb{R}^m; \mathbb{R}^m)$ is a solution of the equation $\text{div} \ v = F$ whenever

$$F(\varphi) = -\int_{\mathbb{R}^m} v(x) \cdot \nabla \varphi(x) \, dx$$

for each test function $\varphi \in \mathcal{D}(\mathbb{R}^m)$. If such a v is continuous and $\varepsilon > 0$, we can find a $w \in C^1(\mathbb{R}^m; \mathbb{R}^m)$ so that $|v(x) - w(x)| < \varepsilon$ for each x in the ball $B(1/\varepsilon)$ of radius $1/\varepsilon$ about the origin. Selecting φ supported in $B(1/\varepsilon)$ and integrating by parts, we obtain

$$|F(\varphi)| \leq \left| \int_{B(1/\varepsilon)} \varphi \text{div} \ w \right| + \left| \int_{B(1/\varepsilon)} (w - v) \cdot \nabla \varphi \right|$$

$$\leq |\varphi|_1 \sup_{x \in B(1/\varepsilon)} |\text{div} \ w(x)| + \varepsilon |\nabla \varphi|_1,$$

which implies a stronger continuity of F. In other words, the following continuity property of F is necessary for the equation $\text{div} \ v = F$ to have a continuous solution.

Continuity. Given $\varepsilon > 0$ there is a $\theta > 0$ such that

$$|F(\varphi)| \leq \theta |\varphi|_1 + \varepsilon |\nabla \varphi|_1 \quad (\ast)$$

for each $\varphi \in \mathcal{D}(\mathbb{R}^m)$ with $\text{supp} \ \varphi \subset B(1/\varepsilon)$.

Our main result is Theorem 3.7 below, which asserts that this necessary continuity property is also sufficient. For historical reasons (see below), a distribution F satisfying the above continuity property is called a strong charge.

An example of a strong charge is the distribution associated with a function $f \in L^m_{\text{loc}}(\mathbb{R}^m)$ (Proposition 2.9 below). J. Bourgain and H. Brezis [1, Proposition 1] proved that a continuous solution of $\text{div} \ v = f$ exists for a \mathbb{Z}^m periodic function $f \in L^m_{\text{loc}}(\mathbb{R}^m)$. The continuity of v is the main point — establishing the existence of a solution $v \in L^\infty(\mathbb{R}^m; \mathbb{R}^m)$ is appreciably easier (Proposition 2.11 below). In

Date: March 5, 2006.

2000 Mathematics Subject Classification. Primary 35F05. Secondary 26B20, 28C10.

Key words and phrases. Divergence, distributions, charges, BV sets and functions.

The first author is a chercheur qualifié of the Fonds National de la Recherche Scientifique in Belgium.
general, neither a continuous nor essentially bounded solution is obtainable by solving the Poisson equation $\Delta u = f$ and letting $v := \nabla u$; a pertinent example is due to L. Nirenberg [1, Remark 7]. The absence of such a solution is related to the role of $p = m$ as the critical exponent for representing elements of $W^{1,p}$ by continuous functions [7, Chapter 5, Theorem 5].

We outline the proof of Theorem 3.7, which is inspired by the above mentioned proof of Bourgain and Brezis. The linear spaces S of all strong charges, and C of all continuous vector fields $v : \mathbb{R}^m \to \mathbb{R}^m$, are equipped with the Fréchet topologies of locally uniform convergence. For a $v \in C$, we define a strong charge F_v by

$$F_v(\varphi) := -\int_{\mathbb{R}^m} v(x) \cdot \nabla \varphi(x) \, dx$$

for each $\varphi \in \mathcal{D}(\mathbb{R}^m)$, and observe that the linear map $\Gamma : v \mapsto F_v$ from C to S is continuous. Showing that

1. $\Gamma(C)$ is a dense subspace of S (Lemma 3.1 below),
2. if $\Gamma^* : S^* \to C^*$ is the adjoint map of Γ, then $\Gamma^*(S^*)$ is closed in the strong topology of C^* (Proposition 3.6 below),

completes the argument: (ii) and the Closed Range Theorem imply that $\Gamma(C)$ is closed in S, and hence $\Gamma(C) = S$ by (i).

Because the space S is topologized so that its dual S^* is isomorphic to the linear space BV_c of all compactly supported BV functions in \mathbb{R}^m (Proposition 3.2 below), the adjoint map Γ^* of Γ has an intuitive geometric meaning. Indeed, interpreting the continuous vector fields as $(m-1)$-forms and strong charges as m-forms, we can think of Γ as the exterior derivative; note that by definition, Γ is a weak divergence operator. Thus Γ^* is a boundary operator which maps $g \in BV_c$ to a compactly supported Radon measure Dg in \mathbb{R}^m. Clearly, Dg belongs to the dual space C^* of C; see diagram (3.2) below.

In the obvious way, the balls $B(i)$, $i = 1, 2, \ldots$, determine seminorms s_i and c_i which define the topologies of locally uniform convergence in S and C, respectively. Theorem 3.8 below shows that given a strong charge F and an integer $i \geq 1$, we can find a solution $v \in C$ of $\text{div} \, v = F$ so that $c_i(v)$ is as close to $s_i(F)$ as we wish.

If F is a strong charge, then the set $\Gamma^{-1}(F)$ of all continuous solutions of the equation $\text{div} \, v = F$ has many elements. In Section 4 we consider continuous vector fields and strong charges that are invariant with respect to the special orthogonal group $SO(m)$, and produce constructively an isometry $\Upsilon : S_{\text{inv}} \to C_{\text{inv}}$ that is a right inverse of Γ (Proposition 4.3 below). The construction depends on showing that a rotation invariant strong charge on the sphere S^{m-1} is a multiple of a strong charge induced on S^{m-1} by the Hausdorff measure H^{m-1} in \mathbb{R}^m (Proposition 4.2 below).

A strong charge is a special case of a charge, i.e., of a distribution F with the above continuity property where inequality (\ast) is replaced by the inequality

$$|F(\varphi)| \leq \theta |\varphi|_1 + \varepsilon (|\nabla \varphi|_1 + |\varphi|_{\infty}).$$

Every distribution associated with an $f \in L^1_{\text{loc}}(\mathbb{R}^m)$ is a charge, called an absolutely continuous charge. Elaborating on the proof of Theorem 3.7, we show that
each charge is the sum of a strong charge and an absolutely continuous charge (Theorem 5.2 below).

The concepts of charges and strong charges originate from our previous work on generalized Riemann integrals and the Gauss-Green theorem [12, 3, 2, 13, 5, 4]. In Section 6, we indicate how a substantial generalization of the classical Gauss-Green theorem (Theorem 6.5 below) can be obtained by means of charges and their derivatives. This version of the Gauss-Green theorem admits further generalizations that can be applied to removale sets of PDEs in divergence form [5, 4, Sections 4].

1. Preliminaries

The set of all real numbers is denoted by \(\mathbb{R} \). In the Cartesian product \(\mathbb{R}^n \) where \(n \geq 1 \) is an integer, we denote by \(x \cdot y \) the usual inner product, which induces the norm \(|x| \). The zero vector in \(\mathbb{R}^n \) is denoted by \(0 \). All functions we consider are real valued. For a map \(f : A \to B \) and an \(x \in A \), we use the symbols \(f(x) \) and \(\langle f, x \rangle \) interchangeably; both denote the value of \(f \) at \(x \).

The ambient space of this paper is \(\mathbb{R}^m \) where \(m \geq 2 \) is a fixed integer. Restricting to dimensions larger than one merely eliminates trivialities. The closure, interior, and diameter of a set \(E \subset \mathbb{R}^m \) are denoted by \(\text{cl} \ E \), int \(E \), and \(d(E) \), respectively. The open and closed balls of radius \(r > 0 \) centered at \(x \in \mathbb{R}^m \) are denoted by \(B(x,r) \) and \(B[x,r] \), respectively. We write \(B(r) \) instead of \(B(0,r) \), and \(B[r] \) instead of \(B[0,r] \).

In \(\mathbb{R}^m \) we use Lebesgue measure \(\mathcal{L} := \mathcal{L}^m \) and the Hausdorff measure \(\mathcal{H} := \mathcal{H}^{m-1} \). For \(E \subset \mathbb{R}^m \), we write \(|E| \) instead of \(\mathcal{L}(E) \), and define the restricted measures \(\mathcal{L}|_E \) and \(\mathcal{H}|_E \) in the usual way [8, Section 1.1.1]. Unless specified otherwise, the words “measure,” “measurable,” and “negligible,” as well as the expressions “almost everywhere” and “almost all” refer to Lebesgue measure \(\mathcal{L} \). Symbols \(\int f \) and \(\int f(x) \, dx \) denote the Lebesgue integral \(\int d\mathcal{L} \).

Throughout, \(U \subset \mathbb{R}^m \) is a fixed nonempty open set. For \(1 \leq p \leq \infty \) and an integer \(n \geq 1 \), we give \(\mathcal{L}^p_{\text{loc}}(U;\mathbb{R}^n) \) a topology induced by the seminorms

\[
|f|_{p,K} := \left| f \upharpoonright K \right|_p
\]

where \(f \in \mathcal{L}^p_{\text{loc}}(U;\mathbb{R}^n) \) and \(K \subset U \) is a compact set. As there is an increasing sequence of compact subsets of \(U \) whose interiors cover \(U \), the space \(\mathcal{L}^p_{\text{loc}}(U;\mathbb{R}^n) \) is a Fréchet space. Clearly, \(C(U;\mathbb{R}^m) \) topologized as a subspace of \(\mathcal{L}^p_{\text{loc}}(U;\mathbb{R}^m) \) is a Fréchet space as well. We write \(\mathcal{L}^p_{\text{loc}}(U) \) instead of \(\mathcal{L}^p_{\text{loc}}(U;\mathbb{R}) \), and denote by \(\mathcal{L}^p(U) \) the linear space of all functions in \(\mathcal{L}^p_{\text{loc}}(U) \) whose support is a compact subset of \(U \).

We denote by \(BV(U) \) the linear space of all BV functions in \(U \), and let

\[
BV_c(U) := BV(U) \cap \mathcal{L}^1(U) \quad \text{and} \quad BV^\infty_c(U) := BV(U) \cap L^\infty_c(U).
\]

If \(g \in BV(U) \), then \(\|g\| \) is the total variation of the distributional gradient \(Dg \) of \(g \).

The essential boundary, perimeter and exterior normal of a BV set \(E \) in \(U \) are denoted by \(\partial_* E \), \(|E| \) and \(n_E \), respectively. Note that \(\|E\| = \mathcal{H}(\partial_* E) = \|\chi_E\| \) where \(\chi_E \) is the indicator of \(E \) in \(U \).
Definitions and basic properties

Definition 2.1. A distribution \(F \in \mathcal{D}'(U) \) is called fluxing, or simply a flux, if the equation \(\text{div} \, v = F \) has a continuous solution, i.e., if there is a vector field \(v \in C(U; \mathbb{R}^m) \) such that for each \(\varphi \in \mathcal{D}(U) \),

\[
F(\varphi) = - \int_U v(x) \cdot \nabla \varphi(x) \, dx \tag{2.1}
\]

The linear space of all fluxing distributions in \(U \) is denoted by \(\mathcal{F}(U) \). A distribution \(F \) defined by equality (2.1) is called the flux of \(v \), denoted by \(F_v \).

We say a sequence \(\{f_i\} \) of functions defined on \(U \) is compactly supported if there is a compact set \(K \subset U \) such that \(\{f_i \neq 0\} \subset K \) for \(i = 1, 2, \ldots \). If the compact set \(K \) is specified a priori, we say that \(\{f_i\} \) is supported in \(K \). A sequence \(\{A_i\} \) of subsets of \(U \) is called compactly supported, or supported in a compact set \(K \subset U \), whenever the sequence \(\{\chi_{A_i}\} \) has the respective property.

Observation 2.2. If \(F \in \mathcal{D}'(U) \) is a flux, then \(\lim F(\varphi_i) = 0 \) for every compactly supported sequence \(\{\varphi_i\} \) in \(\mathcal{D}(U) \) for which

\[
\lim |\varphi_i|_1 = 0 \quad \text{and} \quad \sup \|\varphi_i\| < \infty. \tag{2.2}
\]

Proof. Let \(F = F_v \) for a \(v \in C(U; \mathbb{R}^m) \), and let \(\{\varphi_i\} \) be a sequence in \(\mathcal{D}(U) \) supported in a compact set \(K \subset U \) satisfying conditions (2.2). Find a sequence \(\{w_j\} \) in \(C^1_c(\mathbb{R}^m; \mathbb{R}^m) \) converging to \(v \) uniformly in \(K \), and observe

\[
|F(\varphi_i)| \leq \int_K |v(x) - w_j(x)| \cdot |\nabla \varphi(x)| \, dx + \left| \int_K \varphi_i(x) \text{div} \, w_j(x) \, dx \right|
\]

\[
\leq (\sup_n \|\varphi_n\|) \sup_{x \in K} |v(x) - w_j(x)| + |\varphi_i|_1 \sup_{x \in K} |\text{div} \, w_j(x)|
\]

for \(i, j = 1, 2, \ldots \). Choosing a sufficiently large \(j \) and then a sufficiently large \(i \), we can make \(F(\varphi_i) \) arbitrarily small. \qed

Observation 2.2 motivates in part the following definition.

Definition 2.3. A linear functional \(F : \mathcal{D}(U) \to \mathbb{R} \) is called

(i) a charge if \(\lim F(\varphi_i) = 0 \) for every compactly supported sequence \(\{\varphi_i\} \) in \(\mathcal{D}(U) \) for which

\[
\lim |\varphi_i|_1 = 0 \quad \text{and} \quad \sup \|\varphi_i\| + |\varphi_i|_\infty < \infty;
\]

(ii) a strong charge (abbreviated as s-charge) if \(\lim F(\varphi_i) = 0 \) for every compactly supported sequence \(\{\varphi_i\} \) in \(\mathcal{D}(U) \) for which

\[
\lim |\varphi_i|_1 = 0 \quad \text{and} \quad \sup \|\varphi_i\| < \infty.
\]
For each compact set $K \subset U$ and $n = 1, 2, \ldots$, the convex sets

$$BV(K, n) := \{g \in BV_c^\infty(U) : \{g \neq 0\} \subset K \text{ and } \|g\| + |g|_\infty \leq n\},$$

$$BV_s(K, n) := \{g \in BV_c(U) : \{g \neq 0\} \subset K \text{ and } \|g\| \leq n\}$$

are compact subsets of $L^1(U)$ [8, Section 5.2, Theorem 4]. Give $BV_c^\infty(U)$ and $BV_c(U)$, respectively, the largest topology \mathcal{T} and \mathcal{T}_s for which all inclusion maps

$$BV(K, n) \hookrightarrow BV_c^\infty(U) \quad \text{and} \quad BV_s(K, n) \hookrightarrow BV_c(U)$$

are continuous. Since U is the union of an increasing sequence of compact sets, it follows from [13, Proposition 1.2.2] that the topologies \mathcal{T} and \mathcal{T}_s are locally convex, sequential, and sequentially complete. Moreover $\mathcal{T}_s \subset \mathcal{T}$, and $\mathcal{D}(U)$ is a dense subset of both $(BV_c^\infty(U), \mathcal{T})$ and $(BV_c(U), \mathcal{T}_s)$ [8, Section 5.2, Theorem 2].

Observation 2.4. A linear functional $F : \mathcal{D}(U) \to \mathbb{R}$ is, respectively, a charge or an s-charge if and only if it is \mathcal{T} or \mathcal{T}_s continuous. In particular, each charge has a unique \mathcal{T} continuous extension to $BV_c^\infty(U)$, and each s-charge has a unique \mathcal{T}_s continuous extension to $BV_c(U)$. These extensions are linear.

Remark 2.5. Observe that the flux F_v of a locally bounded Borel vector field $v : U \to \mathbb{R}^m$, which need not be a charge, still extends to

$$F_v : g \mapsto -\int_U v \cdot d(Dg) : BV_c(U) \to \mathbb{R}.$$

In view of Observation 2.4, we always think of charges as defined on $BV_c^\infty(U)$, and of s-charges as defined on $BV_c(U)$. If F is a charge and E is a bounded BV set whose closure is contained in U, we let $F(E) := F(\chi_E)$. Note that

$$F_v(E) = -\int_U v \cdot d(D\chi_E) = \int_{\partial_s E} v \cdot \nu_E \, d\mathcal{H}.$$

Proposition 2.6. If $F : BV_c(U) \to \mathbb{R}$ is a linear functional, then the following properties are equivalent.

(i) The functional F is an s-charge.

(ii) Given $\varepsilon > 0$ and compact set $K \subset U$, there is a $\theta > 0$ such that

$$|F(g)| \leq \theta |g|_1 + \varepsilon \|g\|$$

for each $g \in BV_c(U)$ with $\{g \neq 0\} \subset K$.

(iii) For each compactly supported sequence $\{B_i\}$ of BV sets in U,

$$\lim_{\|B_i\|} \frac{F(B_i)}{\|B_i\|} = 0 \quad \text{whenever} \quad \lim |B_i| = 0.$$

Proof. (i) \Rightarrow (ii). Suppose F is an s-charge, and choose an $\varepsilon > 0$ and a compact set $K \subset U$. There is an $\eta > 0$ such that $|F(g)| < \varepsilon/2$ for each $g \in BV_c(U)$ with $|g|_1 < \eta$, $\|g\| < 1$, and $\{g \neq 0\} \subset K$. Let $\theta := \varepsilon/(2\eta)$ and select a $g \in \mathcal{D}(U)$ with $\{g \neq 0\} \subset K$. With no loss of generality, we may assume $g \geq 0$; see [13, Theorem 1.8.12].
Let \(p \) and \(q \) be the smallest positive integers with \(|g|_1/p < \eta\) and \(\|g\|/q < 1\). Note \(p \leq |g|_1/\eta + 1 \) and \(q \leq \|g\| + 1 \). Since

\[
s \mapsto \int_0^s |\{ g > t \}| \, dt \quad \text{and} \quad s \mapsto \int_0^s \|\{ g > t \}\| \, dt
\]

are continuous increasing functions which map \([0, \infty]\) onto \([0, |g|_1]\) and \([0, \|g\|]\), respectively, there are points \(0 = a_0 < \cdots < a_p = \infty \) and \(0 = b_0 < \cdots < b_q = \infty \) such that

\[
\int_{a_i-1}^{a_i} |\{ g > t \}| \, dt = \frac{1}{p} |g|_1 < \eta \quad \text{and} \quad \int_{b_j-1}^{b_j} \|\{ g > t \}\| \, dt = \frac{1}{q} \|g\| < 1
\]

for \(i = 1, \ldots, p \) and \(j = 1, \ldots, q \). Order the set \(\{a_0, \ldots, a_p, b_0, \ldots, b_q\} \) into a sequence \(0 = c_0 < \cdots < c_r = \infty \). Then \(r \leq p + q - 1 \), and

\[
g_k := \max\{\min\{g, c_k\}, c_{k-1}\} - c_{k-1}, \quad k = 1, \ldots, r,
\]

are BV functions vanishing outside \(K \). As each \([c_{k-1}, c_k]\) is contained in some \([a_{i-1}, a_i) \cap [b_{j-1}, b_j)\], the previous inequalities imply \(|g_k|_1 < \eta\) and \(\|g_k\| < 1 \). Since \(g = \sum_{k=1}^r g_k \), we obtain

\[
|F(g)| \leq \sum_{k=1}^r |F(g_k)| < r\frac{\varepsilon}{2} \leq \frac{\varepsilon}{2} (p + q - 1)
\]

\[
\leq \frac{\varepsilon}{2}\left(1 + \frac{1}{\eta} |g|_1 \right) = \theta \|g\|_1 + \frac{\varepsilon}{2} \|g\| + \frac{\varepsilon}{2},
\]

and inequality (2.3) follows whenever \(\|g\| \geq 1 \). If \(0 < \|g\| < 1 \), we apply the previous result to \(h := g/\|g\|\):

\[
|F(g)| = \|g\| \cdot |F(h)| \leq \|g\| (\theta \|h\|_1 + \varepsilon \|h\|) = \theta |g|_1 + \varepsilon \|g\|.
\]

As the case \(\|g\| = 0 \) is trivial, the desired inequality is established.

(ii) \(\Rightarrow\) (iii). By [13, Proposition 2.1.7], given \(\varepsilon > 0 \) and a compact set \(K \subset U \), there is a \(\theta > 0 \) such that

\[
|F(B)| \leq \theta |B| + \varepsilon \|B\|
\]

for each BV set \(B \subset K \). Now it follows from [13, Proposition 2.2.6 and Section 4.1] that \(F \) satisfies (ii).

The implications (ii) \(\Rightarrow\) (i) and (ii) \(\Rightarrow\) (iii) are obvious. \(\square\)

Remark 2.7. Charges in \(U \) are characterized by an inequality similar to (2.3). Indeed, it follows from [13, Proposition 2.2.6 and Section 4.1] that a linear functional \(F : BV_{c}^\infty(U) \to \mathbb{R} \) is a charge if and only if given \(\varepsilon > 0 \) and a compact set \(K \subset U \), there is a \(\theta > 0 \) such that

\[
|F(g)| \leq \theta |g|_1 + \varepsilon (\|g\| + |g|_\infty)
\]

for each \(g \in BV_{c}^\infty(U) \) with \(\{g \neq 0\} \subset K \). A direct proof of this fact is analogous to that of Proposition 2.6; see also [5, Proposition 2.4].

Remark 2.8. It follows from [13, Section 4.1] that charges are uniquely determined by their values on the indicators of bounded BV sets. As bounded BV sets can be approximated by finite unions of nondegenerate compact intervals [13, Proposition 1.10.3], charges, and a fortiori s-charges, are uniquely determined by their values on the indicators of nondegenerate compact intervals.
The linear spaces of all charges in U and all s-charges in U are denoted by $CH(U)$ and $CH_s(U)$, respectively. By Observation 2.2,

$$F(U) \subset CH_s(U) \subset CH(U) \subset D'(U).$$

If $f \in L^1_{\text{loc}}(U)$, then the distribution $\Lambda(f)$ in $D'(U)$ defined by

$$\langle \Lambda(f), \varphi \rangle := \int_U f(x)\varphi(x) \, dx$$

for each $\varphi \in D(U)$ is a charge, called an absolutely continuous charge (abbreviated as ac-charge). Denoting by $CH_{ac}(U)$ the linear space of all ac-charges in U, we have a linear isomorphism

$$\Lambda : f \mapsto \Lambda(f) : L^1_{\text{loc}}(U) \rightarrow CH_{ac}(U)$$

In particular, each $F \in CH_{ac}$ has an obvious linear extension to $L^\infty_{\text{loc}}(U)$.

While easy examples show that neither of the spaces $CH_s(U)$ and $CH_{ac}(U)$ contains the other, they have a sizable intersection.

Proposition 2.9. $\Lambda[L^m_{\text{loc}}(U)] \subset CH_s(U)$.

Proof. Choose an $f \in L^m_{\text{loc}}(U)$, and let $F := \Lambda(f)$. For $g \in BV_c(U)$ and a measurable set $B \subset U$, the Hölder and Poincaré inequalities imply

$$\int_B |fg| \leq \left(\int_B |f|^m \right)^{\frac{1}{m}} \left(\int_B |g|^{\frac{m}{m-1}} \right)^{\frac{m-1}{m}} \leq \kappa \|g\| \left(\int_B |f|^m \right)^{\frac{1}{m}} \quad (2.4)$$

where κ is a positive constant depending only on the dimension m [8, Section 5.6, Theorem 1.(i)]. In particular

$$|F(g)| \leq \kappa \|g\| \left(\int_{\{g \neq 0\}} |f|^m \right)^{\frac{1}{m}} < \infty, \quad (2.5)$$

and it follows that F is a linear functional on $BV_c(U)$. To show that F is an s-charge, select a sequence $\{g_i\}$ in $BV_c(U)$ supported in a compact set $K \subset U$, and assume that $\lim |g_i| = 0$ and $\sup \|g_i\| < \infty$. Applying inequality (2.4) to the set $B_\theta := \{x \in K : |f(x)| > \theta\}$ with $\theta \geq 0$, we obtain

$$|F(g_i)| \leq \int_{K-B_\theta} |fg_i| + \int_{B_\theta} |fg_i| \leq \theta |g_i|_1 + \kappa \|g_i\| \left(\int_{B_\theta} |f|^m \right)^{\frac{1}{m}}$$

$$\leq \theta |g_i|_1 + \kappa \left(\sup \|g_n\| \right) \left(\int_{B_\theta} |f|^m \right)^{\frac{1}{m}}.$$

As $\lim_{\theta \to \infty} \left(\int_{B_\theta} |f|^m \right)^{1/m} = 0$, choosing a sufficiently large θ and then a sufficiently large i, we can make $F(g_i)$ arbitrarily small. \qed

Note. We proved Proposition 2.9 directly from the definition of s-charges. Using Proposition 2.6, the second part of the proof can be simplified by choosing a compactly supported sequence $\{B_i\}$ of BV sets in U, and applying inequality (2.5) to $g := \chi_{B_i}$. Indeed, we obtain

$$|F(B_i)| \leq \kappa \|B_i\| \left(\int_{B_i} |f|^m \right)^{1/m}.$$
Remark 2.12. It follows from Proposition 2.11 that for each $i = 1, 2, \ldots$, and hence $\lim [F(B_i)/\|B_i\|] = 0$ whenever $\lim |B_i| = 0$.

The next example shows that the inclusion $\Lambda[L^m_{\text{loc}}(U)] \subset CH_u(U) \cap CH_{\text{ac}}(U)$ established in Proposition 2.9 is generally proper.

Example 2.10. Assume $m = 2$, and let $f(\xi, \eta) := \xi^{-\eta} + \eta^{-\xi}$ for each (ξ, η) in $U := (0,1)^2$. If $p \geq 1$ then
\[\xi^{-\rho \eta} + \eta^{-\rho \xi} \leq [f(\xi, \eta)]^p \leq 2^p (\xi^{-\rho \eta} + \eta^{-\rho \xi})\]
for each $(\xi, \eta) \in U$. Since for every $0 < a \leq 1/p$
\[\int_{[0,a]^2} (\xi^{-\rho \eta} + \eta^{-\rho \xi}) \, d\xi \, d\eta = \frac{2}{p} \int_1^{1-a} t^{-1} a^t \, dt,\]
we see that $f \in L^p_{\text{loc}}(U)$ if and only if $p = 1$. On the other hand, the formula
\[v(\xi, \eta) := \left(\frac{\xi^{1-\eta}}{1-\eta}, \frac{\eta^{1-\xi}}{1-\xi} \right)\]
for $(\xi, \eta) \in U$ defines a $v \in C^\infty(U; \mathbb{R}^2)$ with $\text{div} \, v = f$. Integration by parts shows that $\Lambda(f)$ is the flux of v, and hence an s-charge according to Observation 2.2.

Proposition 2.11. Given $f \in L^m(U)$, there is a $v \in L^\infty(U; \mathbb{R}^m)$ such that $\Lambda(f)$ is the flux F_v of v, and $|v|_\infty \leq \kappa |f|_m$ where κ is a constant depending only on the dimension m.

Proof. Since it suffices to prove the proposition in each connected component of U, we may assume U is connected. Let $X := \{ \nabla \varphi : \varphi \in \mathcal{D}(U) \}$, and for $w \in X$, let
\[G(w) := \int_U f(x) \varphi(x) \, dx\]
where φ is the unique element of $\mathcal{D}(U)$ with $\nabla \varphi = w$. By the Hölder and Poincaré inequalities, there is a constant κ depending only on the dimension m such that
\[|G(w)| \leq \|f\|_m \|\varphi\|_{m-1} \leq \kappa |f|_m |w|_1,\]
for each $w \in X$. Applying Hahn-Banach theorem, extend G to a linear functional $H : L^1(U; \mathbb{R}^m) \to \mathbb{R}$ so that $|H(w)| \leq \kappa |f|_m |w|_1$ for each $w \in L^1(U; \mathbb{R}^m)$. Using the duality of L^p spaces, find a $v \in L^\infty(U; \mathbb{R}^m)$ so that $|v|_\infty \leq \kappa |f|_m$, and
\[H(w) = \int_U v(x) \cdot w(x) \, dx\]
for each $w \in L^1(U; \mathbb{R}^m)$. In particular, for each $\varphi \in \mathcal{D}(U)$,
\[\langle \Lambda(f), \varphi \rangle = \int_U f(x) \varphi(x) \, dx = G(\nabla \varphi) = H(\nabla \varphi) = \int_U v(x) \cdot \nabla \varphi(x) \, dx = \langle F_v, \varphi \rangle.\]

Remark 2.12. It follows from Proposition 2.11 that for each $f \in L^m(U)$, the equation $\text{div} \, v = f$ has a solution in $L^\infty(U; \mathbb{R}^m)$. We included this result because it has a simple proof. Using a more elaborate argument, Brezis and Bourgain established the existence of a bounded continuous solution [1, Proposition 1]. The same, and more, follows from Section 3 below.
3. S-charges

A Lipschitz domain is an open set $\Omega \subset \mathbb{R}^m$ with Lipschitz boundary [8, Section 4.2.1]. Note that each Lipschitz domain is a locally BV set. If $\Omega \subset U$ is a Lipschitz domain and $g \in BV_c(U)$ with support in $B(r)$, then it follows from [16, Remark 5.10.2 and Lemma 5.10.4] that $g\chi_{\Omega} \in BV_c(U)$, and that
\[
\|g\chi_{\Omega}\| \leq \kappa(\|g\|_1 + \|g\|)
\]
where $\kappa > 0$ depends only on $\Omega \cap B(r)$.

Let F be an s-charge in U, and let $\Omega \subset U$ be a Lipschitz domain. In view of the previous paragraph and Proposition 2.6, the linear functional
\[
F \downarrow \Omega : g \mapsto F(g\chi_{\Omega}) : BV_c(U) \to \mathbb{R}
\]
is an s-charge in U. If $c\Omega \subset U$, we view $F \downarrow \Omega$ as an s-charge in \mathbb{R}^m; since $F(g\chi_{\Omega})$ is defined for each $g \in BV_c(\mathbb{R}^m)$.

If $f : U \to \mathbb{R}$ is locally Lipschitz and $g \in BV_c(U)$, then $fg \in BV_c(U)$ and
\[
\|fg\| \leq L\|g\|_1 + c\|g\|
\]
where $L := \text{Lip}(f \mid \text{supp } g)$ and $c := |f \mid \text{supp } g|_{\infty}$. Thus by Proposition 2.6,
\[
F \downarrow f : g \mapsto F(fg) : BV_c(U) \to \mathbb{R}
\]
is an s-charge in U whenever F is an s-charge in U.

We give $CH_s(U)$ a Fréchet topology induced by the seminorms
\[
\|F\|_{s,K} := \sup \{ F(g) : g \in BV(U), \ {g \neq 0} \subset K, \ \text{and} \ \|g\| \leq 1 \}
\]
where $F \in CH_s(U)$ and $K \subset U$ is a compact set. In view of Observation 2.2, there is a linear map
\[
\Gamma : v \mapsto F_v : C(U; \mathbb{R}^m) \to CH_s(U),
\]
which is continuous. Indeed, given a compact set $K \subset U$, we have
\[
|F_v(g)| \leq \|g\| \cdot |v|_{\infty,K}
\]
for every $g \in BV(U)$ with $\{g \neq 0\} \subset K$; thus $\|F_v\|_{s,K} \leq |v|_{\infty,K}$ for each compact set $K \subset U$. Note that $\mathcal{F}(U)$ is the image of Γ.

By Proposition 2.9, the restriction $\Lambda_s := \Lambda \upharpoonright L_{loc}^m(U)$ maps $L_{loc}^m(U)$ to $CH_s(U)$. It follows from inequality (2.5) that there is a constant κ, depending only on the dimension m, such that for each $f \in L_{loc}^m(U)$ and each compact set $K \subset U$,
\[
\|\Lambda(f)\|_{s,K} \leq \kappa|f|_{m,K}.
\]
(3.1)
In particular, the map $\Lambda_s : L_{loc}^m(U) \to CH_s(U)$ is continuous.

Lemma 3.1. Given $F \in CH_s(U)$, there is a sequence $\{v_i\}$ in $C^\infty(U; \mathbb{R}^m)$ such that the support of each $\text{div } v_i$ is a compact subset of U, and
\[
\lim \|F - \Gamma(v_i)\|_{s,K} = 0
\]
for every compact set $K \subset U$. In particular, the spaces $\mathcal{F}(U)$ and $\Lambda[\mathcal{D}(U)]$ are dense in $CH_s(U)$.

Proof. There are bounded Lipschitz domains Ω_i such that $\text{cl} \Omega_i \subset \Omega_{i+1}$ and $U = \bigcup_{i=1}^\infty \Omega_i$. Since every compact set $K \subset U$ is contained in some Ω_i, we have
\[
\lim \|F - F\res\Omega_i\|_{s,K} = 0
\]
for each compact set $K \subset U$. Thus it suffices to prove the lemma for an s-charge F such that $F = F\res\Omega$ for a bounded Lipschitz domain Ω with $\text{cl} \Omega \subset U$. Select a bounded Lipschitz domain Ω_0 with $\text{cl} \Omega \subset \Omega_0$ and $\text{cl} \Omega_0 \subset U$. There is a convergent (in the distributional sense) sequence $\{\eta_i\}$ of standard mollifiers such that the convolutions $\varphi_i := F \ast \eta_i$ have support in Ω_0. By [15, Theorems 6.30 and 6.32], each φ_i belongs to $C^\infty(\mathbb{R}^m)$, the s-charges $F_i := \Lambda(\varphi_i)$ converge to F in the distributional sense, and $F_i(g) = F(\eta_i \ast g)$ for every $g \in BV_c(\mathbb{R}^m)$.

For $i = 1, 2, \ldots$ and $x = (\xi_1, \ldots, \xi_m) \in U$, let
\[
f_i(t, \xi_1, \ldots, \xi_m) := \int_{-\infty}^t \varphi_i(s, \xi_1, \ldots, \xi_m) \, ds.
\]
Since $v_i := (f_i, 0, \ldots, 0)$ belongs to $C^\infty(U; \mathbb{R}^m)$ and $\text{div} v_i = \varphi_i$, integration by parts shows that $F_i = \Gamma(v_i)$. As $F = F\res\Omega_0$ and $F_i = F_i\res\Omega_0$, it remains to prove $\lim \|F - F_i\|_{s,K} = 0$ for $K := \text{cl} \Omega_0$. To this end choose an $\varepsilon > 0$, and use Proposition 2.6 to find a $\theta > 0$ so that
\[
|F(g)| \leq \theta |g|_1 + \varepsilon \|g\|
\]
for each $g \in BV(\mathbb{R}^m)$ with $\{g \neq 0\} \subset K$. Select such a g, and let $g_x(z) := g(x - z)$ for all $x, z \in \mathbb{R}^m$. By an argument identical to the proof of [13, Lemma 4.2.1],
\[
|g_x - g_y|_1 \leq |x - y| \cdot \|g\|
\]
for all $x, y \in \mathbb{R}^m$. This and Fubini’s theorem yield
\[
|g - g \ast \eta_i|_1 = \int_{\mathbb{R}^m} \left| g(x) \int_{\mathbb{R}^m} \eta_i(y) \, dy - \int_{\mathbb{R}^m} g_x(y) \eta_i(y) \, dy \right| \, dx
\]
\[
\leq \int_{\mathbb{R}^m} \eta_i(y) \left(\int_{\mathbb{R}^m} |g_0(x) - g_0(-x)| \, dx \right) \, dy
\]
\[
\leq \int_{\mathbb{R}^m} \eta_i(y) \|g_0 - g_y\|_1 \, dy \leq \int_{B(1/4)} \eta_i(y) |y| \cdot \|g\| \, dy \leq \frac{1}{i} \|g\|.
\]
Combining the above inequalities, we obtain
\[
|F(g) - F_i(g)| = |F(g - g \ast \eta_i)| \leq \theta |g - g \ast \eta_i|_1 + \varepsilon \|g - g \ast \eta_i\|
\]
\[
\leq \frac{\theta}{i} \|g\| + \varepsilon (\|g\| + \|g \ast \eta_i\|) = \|g\| \left(\frac{\theta}{i} + 2\varepsilon \right)
\]
for $i = 1, 2, \ldots$, and the lemma follows from the arbitrariness of ε. \qed

The dual space of a topological vector space X is denoted by X^*. Aside from the w^*-topology on X^*, we will also use the strong topology defined by the uniform convergence on the family of all bounded subsets of X [6, Section 1.8.7 and 8.4].

Proposition 3.2. There is a linear bijection $\Phi : BV_c(U) \rightarrow CH_s(U)^*$ defined by
\[
\langle \Phi(g), F \rangle := \langle F, g \rangle
\]
for each $g \in BV_c(U)$ and each $F \in CH_s(U)$.

\[\text{For traditional reasons we still write } \mathcal{D}'(U) \text{ rather than } \mathcal{D}(U)^*.\]
Proof. Clearly \(\Phi \) is a linear map. Since
\[
\left| \langle \Phi(g), F \rangle \right| = \left| \langle F, g \rangle \right| \leq \|g\| \cdot \|F\|_{s,K}
\]
for each \(F \in CH_s(U) \), each compact set \(K \subset U \), and each \(g \in BV_c(U) \) with \(\{g \neq 0\} \subset K \), we see that \(\Phi \) maps \(BV_c(U) \) to \(CH_s(U)^* \). If \(g \in BV_c(U) \) and \(\Phi(g) = 0 \), then
\[
\int_B g(x) \, dx = \int_U \chi_B(x) g(x) \, dx = \langle \Lambda(\chi_B), g \rangle = \langle \Phi(g), \Lambda(\chi_B) \rangle = 0
\]
for each bounded measurable set \(B \subset U \). Consequently \(\Phi \) is injective.

Let \(T \in CH_s(U)^* \). As \(\Lambda_s : L^m_{loc}(U) \rightarrow CH_s(U) \) is continuous, \(T \circ \Lambda_s \in L^m_{loc}(U)^* \). Using the duality of \(L^p \) spaces [14, Theorem 6.16], find a \(g \in L^{m/(m-1)}_c(U) \) so that
\[
\langle T, \Lambda(f) \rangle = \langle T \circ \Lambda_s, f \rangle = \int_U f(x)g(x) \, dx
\]
for every \(f \in L^m_{loc}(U) \). Now choose a \(v \in C^1(U; \mathbb{R}^m) \) with \(|v|_{\infty} \leq 1 \). Since
\[
\langle \Lambda(\text{div } v), h \rangle = \int_U h(x) \text{div } v(x) \, dx \leq \|h\|
\]
for each \(h \in BV_c(U) \), we infer \(\|\Lambda(\text{div } v)\|_{s,C} \leq 1 \) for every compact set \(C \subset U \). By the continuity of \(T \), there are a \(c > 0 \) and a compact set \(K \subset U \) such that
\[
\int_U g(x) \text{div } v(x) \, dx = \langle T, \Lambda(\text{div } v) \rangle \leq c \|\Lambda(\text{div } v)\|_{s,K} \leq c.
\]
Thus \(g \in BV_c(U) \) by the arbitrariness of \(v \), and for each \(f \in L^m_{loc}(U) \),
\[
\langle \Phi(g), \Lambda(f) \rangle = \langle \Lambda(f), g \rangle = \int_U f(x)g(x) \, dx = \langle T, \Lambda(f) \rangle.
\]
As \(\Lambda[L^m_{loc}(U)] \) is dense in \(CH_s(U) \) by Lemma 3.1, we conclude \(T = \Phi(g) \).
\(\square \)

A set \(C \subset U \) is called amiable if it is compact, and for each connected component \(V \) of \(U - C \), either \(d(V) = \infty \) or \(\partial V \cap \partial U \neq \emptyset \).

Lemma 3.3. Each compact set \(K \subset U \) is contained in an amiable set \(C \subset U \).

Proof. Denote by \(W \) the collection of all bounded connected components \(W \) of \(U - K \) with \(\partial W \subset K \), and by \(V \) the collection of all other connected components of \(U - K \). Given \(W \in \mathcal{W} \), observe that
\[
\text{dist}(W, \partial U) = \text{dist}(\partial W, \partial U) \geq \text{dist}(K, \partial U),
\]
and as \(W \) is bounded, also \(d(W) = d(\partial W) \leq d(K) \). Consequently
\[
d(\bigcup \mathcal{W}) \leq 3d(K) \quad \text{and} \quad \text{dist}(\bigcup \mathcal{W}, \partial U) \geq \text{dist}(K, \partial U).
\]
Since \(\bigcup \mathcal{W} \) is a relatively closed subset of \(U - K \), the previous inequalities imply that \(C := K \cup \bigcup \mathcal{W} \) is a compact subset of \(U \). If \(V \in \mathcal{V} \) is bounded, then \(\partial V \) is a subset of \(\partial(U - K) = \partial U \cap \partial K \), but not a subset of \(K \). Thus \(V \) is either unbounded, or its boundary meets the boundary of \(U \). But \(\mathcal{V} \) is the collection of all connected components of \(U - C \), and hence \(C \) is amiable. \(\square \)

Observation 3.4. Let \(g \in BV_c(U) \), and let the support of \(Dg \) be contained in an amiable set \(C \subset U \). Then the support of \(g \) is contained in \(C \).
Proposition 3.6. Observe that g is constant in each connected component of $U - C$. If the support of g meets a connected component V of $U - C$, then $V \cap (\text{supp } g)$ is a proper subset of V; since V is either unbounded or $\partial V \cap \partial U \neq \emptyset$. As V is open, $V \cap \{g \neq 0\}$ is also a proper subset of V, a contradiction. \hfill \Box

Lemma 3.5. Let $\{g_i\}$ be a sequence in $BV_c(U)$ such that

$$\sup \left\{ \int_{U} v \cdot d(Dg_i) : v \in B \text{ and } i = 1, 2, \ldots \right\} < \infty$$

for each bounded set $B \subset C(U; \mathbb{R}^m)$. Then $\{g_i\}$ is compactly supported.

Proof. There are open sets U_i such that $K_i := \text{cl } U_i$ is contained in U_{i+1}, and $U = \bigcup_{i=1}^{\infty} U_i$. If the sequence $\{\text{supp } Dg_i\}$ is not compactly supported, then we can construct inductively subsequences of $\{U_i\}$ and $\{g_i\}$, still denoted by $\{U_i\}$ and $\{g_i\}$, so that $\text{supp } Dg_i$ meets the open set $U_{i+1} - K_i$. Consequently, there are $v_i \in C(U; \mathbb{R}^m)$ supported in $U_{i+1} - K_i$ such that $|v|_{\infty} \leq 1$ and $a_i := \int_{U_i} v_i \cdot d(Dg_i)$ is different from zero. Let $b_i = \max\{|a_1|^{-1}, \ldots, |a_i|^{-1}\}$. The bounded set

$$B := \left\{ v \in C(U; \mathbb{R}^m) : |v|_{\infty, K_{i+1}} \leq ib_i \text{ for } i = 1, 2, \ldots \right\}$$

contains $w_i := (ib_i)v_i$, $i = 1, 2, \ldots$. As $|\int_{U_i} w_i \cdot Dg_i| \geq i$, we have a contradiction. Thus there is a compact set $K \subset U$ containing the support of each Dg_i. An application of Lemma 3.3 and Observation 3.4 completes the argument. \hfill \Box

Proposition 3.6. If Γ^* is the adjoint map of

$$\Gamma : C(U; \mathbb{R}^m) \rightarrow CH_s(U),$$

then $\Gamma^*[CH_s(U)^*]$ is sequentially closed in the strong topology of $C(U; \mathbb{R}^m)^*$.

Proof. Denote by $M_c(U; \mathbb{R}^m)$ the linear space of all compactly supported Radon measures in U with values in \mathbb{R}^m, and define maps

$$D : g \mapsto Dg : BV_c(U) \rightarrow M_c(U; \mathbb{R}^m),$$

$$\varphi : \mu \mapsto T_\mu : M_c(U; \mathbb{R}^m) \rightarrow C(U; \mathbb{R}^m)^*,$$

where $T_\mu(v) := -\int_{U} v \cdot d\mu$ for each $v \in C(U; \mathbb{R}^m)$. Observe that the diagram

$$\begin{array}{ccc}
BV_c(U) & \xrightarrow{D} & M_c(U; \mathbb{R}^m) \\
\Phi \downarrow & \quad & \downarrow e \\
CH_s(U)^* & \xrightarrow{T^*} & C(U; \mathbb{R}^m)^*
\end{array}$$

(3.2)

commutes. Hence for $S \in CH_s(U)^*$, $v \in C(U; \mathbb{R}^m)$, and $g := \Phi^{-1}(S)$,

$$\langle \Gamma^*(S), v \rangle = -\int_{U} v \cdot d(Dg).$$

(3.3)

Select a sequence $\{S_i\}$ in $CH_s(U)^*$ so that $\{\Gamma^*(S_i)\}$ converges strongly to a T in $C(U; \mathbb{R}^m)^*$, and note that $\{\Gamma^*(S_i)\}$ is uniformly bounded on each bounded subset of $C(U; \mathbb{R}^m)$. Applying (3.3) to $g_i := \Phi^{-1}(S_i)$, Lemma 3.5 implies that the sequence $\{g_i\}$ in $BV_c(U)$ is compactly supported. As

$$B := \left\{ v \in C(U; \mathbb{R}^m) : |v|_{\infty} \leq 1 \right\}$$

Theorem 3.7. is a bounded subset of $C(U; \mathbb{R}^m)$, we have

$$\|R\| := \sup\{\langle R, v \rangle : v \in B\} < \infty$$

for each $R \in C(U; \mathbb{R}^m)^*$. Since $\lim\|\Gamma^*(S_i) - T\| = 0$, there is a $c > 0$ such that

$$\|g_i\| = \sup\left\{ \int_U v \cdot d(Dg_i) : v \in C^1_c(U; \mathbb{R}^m) \text{ and } |v|_\infty \leq 1 \right\}$$

$$\leq \sup\{ \langle \Gamma^*(S_i), v \rangle : v \in B\} = \|\Gamma^*(S_i)\| \leq c$$

for $i = 1, 2, \ldots$. By Poincaré inequality, there is a constant $\kappa > 0$, depending only on the dimension m, such that $|g_i|_{\frac{m}{m-1}} \leq \kappa \|g_i\|$; in particular $g_i \in L^{\frac{m}{m-1}}(U)$. Since $L^{\frac{m}{m-1}}(U)$ is the dual space of $L^m(U)$, and since

$$V := \left\{ h \in L^m(U) : |h|_m \leq \frac{1}{\kappa c} \right\}$$

is a neighborhood of zero in $L^m(U)$, the Banach-Alaoglu theorem [15, Section 3.15] shows that

$$\mathcal{K} := \left\{ f \in L^{\frac{m}{m-1}}(U) : \left| \int_U f(x) h(x) \, dx \right| \leq 1 \text{ for each } h \in V \right\}$$

is w*-compact subset of $L^{\frac{m}{m-1}}(U)$. By the Hölder and Poincaré inequalities,

$$\left| \int_U g_i(x) h(x) \, dx \right| \leq |g_i|_{\frac{m}{m-1}} |h|_m \leq \kappa \|g_i\| \cdot |h|_m \leq \kappa c |h|_m \leq 1$$

for each g_i and each $h \in V$. Thus the sequence $\{g_i\}$ has a w*-cluster point $g \in \mathcal{K}$. As $\{g_i\}$ is compactly supported, supp g is a compact subset of U; in particular $g \in L^1(U)$. Equality (3.3) implies

$$\lim \langle \Gamma^*(S_i), v \rangle = \lim \int_U g_i(x) \div v(x) \, dx = \int_U g(x) \div v(x) \, dx$$

for each $v \in C^1_c(U; \mathbb{R}^m)$; the last equality holds, since $\int_U g \div v$ is the cluster point of a convergent sequence $\{\int_U g_i \div v\}$. Hence for $v \in C^1_c(U; \mathbb{R}^m)$ with $|v|_\infty \leq 1,$

$$\int_U g(x) \div v(x) \, dx \leq \sup \|g_i\| \leq c.$$

We infer $g \in BV_c(U)$, and let $S := \Phi(g)$. By equalities (3.4) and (3.3),

$$\langle T, v \rangle = \lim \langle \Gamma^*(S_i), v \rangle = -\lim \int_U v \cdot d(Dg_i)$$

$$= -\int_U v \cdot d(Dg) = \langle \Gamma^*(S), v \rangle$$

for each $v \in C^1_c(U; \mathbb{R}^m)$. As $C^1_c(U; \mathbb{R}^m)$ is a dense subspace of $C(U; \mathbb{R}^m)$, we see that $T = \Gamma^*(S)$ belongs to $\Gamma^* [CH_s(U)^*]$.

\[\square \]

Theorem 3.7. $\mathcal{F}(U) = CH_s(U)$.

Proof. According to the Closed Range Theorem [6, Theorem 8.6.13], the following claims are equivalent:

(a) $\Gamma^* [CH_s(U)^*]$ is strongly closed in $C(U; \mathbb{R}^m)^*$;

(b) $\Gamma^* [CH_s(U)^*]$ is w*-closed in $C(U; \mathbb{R}^m)^*$;

Proof. According to the Closed Range Theorem [6, Theorem 8.6.13], the following claims are equivalent:
Theorem 3.8. Let $F \in CH_s(U)$. For each $\varepsilon > 0$ and each amiable set $K \subset U$, there is a $v \in C(U; \mathbb{R}^m)$ such that $\Gamma(v) = F$ and

$$\|F\|_{s,K} \leq |v|_{\infty,K} \leq (1 + \varepsilon)\|F\|_{s,K}.$$

Proof. The first inequality, which holds for any compact set $K \subset U$, is obvious. Choose an $\varepsilon > 0$ and an amiable set $K \subset U$. We simplify the notation by letting $|v| := |v|_{\infty,K}$ for each $v \in C(U; \mathbb{R}^m)$, and $\|F\| := \|F\|_{s,K}$. To avoid a triviality, assume that $\|F\| > 0$. It suffices to show that the nonempty convex sets

$$A := \{v \in C(U; \mathbb{R}^m) : |v| < (1 + \varepsilon)\|F\|\},$$

$$B := \{v \in C(U; \mathbb{R}^m) : \Gamma(v) = F\}$$

have a nonempty intersection. Proceeding toward a contradiction suppose that $A \cap B = \emptyset$. As A is open, it follows from the Hahn-Banach theorem that there are $T \in [C(U; \mathbb{R}^m)]^*$ and $\gamma \in \mathbb{R}$ such that

$$\langle T, v \rangle < \gamma \leq \langle T, w \rangle \quad (3.5)$$

for each $v \in A$ and each $w \in B$ [15, Theorem 3.4, (a)]. Note $\gamma > 0$, because $v = 0$ belongs to A. For the reminder of the proof, select a $w \in B$. If $u \in \Gamma^{-1}(0)$, then $w + tu$ belongs to B for each $t \in \mathbb{R}$. Hence $t\langle T, u \rangle \geq \gamma - \langle T, w \rangle$ for each $t \in \mathbb{R}$, and consequently $\langle T, u \rangle = 0$. Therefore $\Gamma^{-1}(0) \subset T^{-1}(0)$. Since Γ is surjective, and hence open by the Open Mapping Theorem [15, Corollary 2.12, (a)], there is an $S \in [CH_s(U)]^*$ with $T = S \circ \Gamma$. The function $g := \Phi^{-1}(S)$ belongs to $BV_c(U)$, and

$$\int_U v \cdot d(Dg) = \langle \Gamma(v), g \rangle = \langle S, \Gamma(v) \rangle = \langle T, v \rangle \quad (3.6)$$

for each $v \in C(U; \mathbb{R}^m)$. If $v \in C(U; \mathbb{R}^m)$ and $\{v \neq 0\} \cap K = \emptyset$, then $|v| = 0$. Thus both tv and $-tv$ belong to A for each $t \in \mathbb{R}$, and inequality (3.5) implies $Tv = 0$. By equality (3.6), the support of Dg is contained in K, and by Observation 3.4, so is the support of g. Choose a positive $\eta < \varepsilon$ and a $u \in C^1_c(\mathbb{R}^m; \mathbb{R}^m)$ with $|u|_{\infty} \leq 1$. Clearly $v := -(1 + \eta)\|F\|u$ belongs to A, and by (3.6) and (3.5),

$$\int_U g(x) \text{ div } u(x) \, dx = -\int_U u \cdot d(Dg) = \frac{1}{(1 + \eta)\|F\|} \int_U v \cdot d(Dg)$$

$$= \frac{1}{(1 + \eta)\|F\|} \langle T, v \rangle < \frac{\gamma}{(1 + \eta)\|F\|}.$$

We infer $\|g\| \leq \gamma/[(1 + \eta)\|F\|]$. As the support of g is contained in K, a contradiction follows from (3.5) and (3.6):

$$\gamma \leq \langle T, w \rangle = \langle \Gamma(w), g \rangle = \langle F, g \rangle \leq \|g\| \cdot \|F\| \leq \frac{\gamma}{1 + \eta} < \gamma.$$

\[\square\]
Let \(K \subset \mathbb{R}^m \) be a compact set, and let \(BV(K) \) be the linear space of all functions \(g \in BV(\mathbb{R}^m) \) with \(\{ g \neq 0 \} \subset K \). A linear functional \(F : BV(K) \to \mathbb{R} \) is called an \(s \)-charge in \(K \) if given \(\varepsilon > 0 \), there is a \(\theta > 0 \) such that
\[
|F(g)| \leq \theta |g_1| + \varepsilon \|g\|
\]
for each \(g \in BV(K) \). The linear space of all \(s \)-charges in \(K \), denoted by \(CH_s(K) \), is equipped with the Banach norm
\[
\|F\|_s := \sup \{ F(g) : g \in BV(K) \text{ and } \|g\| \leq 1 \}
\]
for \(F \in CH_s(K) \). Given \(K \subset U \), the restriction map \(\rho_s : F \mapsto F|_{BV(K)} : CH_s(U) \to CH_s(K) \) is linear and continuous. If \(\Omega \) is a bounded Lipschitz domain, then \(CH_s(\text{cl} \Omega) \) is linearly homeomorphic to \(\{ F \in CH_s(\mathbb{R}^m) : F = F|_{\Omega} \} \) topologized as a subspace of \(CH_s(\mathbb{R}^m) \).

As the definitions of \(s \)-charges in an open set \(U \) and a in compact set \(K \) are similar, most of the properties established for \(s \)-charges in \(U \) hold also for \(s \)-charges in \(K \), and the corresponding proofs are analogous. Since \(CH_s(K) \) is a Banach space, proving properties of \(s \)-charges in \(K \) is often less technical.

Let \(K \subset \mathbb{R}^m \) be a compact set. If \(v \in C(K; \mathbb{R}^m) \), then the functional
\[
F_v : g \mapsto \int_K v \cdot d(Dg) : BV(K) \to \mathbb{R}
\]
is an \(s \)-charge in \(K \), still called the flux of \(v \). Topologizing \(C(K; \mathbb{R}^m) \) by the Banach norm \(|v|_\infty \), we have a continuous linear surjection
\[
\Gamma_K : v \mapsto F_v : C(K; \mathbb{R}^m) \to CH_s(K)
\]
(cf. Theorem 3.7), and the following diagram commutes
\[
\begin{array}{ccc}
C(\mathbb{R}^m; \mathbb{R}^m) & \xrightarrow{\rho} & C(K; \mathbb{R}^m) \\
\Gamma \downarrow & & \downarrow \Gamma_K \\
CH_s(\mathbb{R}^m) & \xrightarrow{\rho_s} & CH_s(K)
\end{array}
\]
As the restriction map \(\rho : v \mapsto v|_K \) is surjective, so is \(\rho_s \); in particular
\[
CH_s(K) = \{ F : BV(K) : F \in CH_s(\mathbb{R}^m) \}.
\]
However, note that for an \(F \in CH_s(\mathbb{R}^m) \), the inclusion
\[
\{ v \mid K : v \in \Gamma^{-1}(F) \} \subset \Gamma_K^{-1}[F \mid BV(K)]
\]
may be proper. The next proposition, whose proof is analogous to that of Theorem 3.8, holds for any compact set \(K \subset \mathbb{R}^m \).

Proposition 3.9. Let \(F \) be an \(s \)-charge in a compact set \(K \), and let \(\varepsilon > 0 \). There is a \(v \in C(K; \mathbb{R}^m) \) such that \(F = \Gamma_K(v) \) and
\[
\|F\|_s \leq |v|_\infty \leq (1 + \varepsilon)\|F\|_s.
\]
4. Rotation invariant charges

In this section we consider Γ restricted to a map from the space of all rotation invariant vector fields to the space of all rotation invariant s-charges, and construct a continuous right inverse of Γ.

Working with the standard orthonormal base in \mathbb{R}^m, we view the special orthogonal group $SO := SO(m)$ as the multiplicative group of orthogonal matrices with positive determinants, and employ the usual matrix multiplication. Vectors and one-forms are viewed as one-column and one-row matrices, respectively. In particular, $x \in \mathbb{R}^m$ is a one-column matrix, and the gradient $\nabla \varphi$ of a $\varphi \in C^1(\mathbb{R}^m)$ is a one-row matrix; in this interpretation, $x \cdot \nabla \varphi(x) = [\nabla \varphi(x)]^T x$. The Haar probability on SO is denoted by θ.

Throughout this section, select a positive $R \leq \infty$, and let

$$U := \{ x \in \mathbb{R}^m : |x| < R \} \quad \text{and} \quad U_0 := \{ x \in \mathbb{R}^m : 0 < |x| < R \}.$$

The group SO acts linearly and continuously on the spaces $BV_c(U)$, $CH_s(U)$, and $C(U; \mathbb{R}^m)$ by the following rules:

$$(A \bullet g, x) := \langle g, Ax \rangle, \quad (A \bullet F, g) := \langle F, A \bullet g \rangle, \quad (A \bullet v, x) := A^{-1}(v, Ax)$$

for every $A \in SO$, $g \in BV_c(U)$, $F \in CH_s(U)$, $v \in C(U; \mathbb{R}^m)$, and $x \in U$. Let

$$CH^\text{inv}_s(U) := \{ F \in CH_s(U) : A \bullet F = F \text{ for each } A \in SO \},$$

$$C^\text{inv}(U; \mathbb{R}^m) := \{ v \in C(U; \mathbb{R}^m) : A \bullet v = v \text{ for each } A \in SO \},$$

and give these spaces the subspace topology. If $v \in C^\text{inv}(U; \mathbb{R}^m)$ then $v(0) = 0$, since $A^{-1}v(0) = v(0)$ for each $A \in SO$. Observe

$$\langle \Gamma(A \bullet v), \varphi \rangle = - \int_U \nabla \varphi(x) \big[A(v, A^{-1}x)\big] \, dx = - \int_U \big[\nabla \varphi(Ay)A\big] v(y) \, dy$$

$$= - \int_U \nabla(A \bullet \varphi)(y)v(y) \, dy = \langle \Gamma(v), A \bullet \varphi \rangle = \langle A \bullet \Gamma(v), \varphi \rangle$$

(4.1)

for every $A \in SO$, $v \in C(U; \mathbb{R}^m)$, and $\varphi \in \mathcal{D}(U)$. Thus $\Gamma(A \bullet v) = A \bullet \Gamma(v)$, and it follows that Γ maps $C^\text{inv}(U; \mathbb{R}^m)$ into $CH^\text{inv}_s(U)$.

Observation 4.1. The map $\Gamma : C^\text{inv}(U; \mathbb{R}^m) \to CH^\text{inv}_s(U)$ is surjective.

Proof. If $F \in CH^\text{inv}_s(U)$ then by Theorem 3.7, there is a $v \in C(U; \mathbb{R}^m)$ such that $\Gamma(v) = F$. Defining a $w \in C^\text{inv}(U; \mathbb{R}^m)$ by the formula

$$w := \int_{SO} A \bullet v \, d\theta(A),$$

we have $\Gamma(w) = F$. Indeed for each $\varphi \in \mathcal{D}(U)$, Fubini’s theorem and (4.1) yield

$$\langle \Gamma(w), \varphi \rangle = \int_U w(x) \cdot \nabla \varphi(x) \, dx = \int_{SO} \int_U (A \bullet v)(x) \cdot \nabla \varphi(x) \, dx \, d\theta(A)$$

$$= \int_{SO} \langle \Gamma(A \bullet v), \varphi \rangle \, d\theta(A) = \int_{SO} \langle A \bullet \Gamma(v), \varphi \rangle \, d\theta(A)$$

$$= \int_{SO} \langle A \bullet F, \varphi \rangle \, d\theta(A) = \int_{SO} \langle F, \varphi \rangle \, d\theta(A) = \langle F, \varphi \rangle.$$

\square
Throughout the reminder of this section, we let \(B_r := B[r] \) for \(r > 0 \). View the sphere \(S := \partial B_1 \) as a Riemannian submanifold of \(\mathbb{R}^m \), and denote by \(T_x S \) its tangent space at \(x \in S \). The measure \(\mathcal{H}/\|B_1\| \) defines an \(SO \) invariant probability in \(S \), denoted by \(\sigma \). For \(x \in S \) and \(\varphi \in \mathcal{D}(S) \), let
\[
|\nabla \varphi|(x) := \sup \{|X\varphi| : X \in T_x S \text{ and } |X| = 1\},
\]
\[
\|\varphi\| := \int_S |\nabla \varphi|(x) \, d\sigma(x).
\]
With this notation at hand, we can introduce charges and s-charges in \(S \) and s-charges in the obvious modification of Definition 2.3. Observation 2.4 readily translates to charges if Proposition 4.2. (cf. Remark 2.8). A charge \(G \) in \(S \) is called invariant if
\[
\langle G, A \cdot \varphi \rangle = \langle G, \varphi \rangle
\]
for each \(A \in SO \) and each \(\varphi \in \mathcal{D}(S) \).

Proposition 4.2. If \(G \) is an invariant charge in \(S \), then
\[
G(g) = G(S) \int_S g(x) \, d\sigma(x)
\]
for each \(g \in BV(S) \).

Proof. In view of Observation 2.4, it suffices to prove the proposition when \(g \) is a test function. Choose a \(\varphi \in \mathcal{D}(S) \), and for each \(x \in S \), let
\[
f(x) := \int_{SO} \varphi(Ax) \, d\theta(A).
\]
Since \(f(Bx) = f(x) \) for each \(B \in SO \), and since \(SO \) acts transitively on \(S \), the function \(f \) equals a constant \(c \). By Fubini’s theorem
\[
c = \int_S f(x) \, d\sigma(x) = \int_{SO} \left[\int_S \varphi(Ax) \, d\sigma(x) \right] \, d\theta(A)
\]
\[
= \int_{SO} \left[\int_S \varphi(x) \, d\sigma(x) \right] \, d\theta(A) = \int_S \varphi(x) \, d\sigma(x),
\]
and hence
\[
G(f) = G(c\chi_S) = cG(S) = G(S) \int_S \varphi(x) \, d\sigma(x).
\]
We complete the proof by showing that \(G(\varphi) = G(f) \). To this end, consider collections \(P := \{(E_1, A_1), \ldots, (E_p, A_p)\} \) such that \(E_1, \ldots, E_p \) are disjoint Borel subsets of \(SO \) whose union is \(SO \), and \(A_i \in E_i \) for \(i = 1, \ldots, p \). Given such a collection \(P \), define a test function \(f_P := \sum_{i=1}^p (A_i \cdot \varphi) \theta(E_i) \), and observe
\[
|f_P|_{\infty} \leq \sum_{i=1}^p |A_i \cdot \varphi|_{\infty} \theta(E_i) \leq |\varphi|_{\infty} \sum_{i=1}^p \theta(E_i) = |\varphi|_{\infty}, \tag{4.2}
\]
\[
\|f_P\| \leq \sum_{i=1}^p \|A_i \cdot \varphi\| \theta(E_i) \leq \|\varphi\| \sum_{i=1}^p \theta(E_i) = \|\varphi\|.
\]
The first inequality is obvious, and since \(|\nabla (A_i \cdot \varphi)|(x) = |\nabla \varphi|(A_i x) \) for each \(x \in S \) and \(i = 1, \ldots, p \), the second one follows. The function \((A, x) \mapsto \varphi(Ax) \) is uniformly continuous on \(SO \times S \). Thus making the diameter of each \(E_i \) sufficiently small,
Proposition 4.3. The map f approximates f uniformly with an arbitrary precision; in particular, f_P can be arbitrarily close to f in the L^1 norm of $L^1(S,\sigma)$. In view of Remark 2.7, this and inequalities (4.2) imply that $G(f_P)$ can be arbitrarily close to $G(f)$. Since

$$G(f_P) = \sum_{i=1}^P \theta(E_i)G(A_i\cdot\varphi) = G(\varphi)\sum_{i=1}^P \theta(E_i) = G(\varphi).$$

for each P, we obtain $G(f) = G(\varphi)$. □

Proposition 4.3. The map $\Gamma : C_{\text{inv}}^\text{inv}(U;\mathbb{R}^m) \rightarrow C_{\text{inv}}^\text{inv}(U)$ has a linear right inverse $\Upsilon : C_{\text{inv}}^\text{inv}(U) \rightarrow C_{\text{inv}}^\text{inv}(U;\mathbb{R}^m)$ defined for each $F \in C_{\text{inv}}^\text{inv}(U)$ by the formulas

$$\langle \Upsilon(F), x \rangle := \frac{F(B_r)}{\|B_r\|} \cdot \frac{x}{r} \quad (4.3)$$

if $r := |x| > 0$, and $\langle \Upsilon(F), 0 \rangle := 0$. The equality $|\Upsilon(F)|_{\infty, B_r} = \|F\|_{s,B_r}$ holds for each positive $r < R$; in particular Υ is continuous.

Proof. Clearly Υ is a linear map. Select an $F \in C_{\text{inv}}^\text{inv}(U)$, and note that $v := \Upsilon(F)$ belongs to $C_{\text{inv}}^\text{inv}(U;\mathbb{R}^m)$ by Proposition 2.6. We show that $F = F_v$. If E is a BV set in S, then it is easy to verify that

$$C_E := \{sx : x \in E \text{ and } 0 \leq s \leq 1\}$$

is a bounded BV subset of \mathbb{R}^m, called a BV cone in B_1. Assuming that $R > 1$ and using Remark 2.8, we can define an invariant charge G in S by letting $G(E) := F(C_E)$ for each BV set E in S. By Proposition 4.2,

$$F(C_E) = G(E) = G(S)\frac{\Upsilon(E)}{\|B_1\|} = \frac{F(B_1)}{\|B_1\|} \Upsilon(E)$$

$$= \int_{\partial_s C_E} v \cdot \nu_{C_E} \, d\mathcal{H} = F_v(C_E)$$

for every BV set E in S. Thus $R > 1$ implies that F and F_v coincide on all BV cones in B_1. By the obvious extrapolation, F and F_v coincide on all BV cones in B_r with $0 < r < R$. Cover U_0 by charts $(J_1, \phi_1), \ldots, (J_n, \phi_n)$ where J_i are open subintervals of \mathbb{R}^m and $\phi_i : J_i \rightarrow U_0$ are defined by means of the spherical coordinates. If K is a compact subinterval of J_i, we call $\phi_i(K)$ a “rectangle” in U_0. Up to a negligible set, each “rectangle” in U_0 has the form $C_s - (C_s \cap B_r)$ where $0 < r < s < R$ and C_s is a BV cone in B_s. By additivity, F and F_v coincide on all “rectangles” in U_0, and in view of Remark 2.8, they coincide on all bounded BV sets E with $\text{cl} \, E \subset U_0$. If E is a bounded BV subset of U, then

$$F(E) = \lim_{r \rightarrow 0^+} F(E - B_r) = \lim_{r \rightarrow 0^+} F_v(E - B_r) = F_v(E)$$

and Remark 2.8 implies $F = F_v$. Since $|v(x)| \leq \|F\|_{s,B_r}$ for each $x \in B_r$, we have $|\Upsilon(F)|_{\infty,B_r} = |v|_{\infty,B_r} \leq \|F\|_{s,B_r}$. The reverse inequality has been established prior to Lemma 3.1:

$$\|F\|_{s,B_r} = \|\langle F, \Upsilon(F) \rangle\|_{\infty,B_r} \leq |\Upsilon(F)|_{\infty,B_r}.$$

Noting that each compact subset of U is contained in B_r for some $r < R$ completes the argument. □
Remark 4.4. We present a different proof of Proposition 4.3, which is available in dimension $m = 2$, but may not generalize to higher dimensions.

For $x = (\xi_1, \xi_2)$ in \mathbb{R}^2, let $\bar{x} = (-\xi_2, \xi_1)$. Given $v \in C^{\text{inv}}(U; \mathbb{R}^m)$, there are continuous functions a_1, a_2 defined on $[0, R)$ such that $a_1(0) = a_2(0) = 0$, and

$$v(x) = a_1(|x|)x + a_2(|x|)\bar{x}$$

for each $x \in U$. Define vector fields $\pi_i v \in C^{\text{inv}}(U; \mathbb{R}^2)$, $i = 1, 2$, by

$$\pi_1 v(x) := a_1(|x|)x \quad \text{and} \quad \pi_2 v(x) := a_2(|x|)\bar{x}$$

for every $x \in U$. Interpreting derivatives in the distributional sense, observe that $\text{div} \pi_2 v = 0$, and that $\text{div} \pi_1 v = 0$ implies $t a_1'(t) + 2a_1(t) = 0$ for $0 < t < R$. In $(0, R)$, the continuous distributional solutions of the last equation are the same as the classical solutions $a_1(t) = ct^{-2}$ where $c \in \mathbb{R}$. As a_1 is bounded in the neighborhood of zero, $\text{div} \pi_1 v = 0$ implies $\pi_1 v = 0$. Now

$$\langle \Gamma(v), \varphi \rangle = -\int_U \pi_1 v(x) \cdot \nabla \varphi(x) \, dx - \int_U \pi_2 v(x) \cdot \nabla \varphi(x) \, dx$$

$$= \int_U \varphi(x) \text{div} \pi_1 v(x) \, dx + \int_U \varphi(x) \text{div} \pi_2 v(x) \, dx$$

$$= \int_U \varphi(x) \text{div} \pi_1 v(x) \, dx$$

for each $\varphi \in \mathcal{D}(U)$, and we conclude that $\Gamma(v) = 0$ implies $\pi_1 v = 0$.

Choose an $F \in CH_a^{\text{inv}}(U)$, and use Observation 4.1 to find a $v \in C^{\text{inv}}(U; \mathbb{R}^2)$ with $\Gamma(v) = F$. By the previous paragraph, $\pi_1 v \in C^{\text{inv}}(U; \mathbb{R}^2)$ does not depend on the choice of v. Thus letting $\Upsilon(F) = \pi_1 v$ for any $v \in C^{\text{inv}}(U; \mathbb{R}^2)$ with $\Gamma(v) = F$, we have defined a right inverse Υ of $\Gamma : C^{\text{inv}}(U; \mathbb{R}^2) \rightarrow CH^a_{s}(U)$. Since

$$F(B_r) = \int_{\partial B_r} \pi_1 v \cdot \nu_{B_r} \, dH = ra_1(r)\|B_r\|$$

for $0 < r < R$, the vector field $\Upsilon(F)$ is defined by formula (4.3).

5. Charges

Under the name “continuous additive functions”, charges were introduced in [12] as a common generalization of ac-charges and fluxing distributions. They facilitate a definition of a multidimensional Riemann type integral that provides a Gauss-Green theorem for any differentiable vector field (cf. Section 6 below). In this section, we show that the common generalization given by charges is minimal: the space $CH(U)$ of all charges in U is the smallest linear space containing both $CH_{ac}(U)$ and $CH_s(U)$. The idea of the proof is similar to that of Theorem 3.7.

We give $CH(U)$ a Fréchet topology defined by the seminorms

$$\|F\|_K := \sup \{ F(g) : g \in BV(U), \, \{g \neq 0\} \subset K, \text{ and } |g|_\infty + \|g\| \leq 1 \}$$

where $F \in CH(U)$, and $K \subset U$ is a compact set. Since $\|F\|_K \leq \|F\|_{s,K}$ for each s-charge F, the inclusion map $CH_a(U) \hookrightarrow CH(U)$ is continuous. However, $CH_s(U)$ is not topologized as a subspace of $CH(U)$.

The product topology in $L^1_{\text{loc}}(U) \times C(U; \mathbb{R}^m)$ is defined by the seminorms

$$\|(f, v)\|_K := \max \{|f|_{1,K}, |v|_{\infty,K}\}.$$
A linear map $\Theta : L^1_{\text{loc}}(U) \times C(U; \mathbb{R}^m) \to CH(U)$, defined by the formula
\[
\langle \Theta(f, v), g \rangle := \langle \Lambda(f) + \Gamma(v), g \rangle = \int_U fg d\mathcal{L}^m - \int_U v \cdot d(Dg)
\]
for $(f, v) \in L^1_{\text{loc}}(U) \times C(U; \mathbb{R}^m)$ and $g \in BV^\infty_c(U)$, is continuous. Indeed,
\[
\|\Theta(f, v)\| \leq |g|_{\infty} \cdot |f|_{1, K} + \|g\| \cdot |v|_{\infty, K} \leq (|g|_{\infty} + \|g\|) \|(f, v)\|_K
\]
whenever $K \subset U$ is compact and $\{g \neq 0\} \subset K$, and hence $\|\Theta(f, v)\|_K \leq \|(f, v)\|_K$.

Proposition 5.1. If Θ^* is the adjoint map of Θ, then $\Theta^*[CH(U)^*]$ is sequentially closed in the strong topology of $[L^1_{\text{loc}}(U) \times C(U; \mathbb{R}^m)]^*$.

Proof. While the proof is similar to that of Proposition 3.6, it is more technical. Denote by $M_c(U; \mathbb{R}^m)$ the linear space of all compactly supported Radon measures with values in \mathbb{R}^m, and define maps
\[
i \times D : g \mapsto (g, Dg) : BV^\infty_c(U) \to L^\infty_c(U) \times M_c(U; \mathbb{R}^m),
\]
\[
t : (g, \mu) \mapsto T_{g, \mu} : L^\infty_c(U) \times M_c(U; \mathbb{R}^m) \to [L^1_{\text{loc}}(U) \times C(U; \mathbb{R}^m)]^*,
\]
where $T_{g, \mu}(f, v) := \int_U fg d\mathcal{L} - \int_U v \cdot d\mu$ for each (f, v) in $L^1_{\text{loc}}(U) \times C(U; \mathbb{R}^m)$. By [13, Theorem 4.3.5], there is a linear bijection $\Psi : BV^\infty_c(U) \to CH(U)^*$ such that
\[
\langle \Psi(g), F \rangle = \langle F, g \rangle.
\]
for each $g \in BV^\infty_c(U)$ and each $F \in CH$. The diagram
\[
\begin{array}{ccc}
BV^\infty_c(U) & \xrightarrow{\iota \times D} & L^\infty_c(U) \times M_c(U; \mathbb{R}^m) \\
\downarrow \psi & & \downarrow \tau \\
CH(U)^* & \xrightarrow{\Theta^*} & [L^1_{\text{loc}}(U) \times C(U; \mathbb{R}^m)]^*
\end{array}
\]
commutes. Hence for $S \in CH(U)^*$, $(f, v) \in L^1_{\text{loc}}(U) \times C(U; \mathbb{R}^m)$, and $g := \Psi^{-1}(S)$,
\[
\langle \Theta^*(S), (f, v) \rangle = \int_U f(x)g(x) dx - \int_U v \cdot d(Dg). \tag{5.1}
\]
Select a sequence $\{S_i\}$ in $CH(U)^*$ so that $\{\Theta^*(S_i)\}$ converges strongly to a T in $[L^1_{\text{loc}}(U) \times C(U; \mathbb{R}^m)]^*$, and note that $\{\Theta^*(S_i)\}$ is uniformly bounded on each bounded subset of $L^1_{\text{loc}}(U) \times C(U; \mathbb{R}^m)$. Applying (5.1) to $g_i = \Psi^{-1}(S_i)$ and $(0, v)$, Lemma 3.5 implies that the sequence $\{g_i\}$ in $BV^\infty_c(U)$ is compactly supported. As
\[
B := \{(f, v) \in L^1_{\text{loc}}(U) \times C(U; \mathbb{R}^m) : \|f\|_1 \leq 1 \text{ and } |v|_{\infty} \leq 1\}
\]
is a bounded subset of $L^1_{\text{loc}}(U) \times C(U; \mathbb{R}^m)$, we have
\[
\|R\| := \sup \left\{ \langle R, (f, v) \rangle : (f, v) \in B \right\} < \infty
\]
for each $R \in [L^1_{\text{loc}}(U) \times C(U; \mathbb{R}^m)]^*$. Since $\lim \|\Theta^*(S_i) - T\| = 0$, there is a $c > 0$ such that $\|\Theta^*(S_i)\| \leq c$ for $i = 1, 2, \ldots$. From
\[
|g_i|_{\infty} = \sup \left\{ \int_U f(x)g_i(x) dx : f \in L^1(U) \text{ and } |f|_1 \leq 1 \right\},
\]
\[
\|g_i\| = \sup \left\{ \int_U v \cdot d(Dg_i) : v \in C^1_c(U; \mathbb{R}^m) \text{ and } |v|_{\infty} \leq 1 \right\},
\]
and equality (5.1), we obtain
\[|g_i|_\infty + \|g_i\| \leq \sup \left\{ \langle \Theta^*(S_i), (f, v) \rangle : (f, v) \in B \right\} = \|\Theta^*(S_i)\| \leq c. \]

Now \(L^\infty(U) \) is the dual of \(L^1(U) \), and \(V := \{ h \in L^1(U) : |h|_1 \leq 1/c \} \) is a neighborhood of zero in \(L^1(U) \). According to the Banach-Alaoglu theorem,
\[K := \left\{ f \in L^\infty(U) : \left| \int_U f(x)h(x) \, dx \right| \leq 1 \text{ for each } h \in V \right\} \]
is w*-compact subset of \(L^\infty(U) \). Every \(g_i \) belongs to \(BV_c \subset L^\infty(U) \), and
\[\left| \int_{\mathbb{R}^m} g_i(x)h(x) \, dx \right| \leq |g_i|_\infty \cdot |h|_1 \leq 1 \]
for each \(h \in V \). Thus the sequence \(\{g_i\} \) has a w*-cluster point \(g \in K \). As \(\{g_i\} \) is compactly supported, \(supp g \) is a compact subset of \(U \). The sequence \(\{\Theta^*(S_i)\} \) converges strongly to \(T \), and a fortiori, it w*-converges to \(T \). Equality (5.1) implies
\[\lim \langle \Theta^*(S_i), (f, 0) \rangle = \lim \int_U f(x)g_i(x) \, dx = \int_U f(x)g(x) \, dx, \]
\[\lim \langle \Theta^*(S_i), (0, v) \rangle = \lim \int_U g_i(x) \text{div} v(x) \, dx = \int_U g(x) \text{div} v(x) \, dx \]
for each \((f, v) \in L^1(U) \times C^1_c(U; \mathbb{R}^m) \); the last equalities hold, since the right hand sides are cluster points of convergent sequences \(\{ \int_U f h \} \) and \(\{ \int_U g_i \text{div} v \} \). For each \(v \in C^1_c(U; \mathbb{R}^m) \) with \(|v|_\infty \leq 1 \), the second equality in (5.2) implies
\[\int_U g(x) \text{div} v(x) \, dx = \int_U g_i(x) \text{div} v(x) \, dx \leq \sup \|g_i\| \leq c. \]

We infer \(g \in BV_c(U) \), and let \(S := \Psi(g) \). By equalities (5.2) and (5.1),
\[\langle T, (f, v) \rangle = \lim \langle \Theta^*(S_i), (f, v) \rangle \]
\[= \lim \langle \Theta^*(S_i), (f, 0) \rangle + \lim \langle \Theta^*(S_i), (0, v) \rangle \]
\[= \lim \int_U f(x)g_i(x) \, dx - \lim \int_U v \cdot d(Dg_i) \]
\[= \int_U f(x)g(x) \, dx - \int_U v \cdot d(Dg) = \langle \Theta^*(S), (f, v) \rangle \]
for each \((f, v) \) in \(L^1(U) \times C^1_c(U; \mathbb{R}^m) \). As \(L^1(U) \times C^1_c(U; \mathbb{R}^m) \) is a dense subspace of \(L^1_{loc}(U) \times C(U; \mathbb{R}^m) \), we see that \(T = \Theta^*(S) \) belongs to \(\Theta^*\left[CH(U)^* \right] \).

Theorem 5.2. Each charge is the sum of an ac-charge and an s-charge.

Proof. As in the proof of Theorem 3.6, we deduce from Proposition 5.1 and the Closed Range Theorem that \(\Theta[L^1_{loc}(U) \times C(U; \mathbb{R}^m)] \) is a closed subspace of \(CH(U) \). By [13, Proposition 4.2.2], the space \(CH_{ac}(U) = \Theta[L^1_{loc}(U) \times \{0\}] \) is dense in \(CH(U) \). Consequently
\[CH_{ac}(U) + \mathcal{F}(U) = \Theta[L^1_{loc}(U) \times C(U; \mathbb{R}^m)] = CH(U), \]
and the theorem follows from Theorem 3.7.

Remark 5.3. From [13, Proposition 4.2.2] and Lemma 3.1, we see that both spaces \(CH_{ac}(U) \) and \(CH_s(U) \) are dense in \(CH(U) \).
6. The Gauss-Green theorem

According to Definition 2.1, the distributional divergence of \(v \in C(U; \mathbb{R}^m) \) is defined as the flux \(F_v \) of \(v \). In this framework the Gauss-Green theorem is a mere tautology, which gains its usual meaning when the distribution \(F_v \) is given by a function \(f \in L^1_{\text{loc}}(U) \) [11, Proposition 4.1]. This is a well-known case: the flux \(F_v \) is an ac-charge whose density \(f \) is obtained by derivating \(F_v \) with respect to a suitable derivation basis. However, one may wish to look at a more general situation when \(F_v \) is not an ac-charge, but still has a density \(f \) obtained by derivation. Then \(f \) is not in \(L^1_{\text{loc}}(U) \), and two questions arise.

(i) When is \(F_v \) determined uniquely by its density \(f \)?
(ii) If \(F_v \) is determined uniquely by its density \(f \), then how can \(F_v \) be recovered from \(f \)?

Answers to these questions lead to extensions of the classical Gauss-Green theorem — a topic to which we devote the remainder of our paper.

For a bounded BV set \(A \) contained in \(U \), let

\[
r(A) := \begin{cases} \frac{|A|}{d(A)||A||} & \text{if } |A| > 0, \\ 0 & \text{otherwise}. \end{cases}
\]

We say that a sequence \(\{A_i\} \) of bounded BV sets contained in \(U \) tends to \(x \in U \) if \(x \) belongs to each \(A_i \), \(\lim d(A_i) = 0 \), and \(\inf r(A_i) > 0 \). A charge \(F \) in \(U \) is derivable at \(x \in U \) whenever a finite limit

\[
DF(x) := \lim F(A_i) / |A_i|
\]

exists for each sequence \(\{A_i\} \) of bounded BV sets contained in \(U \) that tends to \(x \). The number \(DF(x) \), called the derivative of \(F \) at \(x \), does not depend on a particular sequence \(\{A_i\} \). If \(v \in C(U; \mathbb{R}^m) \) is differentiable at \(x \in U \), the it is easy to verify that the flux \(F_v \) of \(v \) is derivable at \(x \) and \(DF_v(x) = \text{div} v(x) \).

Denote by \(CH_D(U) \) the linear space of all charges in \(U \) that are derivable at almost all \(x \in U \), and by \(L^0(U) \) the space of all measurable functions defined on \(U \). According to Luzin’s theorem for charges [10], the map

\[
D_U : F \mapsto DF : CH_D(U) \rightarrow L^0(U),
\]

is surjective, and we call it the derivation in \(U \). By our choice of derivation basis, the derivation \(D_U \) is a natural transformation of the functors \(CH_D : U \mapsto CH_D(U) \) and \(L^0 : U \mapsto L^0(U) \) defined on the category \(\text{Lip}_{\text{loc}} \) of open subsets of \(\mathbb{R}^m \) and proper local lipomorphisms [13, Section 4.6]. The map \(D_U \) has a nontrivial kernel \(CH_{\text{sing}}(U) := D_U^{-1}(0) \), whose elements are called singular charges in \(U \). Consequently, \(D_U \) has no natural right inverse. Notwithstanding, we may find a functorial subspace \(X(U) \) of \(CH_D(U) \) so that \(X(U) \cap CH_{\text{sing}}(U) = \{0\} \), in which case the restriction \(D_U \mid X(U) \) is a bijection from \(X(U) \) onto \(J_X(U) := D_U(X) \). We denote the inverse map

\[
(D_U \mid X)^{-1} : J_X(U) \rightarrow X(U)
\]
by $I_{X,U}$, and call it the integration in U induced by X. Clearly, the integration $I_{X,U}$ is a natural transformation of the functors $X : U \to X(U)$ and $\mathcal{I}_X : U \to \mathcal{I}_X(U)$ defined on Lip_{loc}.

The following are classical examples of the procedure we described.

(1) Letting $X(U) := CH_{ac}(U)$, we obtain $\mathcal{I}_X(U) = L^1_{\text{loc}}(U)$ and $I_{X,U}$ is the Lebesgue integration in U.

(2) Let $X(U) := CH_{DD}(U)$ be the linear space of all charges in U that are derivable at each $x \in U$. Then $X(U) \cap CH_{\text{sing}}(U) = \{0\}$ by [13, Section 2.6], and the resulting integration $I_{X,U}$ generalizes the Newton integral of elementary calculus.

Since neither of the spaces $CH_{ac}(U)$ and $CH_{DD}(U)$ contains the other, it is inviting to look for a functorial space $X(U) \subseteq CH_D(U)$ such that

$$CH_{ac}(U) + CH_{DD}(U) \subseteq X(U) \quad \text{and} \quad X(U) \cap CH_{\text{sing}}(U) = \{0\}.$$

While such a space $X(U)$ is by no means unique, practical considerations limit the choices. We seek an $X(U)$ that is large and well behaved — a delicate balancing act still open for investigation. Below we describe a particular definition of $X(U)$ that proved useful in applications.

A gage on a set $E \subseteq \mathbb{R}^m$ is a nonnegative function δ defined on E such that the measure $\mathcal{H} \{\delta = 0\}$ is σ-finite (see Remark 6.6 below for the motivation). Given $F \in CH(U)$ and $E \subseteq U$, let

$$V_*F(E) := \sup_{\eta > 0} \inf_{\delta} \sup \sum_{i=1}^p |F(A_i)|$$

where δ is a gage on E and the supremum is taken over all collections

$$\{(A_1, x_1), \ldots, (A_p, x_p)\}$$

such that A_1, \ldots, A_p are disjoint BV sets in U, and $x_i \in A_i$, $d(A_i) < \delta(x_i)$, and $r(A_i) > \eta$ for $i = 1, \ldots, p$.

It is not difficult to prove that $V_*F : E \mapsto V_*F(E)$ is a Borel regular measure in U [13, Proposition 3.5.1]. It follows from [13, Proposition 3.5.3] that V_*F restricted to BV subsets of a compact interval $J \subseteq U$ is the least additive function larger than or equal to $|F \downarrow J|$. In particular $|F(J)| \leq V_*F(J)$ for each compact interval $J \subseteq U$. An easy argument reveals that F is an ac-charge if and only if V_*F is absolutely continuous and locally finite [13, Proposition 3.6.1]. This fact suggests the following definition.

Definition 6.1. An $F \in CH(U)$ is called an ac-charge if the measure V_*F is absolutely continuous.

Denoting by $CH_*^a(U)$ the linear space of all ac-charges, it is immediate that $CH_{ac}^a(U) \subseteq CH_*^a(U)$; in fact, it follows from Theorems 5.2 and 3.7 that

$$CH_*^a(U) = CH_{ac}^a(U) + \mathcal{F}(U) \cap CH_*^a(U).$$

A direct verification of the inclusion $CH_{DD}(U) \subseteq CH_*^a(U)$ is straightforward [13, Theorem 3.6.7]. Establishing the functoriality of $CH_*^a : U \mapsto CH_*^a(U)$ on the category Lip_{loc} is not difficult, but requires some work [13, Section 4.6]. On the
other hand, proving the next fundamental theorem is hard. We refer the interested reader to [13, Sections 3.5 and 3.6].

Theorem 6.2. $CH_*(U) \subset CH_D(U)$ and

$$V_* F(E) = \int_E |DF(x)| \, dx$$

for each $F \in CH_*(U)$ and each measurable set $E \subset U$.

If $F \in CH_*(U) \cap CH_{sing}(U)$, then Theorem 6.2 yields $|F(J)| \leq V_* F(J) = 0$ for each compact interval $J \subset U$. From this and Remark 2.8, we obtain the following essential corollary.

Corollary 6.3. $CH_*(U) \cap CH_{sing}(U) = \{0\}$.

The next theorem, proved in [13, Section 4.5], is important for applications [13, Sections 5.2 and 5.3]. It indicates a good behavior of the space $CH_*(U)$.

Theorem 6.4. Let $F \in CH_*(U)$ and $g \in BV_{loc}^\infty(U)$. Then $F \llcorner g \in CH_*(U)$ and $D(F \llcorner g)(x) = DF(x)g(x)$ for almost all $x \in U$.

A vector field $v : U \to \mathbb{R}^m$ is called *pointwise Lipschitz* in a set $E \subset U$ if

$$\limsup_{y \to x} \frac{|v(y) - v(x)|}{|y - x|} < \infty$$

for each $x \in E$. By Stepanoff’s theorem [9, Theorem 3.1.9], a vector field v that is pointwise Lipschitz in $E \subset U$ is differentiable at almost all $x \in E$; in particular, the classical div v is defined almost everywhere in E. Now we can generalize the classical Gauss-Green theorem.

Theorem 6.5. Let $E \subset U$ be such that the measure $\mathcal{H} \llcorner E$ is σ-finite, and let $v \in C(U; \mathbb{R}^m)$ be pointwise Lipschitz in $U - E$. Then within $CH_*(U)$, the flux F_v of v is uniquely determined by the classical div v. If div v belongs to $L_{loc}^1(U)$, then

$$F_v(A) = \int_A \text{div } v(x) \, dx$$

for each bounded BV set A with $\text{cl } A \subset U$.

Proof. Since v is pointwise Lipschitz almost everywhere in U, Stepanoff’s theorem implies $DF_v(x) = \text{div } v(x)$ for almost all $x \in U$. However, more is true. Utilizing that v is pointwise Lipschitz in $U - E$ and that the measure $\mathcal{H} \llcorner E$ is σ-finite, it is easy to find gages on negligible sets which demonstrate the absolute continuity of the measure $V_* F_v$. Consequently $F_v \in CH_*(U)$, and the first claim follows from Corollary 6.3. If div v belongs to $L_{loc}^1(U)$, then the charge $G : A \mapsto \int_A \text{div } v(x) \, dx$ belongs to $CH_{ac}(U)$, and hence to $CH_*(U)$. By the classical derivability result,

$$DG(x) = \text{div } v(x) = DF_v(x)$$

for almost all $x \in U$, and another application of Corollary 6.3 completes the argument.
Remark 6.6. The simplicity of the previous proof is due to an application of Corollary 6.3. Of course, if $\text{div } v$ belongs to $L^1_{\text{loc}}(U)$, then the conclusion of Theorem 6.5 tells us that F_v is an ac-charge. However, proving this directly from the assumptions of Theorem 6.5 is appreciably harder than proving that F_v is an ac_*-charge. The latter proof is facilitated by our definition of gages.

If under the assumptions of Theorem 6.5, $\text{div } v$ does not belong to $L^1_{\text{loc}}(U)$, we must address question (ii) concerning the recovery of F_v from $\text{div } v$. The answer is affirmative: each $F \in CH^*(U)$ can be recovered from DF by means of an averaging process akin to the generalized Riemann integral of Henstock and Kurzweil [13, Section 5.5].

References

Université Catholique de Louvain, Département de mathématiques, 2 chemin du cyclotron, B-1348 Louvain-la-Neuve, Belgium

E-mail address: depauw@math.ucl.ac.be

Department of Mathematics, University of California, Davis, CA 95616

E-mail address: wfpfeffer@ucdavis.edu