Eberlein oligomorphic groups

Tomás Ibarlucía

Institut Camille Jordan
Université Claude Bernard Lyon 1

When topological dynamics meets model theory

Marseille, July 2nd, 2015.

Based on joint work with Itaï Ben Yaacov and Todor Tsankov.
The Fourier–Stieltjes algebra

Let G be a topological group. We denote by $C(G)$ the algebra of complex-valued bounded continuous functions on G.

A function $f \in C(G)$ is positive definite if

$$\sum_{ij} c_i \overline{c_j} f(g_j^{-1}g_i) \geq 0$$

for every $g_1, \ldots, g_n \in G$ and $c_1, \ldots, c_n \in \mathbb{C}$.

The linear span of the family of positive definite functions on G is denoted by $B(G)$. It is actually a subalgebra of $C(G)$, the Fourier–Stieltjes algebra of G.
Fact (Gelfand–Naimark–Segal construction)

The following are equivalent:

1. $f \in B(G)$.

2. There is a continuous unitary representation $\pi : G \to \mathcal{U}(H)$ and vectors $v, w \in H$ such that, for every $g \in G$,

 $$f(g) = \langle v, \pi(g)w \rangle.$$
The WAP algebra

A function $f \in C(G)$ is **weakly almost periodic** if the orbit Gf is weakly precompact in $C(G)$. They form an algebra, $\text{WAP}(G)$.

Fact (Grothendieck’s double limit criterion, Megrelishvili’s reflexive representation theorem)

The following are equivalent:

1. $f \in \text{WAP}(G)$.
2. For any sequences $g_i, h_j \in G$ we have (whenever both limits exist)
 \[
 \lim_i \lim_j f(g_ih_j) = \lim_j \lim_i f(g_ih_j).
 \]
3. There exists a continuous reflexive representation $\pi : G \to \text{Iso}(V)$ and vectors $v \in V$, $w \in V^*$ such that
 \[
 f(g) = \langle v, \pi(g)w \rangle \text{ for all } g \in G.
 \]
Eberlein groups

It follows that $B(G) \subset WAP(G)$. However, $WAP(G)$ is always closed in the norm topology of $C(G)$, whereas $B(G)$ is almost never closed.

Definition
A topological group G is Eberlein if $\overline{B(G)} = WAP(G)$.

Examples
- Compact groups are Eberlein (Peter–Weyl).
- The group \mathbb{Z} is not Eberlein (Rudin). Neither is any locally compact noncompact nilpotent group (Chou).
- Eberlein groups include $SL_n(\mathbb{R})$ (Veech), $U(\ell^2)$ (Megrelishvili), Aut$([0,1], \mu)$ (Glasner) or $S(\mathbb{N})$ (Glasner–Megrelishvili).
The algebra $\text{UC}(G)$

A function $f \in C(G)$ is UC if for every $\epsilon > 0$ there is a neighborhood $1 \in U \subset G$ such that

$$|f(ugu') - f(g)| < \epsilon$$

for every $g \in G$ and $u, u' \in U$. We have $\text{WAP}(G) \subset \text{UC}(G)$.

Definition

We say that G is a WAP group if $\text{WAP}(G) = \text{UC}(G)$, and that it is strongly Eberlein if $\text{B}(G) = \text{UC}(G)$.

Problem (Glasner–Megrelishvili)

Show a WAP group that is not Eberlein.
Oligomorphic groups

A topological group G is **oligomorphic** if it can be presented as a closed permutation group $G \leq S(X)$ of a countable set whose orbit spaces X^n/G are finite for every n.

Equivalently: $G = \text{Aut}(M)$ for some \aleph_0-categorical classical structure M (Ryll-Nardzewski).

Generalization: closed groups of isometries $G \leq \text{Iso}(X)$ of Polish metric spaces with compact closed-orbit spaces $X^n // G$ are exactly the **Roelcke precompact** Polish groups (Ben Yaacov–Tsankov, Rosendal).

Equivalently: $G = \text{Aut}(M)$ for some \aleph_0-categorical metric structure M.
Motivation

A number of tools are available for oligomorphic groups.

- Unlike many other cases, $B(G)$ is separable. ($\text{UC}(G)$ is separable.)
- We have a **Classification Theorem** for unitary representations of oligomorphic groups (Tsankov).
- We have a model-theoretic interpretation of the WAP semigroup compactification (Ben Yaacov–Tsankov).
Motivation

Let \(M \) be an \(\aleph_0 \)-categorical metric structure, \(G = \text{Aut}(M) \).

<table>
<thead>
<tr>
<th>Algebras</th>
<th>Matrix coefficients</th>
<th>Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f \in A)</td>
<td>(f(g) = \langle v, \pi(g)w \rangle), (\pi : G \to \text{Iso}(V))</td>
<td>(f(g) = \varphi(a, gb))</td>
</tr>
</tbody>
</table>
Let M be an \aleph_0-categorical metric structure, $G = \text{Aut}(M)$.

<table>
<thead>
<tr>
<th>Algebras</th>
<th>Matrix coefficients</th>
<th>Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f \in A$</td>
<td>$f(g) = \langle v, \pi(g)w \rangle$, $\pi: G \rightarrow \text{Iso}(V)$</td>
<td>$f(g) = \varphi(a, gb)$</td>
</tr>
<tr>
<td>$B(G)$</td>
<td>$V = \mathcal{H}$ Hilbert</td>
<td></td>
</tr>
<tr>
<td>$\text{WAP}(G)$</td>
<td>V reflexive</td>
<td></td>
</tr>
</tbody>
</table>
Let M be an \aleph_0-categorical metric structure, $G = \text{Aut}(M)$.

<table>
<thead>
<tr>
<th>Algebras</th>
<th>Matrix coefficients</th>
<th>Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f \in A$</td>
<td>$f(g) = \langle v, \pi(g)w \rangle$, $\pi : G \to \text{Iso}(V)$</td>
<td>$f(g) = \varphi(a, gb)$</td>
</tr>
<tr>
<td>$B(G)$</td>
<td>$V = \mathcal{H}$ Hilbert</td>
<td></td>
</tr>
<tr>
<td>WAP(G)</td>
<td>V reflexive</td>
<td></td>
</tr>
<tr>
<td>Tame(G)</td>
<td>V Rosenthal</td>
<td></td>
</tr>
<tr>
<td>RUC(G)</td>
<td>V Banach</td>
<td></td>
</tr>
</tbody>
</table>
Motivation

Let M be an \aleph_0-categorical metric structure, $G = \text{Aut}(M)$.

<table>
<thead>
<tr>
<th>Algebras</th>
<th>Matrix coefficients</th>
<th>Formulas ($A \cap \text{UC}(G)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f \in A$</td>
<td>$f(g) = \langle v, \pi(g)w \rangle$, $\pi : G \to \text{Iso}(V)$</td>
<td>$f(g) = \varphi(a, gb)$</td>
</tr>
<tr>
<td>$B(G)$</td>
<td>$V = \mathcal{H}$ Hilbert</td>
<td></td>
</tr>
<tr>
<td>WAP(G)</td>
<td>V reflexive</td>
<td>φ stable</td>
</tr>
<tr>
<td>Tame(G)</td>
<td>V Rosenthal</td>
<td>φ NIP</td>
</tr>
<tr>
<td>RUC(G)</td>
<td>V Banach</td>
<td>all formulas</td>
</tr>
</tbody>
</table>
Motivation

Let M be an \aleph_0-categorical metric structure, $G = \text{Aut}(M)$.

<table>
<thead>
<tr>
<th>Algebras</th>
<th>Matrix coefficients</th>
<th>Formulas ($A \cap \text{UC}(G)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f \in A$</td>
<td>$f(g) = \langle v, \pi(g)w \rangle$, $\pi : G \to \text{Iso}(V)$</td>
<td>$f(g) = \varphi(a, gb)$</td>
</tr>
<tr>
<td>$B(G)$</td>
<td>$V = \mathcal{H}$ Hilbert</td>
<td>φ ?</td>
</tr>
<tr>
<td>WAP(G)</td>
<td>V reflexive</td>
<td>φ stable</td>
</tr>
<tr>
<td>Tame(G)</td>
<td>V Rosenthal</td>
<td>φ NIP</td>
</tr>
<tr>
<td>RUC(G)</td>
<td>V Banach</td>
<td>all formulas</td>
</tr>
</tbody>
</table>
Formulas generating $B(G)$ for oligomorphic G

Let M be a classical \aleph_0-categorical structure, $G = \text{Aut}(M)$. The first basic observation is the following.

Lemma

If a formula $\varphi(x, y)$ defines an equivalence relation on M^n (more generally, if $\varphi(x, b)$ defines a weakly normal set), then $g \mapsto \varphi(a, gb)$ is in $B(G)$.

Proof.

We have $\varphi(a, gb) = \langle e_{[a]_\varphi}, \pi(g)e_{[b]_\varphi} \rangle$ for the natural map $\pi : G \to \mathcal{U}(\ell^2(M^n/\varphi))$.

Before we give a converse to this statement we recall the general form of the unitary representations of G.

\[\square\]
Classification theorem for unitary representations of oligomorphic groups

Fact (Tsankov)

Let G be an oligomorphic group.

- Every unitary representation of G is a direct sum of irreducible representations.
- Every irreducible unitary representation is a subrepresentation of the quasi-regular representation $\pi_V : G \to \mathcal{U}(\ell^2(G/V))$ for some open subgroup $V \leq G$.

Remark: the matrix coefficients induced by π_V are generated by the basic ones

$$g \mapsto \langle e_{h_0 V}, \pi_V(g)e_{h_1 V} \rangle \quad (= \langle e_{h_0 V}, e_{gh_1 V} \rangle).$$
Formulas generating $B(G)$ for oligomorphic G

Now, every open subgroup $V' \leq G$ is the stabilizer of an imaginary element of M: there is a definable equivalence relation $\varphi(x, y)$ and a tuple $b \in M^n$ such that $V' = \{ g \in G : M \models \varphi(b, gb) \}$.

Applying this to $V' = h_1 V h_1^{-1}$ and taking $a = h_0 h_1^{-1} b$, we have

$$\langle e_{h_0} V, \pi_V(g) e_{h_1} V \rangle = \varphi(a, gb).$$

We obtain the following:

Proposition

$B(G)$ is the closed algebra generated by the functions $g \mapsto \varphi(a, gb)$ where $\varphi(x, y)$ is a definable equivalence relation on M.
Semitopological semigroup compactifications

A semitopological semigroup compactification of G is a compact semitopological semigroup S together with a continuous homomorphism $\alpha : G \to S$ with dense image.

There is a one-to-one correspondence:

- closed G-bi-invariant subalgebras of $WAP(G)$ \leftrightarrow semitopological semigroup compactifications of G
- $A \subset WAP(G)$ \mapsto maximal ideal space of A
- functions $f \in C(G)$ that factor through α \leftrightarrow $\alpha : G \to S$
- inclusions \leftrightarrow quotients
The WAP and Hilbert compactifications

In particular, the compactifications $G \to W$ and $G \to H$ corresponding to $\text{WAP}(G)$ and $\text{B}(G)$ have the structure of semitopological semigroups. We have a continuous surjective commuting homomorphism $W \to H$.

Moreover, they are semitopological *-semigroup compactifications, that is, they admit continuous involutions

$$* : W \to W \text{ and } * : H \to H$$

extending the inverse function on the image of G.
Representations of semigroups

If V is a reflexive Banach space, we denote by $\Theta(V)$ the compact semitopological semigroup of linear contractions of V:

$$\Theta(V) = \{ T \in L(V) : \|T\| \leq 1 \}.$$

Fact (Shtern)

Every compact semitopological semigroup can be embedded in $\Theta(V)$ for some reflexive Banach space V.

Definition

A semitopological semigroup S is **Hilbert representable** if it can be embedded in $\Theta(\mathcal{H})$ for a Hilbert space \mathcal{H}.
Representations of semigroup compactifications

Fact

- H is Hilbert representable.
- If S is a Hilbert representable semitopological semigroup compactification of G, then it is a quotient of H.
- G is Eberlein if and only if W is Hilbert representable.

Question (Glasner–Megrelishvili)
Conversely, if a S is a semigroup quotient of H, is it Hilbert representable?

Theorem
Yes if G is oligomorphic.
Regular elements, inverse semigroups

Let S be a semigroup. An element $p \in S$ is regular if there is $q \in S$ such that $p = pqp$. If moreover $q = qpq$, then q is an inverse of p. S is an inverse semigroup if every element has a unique inverse.

E.g. the inverse semigroup of partial bijections of a set.

Fact

- S is an inverse semigroup if and only if every element is regular and the idempotents commute.
- Let $G \to S$ be a semitopological *-semigroup compactification of G. The following are equivalent for any element $p \in S$.
 1. p is regular.
 2. p has a unique inverse.
Stable independence, one-based structures

Let M be a saturated structure. A formula $\varphi(x, y)$ is stable if for every type $t \in S(M)$, the function $d_t \varphi : M^n \to \mathbb{C}$,

$$d_t \varphi(b) = \varphi(x, b)^t,$$

is M-definable.

Given sets $A, B, C \subset M^{eq}$ (we fix an enumeration of A), we say that A is stably independent from C over B,

$$A \downarrow C,$$

if for every stable formula φ the type $tp_\varphi(A/BC)$ extends to a type $t \in S(M)$ such that $d_t \varphi(y)$ is definable over $acl^{eq}(B)$.

We say that M is one-based for stable independence if for any algebraically closed sets $A, B \subset M^{eq}$ we have

$$A \downarrow B.$$
Theorem

Let G be an oligomorphic group, say $G = \text{Aut}(M)$ for an \aleph_0-categorical classical structure M.

- H is the semigroup of partial elementary maps of M^{eq} with algebraically closed domain. Equivalently, H is the closure of G in $\Theta(\ell^2(M^{eq}))$. In particular, H is an inverse semigroup (and so are all of its semigroup quotients).

- The following are equivalent:
 1. W is an inverse semigroup.
 2. The idempotents of W commute.
 3. M is one-based for stable independence.
 4. G is Eberlein.

- G is strongly Eberlein if and only if M is \aleph_0-stable.
Remark: $\Theta(\ell^2)$ is not an inverse semigroup (but it is the WAP compactification of the Eberlein Roelcke precompact group $\mathcal{U}(\ell^2)$).

Examples

- The groups $S(\mathbb{N})$, $\text{Aut}(\mathbb{Q}, <)$, $\text{Homeo}(2^\omega)$ and $\text{Aut}(RG)$ are Eberlein oligomorphic groups.
- The automorphism group of Hrushovski’s \aleph_0-categorical stable pseudoplane is a WAP group that is not Eberlein.
A model-theoretic description of W

Let $G = \text{Aut}(M)$ where M is an \aleph_0-categorical metric structure. The left-completion $E = \hat{G}_L$ is the semigroup of elementary embeddings $M \to M$. The UC-compactification coincides with $R = (E \times E) \parallel G$. Then R can be seen as the space of types $[x, y]_R$ of pairs of embeddings.

The WAP-compactification is the quotient formed by the types $[x, y]$ restricted to stable formulas.

The $*$-semigroup structure of W is as follows:

- $[x, y]^* = [y, x]$.
- $[x, y][y, z] = [x, z]$ if $x \downarrow_y z$.
Restriction to equivalence relations

By our characterization of $B(G)$ we have that H is the quotient formed by the types $[x, y]_H$ restricted to definable equivalence relations.

Then the map

$$[x, y]_H \mapsto x^{-1} \circ y$$

gives the identification of H with the semigroup of partial elementary maps $M^{eq} \to M^{eq}$ with algebraically closed domain.
The key to the equivalences of the main theorem is the following description of idempotents and regular elements.

Lemma

Let $p = [x, y] \in W$.

- p is an idempotent if and only if $x \equiv_{x \cap y} y$ and $x \downarrow_{x \cap y} y$.
- p is regular if and only if $x \downarrow_{x \cap y} y$.
Merci beaucoup.