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Resumé

Nous étudions les multiplicités du produit tensoriel des caractères irréductibles de GLn(Fq)
et la cohomologie des champs de caractères pour les surfaces de Riemann trouées et pour les
surfaces non orientables.

Nous donnons une formule pour la multiplicité 〈X1⊗· · ·⊗Xk, 1〉 pour tout k-uplet de caractères
semi-simples deployés (X1, · · · ,Xk). Une telle formule était déjà connue pour un k-uplet
générique grâce à [45],[46].
Parmi nos résultats, nous prouvons que ces multiplicités sont polynomiales en q avec des
coe�cients entiers non négatifs et nous obtenons un critère de non-vani�cation. La formule
de la thèse est donnée en reliant la multiplicité 〈X1 ⊗ · · · ⊗ Xk, 1〉 au comptage des classes
d'isomorphismes des représentations d'un certain carquois étoilé sur Fq.
Les champs de caractères pour les surfaces de Riemann classi�ent les systèmes locaux sur la
surface avec une monodromie locale prescrite. Pour un choix générique de la monodromie,
leur cohomologie est bien comprise grâce à [46],[45],[72].
Nous calculons les E-séries de ces champs de caractères et donnons une formule conjecturale
pour leurs séries de Poincaré mixtes pour tout choix de monodromie (pas nécessairement
générique). Nous véri�ons cette conjecture dans le cas de la ligne projective et de quatre
points.
Le résultat concernant la E-série est obtenu en comptant les points sur les corps �nis, en
généralisant l'approche introduite dans [46],[45].
Ces résultats complètent et renforcent également les résultats récents de Davison, Hennecart,
Schelegel-Mejia [24] concernant une version champ-être de la théorie de Hodge non abélienne.

En�n, nous donnons un contre-exemple à une formule suggérée par le travail de Letellier et
Rodriguez-Villegas [65] pour la série de Poincaré mixte des champs de caractères pour les
surfaces non orientables. Le contre-exemple est obtenu par une description explicite de ces
champs de caractères pour la somme connexe de deux copies du plan projectif réel.

Mots-clés : Représentations de groupes réductifs �nis, représentations de carquois, champs
de carquois multiplicatifs, champs de caractères, cohomologie à support compact.
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Abstract

We study multiplicities for tensor product of irreducible characters of GLn(Fq) and the coho-
mology of character stacks for punctured Riemann surfaces and for non-orientable surfaces.

We give a formula for the multiplicity 〈X1 ⊗ · · · ⊗ Xk, 1〉 for any k-tuple of semisimple split
characters (X1, . . . ,Xk) of GLn(Fq). Such a formula was previously known for a generic k-tuple
thanks to [45],[46].
Among our results, we prove that these multiplicities are polynomial in q with non-negative
integer coe�cients and we obtain a criterion for their non-vanishing. The formula in the thesis
is given relating the multiplicity 〈X1 ⊗ · · · ⊗Xk, 1〉 to the counting of the isomorphims classes
of representations of a certain star-shaped quiver over Fq.
Character stacks for punctured Riemann surfaces classify local systems on the Riemann sur-
faces with prescribed local monodromy. For a generic choice of the monodromy, their coho-
mology is well understood thanks to [46],[45],[72]. We compute the E-series of these character
stacks and give a conjectural formula for their mixed Poincaré series for any choice of mon-
odromy (not necessarily generic). We verify this conjecture in the case of the projective line
and four punctures.
The result about the E-series is obtained by counting points over �nite �elds, generalizing the
approach introduced in [46],[45].
These results also complement and reinforce the recent �ndings of Davison, Hennecart, Schelegel-
Mejia [24] regarding a stacky version of non-Abelian Hodge theory.

Finally, we give a counterexample to a formula suggested by the work of Letellier and Rodriguez-
Villegas [65] for the mixed Poincaré series of character stacks for non-orientable surfaces. The
counterexample is obtained by an explicit description of these character stacks for the con-
nected sum of two copies of the real projective plane.

Keywords: Representations of �nite reductive groups, quiver representations, multiplicative
quiver stacks, character stacks, compactly supported cohomology.
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1 Introduction en français

L'étude des relations entre la théorie des représentations, la combinatoire et la géométrie
algébrique, en particulier la compréhension des espaces de moduli, est l'une des lignes de
recherche les plus actives en mathématiques ces dernières années.
La compréhension des interactions entre les représentations de groupes et d'algèbres et la
cohomologie des espaces de modules s'est avérée être un instrument puissant pour éclairer à
la fois la géométrie de ces espaces et la structure de ces représentations.
Une riche source de ce type d'interactions provient de l'étude des espaces de moduli apparais-
sant dans ce que l'on appelle la correspondance de Hodge non abélienne pour une surface de
Riemann, c'est-à-dire les empilements et variétés de caractères et les espaces de moduli des
faisceaux de Higgs.
L'étude de la cohomologie de ces objets est liée à un large éventail d'arguments, allant de
l'étude du programme de Langlands géométrique et de la symétrie miroir [10],[43] à la preuve
du lemme fondamental de Ngô [77] et aux états BPS en physique et en théorie des cordes
[15],[27].
Dans cette thèse, nous nous intéressons principalement à l'approche introduite dans [44],[46],[45],
où les auteurs ont relié la cohomologie des champs de caractères pour une surface de Riemann
au calcul des multiplicités dans l'anneau de caractères de GLn(Fq) et aux représentations de
carquois.

1.1 État de l'art sur les multiplicités et les champs de caractères

1.1.1 Multiplicités pour les représentations des groupes linéaires généraux �nis

La table de caractères de GLn(Fq) est connue depuis 1955 grâce aux travaux de Green [41],
qui en a donné une description combinatoire. Ses formules pour les valeurs des caractères
irréductibles sont de nature algorithmique.
Deligne et Lusztig [26] ont ensuite introduit les méthodes cohomologiques `-adiques dans
l'étude de la théorie des représentations des groupes réductifs �nis. En utilisant cette approche,
Lusztig a trouvé dans [66] un moyen géométrique de structurer les caractères irréductibles
d'un groupe réductif �ni. Dans le même livre, il a introduit la notion de caractère irréductible
semisimple et unipotent par analogie avec la décomposition de Jordan pour les classes de
conjugaison.
Pour le groupe linéaire général �ni GLn(Fq), la construction de Lusztig a conduit à une
interprétation géométrique de la table de caractères trouvée par Green, voir par exemple
Lusztig et Srinivasan [69].

Etant donné X1,X2,X3 caractères irréductibles de GLn(Fq), la multiplicité 〈X1 ⊗X2,X3〉 est
donnée par la formule

〈X1 ⊗X2,X3〉 =
1

|GLn(Fq)|
∑

g∈GLn(Fq)

X1(g)X2(g)X3(g) (1.1.1)

Bien que la table des caractères de GLn(Fq) soit connue depuis longtemps, il n'est pas facile
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d'extraire des informations générales de la formule (2.1.1) ci-dessus, en raison de la description
inductive des valeurs des caractères.

Example 1.1.1. Rappelons que les caractères unipotents de GLn(Fq), qui sont les "briques" de
la table de caractères, sont en bijection avec les représentations irréductibles de Sn et donc
avec les partitions de n.
Pour une partition µ, on désigne par χµ le caractère associé de Sn et par Xµ le caractère
unipotent associé de GLn(Fq) (dans notre paramétrisation, nous associons à la partition (n)

le caractère trivial 1).
D'après la formule (2.1.1), il est presque impossible d'obtenir directement une description
combinatoire de l'ensemble {(λ, µ, ν) ∈ Pn | 〈Xλ ⊗Xµ,Xν〉 6= 0}.
Déjà pour Sn, le problème de donner un critère combinatoire pour la non-vani�cation des
coe�cients de Kronecker gνλ,µ := 〈χµ ⊗ χλ, χν〉, est toujours ouvert et constitue un domaine
de recherche très actif.
Il est intéressant de noter que Letellier a montré que les deux problèmes étaient liés : en
particulier, Letellier a montré que si gνλ,µ 6= 0 alors 〈Xλ ⊗Xµ,Xν〉 6= 0 aussi.

Rappelons que la multiplicité 〈X1⊗X2,X3〉 est égale à 〈X1⊗X2⊗X ∗3 , 1〉 où X ∗3 est le caractère
dual de X3. Un des objectifs de cette thèse est de contribuer à l'étude des multiplicités
〈X1 ⊗ · · · ⊗ Xk, 1〉 pour tout k-uplets de caractères irréductibles (X1, . . . ,Xk).
La compréhension de ces quantités est encore un problème ouvert en général, mais des progrès
substantiels ont été réalisés récemment. Les premiers cas étudiés dans la littérature concer-
naient les k-uplets (X1, . . . ,Xk) où chaque Xi est un caractère unipotent.
Hiss, Lübeck et Mattig [49] ont calculé, par exemple, les multiplicités 〈X1 ⊗X2 ⊗X3, 1〉 pour
les caractères unipotents X1,X2,X3 et n ≤ 8 en utilisant CHEVIE. Ils ont remarqué que ces
quantités sont des polynômes en q, avec des coe�cients positifs. Lusztig [68] a étudié les
multiplicités pour les faisceaux caractères de PGL2.
Les premiers résultats généraux ont été obtenus dans les articles [45, Theorem 1.4.1],[46,
Theorem 3.2.7] par Hausel, Letellier, Rodriguez-Villegas. Les auteurs [45],[46] se sont limités
à une certaine classe de k-uplets (X1, . . . ,Xk), appelée générique (voir la dé�nition 8.1.1).
Remarquons qu'un k-uplet de caractères unipotents n'est jamais générique.
Pour des k-uplets génériques de caractères semi-simples deployés, les auteurs [46, Theorem
1.4.1] prouvent une formule combinatoire générale pour la multiplicité 〈X1 ⊗ · · · ⊗ Xk, 1〉 et
relient cette dernière quantité à la cohomologie des variétés de caractères et des variétés de
carquois (voir ci-dessous pour plus de détails).
Ces résultats ont ensuite été généralisés à tout k-uplet de caractères génériques par Letellier
[63, Théorème 6.10.1, Théorème 7.4.1].
Le seul résultat général connu à ce jour dans le cas non générique est le travail de Letellier
[64, Proposition 1.2.1], qui décrit la multiplicité pour les k-uplets de caractères unipotents en
termes de multiplicité pour les k-uplets génériques de caractères unipotents tordus et l'action
d'un certain groupe de Weyl sur une certaine variété de carquois.
Un des objectifs de cette thèse est de contribuer à la compréhension des multiplicités pour des
k-uplets qui ne sont pas nécessairement génériques.
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Nous reprenons ici rapidement et plus en détail les résultats de [45], [46], car ils sont un
élément clé de notre travail.

Soit L le sous-groupe de Levi L = GLm1(Fq)× · · · ×GLms(Fq) plongé en bloc diagonalement
dans GLn(Fq), où m1, . . . ,ms sont des entiers non négatifs tels que m1 + · · · + ms = n.
Considérons un caractère linéaire γ : L→ C∗ donné par

γ(M1, . . . ,Ms) = γ1(det(M1)) · · · γs(det(Ms))

pour γ1, . . . , γs ∈ Hom(F∗q ,C∗).
Nous désignons par RGL (γ) le caractère induit de Harisha-Chandra de GLn(Fq). Rappelons que
si γi 6= γj pour chaque i 6= j le caractère RGL (γ) est irréductible. Les caractères irréductibles
de cette forme sont appelés semisimples deployés (voir �5.1.1 pour plus de détails).

Considérons maintenant un k-uplet de caractères semisimples deployés X = (RGL1
(δ1), . . . , RGLk(δk))

, où, pour i = 1, . . . , k, nous avons Li = GLmi,1(Fq)× · · · ×GLmi,si (Fq) et

δi(M1, . . . ,Msi) = δi,1(det(M1)) · · · δi,si(Msi).

Soit maintenant P l'ensemble des partitions. Dans [45], les auteurs ont introduit, pour chaque
multipartition µ ∈ Pk et chaque entier g ≥ 0, une fonction rationnelle Hµ(z, w) ∈ Q(z, w),
dé�nie en termes de polynômes de Macdonald (pour une dé�nition précise, voir �3.8).

Considérons maintenant la multipartition µ = (µ1, . . . , µk) ∈ Pk , où chaque µj est obtenu à
partir de (mj,1, . . . ,mj,sj ) à une permutation près.

Les auteurs [46, Theorem 3.2.7] ont montré que si les δi sont choisis de telle sorte que
(RGLi(δi))

k
i=1 soit générique (un tel choix est toujours possible si q est su�samment grand),

nous avons :
〈Λ⊗RGL1

(δ1)⊗ · · · ⊗RGLk(δk), 1〉 = Hµ(0,
√
q) (1.1.2)

où Λ est le caractère de l'action de conjugaison de GLn(Fq) sur l'espace vectoriel C[gln(Fq)g].

Un aspect intéressant des résultats de [45],[46] est que la formule (1.1.2) ci-dessus est prouvée en
donnant une interprétation en terme des reprèsentations des carquois à la quantité 〈RGL1

(δ1)⊗
· · · ⊗RGLk(δk), 1〉.

Rappelons que pour un carquois �ni Γ = (J,Ω) , où J est son ensemble de sommets et Ω son
ensemble de �èches, dans [52], pour chaque vecteur de dimension β ∈ NJ , Kac a introduit un
polynôme à coe�cients entiers aΓ,β(t), appelé polynôme de Kac, dé�ni par le fait que aΓ,β(q)

compte le nombre de classes d'isomorphisme des représentations absolument indécomposables

de Γ (voir la dé�nition 6.1.5) de dimension β sur Fq, pour tout q.
Kac a montré que aΓ,β(t) est non nul si et seulement si β est une racine deQ et a conjecturé qu'il
a des coe�cients non négatifs. Cette dernière conjecture a d'abord été prouvée par Crawley-
Boevey et Van der Bergh [21] dans le cas de β indivisible (c'est-à-dire gcd(βj)j∈J = 1) et plus
tard pour tout β par Hausel, Letellier, Rodriguez-Villegas dans [47].

Dans les deux cas, les auteurs ont obtenu la propriété de non-négativité en donnant une
description des coe�cients en termes de la cohomologie de certaines variétés de carquois.
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Par exemple, si β est indivisible, dans [21, End of Proof 2.4], on montre qu'il existe une égalité

Pc(Q, t) = tdQaQ,α(t2), (1.1.3)

pour une certaine variété de carquois Q, associée à Q,α, où dQ est la dimension de Q.

Considérons maintenant un k-uplet X = (RGL1
(δ1), . . . , RGLk(δk)) comme ci-dessus et soit Q =

(I,Ω) le carquois étoilé (voir la page suivante pour une image), avec k jambes de longueur
s1, . . . , sk respectivement et g boucles sur le sommet central.

◦[1,1] ◦[1,2] . . . ◦[1,s1]

◦[2,1] ◦[2,2] . . . ◦[2,s2]

◦0 · ·

· ·

· ·

◦[k,1] ◦[k,2] . . . ◦[k,sk]

···

Soit αX le vecteur de dimension αX ∈ NI dé�ni par (αX )0 = n et (αX )[i,j] = n−
∑j

h=1mi,j .
Remarquons que le carquois Q et le vecteur αX ne dépendent que des sous-groupes de Levi
L1, . . . , Lk et non des caractères δ1, . . . , δk.

Dans [46], on montre que, pour les sous-groupes de Levi L1, . . . , Lk introduits ci-dessus et
un choix générique de δ1, . . . , δk, la multiplicité 〈Λg ⊗ RGL1

(δ1)⊗ · · · ⊗ RGLk(δk), 1〉 est égal au
nombre de classes d'isomorphisme de représentations absolument indécomposables de Q sur
Fq de dimension αX , i. e

〈Λ⊗RGL1
(δ1)⊗ · · · ⊗RGLk(δk), 1〉 = aQ,αX (q). (1.1.4)

Dans le même article, par un argument combinatoire, les auteurs trouvent une formule pour
les polynômes de Kac pour les carquois étoilés et montrent en particulier que l'on a

aQ,αX (t) = Hµ(0,
√
t) (1.1.5)

et ils obtiennent ainsi la formule (1.1.2) citée ci-dessus.

L'interprétation en terme des reprèsentations de carquois des multiplicités rappelée ici a de
nombreuses conséquences intéressantes. Par exemple, elle implique que la multiplicité

〈Λ⊗RGL1
(δ1)⊗ · · · ⊗RGLk(δk), 1〉 6= 0
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si et seulement si aQ,αX (t) 6= 0, c'est-à-dire si et seulement si αX est une racine de Q (voir
[46, Corollaire 1.4.2]).

Si αX est indivisible, la formule (1.1.3) donne en outre l'interprétation géométrique suivante
des multiplicités

〈Λ⊗RGL1
(δ1)⊗ · · · ⊗RGLk(δk), 1〉 = q−dQ/2Pc(Q,

√
q). (1.1.6)

La variété de carquois Q apparaissant dans le RHS de la formule (1.1.6) admet la description
suivante. Fixez un k-uplet générique O = (O1, . . . ,Ok) (voir [45, Dé�nition 2.2. 1]) d'orbites
adjointes semisimples de gln(C) telles que µ est la multipartition donnée par les multiplicités
des valeurs propres de O1, . . . ,Ok.

Dans [45], on montre que la variété Q est isomorphe à

QO :=

{
(A1, B1, . . . , Bg, Y1, . . . , Yk) ∈ gl2gn (C)×

k∏
j=1

Oj |
g∑
i=1

[Ai, Bi] +

k∑
j=1

Yj = 0

}
//GLn(C).

Étudier si les variétés de la forme QO pour g = 0 sont vides ou pas est généralement appelée
le problème de Deligne-Simpson (voir par exemple [20]).

Comme mentionné au début, l'aspect le plus intéressant des résultats cités de [45] est que les
fonctions Hµ(z, w) (et donc les multiplicités pour le produit tensoriel des représentations de
GLn(Fq) et les polynômes de Kac pour les carquois étoilés) sont ainsi liées à la cohomologie
des champs de caractères génériques pour les surfaces de Riemann.

Cette relation entre des objets apparemment sans rapport s'est révélée être l'une des approches
les plus e�caces pour calculer les invariants cohomologiques de ces espaces.

Nous passons en revue ces résultats et donnons des informations plus générales sur les champs
de caractères dans le paragraphe ci-dessous.

1.1.2 Champs de caractères pour les surfaces de Riemann

Considérons une surface de Riemann Σ de genre g ≥ 0, un sous-ensembleD = {p1, . . . , pk} ⊆ Σ

de k-points et un k-uplet C = (C1, . . . , Ck) de classes de conjugaison semi-simples. Le champs
de caractères associée est dé�nie comme le champ quotient

MC :=

[{
ρ ∈ Hom(π1(Σ \D),GLn(C)) | ρ(xi) ∈ Ci

}]
(1.1.7)

où chaque xi est une petite boucle autour du point pi. Ces champs classi�ent les systèmes
locaux sur Σ \D tels que le monodromie autour du point pi se situe dans Ci, pour i = 1, . . . , k

et sont naturellement liés à certains espaces de moduli de �brés de Higgs paraboliques sur Σ

via la correspondance de Hodge non abélienne, voir par exemple les travaux de Simpson [88].
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Le champMC a la forme explicite suivante en termes d'équations matricielles :

MC =

{(A1, B1, . . . , Bg, X1, . . . , Xk) ∈ GL2g
n (C)×

k∏
j=1

Cj |
g∏
i=1

[Ai, Bi]

k∏
j=1

Xj = 1

}/
GLn(C)

 .
(1.1.8)

Dans ce qui suit, pour un champ complexe de type �ni X, nous désignerons par H∗c (X) :=

H∗c (X,C) sa cohomologie à support compact avec des coe�cients C (ceci est bien dé�ni grâce
aux travaux de Laszlo et Olsson [59]).

Rappelons que chaque espace vectoriel H i
c(X) est doté de la �ltration par le poids W i

•H
i
c(X),

à partir de laquelle on dé�nit la série de Poincaré mixte Hc(X, q, t)

Hc(X, q, t) :=
∑
m,i

dim(W i
m/W

i
m−1)q

m
2 ti.

La E-série E(X, q) est la spécialisation de Hc(X, q, t) obtenue en branchant t = −1, la série de
Poincaré Pc(X, t) est la spécialisation de Hc(X, q, t) obtenue en branchant q = 1 et la partie
pure PHc(X, q, t) est dé�nie comme

PHc(X, q) =
∑
m

dim(W 2m
m /W 2m

m+1)q
m
2 .

La géométrie et la cohomologie des champs de caractères ont été largement étudiées sous
di�érents angles. La plupart des résultats ont été obtenus dans le cas où le k-uplet C est
générique (voir la dé�nition 9.1.1).

Pour un k-uplet générique C, le champ MC est lisse et c'est un Gm-gerbe sur le quotient
GIT associé, que nous dénotons par MC . Par conséquent, la cohomologie de MC peut être
facilement déduite de celle de la variété de caractères MC .

Nous commençons par une revue rapide des résultats connus obtenus sur la cohomologie des
champs et variétés de caractères génériques, voir �9.1 pour plus de détails.

Les premiers résultats concernant ce sujet ont été obtenus dans le cas où k = 1 et C est une
classe de conjugaison centrale. Pour n ∈ N et d ∈ Z, posons queMn,d soit le champMC pour
k = 1 et C = {e

2πid
n In} c-a-d

Mn,d =

[{
(A1, B1, . . . , Ag, Bg) ∈ GL2g

n (C)

g∏
i=1

[Ai, Bi] = e
2πid
n In

}/
GLn(C)

]
.

L'orbite C = {e
2πid
n } est générique si et seulement si (n, d) = 1.

Hitchin [48] a calculé le polynôme de Poincaré Pc(Mn,d, t) dans le cas générique pour n = 2,
en utilisant la correspondance de Hodge non abélienne et la théorie de Morse sur l'espace de
moduli des faisceaux de Higgs. Gothen [40] a étendu son résultat pour n = 3.

Leur approche a ensuite été étendue pour calculer le polynôme de Poincaré Pc(MC , t) dans le
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cas où n = 2, n'importe quel k et n'importe quel k-uplet générique C par Boden, Yogokawa
[12] et lorsque n = 3, tout k et tout k-uplet générique C par García-Prada, Gothen et Munoz
[37].

Cependant, les techniques de la théorie de Morse ne donnent pas d'information sur la �ltration
des poids sur la variété de caractères et sont di�ciles à généraliser à n'importe quel n.

Hausel et Rodriguez-Villegas [44] ont été les premiers à obtenir un résultat général sur la
�ltration par le poids pour n quelconque.

Les auteurs ont calculé la E-série E(Mn,d, q) des champsMn,d pour tout n, d tels que (n, d) =

1, en comptant les points sur les corps �nis et ont proposé une formule conjecturale pour la
série de Poincaré mixte Hc(Mn,d, q, t).

Schi�mann [84] a trouvé une expression pour la série de Poincaré Pc(Mn,d, t) dans le cas
générique et Mellit [73] a véri�é plus tard que la formule de Schi�mann est en accord avec la
spécialisation de Hausel et la conjecture de Rodriguez-Villegas à q = 1.

Hausel, Letellier et Rodriguez-Villegas ont ensuite généralisé les résultats de [44] et ont calculé
[45, Théorème 1.2.3] la E-série E(MC , q) des champsMC pour tout k-uplet générique C. Nous
expliquons rapidement leurs résultats, car il s'agit du point de départ fondamental pour le
développement de ce travail.

Les auteurs [45, Theorem 1.2.3] ont montré qu'il existe une égalité

E(MC , q) =
q
dµ
2

q − 1
Hµ
(
√
q,

1
√
q

)
(1.1.9)

où 2dµ = dim(MC) + 1 et µ = (µ1, . . . , µk) est la multipartition donnée par les multiplicités
des valeurs propres de C1, . . . , Ck respectivement.

Dans le même article, les auteurs [45, Conjecture 1.2.1] ont proposé la formule conjecturale
suivante pour la série de Poincaré mixte Hc(MC , q, t), qui généralise la conjecture de Hausel
et Rodriguez-Villegas énoncée dans [44] et qui déforme naturellement l' Identité (1.1.9) :

Hc(MC , q, t) =
(qt2)

dµ
2

qt2 − 1
Hµ
(
t
√
q,− 1
√
q
,

)
. (1.1.10)

Mellit [72, Theorem 7.12] a ensuite calculé la série de Poincaré Pc(MC , t) en utilisant la
correspondance de Hodge non abélienne. Sa formule correspond à la spécialisation à q = 1 de
la formule conjecturale (1.1.10) pour la série de Poincaré mixte.

Remarquons que, comme mentionné précédemment, la formule (1.1.2), la formule (1.1.9) et
la conjecture (1.1.10) relient étroitement la compréhension de la cohomologie des champs de
caractères génériques à la compréhension des multiplicités génériques pour les représentations
de GLn(Fq) et les carquois étoilés.
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Par exemple, la conjecture (1.1.10) implique que nous avons

PHc(MC , q) =
q
dµ
2

q − 1
〈Λ⊗RGL1

(δ1)⊗ · · · ⊗RGLk(δk), 1〉 (1.1.11)

pour tout k-uplet générique (RGL1
(δ1), . . . , RGLk(δk)) tel que la multipartition associée est µ.

De plus, lorsque le vecteur de dimension αX associé au k-uplet X = (RGL1
(δ1), . . . , RGLk(δk))

est indivisible, la conjecture (1.1.10) implique que nous avons

PHc(MC , q) =
Pc(QO, q)
q − 1

(1.1.12)

c'est-à-dire que la partie pure de la série de Poincaré mixte de MC est égale (à un facteur
q− 1 près) au polynôme de Poincaré à support compact de sa contrepartie additive QO. Ceci
est généralement connu sous le nom de "conjecture de pureté".

Alors que dans le cas générique les travaux cités donnent une description assez complète de
la cohomologie des champs de caractères, la cohomologie des champsMC pour les k-uplets C
non génériques a été peu étudiée jusqu'à récemment.

Les résultats les plus explicites et les plus généraux ont été obtenus dans le cas des champs
Mn,d.

Hausel et Rodriguez-Villegas ont été les premiers à obtenir un résultat général dans cette
direction. Les auteurs [44, Theorem 3.8.1] ont exprimé les E-séries pour les champsMn,0 en
termes des E-séries pour les champs de caractères génériquesMn,1 par la formule suivante :

Exp

(∑
n∈N

E(Mn,1, q)

qn2(2g−2)
Tn

)
=
∑
n∈N

E(Mn,0, q)

qn2(2g−2)
Tn (1.1.13)

où Exp est l'exponentielle pléthystique dans l'anneau des séries formelles Q(q)[[T ]] (voir �3.7
pour plus de détails sur les opérations pléthystiques). Le résultat des auteurs est obtenu en
comptant les points sur les corps �nis.

Fixons maintenant r ∈ Q. Récemment, Davison, Hennercart et Schelegel-Mejia [Théorème
14.3, Corollaire 14.7]davison-hennecart ont prouvé la formule suivante exprimant la série de
Poincaré à support compact deMn,d pour tout n, d, en termes de série de Poincaré pour les
champs de caractères génériquesMn,1 :

∑
(n,d)∈N>0×Z

t.q d=rn

Pc(Mn,d,−t)
tn2(2g−2)

znwd = Exp

 ∑
(n,d)∈N>0×Z

t.q d=rn

Pc(Mn,1,−t)
tn2(2g−2)

znwd

 (1.1.14)

et ont formulé une conjecture similaire pour la série de Poincaré mixte de Hc(Mn,d, q, t) pour
tout n, d (voir la discussion après [24, Théorème 14.10]).

Ils ont obtenu cette formule en reliant la cohomologie des champ de caractères à la cohomologie
de ce que l'on appelle les faisceaux BPS. Ces dernières sont des faisceaux perverses dé�nies sur
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les variétés de caractères et leur cohomologie est bien comprise pour les champsMn,d. Plus
précisément, la correspondance de Hodge non abélienne pour les champs, prouvée dans [24],
et le travail récent de Koseki et Kinjo [55] sur les faisceaux BPS pour le champ de module
des �brés de Higgs, donnent un moyen de calculer la cohomologie des faisceaux BPS pour un
champMn,d.

Remarquons en outre que, puisque les auteurs utilisent la correspondance de Hodge non abéli-
enne qui ne préserve pas la �ltration par le poids sur la cohomologie, leur méthode ne permet
pas de prouver une formule analogue pour les E-séries ou les séries de Poincaré mixtes de
Mn,d.

En�n, la cohomologie des faisceaux BPS pour les champs de caractèresMC n'est pas comprise
pour un C arbitraire et donc une généralisation de la formule (2.1.14) pour un C arbitraire
n'est toujours pas prouvée.

Un des buts principaux de cette thèse est de contribuer à la compréhension de la cohomologie
des champs de caractèresMC pour des k-uplets non nécessairement génériques, pour tout k
et C.

1.1.3 Champs de caractères pour les surfaces non orientables

Une autre généralisation des résultats de [45] qui nous intéressera dans cette thèse est l'étude
des champs de caractères pour les surfaces réelles non orientables plutôt que pour les surfaces
de Riemann.

Notre point de vue sur la géométrie réelle est celui introduit par Atiyah [3], c'est-à-dire qu'une
surface non orientable dans ce qui suit sera une paire (Σ, σ), où Σ est une surface de Riemann
et σ : Σ→ Σ est une involution anti-holomorphe telle que Σσ = ∅.

Remarquons que dans ce cas, le quotient S = Σ/〈σ〉 est une surface réelle non orientable.
Dénotons par p : Σ→ S le morphisme quotient.

Fixons maintenant un sous-ensemble E = {y1, . . . , yk} ⊆ S et un k-uplet C de classes de con-
jugaison semi-simples de GLn(C). Remarquons que puisque l'action de σ est libre, l'involution
σ dé�nit un morphisme ε : π1(S \ E)→ Z/(2) ayant noyau p∗(π1(Σ/p−1(E))).

Considérons maintenant le groupe GLn(C)+ := GLn(C) oθ Z/(2), où θ : GLn(C) → GLn(C)

est l'involution de Cartan θ(M) = (M t)−1 et dénotons par π : GLn(C)+ → Z/(2) la projection
associée.

Le champ de caractères associéeMε
C est dé�nie comme

Mε
C =

[{
ρ : π1(S \ E)→ GLn(C)+ ρ(zi) ∈ Ci and π(ρ(g)) = ε(g)

}
/GLn(C)

]

où chaque zi est une boucle autour du point yi. Le champMε
C a la forme explicite suivante

en termes d'équation matricielle :
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Mε
C =

[{
(D1, . . . , Dr, Z1, . . . , Zk) ∈ GLrn(C)×

k∏
j=1

Cj |D1θ(D1) . . . Drθ(Dr)Z1 · · ·Zk = 1

}
/GLn(C)

]
(1.1.15)

où r = g+1. Nous désignons parM ε
C le quotient GIT associé. Lorsque k = 1 et C = {e

πid
n In},

nous désignons le champMε
C parMε

n,d.

Des dé�nitions similaires peuvent être données lorsque σ a des points �xes, en utilisant le
groupe fondamental orbifold du quotient Σ/〈σ〉, voir par exemple [11].

Les champs Mε
C sont profondément liées à ce que l'on appelle les branes à l'intérieur des

espaces de moduli des �brés de Higgs. Le calcul de la cohomologie des branes est un élément
clé dans la compréhension de la symétrie miroir pour le système de Hitchin.

Des références sur le sujet peuvent être trouvées par exemple dans [6],[7],[11],[9].

Peu de résultats ont été montrés dans la littérature concernant la cohomologie des champs
Mε
C . Récemment, Letellier et Rodriguez-Villegas [65, Theorem 1.4] ont calculé la E-série

E(MCε , q) lorsque C est générique, en comptant les points sur les corps �nis.

Baird et Wong [4] ont calculé le E-polynôme de variétés analogues M ε
n,d lorsque l'involution

anti-holomorphe σ a des points �xes. Leurs formules sont assez di�érentes de celles de [65].

Dans cette thèse, nous nous concentrerons sur le cas des champs Mε
n,d lorsque (n, d) = 1.

Dans ce cas, le champMε
n,d est un µ2-gerbe sur la variété de caractères M ε

n,d. Cette dernière
variété est profondément liée à l'espace de moduli des �brés de Higgs réels et quaternioniques
de rang n et de degré d sur Σ.

1.2 Aperçu de la thèse

Nous donnons ici un résumé rapide de nos principaux résultats.

1.2.1 Multiplicités

En ce qui concerne les multiplicités, nous étudions les multiplicités 〈X1⊗· · ·⊗Xk, 1〉 pour des
k-uplets non nécessairement génériques k de caractères irréductibles (X1, · · · ,Xk).
Dans cette thèse, nous donnons une formule pour la quantité 〈RGL1

(γ1)⊗· · ·⊗RGLk(γk), 1〉 pour
tout choix de γ1, . . . , γk (pas nécessairement générique), en termes de polynômes de Kac du
carquois Q introduit précédemment.

Cette formule est obtenue en donnant une interprétation en terme des reprèsentations de car-
quois de la multiplicité 〈RGL1

(γ1)⊗· · ·⊗RGLk(γk), 1〉 pour tout k-uplet (RGL1
(γ1), . . . , RGLk(γk)).

En conséquence de notre résultat, nous montrons que 〈RGL1
(γ1) ⊗ · · · ⊗ RGLk(γk), 1〉 est un

polynôme en q avec des coe�cients non-négatifs et nous montrons un critère pour veri�er si
c'est 0 ou pas en termes du système de racines de Q. Ces résultats sont contenus dans [85].



21

1.2.2 Cohomologie des champs de caractères

En ce qui concerne les champs de caractères pour les surfaces de Riemann, nous étudions
la cohomologie des champs de caractères MC pour k-uplets qui ne sont pas nécessairement
génériques. L'un des principaux résultats de cette thèse est une généralisation de la formule
(2.1.14) à des C arbitraires pour la E-series E(MC , q) au lieu de la série de Poincaré Pc(MC , t).
Nous obtenons ainsi une formule explicite pour E(MC , q) pour tout k-uplet C, voir le Théorème
2.3.10 ci-dessous.
Nous donnons aussi une formule conjecturale (voir Conjecture 2.3.12) pour la série de Poincaré
mixte Hc(MC , q, t), que nous véri�ons dans le cas de Σ = P1

C, k = 4 et une certaine famille de
quadruples non-génériques. Ces résultats font partie de [86].
La conjecture 2.3.12 pour les champsMn,d est déjà apparue dans [24], voir la discussion dans
loc. cit après le Théorème 14.10. Remarquons que notre approche est très di�érente de celle
de [24] car nous n'utilisons pas la théorie de Hodge non-abélienne ni les faisceaux BPS.

1.2.3 Surfaces non orientables

En ce qui concerne les champs de caractères génériques pour les surfaces réelles compactes
non orientables, nous donnons une description explicite des champs Mε

n,d lorsque (n, d) = 1

et r = 2, c'est-à-dire pour une courbe elliptique (réelle).
Cette description donne un contre-exemple à une formule proposée par [65] pour les séries de
Poincaré mixtes des champsMε

C . La description de ce contre-exemple est le résultat principal
de [87].
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2 Introduction

The study of the relationships between representation theory, combinatorics and algebraic
geometry, in particular the understanding of moduli spaces, is one of the most active lines of
research in mathematics in recent years.

The understanding of the interactions between representations of groups and algebras and the
cohomology of moduli spaces has proved itself to be a powerful instrument for shedding light
both on the geometry of these spaces and the structure of these representations.

A rich source of this kind of interactions comes from the study of moduli spaces appearing
in the so-called non-abelian Hodge correspondence for a Riemann surface, i.e character stacks
and varieties and moduli spaces of Higgs bundles.

The study of the cohomology of these objects is related to a wide range of arguments, ranging
from the study of Geometric Langlands program and mirror symmetry [10],[43] to Ngô's proof
of fundamental lemma [77] and to BPS states in physics and string theory [15],[27].

In this thesis, we are mostly interested in the approach introduced in [44],[46],[45], where the
authors related the cohomology of character stacks for a Riemann surface to the computation
of multiplicities in the character ring of GLn(Fq) and quiver representations.

2.1 State of the art on multiplicities and character stacks

2.1.1 Multiplicities for representations of �nite general linear groups

The character table of GLn(Fq) is known since 1955 by the work of Green [41], who gave a
combinatorial description of it. His formulae for the values of the irreducible characters have
an algorithmic nature.

Deligne and Lusztig [26] later introduced `-adic cohomological methods to the study of the
representation theory of �nite reductive groups. Using this approach, in [66] Lusztig found a
geometric way to costruct the irreducible characters of a �nite reductive group. In the same
book, he introduced the notion of a semisimple and unipotent irreducible character by analogy
with the Jordan decomposition for the conjugacy classes.

For the �nite general linear group GLn(Fq), Lusztig's construction led to a geometric in-
terpretation of the character table found by Green, see for example Lusztig and Srinivasan
[69].

Given X1,X2,X3 irreducible characters of GLn(Fq), the multiplicity 〈X1 ⊗X2,X3〉 is given by
the formula

〈X1 ⊗X2,X3〉 =
1

|GLn(Fq)|
∑

g∈GLn(Fq)

X1(g)X2(g)X3(g) (2.1.1)

Altough the character table of GLn(Fq) is known for a long time, it is not easy to extract
general information from Formula (2.1.1) above, due to the inductive description of the values
of the characters.

Example 2.1.1. Recall that the unipotent characters of GLn(Fq), which are the "building
blocks" of the character table, are in bijection with the irreducible representations of Sn and
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so with the partitions of n.

For a partition µ, we denote by χµ the associated character of Sn and by Xµ the associated
unipotent character of GLn(Fq) (in our parametrization, we associate to the partition (n) the
trivial character 1).

From Formula (2.1.1), it is nearly impossible to obtain directly a combinatorial description of
the set {(λ, µ, ν) ∈ Pn | 〈Xλ ⊗Xµ,Xν〉 6= 0}, where Pn is the set of the partitions of n.

Already for Sn, the problem of giving a combinatorial criterion for the non-vanishing of the
Kronecker coe�cients gνλ,µ := 〈χµ⊗χλ, χν〉, is still open and is a very active area of research.

Interestingly, the two problems were shown to be related by Letellier [64]: in particular,
Letellier [64, Proposition 1.2.4], showed that if gνλ,µ 6= 0 then 〈Xλ ⊗Xµ,Xν〉 6= 0 too.

Recall that the multiplicity 〈X1 ⊗X2,X3〉 is equal to 〈X1 ⊗X2 ⊗X ∗3 , 1〉 where X ∗3 is the dual
character of X3. One of the aims of this thesis is to contribute to the study of the multiplicites
〈X1 ⊗ · · · ⊗ Xk, 1〉 for any k-tuple of irreducible characters (X1, . . . ,Xk).
The understanding of these quantites is still an open problem in general but substantial
progress were made recently. The �rst cases studied in the literature concerned k-tuples
(X1, . . . ,Xk) where each Xi is an unipotent character.

Hiss, Lübeck and Mattig [49] computed, for example, the multiplicities 〈X1 ⊗ X2 ⊗ X3, 1〉 for
unipotent characters X1,X2,X3 and n ≤ 8 using CHEVIE. They noticed that these quantities
are polynomials in q, with positive coe�cients. Lusztig [68] studied multiplicities for unipotent
character sheaves of PGL2.

The �rst general results were obtained in the papers [45, Theorem 1.4.1],[46, Theorem 3.2.7] by
Hausel, Letellier, Rodriguez-Villegas. The authors [45],[46] restricted themselves to a certain
class of k-tuples (X1, . . . ,Xk), called generic (see De�nition 8.1.1). Notice that a k-tuple of
unipotent characters is never generic.

For generic k-tuples of semisimple split characters, the authors [46, Theorem 1.4.1] prove
a general combinatorial formula for the multiplicity 〈X1 ⊗ · · · ⊗ Xk, 1〉 and relate the latter
quantity to the cohomology of character varieties and quiver varieties (see below for more
details).

These results were later generalised to any k-tuple of generic characters by Letellier [63,
Theorem 6.10.1,Theorem 7.4.1].

The only general result known so far in the non-generic case is Letellier's work [64, Proposition
1.2.1], which describes the multiplicity for k-uples of unipotent characters in terms of the
multiplicity for generic k-uples of twisted unipotent characters and the action of a certain
Weyl group on a certain quiver variety.

One of the aim of this thesis is to to contribute to the understanding of multiplicities for
k-tuples which are not necessarily generic.

We quickly resume here in more detail the results of [45], [46], since they are a key element
for our work.

Let L be the Levi subgroup L = GLm1(Fq) × · · · × GLms(Fq) embedded block diagonally in
GLn(Fq), where m1, . . . ,ms are nonnegative integers such that m1 + · · ·+ms = n. Consider
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a linear character γ : L→ C∗ given by

γ(M1, . . . ,Ms) = γ1(det(M1)) · · · γs(det(Ms))

for γ1, . . . , γs ∈ Hom(F∗q ,C∗).
We denote by RGL (γ) the Harisha-Chandra induced character of GLn(Fq). Recall that if γi 6= γj
for each i 6= j the character RGL (γ) is irreducible. The irreducible characters of this form are
called semisimple split (see �5.1.1 for more details).

Consider now a k-tuple of semisimple split characters X = (RGL1
(δ1), . . . , RGLk(δk)) , where, for

i = 1, . . . , k, we have Li = GLmi,1(Fq)× · · · ×GLmi,si (Fq) and

δi(M1, . . . ,Msi) = δi,1(det(M1)) · · · δi,si(Msi).

Let now P be the set of partitions. In [45], the authors introduced, for each multipartition
µ ∈ Pk and each integer g ≥ 0, a rational function Hµ(z, w) ∈ Q(z, w), de�ned in terms of
Macdonald polynomials (for a precise de�nition see �3.8).

Consider now the multipartition µ = (µ1, . . . , µk) ∈ Pk , where each µj is obtained from
(mj,1, . . . ,mj,sj ) up to reordering.

The authors [46, Theorem 3.2.7] showed that if the δi's are chosen so that (RGLi(δi))
k
i=1 is

generic (such a choice is always possible if q is big enough), we have:

〈Λ⊗RGL1
(δ1)⊗ · · · ⊗RGLk(δk), 1〉 = Hµ(0,

√
q) (2.1.2)

where Λ is the character of the conjugation action of GLn(Fq) on the vector space C[gln(Fq)g].

An interesting side of the results of [45],[46] is that Formula (2.1.2) above is proved by giving
a quiver-theoretic interpretation to the quantity 〈RGL1

(δ1)⊗ · · · ⊗RGLk(δk), 1〉.

Recall that for a �nite quiver Γ = (J,Ω) , where J is its set of vertices and Ω its set of
arrows, in [52], for each dimension vector β ∈ NJ , Kac introduced a polynomial with integer
coe�cients aΓ,β(t), called Kac polynomial, de�ned by the fact that aΓ,β(q) counts the number
of isomorphism classes of absolutely indecomposable representations of Γ (see De�nition 6.1.5)
of dimension β over Fq, for any q.
Kac showed that aΓ,β(t) is non-zero if and only if β is a root of Q and conjectured that it has
non-negative coe�cients. The latter conjecture was �rst proved by Crawley-Boevey and Van
der Bergh [21] in the case of indivisible β (i.e gcd(βj)j∈J = 1) and later for any β by Hausel,
Letellier, Rodriguez-Villegas in [47].

In both cases, the authors obtained the non-negativity property by giving a description of the
coe�cients in terms of the cohomology of certain quiver varieties.

For instance, if β is indivisible, in [21, End of Proof 2.4], it is shown, that there is an equality

Pc(Q, t) = tdQaQ,α(t2), (2.1.3)

for a certain quiver variety Q, associated to Q,α, where dQ is the dimension of Q.
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Consider now a k-tuple X = (RGL1
(δ1), . . . , RGLk(δk)) as above and let Q = (I,Ω) be the star-

shaped quiver (see the next page for a picture), with k legs of length s1, . . . , sk respectively
and g loops on the central vertex.

◦[1,1] ◦[1,2] . . . ◦[1,s1]

◦[2,1] ◦[2,2] . . . ◦[2,s2]

◦0 · ·

· ·

· ·

◦[k,1] ◦[k,2] . . . ◦[k,sk]

···

Let αX be the dimension vector αX ∈ NI de�ned as (αX )0 = n and (αX )[i,j] = n−
∑j

h=1mi,j .
Notice that the quiver Q and the vector αX depend only on the Levi subgroups L1, . . . , Lk
and not on the characters δ1, . . . , δk.

In [46], it is shown that, for the Levi subgroups L1, . . . , Lk introduced above and a generic
choice of δ1, . . . , δk the multiplicity 〈Λg⊗RGL1

(δ1)⊗· · ·⊗RGLk(δk), 1〉 is equal to the number of
isomorphism classes of absolutely indecomposable representations of Q over Fq of dimension
αX , i.e

〈Λ⊗RGL1
(δ1)⊗ · · · ⊗RGLk(δk), 1〉 = aQ,αX (q). (2.1.4)

In the same paper, via a combinatorial argument, the authors �nd a formula for Kac polyno-
mials for star-shaped quivers and show in particular that we have

aQ,αX (t) = Hµ(0,
√
t) (2.1.5)

and thus they obtain Formula (2.1.2) cited above.

The quiver-theoretic interpretation of multiplicities recalled here has many interesting conse-
quences. For instance, it implies that the multiplicity

〈Λ⊗RGL1
(δ1)⊗ · · · ⊗RGLk(δk), 1〉 6= 0

if and only if aQ,αX (t) 6= 0, i.e if and only if αX is a root of Q (see [46, Corollary 1.4.2]).

If αX is indivisible, Formula (2.1.3) gives moreover the following geometric interpretation of
multiplicities

〈Λ⊗RGL1
(δ1)⊗ · · · ⊗RGLk(δk), 1〉 = q−dQ/2Pc(Q,

√
q). (2.1.6)

The quiver varietyQ appearing in the RHS of Formula (2.1.6) admits the following description.
Fix a generic k-tuple O = (O1, . . . ,Ok) (see [45, De�nition 2.2.1]) of semisimple adjoint
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orbits of gln(C) such that µ is the multipartition given by the multiplicities of eigenvalues of
O1, . . . ,Ok.
In [45], it is shown that the variety Q is isomorphic to

QO :=

{
(A1, B1, . . . , Bg, Y1, . . . , Yk) ∈ gl2gn (C)×

k∏
j=1

Oj |
g∑
i=1

[Ai, Bi] +

k∑
j=1

Yj = 0

}
//GLn(C).

The study of the non-emptiness of the varieties of the form QO for g = 0 is usually called the
Deligne-Simpson problem (see for example [20]).

As mentioned at the beginning, the most interesting aspect of the results just cited of [45] is
that the functions Hµ(z, w) (and thus the multiplicities for tensor product of representations of
GLn(Fq) and Kac polynomials for star-shaped quivers) are thereby related to the cohomology
of generic character stacks for Riemann surfaces.

This relationship between seemingly unrelated objects has proved itself to be one of the most
e�ective approach to compute cohomological invariants of these spaces.

We review these results and give a more general background about character stacks in the
paragraph below.

2.1.2 Character stacks for Riemann surfaces

Consider a Riemann surface Σ of genus g ≥ 0, a subset D = {p1, . . . , pk} ⊆ Σ of k-points and
a k-tuple C = (C1, . . . , Ck) of semisimple conjugacy classes. The associated character stack is
de�ned as the quotient stack

MC :=

[{
ρ ∈ Hom(π1(Σ \D),GLn(C)) | ρ(xi) ∈ Ci for i = 1, . . . , k

}/
GLn(C)

]
(2.1.7)

where each xi is a small loop around the point pi. These stacks classify local systems on Σ\D
such that the monodromy around the point pi lies in Ci, for i = 1, . . . , k and are naturally
related to certain moduli spaces of (strongly) parabolic Higgs bundles on Σ via the non-abelian
Hodge correspondence, see for example the work of Simpson [88].

The stackMC has the following explicit form in terms of matrix equations:

MC =

{(A1, B1, . . . , Bg, X1, . . . , Xk) ∈ GL2g
n (C)×

k∏
j=1

Cj |
g∏
i=1

[Ai, Bi]

k∏
j=1

Xj = 1

}/
GLn(C)

 .
(2.1.8)

In what follows, for a complex stack of �nite type X, we will denote by H∗c (X) := H∗c (X,C) its
compactly supported cohomology with C-coe�cients (this is well de�ned thanks to the work
of Laszlo and Olsson [59]).

Recall that each vector space H i
c(X) is endowed with the weight �ltration W i

•H
i
c(X), from



27

which we de�ne the mixed Poincaré series Hc(X, q, t)

Hc(X, q, t) :=
∑
m,i

dim(W i
m/W

i
m−1)q

m
2 ti.

The E-series E(X, q) is the specialization of Hc(X, q, t) obtained by plugging t = −1, the
Poincaré series Pc(X, t) is the specialization of Hc(X, q, t) obtained by plugging q = 1 and the
pure part PHc(X, q, t) is de�ned as

PHc(X, q) =
∑
m

dim(W 2m
m /W 2m

m+1)q
m
2 .

The geometry and cohomology of character stacks have been extensively studied from di�erent
perspectives. Most of the results have been obtained in the case where the k-tuple C is generic
(see De�nition 9.1.1).
For a generic k-tuple C, the stackMC is smooth and it is a Gm-gerbe over the associated GIT
quotient, which we denote by MC . Therefore, the cohomology of MC can be easily deduced
from that of the character variety MC .
We start by giving a quick review of the known results obtained about the cohomology of
generic character stacks and varieties, see �9.1 for more details.

The �rst results concerning this subject were obtained in the case where k = 1 and C is a
central conjugacy class. For n ∈ N and d ∈ Z, let Mn,d be the stack MC for k = 1 and

C = {e
2πid
n In} i.e

Mn,d =

[{
(A1, B1, . . . , Ag, Bg) ∈ GL2g

n (C) |
g∏
i=1

[Ai, Bi] = e
2πid
n In

}/
GLn(C)

]
.

The orbit C = {e
2πid
n } is generic if and only if (n, d) = 1.

Hitchin [48] computed the Poincaré polynomial Pc(Mn,d, t) in the generic case for n = 2, using
non abelian Hodge correspondence and Morse theory on the moduli space of Higgs bundles.
Gothen [40] extended his result for n = 3.
Their approach was later extended to compute the Poincaré polynomial Pc(MC , t) in the case
where n = 2, any k and any generic k-tuple C by Boden, Yogokawa [12] and where n = 3, any
k and any generic k-tuple C by García-Prada, Gothen and Munoz [37].
However, Morse theoretic techniques do not give information about weight �ltration on the
character variety and were hard to generalize to any n.

Hausel and Rodriguez-Villegas [44] were the �rst to obtain a general result about the weight
�ltration for any n.
The authors computed the E-series E(Mn,d, q) of the stacks Mn,d for any coprime n, d, by
counting points over �nite �elds and proposed a conjectural formula for the mixed Poincaré
series Hc(Mn,d, q, t).
Schi�mann [84] found an expression for the Poincaré series Pc(Mn,d, t) in the generic case and
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Mellit [73] later checked that Schi�mann's formula agrees with the specialization of Hausel
and Rodriguez-Villegas conjecture at q = 1.

Hausel, Letellier and Rodriguez-Villegas afterwards generalized the results of [44] and com-
puted [45, Theorem 1.2.3] the E-series E(MC , q) of the stacksMC for any generic k-tuple C.
We quickly explain in more detail their results, as it is the fundamental starting point for the
development of this work.

The authors [45, Theorem 1.2.3] showed that there is an equality

E(MC , q) =
q
dµ
2

q − 1
Hµ
(
√
q,

1
√
q

)
(2.1.9)

where 2dµ = dim(MC)+1 and µ = (µ1, . . . , µk) is the multipartition given by the multiplicities
of the eigenvalues of C1, . . . , Ck respectively.

In the same paper, the authors [45, Conjecture 1.2.1] proposed the following conjectural for-
mula for the mixed Poincaré series Hc(MC , q, t), which generalizes Hausel and Rodriguez-
Villegas conjecture stated in [44] and naturally deformes Identity (2.1.9):

Hc(MC , q, t) =
(qt2)

dµ
2

qt2 − 1
Hµ
(
t
√
q,− 1
√
q
,

)
. (2.1.10)

Mellit [72, Theorem 7.12] later computed the Poincaré series Pc(MC , t) using non-abelian
Hodge correspondence. His formula matches with the specialization at q = 1 of the conjectural
formula (2.1.10) for the mixed Poincaré series.

Notice that, as mentioned before, Formula (2.1.2), Formula (2.1.9) and Conjecture (2.1.10)
closely relate the understanding of cohomology of generic character stacks with the under-
standing of generic multiplicities for representations of GLn(Fq) and star-shaped quivers.

For instance, Conjecture (2.1.10) implies that we have

PHc(MC , q) =
q
dµ
2

q − 1
〈Λ⊗RGL1

(δ1)⊗ · · · ⊗RGLk(δk), 1〉 (2.1.11)

for any generic k-tuple (RGL1
(δ1), . . . , RGLk(δk)) such that the associated multipartition is µ.

Moreover, when the dimension vector αX associated to the k-tuple X = (RGL1
(δ1), . . . , RGLk(δk))

is indivisible, Conjecture (2.1.10) implies that we have

PHc(MC , q) =
Pc(QO, q)
q − 1

(2.1.12)

i.e that the pure part of the mixed Poincaré series of MC is equal (up to a q − 1 factor) to
the compactly supported Poincaré polynomial of its additive counterpart QO. This is usually
known as the "purity conjecture".
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While in the generic case the works just cited give a fairly complete description of the coho-
mology of character stacks, the cohomology of the stacksMC for non-generic k-tuples C has
been little studied until recently.
The most explicit and general results have mostly been obtained in the case of the stacks
Mn,d.
Hausel and Rodriguez-Villegas were the �rst to obtain a general result in this direction. The
authors [44, Theorem 3.8.1] expressed the E-series for the stacksMn,0 in terms of the E-series
for the generic character stacksMn,1 by the following formula:

Exp

(∑
n∈N

E(Mn,1, q)

qn2(2g−2)
Tn

)
=
∑
n∈N

E(Mn,0, q)

qn2(2g−2)
Tn (2.1.13)

where Exp is the plethystic exponential in the ring of formal power series Q(q)[[T ]] (see �3.7
for details about plethystic operations). The authors' result is obtained by counting points
over �nite �elds.

Fix now r ∈ Q. Recently, Davison, Hennercart and Schelegel-Mejia [24, Theorem 14.3, Corol-
lary 14.7] proved the following formula expressing the compactly supported Poincaré series of
Mn,d for any n, d, in terms of the Poincaré series for the generic character stacksMn,1:

∑
(n,d)∈N>0×Z

d=rn

Pc(Mn,d,−t)
tn2(2g−2)

znwd = Exp

 ∑
(n,d)∈N>0×Z

d=rn

Pc(Mn,1,−t)
tn2(2g−2)

znwd

 (2.1.14)

and formulated a similar conjecture for the mixed Poincaré series of Hc(Mn,d, q, t) for any
n, d (see the discussion after [24, Theorem 14.10]).
They obtained this formula by relating the cohomology of a character stack with the cohomol-
ogy of the so-called BPS sheaves. The latter are certain perverse sheaves de�ned on character
varieties and their cohomology is well understood for the stacksMn,d. More precisely the non-
abelian Hodge correspondence for stacks, proved in [24], and the recent work of Koseki and
Kinjo [55] about BPS sheaves for the moduli stack of Higgs bundles, give a way to compute
the cohomology of BPS sheaves for a stackMn,d.
Notice moreover that, since the authors use non abelian Hodge correspondence which does not
preserve weight �ltration on cohomology, their method does not allow to prove an analogous
formula for the E-series or the mixed Poincaré series ofMn,d.
Finally, the cohomology of BPS sheaves for character stacks MC is not understood for an
arbitrary C and so a generalization of Formula (2.1.14) for an arbitrary C is still unproved.

One of the main aim of this thesis is to contribute to the understanding of the cohomology of
character stacksMC for not-necessarily generic k-tuples, for any k and C.

2.1.3 Character stacks for non-orientable surfaces

Another generalization of the results of [45] that will interest us in this thesis is the study of
character stacks for real non-orientable surfaces rather than Riemann surfaces.
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Our point of view on real geometry is that introduced by Atiyah [3], i.e a non-orientable
surface in the following will be a pair (Σ, σ), where Σ is a Riemann surface and σ : Σ→ Σ is
an anti-holomorphic involution such that Σσ = ∅.
Notice that in this case indeed, the quotient S = Σ/〈σ〉 is a non-orientable real surface. Denote
by p : Σ→ S the quotient map.

Fix now a subset E = {y1, . . . , yk} ⊆ S and a k-tuple C of semisimple conjugacy classes
of GLn(C). Notice that since the action of σ is free, the involution σ de�nes a morphism
ε : π1(S \ E)→ Z/(2) with kernel p∗(π1(Σ/p−1(E)))

Consider now the group GLn(C)+ := GLn(C) oθ Z/(2), where θ : GLn(C) → GLn(C) is
the Cartan involution θ(M) = (M t)−1 and denote by π : GLn(C)+ → Z/(2) the associated
projection.

The associated character stackMε
C is de�ned as

Mε
C =

[{
ρ : π1(S \ E)→ GLn(C)+ | ρ(zi) ∈ Ci and π(ρ(g)) = ε(g)

}
/GLn(C)

]

where each zi is a loop around the point yi. The stackMε
C has the following explicit form in

terms of matrix equation:

Mε
C =

[{
(D1, . . . , Dr, Z1, . . . , Zk) ∈ GLrn(C)×

k∏
j=1

Cj |D1θ(D1) · · ·Drθ(Dr)Z1 · · ·Zk = 1

}
/GLn(C)

]
(2.1.15)

where r = g+1. We denote byM ε
C the associated GIT quotient. When k = 1 and C = {e

πid
n In},

we denote the stackMε
C byMε

n,d.

Similar de�nitions can be given when σ has �xed points, using the orbifold fundamental group

of the quotient Σ/〈σ〉, see for example [11].

The stacks Mε
C are deeply related to the so-called branes inside the moduli spaces of Higgs

bundles. The computation of the cohomology of branes is a key part in understanding mirror
symmetry for the Hitchin system.

References about the subject can be found for example in [6],[7],[11],[9].

Few results have been shown in the literature concerning the cohomology of the stacks Mε
C .

Recently, Letellier and Rodriguez-Villegas [65, Theorem 1.4] computed the E-series E(Mε
C , q)

when C is generic, by counting points over �nite �elds.

Baird and Wong [4] computed the E-polynomial of analogous varieties M ε
n,d when the anti-

holomorphic involution σ has �xed points. Their formulas are quite di�erent from the ones of
[65].

In this thesis, we will focus on the case of the stacksMε
n,d when (n, d) = 1. In this case, the

stackMε
n,d is a µ2-gerbe over the character variety M ε

n,d. The latter variety is deeply related
to the moduli space of real and quaternionic Higgs bundles of rank n and degree d over Σ.
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2.2 Overview of the thesis

We give here a quick summary of our main results, which we will explain more precisely in
the next Section.

2.2.1 Multiplicities

With regard to multiplicities, we study multiplicities 〈X1 ⊗ · · · ⊗ Xk, 1〉 for not necessarily
generic k-tuples of irreducible characters (X1, . . . ,Xk).
In this thesis, we give a formula for 〈RGL1

(γ1) ⊗ · · · ⊗ RGLk(γk), 1〉 for any choice of γ1, . . . , γk
(not necessarily generic), in terms of Kac polynomials of the quiver Q introduced before.
This formula is obtained by giving a quiver theoretic interpretation of the multiplicity 〈RGL1

(γ1)⊗
· · · ⊗RGLk(γk), 1〉 for any k-tuple (RGL1

(γ1), . . . , RGLk(γk)).
As a consequence of our result, we show that 〈RGL1

(γ1)⊗· · ·⊗RGLk(γk), 1〉 is a polynomial in q
with non-negative coe�cients and show a criterion for its non-vanishing in terms of the root
system of Q. These results are contained in [85].

2.2.2 Cohomology of character stacks

With regard to character stacks for Riemann surfaces, we study cohomology of character stacks
MC for k-tuples which are not necessarily generic. One of the main results of this thesis is
a generalization of Formula (2.1.14) to arbitrary C for the E-series E(MC , q) instead of the
Poincaré series Pc(MC , t).
As a result we get an explicit formula for E(MC , q) for any k-tuple C, see Theorem 2.3.10
below.
We also give a conjectural formula (see Conjecture 2.3.12) for the mixed Poincaré series
Hc(MC , q, t), which we verify in the case of Σ = P1

C, k = 4 and a certain family of non-
generic quadruples. These results are part of [86].
Conjecture 2.3.12 for the stacksMn,d has already appeared in [24], see the discussion in loc.

cit after Theorem 14.10. Let us notice that our approach is very di�erent from that of [24] as
we do not use non-abelian Hodge theory nor BPS sheaves.

2.2.3 Non-orientable surfaces

With regard to generic character stacks for non-orientable compact real surfaces, we give an
explicit description of the stacksMε

n,d when (n, d) = 1 and r = 2, i.e for a (real) elliptic curve.
This description gives a counterexample to a formula suggested by [65] for the mixed Poincaré
series of the stacks Mε

C . The description of this counterexample is the main result of the
article [87].

2.3 Main results

2.3.1 Main results about multiplicities

Fix Levi subgroups L1, . . . , Lk of GLn(Fq) as in �2.1.1. To study the non-generic case, we
will start by de�ning a strati�cation both on the set of k-tuples of semisimple split characters



32

X = (RGL1
(γ1), . . . , RGLk(γk)) and on the set of representations of Q of dimension αX . This

strati�cation will be indexed by subsets V ⊆ NI .
The level of the strati�cation associated to V = {αX } will correspond to the case of generic
k-tuples/absolutely indecomposable representations respectively.

Consider more generally any �nite quiver Γ = (J,Ω). To a representationM of Γ, we associate
the following subset HM ⊆ NI . Given the decomposition into indecomposable components

M ⊗K K ∼= Mn1
1 ⊕ · · · ⊕M

nh
h ,

we de�ne
HM := {dim(M1), . . . ,dim(Mh)}.

For any V ⊆ NJ , we give the following de�nition of the representations of Γ of level V (see
De�nition 6.2.2).

De�nition 2.3.1. A representation M of Γ is said to be of level V if HM = {0 < β ≤
dimM | β ∈ V }.

Remark 2.3.2. For α ∈ NJ , denote by NJ≤α = {δ ∈ NJ | δ ≤ α}. Consider a representation M
such that dimM = α. Notice that, given V, V ′ ⊆ NJ such that V ∩ NJα = V ′ ∩ NJα, we have
that M is of level V if and only if it is of level V ′.

Notice that, for β ∈ NJ , a representation of dimension β is of level {β} if and only if is abso-
lutely indecomposable . In particular, the number of isomorphism classes of representations
of level {β} and dimension β over �nite �elds is counted by the Kac polynomial aΓ,β(t).

However, for a general V ⊆ NJ , the counting of the isomorphism classes of the representations
of Γ of prescribed dimension and of level V over Fq does not seem to give an interesting
generalization of Kac polynomials.

In this direction, to obtain such a generalization, we introduce the following de�nition of a
representation of level at most V (see De�nition 6.2.4).

De�nition 2.3.3. For a subset V ⊆ NJ , a representation M is said to be of level at most V
if it is of level V ′ for some V ′ ⊆ V , i.e if and only if HM ⊆ V .

For any β ∈ NJ and any V ⊆ NJ , we show that the number of isomorphism classes of
representations of Γ of level at most V of dimension β over Fq is equal to the evaluation of a
polynomial MΓ,β,V (t) ∈ Z[t] at t = q.

Moreover, we prove a formula for the generating function of the polynomials MΓ,β,V (t) of the
following type (see Lemma 6.2.2):

Exp

∑
γ∈V

aΓ,γ(t)yγ

 =
∑
β∈NI

MΓ,β,V (t)yβ. (2.3.1)

where Exp is the plethystic exponential.
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Remark 2.3.4. For V = NJ , Formula (2.3.1) gives

Exp

∑
γ∈NJ

aΓ,γ(t)yγ

 =
∑
β∈NI

MΓ,β(t)yβ (2.3.2)

whereMΓ,β(t) is the polynomial counting the number of isomorphism classes of representations
of Γ of dim = β over Fq. This was already proved in [50].

Consider now the quiver Q and the dimension vector αX introduced above. Let (NI)∗ ⊆ NI

be the subset of vectors with non-increasing coordinates along the legs.
In �8.2, to any k-tuple X = (RGL1

(δ1), . . . , RGLk(δk)) we associate an element σX ∈ Hom(F∗q ,C∗)I

(see �8.2.1). Let H∗σX ,αX ⊆ (NI)∗ be the subset de�ned by

H∗σX ,αX := {0 < β ≤ αX | σβX = 1}

where σβX :=
∏
i∈I

((σX )i)
βi . For any V ⊆ (NI)∗, we give the following de�nition of a k-tuple

(RGLi(δi))
k
i=1 of level V (see De�nition 8.2.1).

De�nition 2.3.5. A k-tuple X = (RGL1
(δ1), . . . , RGLk(δk)) is said of level V if H∗σX ,αX = {0 <

β ≤ α | β ∈ V }.

For V = {αX }, we show that if a k-tuple (RGL1
(δ1), . . . , RGLk(δk)) is of level {αX } it is generic.

Conversely, if the k-tuple X is generic, there are no elements δ, ε ∈ H∗σX ,α \ {αX } such that
δ + ε = α, see Lemma 8.2.4.

The main result of this paper extends Formula (2.1.4) by relating the multiplicity for k-tuples
of level V and representations of level at most V in the following way.

Theorem 2.3.6. Let V ⊆ (NI)∗ and X = (RGL1
(δ1), . . . , RGLk(δk)) be a k-tuple of level V . The

following equality holds:

〈Λ⊗RGL1
(δ1)⊗ · · · ⊗RGLk(δk), 1〉 = MQ,αX ,V (q) (2.3.3)

From Theorem 2.3.6 and Formula (2.3.1), in Proposition 8.2.12 we obtain the following cri-
terion for the non-vanishing of the multiplicity 〈Λ⊗RGL1

(δ1)⊗ · · · ⊗RGLk(δk), 1〉, generalizing
the criterion for generic k-tuples of [46, Corollary 1.4.2] .

Proposition 2.3.7. For a k-tuple (RGL1
(δ1), . . . , RGLk(δk)) of level V , the multiplicity〈

Λ⊗RGL1
(δ1)⊗ · · · ⊗RGLk(δk), 1

〉
is non-zero if and only there exist

� β1, . . . , βr ∈ Φ+(Q) ∩ V

� m1, . . . ,mr ∈ N

such that m1β1 + · · ·+mrβr = αX
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2.3.2 Main results about non-generic character stacks

An important tool to formulate and prove the main results of this thesis concerning non-generic
character stacks is the construnction of character stacks as multiplicative quiver stacks, as �rst
introduced by Crawley-Boevey and Shaw [18],[19], which we quickly recall here (see �7.2 for
more details).

Notice that this construction is not needed for studying generic character stacks and does not
appear for example in the articles [45], [72]. However, it is a key point in our paper, as it allows
to distinguish between di�erent levels of non-genericity for non-generic character stacks.

Let s1, . . . , sk ∈ N be such that, for each i = 1, . . . , k, the conjugacy class Ci has si+1 distinct
eigenvalues γi,0, . . . , γi,si with multiplicities mi,0, . . . ,mi,si respectively. Let Q = (I,Ω) be the
star-shaped quiver with g loops on the central vertex and k legs of length s1, . . . , sk.

Recall that for any β ∈ NI , there is a representation variety R(Q, β)◦,∗ and a multiplicative
moment map

Φ∗β : R(Q, β)◦,∗ → GLβ(C) :=
∏
i∈I

GLβi(C).

For any s ∈ (C∗)I , we denote by s the central element s := (siIβi)i∈I ∈ GLβ . The multiplica-
tive quiver stack with parameters β, s is the quotient stack

M∗s,β := [(Φ∗β)−1(s)/GLβ].

Consider now the dimension vector αC ∈ NI de�ned as

(αC)[i,j] =

si∑
h=j

mi,h

for every j = 0, . . . , si, where we are identi�ying [i, 0] = 0 for each i = 1, . . . , k. Notice that
(αC)0 = n. Let moreover γC ∈ (C∗)I be de�ned as follows

(γC)[i,j] =


k∏
i=1

γ−1
i,0 if j = 0

γ−1
i,j γi,j−1 otherwise

.

The results of Crawley-Boevey [18, Proposition 2] impliy that, for the elements αC , γC , there
is an isomorphism of stacks

MC ∼=M∗γC ,αC .

Let now (NI)∗ ⊆ NI be the subset of vectors with non-increasing coordinates along the legs
and denote by H∗γC ,αC ⊆ (NI)∗ the subset de�ned as

H∗γC ,αC = {δ ∈ (NI)∗ | γδC = 1 and δ ≤ αC}
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where γδC =
∏
i∈I

((γC)i)
δi .

Example 2.3.8. It can be checked that a k-tuple C is generic if H∗γC ,αC = {αC}, see Lemma
9.1.4 for more details.

The subsets H∗γC ,αC de�ne a natural strati�cation on the set of k-tuples C and so of character
stacksMC .
The introduction of this strati�cation is one of the key ingredients to study the cohomology
ofMC in the non-generic case. Notice that altough not explicitly de�ned, the subsets H∗γC ,αC
appear implicitly in [24].

For any β ∈ (NI)∗ and for any j = 1, . . . , k, the integers (β[j,0]−β[j,1], . . . , β[j,sj−1]−β[j,sj ], β[j,sj ])

up to reordering form a partition µjβ ∈ P. Denote by µβ ∈ Pk the multipartition µβ =

(µ1
β, . . . , µ

k
β) and by Hβ(z, w) the function Hµβ (z, w).

Remark 2.3.9. Notice that for a k-tuple C of semisimple conjugacy classes, the multipartition
µαC ∈ Pk is the multipartition given by the multiplicities of the orbits C1, . . . , Ck respectively.
Moreover, it can be checked that

dim(MC) = 2(αC , αC) + 1,

where (, ) is the Euler form ofQ. The result [45, Theorem 1.2.3] of Hausel, Letellier, Rodriguez-
Villegas for a generic k-tuple C can thus be rewritten as follows:

E(MC , q)
q(αC ,αC)

=
qHαC

(√
q, 1√

q

)
q − 1

. (2.3.4)

The main result about character stacks of this paper (see Theorem 9.3.2) is the following :

Theorem 2.3.10. For any k-tuple of semisimple conjugacy classes C, we have:

CoeffαC

Exp

 ∑
β∈H∗γC ,αC

qHβ
(√

q, 1√
q

)
q − 1

yβ

 =
E(MC , q)
q(αC ,αC)

. (2.3.5)

We compute the E-series of the complex character stacksMC through the approach introduced
in [44],[45],[65], i.e by reduction over �nite �elds and point counting. Namely, recall that if
there exists a rational function Q(t) ∈ Q(t) such that, for any Fq-stackMC,Fq obtained from
MC by base change and any m, it holds

#MC,Fq(Fqm) = Q(qm),

we have an equality
E(MC , q) = Q(q),
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see �3.4.1 for more details.

However, the way we count rational points of character stacks in this paper is quite di�erent
from that of [45]. The description of the rational functions Q(t) for non-generic character
stacks is given through the results of Chapter �5.8 and �7.3, where we show how to compute
the rational points of a multiplicative quiver stack for a star-shaped quiver over Fq.
Notice that in the articles [46],[45], the authors did not need to introduce multiplicative quiver
stacks to compute Fq-points of generic character stacks.

The results of �5.8 and �7.3 about the rational functions Q(t) will be obtained as a consequence
of one of the main technical results of this thesis which is Theorem 4.5.2. The latter theorem
is very general and works for certain families of rational functions called Log compatible.

Therefore, to prove Theorem 2.3.10 we will have to prove that the rational functions involved
in it satisfy this Log compatibility property.

The proof of Theorem 4.5.2 will be one of the main technical points of the �rst part of the
thesis. We will have to use combinatorial objects di�erent from the ones used for the generic
case in [46],[45]. The de�nition of these objects and the study of their properties do not
seem to have been given before in the literature and constitute the main topic of the sections
�4.3,�4.5.

Remark 2.3.11. Theorem 4.5.2 about Log compatible functions can be used to give another
proof of Theorem 2.3.6 about multiplicities for k-tuples of Harisha-Chandra characters, as
shown in section �8.3. In the case of multiplicities, we could avoid the technical result by
interpreting multiplicities in terms of the counting of isomorphism classes in the category of
representations of a quiver.

For the E-series of character stacks, we lack such a categorical interpretation and we don't
know an alternative way to Theorem 4.5.2.

Hausel, Letellier, Rodriguez Villegas conjectural formula (2.1.10) for the mixed Poincaré series
of character stacks for generic k-tuples and Theorem 2.3.10 suggest the following conjecture
for the mixed Poincaré series of character stacks:

Conjecture 2.3.12. For any k-tuple of semisimple orbits C, we have:

CoeffαC

Exp

 ∑
β∈H∗γC ,αC

(qt2)Hβ
(
t
√
q, 1√

q

)
qt2 − 1

yβ

 =
Hc(MC , q, t)
(qt2)(αC ,αC)

. (2.3.6)

In �9.4, we verify that Conjecture 2.3.12 holds in the case where Σ = P1
C, |D| = 4 and the

following family of non-generic quadruples.

Pick λ1, λ2, λ3, λ4 ∈ C∗ \ {1,−1} and denote by Cj the conjugacy class of the diagonal matrix(
λj 0

0 λ−1
j

)
.
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Assume moreover that λ1, λ2, λ3, λ4 have the following property. Given ε1, . . . , ε4 ∈ {1,−1}
such that λε11 · · ·λ

ε4
4 = 1, then either ε1 = · · · = ε4 = 1 or ε1 = · · · = ε4 = −1.

2.3.3 A common approach: non-generic to generic

One of the interesting aspects of our results about non-generic character stacks and non-
generic multiplicities is that in both cases E-series for any k-tuple C of semisimple conjugacy
classes and multiplicities for any k-tuple (RGL1

(γ1), . . . , RGLk(γk)) are expressed in terms of the
E-series (respectively multiplicities) for generic k-tuples.
Similar type of results, relating non-generic to generic, have already appeared elsewhere, see
for example the results of [64] recalled above for unipotent characters or the discussion at the
end of �2.1.2.
We can also cite Davison's work [22, Theorem B] which recently showed that the cohomology
of non-generic quiver stacks can be expressed in terms of Kac polynomials and Letellier's work
[61] where he computed the E-series for character stacks with unipotent local monodromies in
terms of the generic case.

2.4 Main results about character stacks for non-orientable surfaces

In [65], the authors obtained a combinatorial formula for the E-series E(Mε
C , q) for any generic

k-tuple C of semisimple conjugacy classes. Surprinsingly, the formulas found by the authors
for the E-series E(Mε

C , q) strongly resemble the ones computing E-series for character stacks
for Riemann surfaces found in [45].
For instance, for r = 2h we have an equality E(Mε

C , q) = E(MC , q) whereMC is associated
to a Riemann surface of genus h, see [65, Remark 1.5].
The authors' [65, Theorem 4.8] veri�ed that a completely analogous formula to that of Con-
jecture 2.3.12 holds for Mε

C in the case of r = 1 and k = 1. Therefore, it would have been
natural to expect a similar formula to hold for any r. We give an explicit description of some
of these stacks in the case r = 2, giving a counterexample to the expected formula. More
precisely, we show the following.

Theorem 2.4.1. Put r = 2, k = 1 and considerMε
n,d for (n, d) = 1. ThenMε

C is a µ2-gerbe

over C∗. In particular, its mixed Poincaré series is

Hc(Mε
C , q, t) = qt2 + t.

To prove Theorem 2.4.1 we need some results of independent interest concerning the geometry
of the spacesMε

n,d.
To summarize these results, let Mn,d be the character variety associated to the Riemann
surface Σ (of genus r − 1) and σ : Σ → Σ be the involution which sends a representation
ρ̃ ∈Mn,d to σ(ρ̃) = θ(ρ̃)(σ∗) (for more details and a de�nition of σ∗ see chapter �10).
In section �10.4, we show the following Theorem:

Theorem 2.4.2. If r is odd, the �xed point locus Mσ
n,d is isomorphic to M ε

n,d. If r is even,

there is an open-closed decomposition Mσ
n,d = Mσ,+

n,d

⊔
Mσ,−
n,d such that Mσ,+

n,d
∼= Mσ,−

n,d
∼= M ε

n,d.
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Theorem 2.4.2 (and the others in �10.4) are probably known to the experts but we could not
locate a reference in the literature. We review them here for the sake of completeness.

Theorem 2.4.1 is obtained by studying the action of σ∗ on Mn,d for elliptic curves and �nding
an explicit isomorphism

Mσ,+
n,d
∼= C∗.
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3 Geometric and combinatoric background

This chapter recalls the geometric and combinatorics tools needed in the rest of the thesis.
The base �eld is K = C or K = Fq where Fq is the �nite �eld with q elements.

In section �3.1 we review some generalities about the complex represention theory of �nite
groups and �x some notations about the product and the convolution of class functions.

In section �3.2 we introduce some notations for varieties and algebraic groups over Fq and
their twisted Frobenius structures.

In section �3.3 we �x some notations and recall some generalities about algebraic stacks and
in particular about quotient stacks [X/G], where X is a variety and G a reductive group.

In section �3.4 we recall the de�nition and some basic properties of compactly supported
cohomology H∗c (X) and weight �ltration for a stack X of �nite type over K.

In sections �3.5 and �3.6 we recall some notations and properties of partitions and multitypes.
The latter are of one the main combinatorial objects used in the thesis as they parametrize,
for example, the conjugacy classes of the groups of the type GLα(Fq) for α ∈ NI .
In section �3.7, we review the de�nition and properties of λ-rings and, in particular, of the
plethystic exponential Exp and of the plethystic logarithm Log. These operations will be the
main tool through which to express the non-generic case in terms of the generic ones, both
for multiplicities and character stacks.

In section �3.8, we recall the de�nition of the HLRV kernels Hn,g(z, w), which are rational
functions of fundamental importance for the description of generic multiplicities and generic
character stacks.

3.1 Finite groups, irreducible characters and convolution

Let H be a �nite group. We denote by C(H) the set of complex valued class functions, i.e the
functions f : H → C which are constant on the conjugacy classes of H. The constant function
equal to 1 is going to be denoted by 1.

For f, g ∈ C(H), we denote by 〈f, g〉 the quantity

〈f, g〉 =
1

|H|
∑
h∈H

f(h)g(h).

Recall that an orthonormal basis of C(H) is given by the irreducible characters of H. We will
denote the set of irreducible characters of H by H∨.

The vector space C(H) is endowed with a ring structure (C(H),⊗) induced by tensor product
of representations, i.e for f, g ∈ C(H) we de�ne the class function f ⊗ g ∈ C(H) as

f ⊗ g(h) = f(h)g(h).

The ring (C(H),⊗) is usually called the character ring of H.

Given two class functions f, g ∈ C(H) and an irreducible character χ ∈ H∨, the quantity
〈f ⊗ g, χ〉 is usually called the multiplicity of χ in the product f ⊗ g.
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The computation of multiplicities is of fundamental importance for the full understanding of
the representation theory of the �nite group H.

The vector space C(H) can be endowed with another ring structure (C(H), ∗) given by the
convolution product.

Given two class functions f1, f2 ∈ C(H), the convolution f1 ∗ f2 is the class function de�ned
as

f1 ∗ f2(g) =
∑
h∈H

f1(gh)f2(h−1).

Denote by Cl(H) the set of conjugacy classes of H. For any O ∈ Cl(H), we denote by
1O ∈ C(H) the characteristic function of O. For a central element η ∈ ZH , we denote by 1η
the characteristic function of the conjugacy class {η}.

Notice that, for any central element η ∈ H and any class function f , there is an equality

〈f ∗ 1η, 1e〉 =
f(η)

|H|
.

Recall now that

1e =
∑
χ∈H∨

χ(e)

|H|
χ. (3.1.1)

We have therefore

f(η)

|H|
=
∑
χ∈H∨

〈f ∗ 1η, χ〉
χ(1)

|H|
. (3.1.2)

For any two class functions f1, f2 : H → C and an irreducible character χ ∈ H∨, there is an
equality

〈f1 ∗ f2, χ〉 = 〈f1, χ〉〈f2, χ〉
|H|
χ(1)

(3.1.3)

(see for example [51, Theorem 2.13]). In particular, from Formula (3.1.2), we deduce the
identity:

f(η)

|H|
=
∑
χ∈H∨

〈f, χ〉〈1η, χ〉 =
∑
χ∈H∨

〈f, χ〉χ(η)

χ(1)

χ(1)

|H|
. (3.1.4)

Remark 3.1.1. If H is abelian, we can build an isomorphism ψ : (C(H),⊗)→ (C(H), ∗) in the
following way.

Since H is abelian, the set of irreducible characters H∨ is a group and we can �nd an isomor-
phism

θ : H ∼= H∨

g → χg.
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We de�ne ψ : C(H)→ C(H) by extending by linearity ψ(1g) = χg. Notice that

ψ(1g1 ∗ 1g2) = ψ(1g1g2) = χg1g2 = χg1 ⊗ χg2 ,

i.e ψ is an isomorphism (C(H), ∗)→ (C(H),⊗).

However, notice that in general, i.e if H is not abelian, the rings (C(H),⊗) and (C(H), ∗) are
not isomorphic.

3.2 Varieties over �nite �elds and twisted Frobenius

Let q = pr where p is a prime number, Fq the �eld with q elements and Fq its algebraic closure.
In this paragraph, we review some properties of varieties over Fq. We follow Milne's book [74]
and Digne and Michel's book [28]. We denote by F : Fq → Fq the Frobenius morphism
F (x) = xq.

Consider a variety X over Fq, i.e a reduced and separated scheme of �nite type over Fq. We
say that X is de�ned over Fq or equivalently that it admits an Fq-structure if there is an
Fq-variety X0 and an isomorphism

X0 ×Spec(Fq) Spec(Fq) ∼= X.

Via the isomorphism above, the morphism

FX0 × Id : X0 ×Spec(Fq) Spec(Fq)→ X0 ×Spec(Fq) Spec(Fq)

de�nes a corresponding morphism on X, usually called geometric Frobenius, and denoted by
FX : X → X. Here FX0 is the Frobenius morphism of the scheme X0, i.e the morphism of
schemes given by the identity on the topological space and by taking the q-th power of the
elements of the structure sheaf.

Remark 3.2.1. Notice that a variety X can be endowed with di�erent Fq-structures (and
so di�erent associated Frobenius morphisms). Consider for example the 1-dimensional torus
Gm = Spec(Fq[t, t−1]).

The canonical Fq-structure ofGm is the Fq-varietyX0 = Spec(Fq[t, t−1]) and the corresponding
Frobenius is the morphism F : Gm → Gm de�ned as t→ tq.

However, Gm can be endowed with another Fq-structure. Consider the Fq-variety

X ′0 := Spec(Fq[x, y]/(x2 + y2 − 1)).

It is possible to show that if −1 is not a square in Fq, the variety X ′0 is not isomorphic to X0,
however we have

Fq[x, y]/(x2 + y2 − 1)⊗Fq Fq ∼= Fq[t, t−1].

In particular, X ′0 is another Fq-structure of Gm. The corresponding Frobenius morphism
FX′0 : Gm → Gm sends t to t−q.
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Consider an a�ne variety X = Spec(A) with A a �nitely generately Fq-algebra. In this case,
we have the following description of the Fq-structures of X, see [28, Proposition 4.18].

Proposition 3.2.2. A morphism F : X → X is the Frobenius morphism attached to an Fq-
structure of X if and only if the corresponding map of algebras F : A → A has the following

properties:

� The map F has image equal to A[q] := {aq | a ∈ A}.

� For any a ∈ A, there exists n ∈ N such that Fn(a) = aq
n
.

In this case, the corresponding variety X0 is Spec(A0), where A0 = {a ∈ A | aq = F (a)}.

Because of Proposition 3.2.2, for an a�ne varietyX over Fq, we call an Fq-Frobenius morphism
(or simply a Frobenius morphism), a map F : X → X respecting the two properties of
Proposition 3.2.2.
More generally, for any X we give the following de�nition.

De�nition 3.2.3. A Frobenius morphism F : X → X is a bijective morphism such that
there exists an a�ne covering (Uj)j∈J of X such that, for each j, we have F (Uj) ⊆ Uj and
F |Uj : Uj → Uj is a Frobenius morphism of an a�ne variety, i.e respects the properties of
Proposition 3.2.2.

Notice that, because of Proposition 3.2.2, given a variety X and a Frobenius morphism F :

X → X, glueing the associated Fq-structures of the a�ne covering (Uj)j∈J , we obtain an
Fq-structure X0 such that FX = F .

For this reason, hereafter we use the following terminology.

De�nition 3.2.4. A variety over Fq is a couple (X,F ) where X is a variety over Fq and F is
an Fq- Frobenius morphism F : X → X.

For an Fq-variety (X,F ), for any m ≥ 1, we denote by X(Fqm) the set X0(Fqm), i.e

X(Fqm) = X(Fq)F
m
.

Whenever the Fq-structure of X is clear, we will often drop the Frobenius morphism in the
notation and we will simply use the terminology "the Fq-variety X".

Example 3.2.5. For the Fq-variety Gm, with its canonical Frobenius F : Gm → Gm, we have

Gm(Fqm) = (F∗q)F
m

= F∗qm .

Denote now by F ′ : Gm → Gm the Frobenius morphism attached to the Fq-structure X ′0
introduced in Remark 3.2.1. Notice that, in this case, we have for instance

Gm(Fq) = (F∗q)F
′

= {x ∈ F∗q | xxq = 1}.
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With this terminology, a morphism of Fq-varieties f : (X,F ) → (Y, F ) is a morphism of Fq-
schemes f : X → Y which commutes with the corresponding Frobenius maps, i.e such that
the following diagram commutes

X Y

X Y

F

f

F

f

Given an a�ne variety (X,F ) over Fq with Frobenius F : X → X, consider the variety Xd

and the twisted Frobenius
Fd : Xd → Xd

de�ned as
Fd(x1, . . . xd) = (F (xd), F (x1), . . . , F (xd−1)).

In the following, we will usually denote the Fq-variety (Xd, Fd) by Xd. Notice that there is a
bijection Xd(Fq) = X(Fqd). Indeed , we have

Xd(Fq) = Xd(Fq)Fd = {(x1, . . . , xd) ∈ X(Fq)d | x1 = F (xd) x2 = F (x1) . . . , xd = F (xd−1)} =

= {(F 2(x), F 3(x), . . . , F d−1(x), x, F (x)) ∈ X(Fq)d | x ∈ X(Fq) and F d(x) = x}

which is in bijection with X(Fqd). In particular, since Xd(Fq) = X(Fq)d, we �nd that in
general the varieties (Xd, F ) and Xd are not isomorphic over Fq.

Example 3.2.6. Consider the Fq-variety Gm. The Fq-variety (Gm)2 is the 2-dimensional torus
over Fq equipped with the non-split Frobenius

F2 : G2
m → G2

m

(z, w)→ (wq, zq).

In particular, we have
(Gm)2(Fq) = (G2

m(Fq))F2 =

{(z, w) ∈ F∗q × F
∗
q | z = wq and w = zq} = {(z, zq) ∈ F∗q × F

∗
q | z ∈ F∗q2}

and the latter set is in bijection with F∗q2 . However, notice that F 2
2 (z, w) = (zq

2
, wq

2
) and

therefore we have
(Gm)2(Fq2) = F∗q2 × F∗q2 .

In particular, in general it is not true that Xd(Fqm) is in bijection with X(Fqdm) for any m.

Notice that for any Fq-variety (X,F ) and any d ≥ 1, the diagonal embedding ∆ : X → Xd is
an Fq-morphism

∆ : X → Xd.
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3.2.1 General linear groups over �nite �elds

For n ∈ N, we denote by GLn the general linear group over Fq. The group GLn is endowed
with a canonical Frobenius morphism F ((ai,j)i,j) = (aqi,j)i,j for a matrix (ai,j)i,j ∈ GLn.
For α ∈ NI , we denote by GLα the Fq-linear algebraic group

GLα :=
∏
i∈I

GLαi

endowed with the canonical Frobenius.

Remark 3.2.7. For each n, d ≥ 1, we de�ne an embedding (GLn)d ⊆ GLnd over Fq in the
following way. Let ∆ : GLdn → GLnd be the block diagonal embedding.
Notice that while ∆ induces a morphism over Fq, it does not de�ne a morphism over Fq from
(GLdn, Fd) to (GLnd, F )

Consider then the partition σ ∈ Snd given by

σ = (1, (n+ 1), · · · , (n(d− 1) + 1)) · · · (n, 2n, · · · , dn)

and the associated partition matrix Jσ ∈ GLnd.
Fix an element gσ ∈ GLnd such that g−1

σ F (gσ) = Jσ (such an element exists because of the
surjectivity of the Lang map see for example [28, Theorem 4.29]). The embedding

gσ∆g−1
σ : (GLdn, Fd)→ (GLnd, F )

is de�ned over Fq.
Similarly, we can de�ne an Fq-embedding of (GLα)d inside GLαd for any d ≥ 1 and any α ∈ NI .

Example 3.2.8. Let n = 2. Fix x ∈ F∗q2 \ F∗q and let Tε be the torus

Tε :=

{
1

xq − x

(
axq − bx −a+ b

(a− b)xxq −ax+ bxq

)
| a, b ∈ Fq

∗
}
.

The torus Tε is F -stable and is GL2(Fq)-conjugated to the torus (Gm)2 embedded inside GL2

as in Remark 3.2.7 above.

Finally, we give the de�nition of weight for an embedding η : Gm → GLn. The weight |η| is
de�ned as the integer such that

det ◦η : Gm → Gm

z → z|η|.

This de�nition can be extended to a morphism η : (Gm)d → GLn de�ned over Fq in the
following way. In this case, we de�ne

|η| := |η ◦∆|
d

,
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where ∆ : Gm → (Gm)d is the diagonal embedding.

Example 3.2.9. For each d ≥ 1, the weight of the embedding η : (Gm)d → GLd de�ned above
is

|η| = 1.

3.3 Notations on stacks and quotient stacks

We follow [78] for notations and basic properties of Artin stacks. For us a stack Xover the
�eld K will be a category X �bered in groupoid over the category of K-schemes SchK with
the following properties:

� The diagonal morphism X→ X×Spec(K) X is representable by algebraic spaces

� There exists a smooth surjection π : X → X, where X is a scheme.

For a K-scheme T , we denote by X(T ) the �ber groupoid of X over T . Recall that X is said
of �nite type if we can pick a smooth surjection π : X → X such that X is of �nite type.

When K = Fq and X is a stack of �nite type, for any m ∈ N>0, the number of Fq-points
#X(Fqm) is de�ned as

#X(Fqm) =
∑

x∈X(Fqm )

1

|Aut(x)(Fqm)|
. (3.3.1)

This quantity is well de�ned since X(Fqm) is an essentially �nite groupoid for any m (see for
example [8, Lemma 3.2.2]).

The stacks that will appear in this thesis are mainly going to be quotient stacks . We review
the de�nitions and some properties of these objects.
Consider an algebraic variety X over K and a K-algebraic group G acting on X. The quotient
stack [X/G] is the category �bered over the category of K-schemes de�ned as follows:

� An object over a K-scheme T is a pair (P, f), where P → T in a principal G-bundle
and f : P → X is a G-equivariant map.

� For two objects (P, f),(P, f ′) over schemes T, T ′, a morphism α : (P, f)→ (P ′, f ′) over
a morphism h : T → T ′ is a bundle map α : P → P ′ such that f ′ ◦ α = f .

If X = Spec(K), the stack [Spec(K)/G] is called the classifying stack of G and is usually
denoted by BG. Notice that BG is the moduli stack of principal G-bundles, i.e for any K-
scheme T , giving a morphism T → BG is equivalent to giving a principal G-bundle over
T .

3.3.1 Quotient stacks and GIT quotient

Consider the case where G is a (geometrically) reductive group (see [29]) and X = Spec(A) is
an a�ne variety.
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It is a known result that theK-algebra AG is �nitely generated. This was shown for semisimple
complex groups by Weil and later generalised to any geometrically reductive group by Nagata.
The associated algebraic variety Spec(AG) is denoted by X//G and it is usually called the GIT
quotient.
The variety X//G is indeed a categorical quotient in the category SchK and, if K is alge-
braically closed, the K-points of X//G are in bijection with the closed orbits of the action of
G on X.
For such X,G, there is a canonical morphism of stacks

f : [X/G]→ X//G.

The map f in general it is not an isomorphism. This is true in the case of schematically free
action. Consider more generally an algebraic variety (not necessarily a�ne) X and a linear
algebraic group G (not necessarily reductive).
Recall that the action of G on X is said to be schematically free if it is set-theoretically free
and the action map G×X → X is proper. For schematically free action we have the following
standard lemma.

Lemma 3.3.1. If the action of G on X is set-theoretically free, the algebraic stack [X/G]

is an algebraic space. Moreover, if the action is scheme-theoretically free, the algebraic space

[X/G] is a scheme, denoted by X/G, and the map X → X/G is a principal G-bundle.

Remark 3.3.2. In the case where X is a�ne, G is reductive, the scheme X/G is the GIT
quotient X//G and Lemma 3.3.1 above is equivalent to state that the map f : [X/G]→ X/G

is an isomorphism.

Remark 3.3.3. The map f carries a great deal of information about the geometry of the action
of G on X, but it is also extremely complicated to describe in general. Recently, Alper [2,
Remark 4.8] showed that if K = C, the map f is a good moduli space.
Davison [23, Theorem 6.1] showed that, under some conditions on the action of G, the map f
altough far from being proper, admits a sort of Decomposition Theorem

We will also need the following two Lemmas about isomorphism classes of quotient stacks.
Both Lemma 3.3.4, 3.3.5 are probably well known to the experts but we were not able to �nd
a reference in the literature.

Lemma 3.3.4. Let K = C and G be a K-linear algebraic group acting on the left on a K-

scheme X. Let H ≤ G be a closed subgroup. Suppose that there exists a G-equivariant map

q : X → G/H, where G acts on G/H by left multiplication.

Denote by XH = q−1(eH). The group H acts on XH and there is an isomorphism of quotient

stacks

[X/G] ∼= [XH/H]. (3.3.2)

Moreover, if X is an a�ne variety and G,H are reductive, there is an isomorphism of varieties:

X//G ∼= XH//H. (3.3.3)
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Proof. Notice �rstly that, if X is a�ne and G,H are reductive, the isomorphism (3.3.3) is
implied by the isomorphism (3.3.2) as the varieties XH//H,X//G are good moduli spaces
for the stacks [XH/H], [X/G] respectively, as recalled above. We are thus reduced to show
isomorphism (3.3.2).

Notice that in general there is always a canonical map α : [XH/H] → [X/G], obtained by
extension of the structure group of a principal bundle from H to G. We must construct an
inverse β : [XH/H]→ [X/G].

Fix a scheme S and a pair (P, f) ∈ [X/G](S), where P → S is a principal G-bundle and
f : P → X is a G-equivariant map. Consider the variety PH and the morphism fH such that
all square diagrams are cartesian:

PH XH eH

P X G/H.

fH

f q

We verify that PH is a principal H-bundle over S. Notice that PH → P is a closed embedding
and in the following we identify PH with its image in P . Notice that fH is H-equivariant,
being the restriction of f .

Denote by f̃ := q ◦ f . If p ∈ PH , then for each h ∈ H, we have

f̃(h · p) = h · f̃(p) = h · eH = eH,

i.e h · p ∈ PH .
The closed subspace PH ⊆ P is thus H-stable and therefore we get an H action on it. Let us
show that this action equips PH with the structure of a principal H-bundle.

Denote by π : G → G/H the map de�ned as π(g) = [g−1], where [g] ∈ G/H is the class of
g in the quotient. Notice that π is a left principal bundle, while the usual quotient map is a
right one.

Consider an fpqc open covering (Sj)j∈J of S such that

Pj := P ×S Sj ∼= G× Sj

and, similarly, denote by (PH)j = PH ×S Sj . By pullback, f̃ de�nes G-equivariant morphisms
f̃j : G× Sj → G/H, i.e morphisms f j : Sj → G/H such that

f̃j((g, s)) = g · f j(s).

Consider an étale open covering (Vl)l∈L of G/H such that we have cartesian diagrams

H × Vl G

Vl G/H

π

rl
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and denote by rl : Vl → G the morphism such that the morphism H × Vl → G sends (h, v) to
h · rl(v).
Denote by Sj,l = f

−1
j (Vl) and by Pj,l = Pj ×Sj Sj,l and (PH)j,l = PH ×Sj Sj,l the associated

pullback, by fj,l : Sj,l → Vl the associated morphisms. Notice that, for each j, l, we have

(PH)j,l = {(g, s) ∈ G× Sj,l | π(g−1) = rj(fj,l(s))}.

Because of the de�nition of the schemes Vl, there is an isomorphism (PH)j,l ∼= H × Sj,l given
by

H × Sj,l → (PH)j,l

(h, s)→ (h · rl(fj,l(s)), s).

Notice that (Sj,l)j∈J,l∈L is an fpqc covering of S and therefore PH is an H-principal bundle
over S. We de�ne thus

β : [X/G]→ [XH/H]

as
β(P, f) = (PH , fH).

It is not hard to check that the morphism β is an inverse to α.

Lemma 3.3.5. Consider linear algebraic groups G,H and a variety X with an action of

G × H such that the action of H on X obtained by restriction is schematically free. The

quotient X/H is a scheme equipped with a G-action and there is an isomorphism of quotient

stacks

[X/G×H] ∼= [(X/H)/G].

Notice that the quotient X/H is a scheme by Lemma 3.3.1. The G-action on it is de�ned as

g · πH(x) = πH(g · x),

where πH : X → X/H is the quotient map. Notice that πH is G-equivariant.

Proof. We de�ne a map α : [X/G ×H] → [(X/H)/G] as follows. Consider S ∈ SchK and a
pair (P, f) ∈ [X/G×H](S). Since P → S is a principal G×H-bundle, the quotient P/H has
an induced structure of G-bundle. Moreover, as the map f : P → X is G×H-equivariant, it
descends to a G-equivariant map

f : P/H → X/H.

We de�ne then
α((P, f)) = (P/H, f).

We de�ne now a map β : [(X/H)/G] → [X/G × H] as follows. Consider a pair (Q, d) ∈
[(X/H)/G](S) and let P ∈ SchK and f : P → X such that the following diagram is cartesian.
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P X

Q X/H

f

πH

d

Notice that
P = {(x, q) ∈ Q×X | πH(x) = d(q)}.

We de�ne a G×H-action on P as follows:

(g, h) · (x, q) = ((g, h) · x, h · q).

Notice that f : P → X is G × H-equivariant. We will show that P → S is a G × H-
principal bundle. Consider an fpqc covering (Sj)j∈J of S such that Q ×S Sj ∼= G × Sj . The
morphism d de�nes by pullback, G-equivariant morphisms d̃j : G×Sj → X/H, i.e morphisms
dj : Sj → X/H such that

d̃j((g, s)) = g · dj(s).

Consider an fpqc cover (Yl)l∈L of X/H such that we have cartesian diagrams

H × Yl X

Yl X/H

πH

rl

and denote by rl : Yl → X the corresponding morphism such that the morphism H × Yl → G

sends (h, y) to h · rl(y).
Denote by Sj,l = d

−1
j (Yl) and by Pj,l = Pj ×Sj Sj,l and by fj,l : Sj,l → Vl the associated

morphisms. Notice that we have the following commutative diagram, where both squares are
cartesian:

G×H × Sj,l G×H × Yl X

G× Sj,l G× Yl X/H

id×id×fj,l ψl

πH

id×fj,l r̃l

where r̃l(g, y) = g ·rl(y) and ψl((g, h), y) = (g, h)·rl(y). We deduce therefore that the following
square is cartesian:

G×H × Sj,l X

G× Sj,l X/H

ψl◦id×id×fj,l

πH

r̃l◦id×fj,l

Notice that
r̃l ◦ fj,l = d̃j |G×Sj,l ,

from which we deduce that
Pj,l ∼= G×H × Sj,l.
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We de�ne therefore
β((Q, d)) = (P, f).

It is not hard to check that α and β are inverse one to each other.

We end this paragraph by recalling that the point counting of quotient stacks over �nite �elds
is well understood. More precisely, for K = Fq, in [8, Lemma 2.5.1], it is shown that for a
quotient stack X = [X/G] where G is a connected linear algebraic group, we have

#X(Fqm) =
#X(Fqm)

#G(Fqm)
(3.3.4)

for any m ∈ N.

3.4 Compactly supported cohomology of stacks and weight �ltration

Let X be an algebraic stack of �nite type over an algebraically closed �eld K. For K = C,
we denote by H∗c (X) the compactly-supported cohomology groups with compact support with
coe�cients in C.
For K = Fq, we denote by H∗c (X) the compactly supported étale cohomology groups with
coe�cients in Q`. Both cohomology theories are well de�ned thanks to the recent work [59]
of Laszlo and Olsoon.

When K = C, each vector space Hk
c (X) is endowed with the weight �ltrationW k

• , by the work
of Deligne, see [25, Chapter 8].

For stacks over Fq we have an analogous de�nition of a weight �ltration induced by the
Frobenius action on cohomology, see for example [65, Section 2.2].

Remark 3.4.1. For a linear algebraic group G acting on the left on a scheme X of �nite type
over C, the compactly supported cohomology H∗c ([X/G]) and its weight �ltration have the
following more concrete description.

Consider an embedding G ⊆ GLr(C). For any m ∈ N, denote by Vm = Hom(Cm,Cr). Notice
that G acts on the right on the vector space Vm and acts freely on the open dense subset
Um = Homsurj(Cm,Cr), given by surjective homomorphisms.

Consider the left action of G on X × Vm de�ned as g · (x, u) = (g · x, u · g−1). It is a known
fact that the action of G on Um is schematically free and the quotient stack [X × Um/G] is
thus a scheme, which is usually denoted by X ×G Um.
The projection p : X × Vm → X induces a quotient morphism p : [X × Vm/G]→ [X/G] such
that the following diagram is 2-cartesian

X × Vm //

��

X

��

[X × Vm/G] // [X/G]
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and so the morphism p is a vector bundle. In particular, we have an isomorphism

WjH
i
c([X/G]) = Wj+dim(Vm)H

i+2 dim(Vm)
c ([X × Vm/G]) .

Let Zm = Vm \ Um. The codimension codimVm(Zm) goes to ∞ for m → +∞. In particular,
for any i ∈ Z, there exists m ∈ N such that

i+ 2 dim(Vm) ≥ 2 dim(Zm) + 2(dim(X)− dim(G)) + 2.

Notice that in this case, we have

H i+2 dim(Vm)
c ([X × Zm/G]) = H i+2 dim(Vm)−1

c ([X × Zm/G]) = {0}.

From the long exact sequence in compactly supported cohomology for the open-closed decom-
position

[X × Vm/G] = X ×G Um
⊔

[X × Zm/G],

we deduce therefore that

H i+2 dim(Vm)
c ([X × Vm/G]) = H i+dim(Vm)

c (X ×G Um)

and thus that, for any j, we have

WjH
i
c([X/G]) = Wj+dim(Vm)H

i+2 dim(Vm)
c (X ×G Um).

In particular, the (compactly supported) cohomology of the stack [X/G] can be computed
from that of the varieties X ×G Um.
This costrunction is an algebro-geometric version of the Borel construnction of equivariant
cohomology in di�erential geometry and was initially taken as a de�nition of G-equivariant
compactly supported cohomology or G-equivariant Borel-Moore homology of X, see [30].

3.4.1 Mixed Poincaré series

For X over C, we de�ne the mixed Poincaré series Hc(X, q, t) as

Hc(X; q, t) :=
∑
k,m

dim(W k
m/W

k
m−1)q

m
2 tk. (3.4.1)

Notice that the specialization Hc(X, 1, t) of Hc(X, q, t) at q = 1 is equal to the Poincaré series
Pc(X, t) of the stack X.

When
∑
k

(−1)k dim(W k
m/W

k
m−1) is �nite for each m, we de�ne the E-series:

E(X, q) := Hc(X; q,−1) =
∑
m,k

dim(W k
m/W

k
m−1)(−1)kq

m
2 . (3.4.2)
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For the E-series of quotient stacks, moreover, we have the following Theorem (see [65, Theorem
2.5]).

Theorem 3.4.2. Let G be a connected linear algebraic group acting on a separated scheme of

�nite type over K. The E-series of [X/G] is well-de�ned and

E([X/G], q) = E(X, q)E(BG, q).

An e�cient approach to compute E-series for complex stacks is counting points over Fq. More
precisely, we give the following de�nition of a (strongly) rational count stack.
Let E be a Z-�nitely generated algebra and Y be an E-stack. Assume that there exists
ψ : E → C such that

Y×Spec(R),ψ Spec(C) ∼= X.

The stack Y is called a spreading out of X. For any ϕ : E → Fq, denote by

Xϕ := Y×Spec(R),ϕ Spec(Fq).

De�nition 3.4.3. We say that the stack X is (strongly) rational count if there exists an open
U ⊆ Spec(E) and a rational functionQ(t) such that for any ϕ : E → Fq with ϕ(Spec(Fq)) ⊆ U ,
it holds

#Xϕ(Fqn) = Q(qn)

for every n ≥ 1.

For strongly rational count stacks, the authors [65, Theorem 2.8] show the following result.

Theorem 3.4.4. If a quotient stack X = [X/G] is (strongly) rational count, we have:

E([X/G], q) = Q(q). (3.4.3)

Remark 3.4.5. Let X = [X/G] be a quotient stack over C. Consider a �nitely generated Z-
algebra E and E-schemes Y1, Y2 which are spreading out of X,G respectively. The E-stack Y

is a spreading out X and, for any ϕ : E → Fq, we have

Xϕ = [Xϕ/Gϕ].

Notice moreover that by Formula (3.3.4), we have therefore an equality

#Xϕ(Fqm) =
#Xϕ(Fqm)

#Gϕ(Fqm)
.

Therefore, we deduce that the stack X is (strongly) rational count if and only if X,G are
(strongly) polynomial count.

Consider a reductive algebraic group G (i.e G = GLn,PGLn). In [25] it is shown that each
cohomology group Hm

c (BG) is pure of weight m. In [25] this is stated for cohomology rather
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than cohomology with compact support. The latter case is an immediate consequence thanks
to Poincaré duality.
From Theorem 3.4.4, we deduce the following Lemma:

Lemma 3.4.6. Suppose that G is (strongly) polynomial count. The classifying stack BG is

strongly polynomial count and we have

Hc(BG, q, t) = E(BG, qt2) =
1

E(G, q)
. (3.4.4)

Example 3.4.7. We deduce, for instance, that, for each n ∈ N, we have

Hc(BGLn, q, t) =
1

(qt2)
n(n−1)

2

1

(qt2 − 1) · · · ((qt2)n − 1)
(3.4.5)

and

Hc(B PGLn, q, t) =
1

(qt2)
n(n−1)

2

1

((qt2)2 − 1) · · · ((qt2)n − 1)
(3.4.6)

Lastly, we will need the following Proposition about the cohomology of a quotient stack [X/G].
Assume that G = GLn and the center Gm ⊆ GLn acts trivially on the scheme X. There is
thus an induced action of PGLn on X and a canonical morphism h : [X/GLn]→ [X/PGLn].

Proposition 3.4.8. Let X be a C-variety with a GLn-action trivial on the center. We have

a natural isomorphism of mixed Hodge structures:

H∗c ([X/GLn]) = H∗c ([X/PGLn])⊗H∗c (BGm) (3.4.7)

Proof. We start by the case in which X = Spec(C) and the canonical morphism π : BGLn →
B PGLn. In this case, eq.(3.4.7) is a direct consequence of eq.(3.4.5), eq.(3.4.6).
Notice now that there is a cartesian diagram:

BGm BGLn

Spec(C) B PGLn

π

ψ

where ψ : Spec(C) → B PGLn is the canonical projection. Since ψ is a smooth covering, for
each q ∈ Z, the sheaf Rqπ!C is a local system with �ber Hp

c (BGm).
Moreover, as PGLn is connected, each local system is trivial over B PGLn, see for example
[1, Proposition 6.13]. In particular, the Leray spectral sequence for compactly supported
cohomology and the morphism π in second page is

Ep,q2 : Hp
c (B PGLn)⊗Hq

c (BGm)⇒ Hp+q
c (BGLn).

From eq.(3.4.7), we deduce that the spectral sequence collapses at page 2, i.e that the canonical
morphism

Hp
c (BGLn)→ Hp

c (BGm)
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is surjective for every p.

Consider now a general X. In this case too, we have a Leray spectral sequence for compactly
supported cohomology with second page

Ep,q2 = Hp
c ([X/PGLn], Rqh!C)⇒ Hp+q

c ([X/GLn]).

Notice that there is 2-Cartesian diagram

[X/GLn] //

��

BGLn

��

[X/PGLn] // B PGLn

where the morphism π : BGLn → B PGLn on the right is the canonical morphism between
classifying spaces. In particular, we have

Rqh!C ∼= r∗Rqπ!C

where r : [X/PGLn]→ B PGLn.

We deduce thus that each Rqh!C is trivial. Moreover, the associated map

Hp
c ([X/GLn])→ Hp

c (BGm)

is surjective, since the map Hp
c (BGLn)→ Hp

c (BGm) is surjective, as remarked above. There-
fore, the spectral sequence Ep,q2 collapses at page 2 and we obtain an isomorphism

H∗c ([X/GLn]) = H∗c ([X/PGLn])⊗H∗c (BGm).

Remark 3.4.9. Notice that under the hypothesis of Proposition 3.4.8, we have

Hc([X/GLn], q, t) =
Hc([X/PGLn], q, t)

qt2 − 1
(3.4.8)

3.5 Partitions and multipartitions

We follow the classical book by Macdonald [70]. Recall that a partition λ is a non-increasing
sequence λ = (λ1, λ2, . . . , λh, . . . ) with �nite non-zero terms. We denote by P the set of all
partitions and by P∗ ⊆ P the subset of nonzero partitions.

A partition λ will be denoted either by λ = (λ1, λ2 . . . , λh) with λ1 ≥ λ2 ≥ · · · ≥ λh or
by λ = (1m1,λ , 2m2,λ , . . . ) where mk,λ is the number of occurrencies of the number k in the
partition λ. We will denote by λ′ the partition conjugate to λ.

The size of λ is
|λ| =

∑
i

λi
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and its length l(λ) is the biggest i such that λi 6= 0. For each n ∈ N, we denote by Pn the
subset of partitions of size n.

For two partitions λ, µ, we denote by 〈λ, µ〉 the quantity

〈λ, µ〉 =
∑
i

λ′iµ
′
i.

The set P admits di�erent possible orderings. In the following, we will denote by λ ≤ µ the
ordering induced by the lexicographic order, i.e λ ≤ µ if and only if λi ≤ µi for any i.

Recall that the conjugacy classes of the symmetric group Sn are in bijection with Pn. In-
deed, each element σ can be written as a product of disjoint cycles σ = σ1 · · ·σk and, up to
reordering, the lengths of the cycles σ1, . . . , σk give the associated partition.

For each λ ∈ Pn, denote by zλ the cardinality of the centralizer of an element of the conjugacy
class associated to λ. If λ = (1m1,λ , 2m2,λ , . . . , ), we have

zλ =
∏
j

mj,λ!jmj,λ .

Recall moreover that the set of irreducible characters of Sn is in bijection with Pn. In our
bijection we associate to the partition (n) the trivial character of Sn. We denote the irreducible
character of Sn associated to λ by χλ and its value at the conjugacy class associated to µ ∈ Pn
by χλµ.

Fix now a �nite set I. We consider the set of multipartitions PI . The elements of PI will
be usually be denoted in bold letters λ ∈ PI . To avoid confusion with the notation used for
partition, we will use the notation λ = (λi)i∈I . For λ ∈ PI , the size |λ| ∈ NI of λ is de�ned
as

|λ|i := |λi|.

For an element α ∈ NI , we will denote by (1α) ∈ PI the multipartition ((1αi))i∈I and by
(α) ∈ PI the multipartition ((αi))i∈I .

The order ≤ induces the corresponding lexicographical ordering on PI , which we still denote
by ≤.

3.5.1 Partitions and symmetric functions

Let x = {x1, x2, . . . , } be an in�nite set of variables. Denote by Λ(x) the ring of symmetric
functions over Q in the variables x1, . . . , xn, . . . . Notice that the ring Λ(x) admits a grading
given by the degree of a symmetric function. We denote by Λ(x)n the degree n part.

We can show that the ring Λ(x) is a polynomial ring in an in�te set of variables. More
precisely, for each n ∈ N, consider the elementary symmetric function en(x) ∈ Λ(x)n, the
complete symmetric function hn(x) ∈ Λ(x)n and power sum pn(x) ∈ Λ(x)n de�ned as

en(x) =
∑

1≤i1<i2<···<in

xi1xi2 · · ·xin
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hn(x) =
∑

1≤i1≤i2≤···≤in

xi1xi2 · · ·xin

pn(x) = xn1 + xn2 + · · · .

For each λ = (λ1, . . . , λh) ∈ P, we introduce the associated elements

eλ(x) = eλ1(x) · · · eλh(x)

hλ(x) = hλ1(x) · · ·hλh(x)

pλ(x) = pλ1(x) · · · pλh(x).

The families of functions {eλ(x)}λ∈P , {hλ(x)}λ∈P , {pλ(x)}λ∈P are basis of the Q-vector space
Λ(x), or equivalently, the families of functions {en(x)}n∈N, {hn(x)}n∈N, {pn(x)}n∈N freely gen-
erate the ring Λ(x).

Another important basis of the ring Λ(x) is given by Schur functions {sλ(x)}λ∈P . There are
multiple ways to de�ne these functions. One possible way is by the following formula:

sλ(x) =
∑
µ∈Pn

χλµ
zµ
pµ(x).

Recall moreover that on the ring Λ(x) it is de�ned a canonical bilinear product 〈, 〉 making
the Schur functions orthonormal, i.e

〈sλ(x), sµ(x)〉 = δλ,µ.

3.6 Multitypes

A multitype is a function ω : N× PI → N such that its support (i.e the elements (d,µ) such
that ω(d,µ) 6= 0) is �nite and ω(0,λ) = ω(d, 0) = 0 for any λ ∈ PI and d ∈ N.
On the set N× PI put the total order de�ned by the following rules.

� If d > d′ then (d,λ) > (d′,µ).

� If d = d′ and |λ| > |µ| then (d,λ) > (d,µ)

� If |λ| = |µ| then (d,λ) > (d′,µ) if λ > µ.

We can alternately think of a multitype ω as a non-decreasing sequence ω = (d1,λ1) . . . (dr,λr),
where the value ω(d,λ) corresponds to the number of times the element (d,λ) appear in the
sequence (d1,λ1) . . . (dr,λr).

We will denote by TI the set of multitypes. If |I| = 1, we will call multytipes simply types.

For ω ∈ TI where ω = (d1,λ1) . . . (dr,λr) and d ∈ N>0, we denote by ψd(ω) the multitype

ψd(ω) := (dd1,λ1) . . . (ddr,λr).
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De�ne the size |ω| of a multitype ω as the following element of NI

|ω| :=
∑

(d,µ)∈N×PI
dω(d,µ)|µ|

and the integer w(ω) ∈ N as the quantity

w(ω) :=
∏

(d,µ)∈N×PI
dω(d,µ)ω(d,µ)!.

For α ∈ NI , we denote by Tα ⊆ TI the subset of multitypes of size α.

Example 3.6.1. Assume |I| = 1. For each λ = (λ1, . . . , λh) ∈ Pn, there is an associated type
ωλ = (1, (1λ1)) . . . (1, (1λh)) ∈ Tn. Whenever the context is clear, we will denote ωλ simply by
λ ∈ Tn.
Notice that, if λ = (1m1,λ , 2m2,λ , . . . ), for the type ωλ we have

ωλ((1, (1λi))) = mλ,λi

and therefore
wωλ =

∏
j≥1

mλ,j !

The sum of multitypes endows the set TI with an associative operation

∗ : TI × TI → TI .

More precisely, for ω1, ω2 multitypes , we de�ne ω1 ∗ ω2 as the multitype such that

ω1 ∗ ω2(d,λ) := ω1(d,λ) + ω2(d,λ).

The reason for this choice of notation will be clear later. Notice that if |ω1| = α and |ω2| = β,
we have |ω1 ∗ ω2| = α+ β.

We view N>0 ×NI as a subset of N>0 ×PI by associating to (d, α) the element (d, (1α)). We
call a multitype ω semisimple if its support is contained in N>0 × NI . Given a semisimple ω
we will think of it as a function N>0 × NI → N which we still denote by ω with

ω(d, α) := ω(d, (1α)).

Whenever the context is clear, we will frequently switch between the two notations for semisim-
ple multitypes.

For each α ∈ NI , we denote by ωα the semisimple type de�ned as{
ωα(1, α) = 1

ωα(d, β) = 0 if (d, β) 6= (1, α)
.
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We denote by TssI ⊆ T the subset of semisimple types. Notice that for any semisimple
multitype ω ∈ TssI , there exists d1, . . . , dr ∈ N>0 and α1, . . . , αr ∈ NI such that

ω = ψd1(ωα1) ∗ · · · ∗ ψdr(ωαr).

For a type ω = (d1,λ1) . . . (dr,λr) ∈ TI , we de�ne its semisimpli�cation ωss ∈ TssI as the
semisimple type

ωss := (d1, (1
|λ1|)) . . . (dr, (1

|λr|)),

i.e ωss = ψd1(ω|λ1|) ∗ · · · ∗ ψdr(ω|λr|).

To a semisimple type ω = (d1, α1) . . . (dr, αr), we associate the following polynomial Pω(t) ∈
Z[t]

Pω(t) :=

r∏
j=1

(tdj − 1).

Notice that for any α ∈ NI , it holds

Pωα(t) = t− 1.

For a semisimple multitype ω = (d1, β1) · · · (dr, βr) ∈ Tssα put

Coω :=

{
µ(d)dr−1(−1)r−1(r − 1)! if d1 = d2 = · · · = dr = d

0 otherwise.

where µ denotes the ordinary Möbius function.

Lastly, we introduce the notion of levels for semisimple multitypes.

De�nition 3.6.2. For a subset V ⊆ NI and a semisimple multitype ω with

ω = ψd1(ωα1) ∗ · · · ∗ ψdr(ωαr),

we say that ω is of level V if αj ∈ V for each j = 1, . . . , r.

Example 3.6.3. Notice that, for any α ∈ NI , the multitype ωα is of level {α}. Conversely, the
only multitype ω ∈ Tα of level {α} is ωα.

3.6.1 Multitypes and conjugacy classes

For any α ∈ NI , the multitypes Tα parametrize the conjugacy classes of GLα(Fq) in the
following way.
Firstly, recall that the conjugacy classes of GLα(Fq) are in bijection with the F -stable con-
jugacy classes of GLα(Fq), i.e for each element O ∈ Cl(GLα(Fq)) there exists an F -stable
conjugacy class O ⊆ GLα(Fq) such that

O = OF ,
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see for example [28, Proposition 4.2.14].

We �x the following notations. For each element x ∈ F∗q and each multipartition λ ∈ PI , de-
note by J(x,λ) ∈ GLα(Fq) the element such that J(x,λ)i is the matrix with upper triangular
Jordan blocks of eigenvalue x and sizes indexed by the partition λi.

Consider now an orbit θ of the action of F on F∗q and let d = |θ|. For each λ ∈ PI , the
Frobenius acts on the element

J ′(θ,λ) =
⊕
x∈θ

J(x,λ) ∈ GLd|λ|(Fq)

(where we are taking the componentwise direct sum) by permuting the factors J(x,λ) and
so the conjugacy class of J ′(θ,λ) is F -stable. Therefore, there exists an element J(θ,λ) ∈
GLdλ(Fq) conjugated to J ′(θ,λ).

Fix now a conjugacy class O ∈ ClGLα(Fq) and an element g = (gi)i∈I ∈ OF . For each i ∈ I,
denote by Egi ⊆ F

∗
q the set of eigenvalues of gi and denote by EO ⊆ F

∗
q the subset

EO =
⋃
i∈I

Egi .

Since the conjugacy class O is F -stable, the subset EO is F -stable too. There exist therefore
θ1, . . . , θr orbits for action of F on F∗q such that θi 6= θj for each i 6= j and EO =

⊔r
j=1 θj .

Looking at the Jordan decomposition of the elements gi, we �nd multipartition λ1, . . . ,λr
such that g is conjugated to

r∏
j=1

J(θj ,λj).

For each j = 1, . . . , r, denote by dj the cardinality of θj . The type associated to O is

ωO = (d1,λ1) . . . (dr,λr).

Example 3.6.4. Let I = {1, 2, 3, 4} and α = (2, 1, 1, 1). Consider the conjugacy class O given
by

O =

{((
λ 0

0 λ

)
, λ, λ, λ

)
| λ ∈ F∗q

}
.

The associated type is ωO = (1, (1α)).

Remark 3.6.5. Notice that multitype ωO of a conjugacy class O is semisimple if and only if
the Jordan block of the elements of O all have size 1, i.e if and only if the conjugacy class O
is semisimple.

For any O ∈ Cl(GLα(Fq)) and any ω ∈ Tα, we write O ∼ ω if ωO = ω. Similarly, for any
g ∈ GLα(Fq), we write g ∼ ω if the type of the conjugacy class of g is ω.

Recall that the cardinality of the centralizer CGLα(Fq)(g) for g ∈ GLα(Fq) depends only on the
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type of g. More precisely, for each λ = (1m1,λ , 2m2,λ , . . . , ) ∈ P, let

Zλ(t) = t〈λ,λ〉
∏
j≥1

ϕmj,λ(t−1)

where ϕm(t) = (1− t)(1− t2) · · · (1− tm). For a multipartition λ ∈ PI , de�ne

Zλ(t) :=
∏
i∈I

Zλi(t)

and for a multitype ω ∈ T with ω = (d1,λ1) . . . (dr,λr) let

Zω(t) =

r∏
j≥1

Zλj (t
dj ). (3.6.1)

We have the following Lemma, see for example [70, II, (1.6)].

Lemma 3.6.6. For any ω ∈ Tα and g ∈ GLα(Fq) such that g ∼ ω we have

|CGLα(Fq)(g)| = Zω(q). (3.6.2)

3.7 Lambda rings and plethystic operations

In this paragraph we recall the de�nition and some properties of λ-rings. We follow [39].

De�nition 3.7.1. � A λ-ring R is a commutative Q-algebra with homomorphisms ψd :

R → R for any d ≥ 1 such that ψd′(ψd(r)) = ψdd′(r) for every d, d′ ∈ N>0 and r ∈ R.
The morphisms ψd are called Adams operations.

� A morphism f : R → R′ of λ-rings is a morphism of Q-algebras commuting with the
Adams operations.

For any partition µ = (µ1, . . . , µh), we denote by ψµ : R → R the homomorphism de�ned by
ψµ(r) = ψµ1(r) · · ·ψµh(r).

Example 3.7.2. The ring Q(t) is a λ-ring , with Adams operations ψd(f(t)) = f(td). Notice
that we have

ψd(t
n) = tnd.

Remark 3.7.3. The ring Λ(x) is a λ-ring, with Adams operation ψd(f(x)) = f(xd). We remark
that we have

ψd(pn(x)) = pnd(x).

Notice that, for any λ-ring R and any element r ∈ R, we can de�ne a unique λ-ring homo-
morphism Λ(x)→ R as

pλ(x)→ ψλ(r).
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More precisely, for any λ-ring R, we can de�ne an operation called plethysm linear on the �rst
component

◦ : Λ(x)×R→ R

such that we have

� For any r ∈ R, the map − ◦ r : Λ(x)→ R is a ring homomorphism.

� pd(x) ◦ a = ψd(a).

For every integer n ∈ N, denote by σn(f) the element

σn(f) :=
∑
λ∈Pn

ψλ(f)

zλ
(3.7.1)

Notice that, since

hn(x) =
∑
λ∈Pn

pλ(x)

zλ
,

(see for example [70, I, (2.14)], we have

σn(f) = hn(x) ◦ f,

for any f ∈ R. We have the following Lemma.

Lemma 3.7.4. For any f, g ∈ R, we have the following identity:

σn(f + g) =
∑

n1+n2=n

σn1(f)σn2(g). (3.7.2)

Proof. Notice indeed that we can rewrite

σn(f) =
∑
λ∈Pn

ψλ(f)

zλ
=
∑
λ∈Pn

∏
j≥1

1

mj,λ!

(
ψj(f)

j

)mj,λ
=

∑
(mj)j≥1∑
mjj=n

∏
j≥1

1

mj !

(
ψj(f)

j

)mj
.

We have therefore

∑
n1+n2=n

σn1(f)σn2(g) =
∑

n1+n2=n


∑

(m1
j )j≥1∑

m1
j j=n1

∏
j≥1

1

m1
j !

(
ψj(f)

j

)m1
j




∑
(m2

j )j≥1∑
m2
j j=n2

∏
j≥1

1

m2
j !

(
ψj(g)

j

)m2
j

 =

(3.7.3)∑
n1+n2=n

∑
(m1

j ,m
2
j )j≥1∑

m1
j j=n1∑

m2
j j=n2

∏
j≥1

1

m1
j !m

2
j !

(
ψj(f)

j

)m1
j
(
ψj(g)

j

)m2
j

(3.7.4)
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and

σn(f+g) =
∑

(mj)j≥1∑
mjj=n

∏
j≥1

1

mj !

(
ψj(f + g)

j

)mj
=

∑
(mj)j≥1∑
mjj=n

∏
j≥1

1

mj !

 ∑
m1
j+m

2
j=mj

ψj(f)m
1
j

jm
1
j

ψj(g)m
2
j

jm
2
j

mj !

m1
j !m

2
j !

 .

(3.7.5)

Rearranging the terms, we see that the RHS of eq.(3.7.4) and eq.(3.7.5) are equal.

For a λ-ring R, consider now the ring R[[yi]]i∈I . For α ∈ NI we will denote by yα the monomial

yα :=
∏
i∈I

yαii .

We endow the ring R[[yi]]i∈I with the λ-ring structure given by the Adams operations de�ned
as

ψd(ry
α) := ψd(r)y

dα

for r ∈ R and α ∈ NI . Denote by R[[yi]]
+
i∈I the ideal generated by the yi's.

The plethystic exponential is the following map

Exp : R[[yi]]
+
i∈I → 1 +R[[yi]]

+
i∈I

Exp(f) = exp

∑
n≥1

ψn(f)

n

 . (3.7.6)

Notice that for f, g ∈ R[[yi]]
+
i∈I , we have

Exp(f + g) = Exp(f) Exp(g). (3.7.7)

We have the following Lemma, which gives another formula to compute Exp.

Lemma 3.7.5. For any f ∈ R[[yi]]
+
i∈I , we have

Exp(f) =
∑
n≥1

σn(f) (3.7.8)

Proof. By Formula (3.7.7) and Formula (3.7.2), it is enough to show eq.(3.7.8) in the case of
f = ryα for any r ∈ R and for any α ∈ NI , i.e we can assume |I| = 1. Recall that, in the ring
Λ(x)[[T ]], we have the following identity (see for example [70, I, (2.10)]):

exp

∑
n≥1

pn(x)

n
Tn

 =
∑
n≥1

hn(x)Tn. (3.7.9)
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We can rewrite eq.(3.7.9) as the identity

Exp(p1(x)T ) =
∑
n≥1

hn(x)Tn (3.7.10)

For any r ∈ R, the plethysm − ◦ r : is a λ-ring homomorphism Λ(x)→ R. We have therefore

Exp(rT ) = Exp(p1(x) ◦ rT ) = (− ◦ r)(Exp(p1(x)T )) = (− ◦ r)

∑
n≥1

hn(x)Tn

 (3.7.11)

=
∑
n≥1

σn(r)Tn =
∑
n≥1

σn(rT ). (3.7.12)

Example 3.7.6. Consider R = Q and |I| = 1. In the ring Q[[T ]] we have:

Exp(T ) = exp

∑
n≥1

Tn

n

 = exp

(
log

(
1

1− T

))
=

1

1− T
(3.7.13)

Consider the λ-ring R = Q[q], equipped with the Adams operations

ψd(f(q)) = f(qd)

for f(q) ∈ Q[q]. Notice that ψd(Z[q]) ⊆ Z[q]. We have the following Lemma:

Lemma 3.7.7. Given f ∈ Z[q][[yi]]
+
i∈I we have Exp(f) ∈ 1 + Z[q][[yi]]

+
i∈I

Proof. Notice that by Formula (3.7.7), it is enough to show that Exp(qmyα) ∈ 1 +Z[q][[yi]]
+
i∈I

for any m ∈ N and α ∈ NI , i.e we can assume |I| = 1.

Similarly to Example 3.7.6 above, we can show that, for any m ∈ N, in the ring Q[q][[T ]], we
have

Exp(qmT ) =
1

1− qmT
=
∑
n∈N

qmnTn ∈ 1 + Z[q][[T ]] (3.7.14)

The plethystic exponential admits an inverse operation Log : 1 + R[[yi]]
+
i∈I → R[[yi]]

+
i∈I

known as plethystic logarithm. The plethystic logarithm can either be de�ned by the property
Log(Exp(f)) = f or by the following explicit rule. For α ∈ NI we put

α := gcd(αi)i∈I
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and we de�ne Uα ∈ R by:

log(f) =
∑
α∈NI

Uα
α
yα. (3.7.15)

Then put
Log(f) :=

∑
α∈NI

Vαy
α (3.7.16)

where
Vα :=

1

α

∑
d|α

µ(d)ψd(Uα
d
) (3.7.17)

Notice that, for A,B ∈ 1 +R[[yi]]
+
i∈I , we have

Log(AB) = Log(A) + Log(B).

We have the following Lemma, which is often useful to compute plethystic logarithm (for a
proof see [75, Lemma 22]). For g ∈ R let

gn :=
1

n

∑
s|n

µ
(n
s

)
ψs(g).

Lemma 3.7.8. Given f1, f2 ∈ 1 +R[[yi]]
+
i∈I such that

log(f1) =
∑
d≥1

gd log(ψd(f2)) (3.7.18)

the following equality holds

Log(f1) = g Log(f2). (3.7.19)

3.7.1 Plethysm and multitypes

Let KssI be the Q-vector space having as a base the semisimple multitypes TssI . The size of
the types endows KssI with an NI -grading and we denote by Kssα the elements of grade α.

The operation ∗ endows KssI with the structure of a Q-algebra in the following way. For
x = x1ω1 + · · ·+ xrωr and y = x′1ω

′
1 + · · ·+ x′hω

′
h with xs, x′t ∈ Q and ωs, ω′t ∈ TssI , we de�ne

x ∗ y :=
∑

1≤s≤r
1≤t≤h

xsx
′
tωs ∗ ω′t.

Notice that (KssI , ∗) is an NI -graded algebra, i.e Kssα ∗ Kssβ ⊆ Kssα+β .

The functions ψd : TI → TI endow the Q-algebra KssI with the structure of a λ-ring with
Adams operations

ψd(q1ω1 + · · ·+ qrωr) = q1ψd(ω1) + · · ·+ qrψd(ωr)
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for any element x = q1ω1 + · · ·+ qrωr ∈ KssI wth q1, . . . , qr ∈ Q and ω1, . . . , ωr ∈ TssI .
Notice that given a semisimple multitype ω = (d1, (1

α1)) . . . (dr, (1
αr)), we have an equality

ω = ψd1(ωα1) ∗ · · · ∗ ψdr(ωαr).

Therefore, we deduca that KssI is isomorphic to the ring of polynomials in the variables ψd(ωα)

for (d, α) ∈ N>0 × NI .

Consider now the ring K̂ssI := KssI [[yi]]i∈I . For semisimple multitypes of level V , we have the
following lemma:

Lemma 3.7.9. For any V ⊆ NI , in the ring K̂ssI we have:

Exp

(∑
α∈V

ωαy
α

)
=

∑
ω∈TssI

of level V

ω

w(ω)
y|ω| (3.7.20)

Proof. By eq.(3.7.1), there is an equality

Exp

(∑
α∈V

ωαy
α

)
=
∏
α∈V

(∑
n∈N

σn(ωα)ynα

)
=
∏
α∈V

(∑
λ∈P

ψλ(ωα)

zλ
y|λ|α

)
. (3.7.21)

For each semisimple type ω of level V , there exist unique β1 6= β2 6= . . . 6= βh ∈ V and integers
d1,1, . . . d1,l1 , d2,1, . . . , dh,lh such that ω = (d1,1, (1

β1))(d1,2, (1
β1)) · · · (dh,lh , (1βh)) i.e

ω = ψd1,1(ωβ1) ∗ · · · ∗ ψdh,lh (ωβh).

Up to reordering, we can assume that for each j = 1, . . . , h, the sequence of integers (dj,1, . . . , dj,lj )

forms a partition λj . Therefore, we have

ω =
h∏
j=1

ψλj (ωβj ).

Notice moreover that zλ1 · · · zλh = w(ω). This implies that the RHS of eq.(3.7.21) is equal to
the RHS of eq.(3.7.20).

3.8 HLRV kernels

Let x1 = {x1,1, x1,2 . . . }, . . . ,xk = {xk,1, . . . } be k sets of in�nitely many variables and put

Λk := Q(z, w)⊗ Λ(x1)⊗ · · · ⊗ Λ(xk),

i.e Λk is the ring of functions over Q(z, w) separetely symmetric in each set of variables.
The λ-ring structures on each Λ(xi) de�ne a natural λ-ring structure on Λk, with Adams
operations ψd : Λk → Λk given by

ψd(f(x1, . . . ,xk)) = f(xd1, . . . ,x
d
k)
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Moreover, on Λk it is de�ned a natural bilinear form obtained by extending by linearity

〈f1(x1) · · · fk(xk), g1(x1) · · · gk(xk)〉 =
k∏
i=1

〈fi, gi〉 .

For any ω = (ω1, . . . , ωk) ∈ Tkn, denote by sω ∈ Λk the function

sω := sω1(x1) · · · sωk(xk),

where, for each i = 1, . . . , k, given ωi = (di,1, λi,1) . . . (di,ri , λi,ri), we de�ne

sωi(xi) =

ri∏
j=1

sλi,j (xi
di,j ).

Example 3.8.1. Consider a multipartition µ = (µ1, . . . , µk) with |µi| = |µj | = n for each
i, j. We denote by µ also the corresponding element in Tkn, with the notation introduced in
Example 3.6.1. Notice that, for each j = 1, . . . , si, we have s(µij)

(xi) = hµij
(xi) and therefore

sωi(xi) =

si∏
j=1

hµij
(xi) = hµi(xi).

For r ∈ N and any λ ∈ P, let Hr,λ(z, w) be the hook function:

Hr,λ(z, w) :=
∏
s∈λ

(z2a(s)+1 − w2l(s)+1)r

(z2a(s)+2 − w2l(s))(z2a(s) − w2l(s)+2)
(3.8.1)

and the associated series Ωr(z, w) ∈ Λk[[T ]]

Ωr(z, w) :=
∑
λ∈P
Hr,λ(z, w)

k∏
i=1

Hλ(xi, z
2, w2)T |λ| (3.8.2)

where Hλ(xi, q, t) are the (modi�ed) Macdonald symmetric polynomials (for a de�nition see
[38, I.11]).

For any n ∈ N, Hausel, Letellier and Rodriguez-Villegas [45] introduced the following function
Hn,r(z, w) ∈ Λk, de�ned as

Hn,r(z, w) := (z2 − 1)(1− w2) CoeffTn(Log(Ωr(z, w))). (3.8.3)

These functions are known as HLRV kernel and are of fundamental importance in the de-
scription of the cohomology of generic character varieties and generic multiplicities, see �8 and
�9.

Lastly, consider an element ω ∈ Tkn. We denote by Hω,r(z, w) ∈ Q(z, w) the rational function
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de�ned as
Hω,r(z, w) := 〈Hn,r(z, w), sω〉.
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4 General linear groups and admissible subtori

In this chapter, we study the properties of certain subtori of the groups GLα, which we
call admissible. Put nα =

∑
i∈I

αi and embed GLα inside GLnα through the block diagonal

embedding. The admissible subtori are the subtori of GLα which are center of a Levi subgroup
of GLnα .

These subtori will play a central role in the thesis. They are the center of the stabilizers of
the action of GLα on R(Q,α) and of GLα on a multiplicative moment �ber (Φ∗α)−1(σ).

In addition, they are a key part of the classi�cation of the irreducible characters of GLα(Fq).
The aim of this chapter is to study the combinatorial properties of these tori and how they
are related to multitypes and plethystic operations.

In section �4.1, we review some properties of reductive groups over a �eld K, of their Levi
and parabolic subgroups and recall the de�nition of �ag varieties for GLn.

In section �4.2 we consider K = Fq, we describe the maximal tori of G de�ned over Fq in
terms of its Weyl group and of its root system and give a more explicit description of these
objects in the case of general linear groups.

In section �4.3, we give the de�nition of an admissible subtorus of GLα and we show how to
associate a semisimple multitype [S] ∈ Tssα to each admissible subtorus S ⊆ GLα.

In section �4.4, we associate a graph ΓS to each admissible subtorus S. This association is
a key technical point of the proof of Theorem 4.5.2 regarding Log compatible families, whose
proof is the main content of section �4.5.

Theorem 4.5.2 is the main technical result of the thesis, from which we will deduce Theorem
9.3.2 about E-series of character stacks for Riemann surfaces.

4.1 Reductive groups, maximal tori and Levi subgroups

Let K be an algebraically closed �eld. In this paragraph, G is a connected reductive group
over K. We denote by rank(G) the dimension of a maximal torus of G.

For a maximal torus T ⊆ G, we denote by

X∗(T ) := Hom(T,Gm)

and
Y∗(T ) := Hom(Gm, T )

the group of characters and cocharacters of T respectively. Recall that these are free abelian
groups of rank rank(G) and that there is a pairing

〈, 〉 : Y∗(T )×X∗(T )→ Z,

where, for β ∈ Y∗(T ), α ∈ X∗(T ), we have

α ◦ β(z) = z〈β,α〉
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for any z ∈ Gm.
Denote by WG(T ) the Weyl group of G with respect to T , i.e WG(T ) = NG(T )/T . Notice
that WG(T ) acts on X∗(T ) as follows

w · α(t) = α(w · t)

for each w ∈WG(T ), t ∈ T and α ∈ X∗(T ). For each w ∈WG(T ), we denote by

w : X∗(T )→ X∗(T )

the corresponding endomorphism.

Recall that inside X∗(T ) there is the root system Φ(T ) ⊆ X∗(T ) given by the characters
appearing in the weight space decomposition of the adjoint action of T on g = Lie(G).

For any ε ∈ Φ(T ), there is an injective homomorphism uε : Ga → G such that for any x ∈ Fq
and any t ∈ T , we have

tuε(x)t−1 = uε(ε(t)x).

We denote by Uε ⊆ G the subgroup Uε := Im(uε).

Moreover, inside Y∗(T ) there is a dual root system Φ∨(T ), provided with a canonical bijection

Φ(T )↔ Φ∨(T )

ε↔ ε∨

such that 〈ε∨, ε〉 = 2 for every ε ∈ Φ(T ).

4.1.1 Levi subgroups and parabolic subgroups

Recall that a parabolic subgroup P ⊆ G is a closed, connected subgroup containing a Borel
subgroup and denote by UP its unipotent radical. A Levi factor of P is a reductive subgroup
L ⊆ P such that P = LUP , where UP is the unipotent radical of P . A Levi factor of a
parabolic subgroup is called a Levi subgroup of G.

Recall that, for any Levi subgroup L ⊆ G, there exists a maximal torus T ⊆ G such that
T ⊆ L. Moreover, the Levi subgroup L can be described in terms of the root systems Φ(T )

as follows.

Consider the subset ΦL(T ) ⊆ Φ(T ) de�ned as

ΦL(T ) := {ε ∈ Φ(T ) | Ker(ε) ⊇ Z◦L},

where Z◦L is the connected componenent containing the identity of the center ZL ⊆ L.

We have the following Lemma, see [89, Lemma 8.4.2].

Lemma 4.1.1. The subset ΦL(T ) is a root subsystem of Φ(T ) and we have :

1. CG(Z◦L) = L.
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2. Z◦L =
⋂

ε∈ΦL(T )

(Ker(ε)◦)

3. L = T
∏

ε∈ΦL(T )

Uε.

Example 4.1.2. For G = GLn, Levi subgroups and parabolic subgroups can be explicitly
described as follows. For any n0, . . . , ns ∈ N such that n0 + · · · + ns = n, the subgroup
Ln0,...,ns de�ned as

Ln0,...,ns =


GLns 0 0 0 0 . . . 0

0 GLns−1 0 0 0 . . . 0

0 0 GLns−2 0 0 . . . 0
...

...
...

. . . . . . . . . 0

0 0 0 0 0 0 GLn0


is a Levi subgroup of G. We will denote the group Ln0,...,ns simply by

GLns × · · · ×GLn0 ⊆ GLn .

Notice that

ZL =


λsIns 0 0 0 0 . . . 0

0 λs−1Ins−1 0 0 0 . . . 0

0 0 λs−2Ins−2 0 0 . . . 0
...

...
...

. . . . . . . . . 0

0 0 0 0 0 0 λ0In0

 ,

for λ0, . . . , λs ∈ F
∗
q and in particular that ZL is connected.

A parabolic subgroup P ⊇ L containing L as Levi factor is, for instance, given by the upper
block triangular matrices

P =


GLns ∗ ∗ ∗ ∗ . . . ∗

0 GLns−1 ∗ ∗ ∗ . . . ∗
0 0 GLns−2 ∗ ∗ . . . ∗
...

...
...

. . . . . . . . . ∗
0 0 0 0 0 0 GLn0

 .

It is not di�cult to verify that, for any Levi subgroup L ⊆ GLn, there exist n0, . . . , nr such
that n0 + · · ·+ nr = n and L is conjugated to

GLnr × · · · ×GLn0 .
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4.1.2 Flag varieties

For G = GLn and P the parabolic subgroup containing GLn0 × · · · × GLns as a Levi factor
introduced above, the quotient variety GLn /P is usually called partial �ag variety and it has
the following geometric description.

Proposition 4.1.3. The variety GLn /P is isomorphic to the following variety of partial �ags

of Kn:

GLn /P ∼= {F = (Fs ⊆ Fs−1 ⊆ · · · ⊆ F0 = Kn) | dim(Fi) =
s∑
j=i

nj}. (4.1.1)

The isomorphism is obtained by associating to gP the �ag F such that Fi is the image via g

of the span of the �rst
s∑
j=i

nj vector of the canonical basis of Kn.

4.2 Finite reductive groups, rational tori and Levi subgroups

In this section and in the rest of the chapter, G is a reductive group de�ned over Fq with a
�xed Frobenius morphism F : G → G. In the cases that interest us in this article, G will
always be taken to be a product of factors of type (GLn)d's. Recall that we always have an
F -stable maximal subtorus T ⊆ G.
We denote by εG the rank of a maximal split F -stable subtorus of G. Notice that in general
εG 6= rank(G). If rank(G) = εG, we say that G is split.

Example 4.2.1. Consider the group (GLn)d. Let T ⊆ G be the maximal torus Tn× · · ·×Tn ⊆
(GLn)d, where we denote by Tn ⊆ GLn the torus of diagonal matrices. Notice that T is F -
stable and dim(T ) = rank(G) = nd. However, it is possible to verify that εG = n, i.e (GLn)d
is split if and only if d = 1.

Consider an F -stable maximal torus T . Notice that since T is F -stable, the Frobenius acts
on the groups X∗(T ), Y∗(T ) as follows

F : X∗(T )→ X∗(T )

α→ α ◦ F

and
F : Y∗(T )→ Y∗(T )

β → F ◦ β.

4.2.1 Twisted Frobenius of maximal tori

Fix now a F -stable maximal torus T ⊆ G. As T is F -stable, the Frobenius acts on the Weyl
group too. Given two elements h1, h2 ∈ WG(T ), we say that they are F -conjugated if there
exists w ∈WG(T ) such that h1 = wh2F (w)−1.
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The set of F -conjugacy classes of WG(T ), usually denoted by H1(F,WG(T )), parametrize the
GF -conjugacy classes of F -stable maximal tori in the following way.

Given a F -stable maximal torus T ′ there exists g ∈ G such that gTg−1 = T ′. As F (T ′) = T ′ we
see that ẇ := g−1F (g) belongs to NG(T ) and so determines an associated element w ∈WG(T ).

We can reformulate this correspondence in terms of the twisted Fq-structures of the torus T .
While the conjugation by g provides an isomorphism T ′ ∼= T over Fq, this isomorphism is not
in general an Fq-morphism (T ′, F )→ (T, F ).

However, endowing T with the Fq structure coming from the twisted Frobenius ẇF : T → T ,
the conjugation by g is an Fq -isomorphism

(T ′, F ) ∼=Fq (T, ẇF ).

In the following, we assume to have �xed, for each w ∈ WG(T ), a corresponding F -stable
maximal torus Tw ⊆ G.

Example 4.2.2. Consider the case of G = GLn and T = Tn the torus of diagonal matrices.
In this case, we have WG(Tn) = Sn and the F -action on Sn is trivial. In particular, the
F -conjugacy classes of Sn are the conjugacy classes of Sn and are therefore indexed by the
partitions Pn of size n.

For any λ = (λ1, . . . , λh) ∈ Pn, any associated F -stable maximal torus T ′ is GLn(Fq)-
conjugated to

(Gm)λ1 × · · · × (Gm)λh ,

i.e
(T ′, F ) ∼= (Gm)λ1 × · · · × (Gm)λh .

Example 4.2.3. Consider the group G = (GLn)d and the F -stable maximal torus T introduced
above. The Weyl group WG(T ) is isomorphic to Sdn and the corresponding Frobenius action
F : Sdn → Sdn is given by

F (σ1, . . . , σd) = (σd, σ1, . . . , σd−1).

The F -conjugacy classes of Sdn are in bijection with the conjugacy classes of Sn in the following
way. Consider τ = (τ1, . . . , τd), σ = (σ1, . . . , σd) ∈ Sdn. The element τσF (τ)−1 is equal to

τσF (τ)−1 = (τ1σ1τ
−1
d , τ2σ2τ

−1
1 , . . . , τdσdτ

−1
d−1).

Notice that we have

d−1∏
i=0

(τσF (τ)−1)d−i = τd(σdσd−1 · · ·σ1)τ−1
d = τd

(
d−1∏
i=0

σd−i

)
τ−1
d .

We deduce therefore that σ, σ′ ∈ Sdn are F -conjugated if and only if
d−1∏
i=0

σd−i,

d∏
i=0

σ′d−i are

conjugated in Sn.
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Consider a pair of F -stable maximal tori T, T ′ with gT ′g−1 = T and ẇ = g−1F (g) ∈ NG(T ′)

and w ∈WG(T ′) as above. There is an isomorphism of abelian groups

Ψg : X∗(T
′)→ X∗(T )

α→ α(g−1 − g)

such that Ψg(Φ(T ′)) = Φ(T ). Notice that in general, Ψg does not commute with the respective
Frobenius morphisms on X∗(T ), X∗(T

′) and indeed we have

Ψ−1
g FΨg = w ◦ F : X∗(T

′)→ X∗(T
′). (4.2.1)

4.2.2 The case of �nite general linear groups

For m ∈ N, let GLm be the general linear group over Fq, with the canonical Fq-structure
F : GLm → GLm. Consider the maximal torus of diagonal matrices Tm ⊆ GLm. Notice that
in this case WGLm(Tm) = Sm and the F -action on WGLm(Tm) is trivial.

Let εi ∈ X∗(Tm) be the homomorphism

εi




z1 0 0 0 0 . . . 0

0 z2 0 0 0 . . . 0

0 0 z3 0 0 . . . 0
...

...
...

. . . . . . . . . 0

0 0 0 0 0 0 zm



 = zi.

Notice that the subset {ε1, . . . , εm} ⊂ X∗(Tm) is a basis of the free abelian group X∗(Tm),
which we denote by B(Tm). Notice moreover that, for each i = 1, . . . ,m, we have that

F (εi) = qεi.

Moreover, for such a basis, we have that

Φ(Tm) = {±εi ∓ εj | i 6= j ∈ {1, . . . ,m}}.

For h, j ∈ {1, . . . ,m}, denote by εh,j := εh − εh. We denote by Φ+(Tm) the set of positive
roots with respect to the Borel subgroup of upper triangular matrices, i.e

Φ+(Tm) = {εi,j | i < j}.

For any other F -stable maximal torus T ⊆ GLm, �x g such that gTmg−1 = T and the
corresponding permutation w ∈ WGLm(Tm) = Sm as the end of paragraph above. Denote by
B(T ) = Ψg(B(Tm)).

Whenever the torus T is �xed and the context is clear we will denote by εi also the element
Ψg(εi) ∈ B(T ) and by εi,j the element Ψg(εi,j) ∈ Φ(T ). We denote by Φ+(T ) = Ψg(Φ

+(Tm)).
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Notice that, by eq.(4.2.1), in the character group X∗(T ) we have

F (εi) = qεw(i).

Consider now α ∈ NI , put nα :=
∑

i∈I αi and consider GLα as a subgroup of GLnα through
the block diagonal embedding. Fix an F -stable maximal torus T ⊆ GLα ⊆ GLnα . Notice that
T is a maximal torus for GLα and GLnα . Consider then the basis B(T ) as above.

Remark 4.2.4. For i ∈ I, let πi : GLα → GLαi the canonical projection. For a maximal torus
T ⊆ GLα, denote by Ti := πi(T ). Notice that

T ⊆
∏
i∈I

Ti ⊆
∏
i∈I

GLαi .

As T is a maximal torus, we have thus an equality T =
∏
i∈I

Ti. For dimension reasons, we

deduce that, for each i ∈ I, Ti is a maximal torus of GLαi . From the identity T =
∏
i∈I

Ti, we

deduce that there is an isomorphism X∗(T ) =
⊕
i∈I

X∗(Ti).

Notice that we can choose g ∈ GLα such that gTmg−1 = T . We deduce therefore that putting
Bi(T ) = B(T ) ∩X∗(Ti), we obtain a partition

B(T ) =
⊔
i∈I
Bi(T )

such that each Bi(T ) is a basis of X∗(Ti) and Bi(T ) is w-stable for every i ∈ I.

4.2.3 F -stable Levi subgroups

Consider a Levi subgroup L ⊆ GLm and assume that L is F -stable. Similarly to what we
said about F -stable tori in Example 4.2.2, we can show that there exist d0, . . . , dr ∈ N and
m0, . . . ,mr such that L is conjugated by an element of GLn(Fq) to the group

(GLm0)d0 × · · · × (GLmr)dr ,

i.e there is an Fq-isomorphism

(L,F ) ∼= (GLm0)d0 × · · · × (GLmr)dr .

Notice that in this case we have an isomorphism

(ZL, F ) ∼= (Gm)d0 × · · · × (Gm)dr .
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4.3 Subtori and multitypes

For α ∈ NI , consider GLα as a subgroup of GLnα via the block diagonal embedding. Recall
that I can be thought of as the set of vertices of a star-shaped quiver. We introduce here the
de�nition of the admissible subtori of GLα.

Admissible subtori will play a signi�cant role in this thesis. For instance, they appear in the
classi�cation of the irreducible characters of the �nite group GLα(Fq), see �5.6. They are also
a key part of the proof of Theorem 4.5.2, which will be the main technical result needed to
study the cohomology of non-generic character stacks.

De�nition 4.3.1. An subtorus S of GLα is said admissible if there exists a Levi subgroup
LS ⊆ GLnα such that ZLS = S.

Example 4.3.2. For any α ∈ NI , there is an admissible subtorus Zα ⊆ GLα, given by Zα :=

ZGLnα ⊆ GLα, i.e the elements of Zα are of the form (λIαi)i∈I , for λ ∈ F
∗
q .

We have the following Lemma (see [28, Proposition 3.4.6])

Lemma 4.3.3. For an admissible S and a Levi subgroup LS such that ZLS = S, we have

CGLnα (S) = LS. In particular, the group LS is unique.

Remark 4.3.4. Notice that from Lemma 4.3.3 above, we have that S is F -stable if and only if
LS is F -stable.

Example 4.3.5. Put |I| = 1 and let S ⊆ GL2 be the torus

S =

{(
λ 0

0 λ2

)
, λ ∈ F∗q

}
.

Notice that CGL2(S) = T2, where T2 is the torus of diagonal matrices. However, ZT2 = T2 6= S.
We deduce thus that the torus S is not admissible.

Consider an admissible subtorus S ⊆ GLα and the associated Levi subgroup LS ⊆ GLnα . The
group CGLα(S) is a Levi subgroup of GLα (see [28, Proposition 3.4.7]) which we will denote
by L̃S .

Notice that L̃S is equal to LS ∩ GLα as CGLnα (S) ∩ GLα = CGLα(S). In particular, there
exists a maximal torus T ⊆ GLα such that S ⊆ T ⊆ L̃S .
Conversely, consider an F -stable Levi subgroup L ⊆ GLnα such that there exists a maximal
torus T ⊆ L ∩GLα. As ZL ⊆ T , the center ZL is an admissible subtorus of GLα.

Example 4.3.6. Notice that even if two admissible tori S, S′ are di�erent, we can have L̃S = L̃S′ .
Consider for example S = Zα and S′ de�ned as

S′ = {(λiIαi)i∈I | (λi)i∈I ∈ (F∗q)I}.
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In general, we have S 6= S′. However, for any α ∈ NI , for both tori we have

L̃S = L̃S′ = GLα .

For each α ∈ NI , denote by Zα the subset of F -stable admissible subtori of GLα and denote
by Z the set de�ned as

Z :=
⊔
α∈NI

Zα.

Example 4.3.7. Consider I = {1, 2, 3, 4} and α = (2, 1, 1, 1) ∈ NI . Notice that nα = 5.
Consider for example the admissible subtori S1, S2, S3 ⊆ GLα given by

S1 =

{((
λ 0

0 µ

)
, λ, λ, λ

)
| λ, µ ∈ F∗q

}

S2 =

{((
λ 0

0 µ

)
, λ, µ, λ

)
| λ, µ ∈ F∗q

}
and

S3 =

{((
λ 0

0 µ

)
, γ, δ, η

)
| λ, µ, γ, δ, η ∈ F∗q

}
.

In this case, LS1 is GL5(Fq)-conjugated to GL4×GL1 and L̃S1 = T2 × GL1×GL1×GL1,
where T2 ⊆ GL2 is the torus of diagonal matrices. Moreover, we have that LS2 is GL5(Fq)-
conjugated to GL2×GL3 and L̃S1 = L̃S2 .

Lastly, notice that LS3 is the maximal torus of diagonal matrices T5 ⊆ GL5, and L̃S3 = L̃S1

too.

For a multitype ω = (d1,λ1) . . . (dr,λr) of size α, we denote by Sω ∈ Zα the torus de�ned as

(Z|λ1|)d1 × · · · × (Z|λr|)dr ⊆ GLα

where (Z|λ1|)d1 × · · · × (Z|λr|)dr is considered a subtorus of GLα via the componentwise block
diagonal embedding. Put βj = |λj | ∈ NI , for each j = 1, . . . , r. For the Levi subgroup
Lω ⊆ GLnα de�ned as

Lω = (GL|β1|)d1 × · · · × (GL|βr|)dr

embedded block diagonally, we have ZLω = Sω, i.e Sω is admissible.

We will denote by L̃ω the Levi subgroup of GLα de�ned as L̃ω := Lω ∩GLα. Notice that the
groups Lω, Sω, L̃ω depend only on the semisimpli�cation ωss of ω.

Remark 4.3.8. Let ω ∈ Tα and d1, . . . , dr ∈ N and β1, . . . , βr ∈ NI with

ωss = ψd1(ωβ1) ∗ · · · ∗ ψdr(ωβr).
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Notice that, for each i ∈ I, we have a Levi subgroup

(GL(β1)i)d1 × · · · × (GL(βr)i)dr ⊆ GLαi

embedded block diagonally. The Levi subgroup L̃ω is given by

L̃ω =
∏
i∈I

(GL(β1)i)d1 × · · · × (GL(βr)i)dr .

From the description of the Levi subgroups of GLnα of �4.2.3, we deduce the following Lemma.

Lemma 4.3.9. For any F -stable admissible E ∈ Zα, there exists a unique semisimple type,

which we denote by [E], such that E is GLα(Fq)-conjugated to S[E].

Example 4.3.10. For any α ∈ NI , we have that

[Zα] = ωα.

Let ∼ be the equivalence relation on Zα, induced by the conjugation by GLα(Fq) and let
Z := Z/ ∼ be the quotient set. The map Zα → Tssα given by S → [S], induces thus a bijection

Z ∼= TssI .

For an admissible torus S and (d, α) ∈ N × NI , we denote by m((d,α),S) the value [S]((d, α))

i.e the number of appearances of (d, α) in the writing

[S] = ψd1(ωα1) ∗ · · · ∗ ψdr(ωαr).

Lastly, we give the following de�nition of levels for the admissible subtori.,

De�nition 4.3.11. Given S ∈ Z and V ⊆ NI , we say that S is of level V if [S] is of level V
(see De�nition 3.6.2).

Example 4.3.12. Consider the tori S1, S2, S3 introduced in Example 4.3.7. The torus S1 is the
product Z(1,1,1,1) × Z(1,0,0,0) embedded componentwise block diagonally into GLα. The type
[S1] is therefore the semisimple type

[S1] = (1, (1(1,1,1,1)))(1, (1(1,0,0,0))) = ω(1,1,1,1) ∗ ω(1,0,0,0).

Similarly, we have
[S2] = ω(1,0,1,0) ∗ ω(0,1,0,1)

and
[S3] = ω(1,0,0,0) ∗ ω(1,0,0,0) ∗ ω(0,1,0,0) ∗ ω(0,0,1,0) ∗ ω(0,0,0,1).

Notice that for V = {(1, 1, 1, 1), (1, 0, 0, 0)}, we have that S1 if of level V , while S2, S3 are not.
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4.3.1 Regular elements and Möbius function for admissible tori

In this paragraph we give to Z the structure of a locally �nite poset, with the ordering induced
by inclusion and we introduce the associated Möbius function

µ : Z × Z → Z

and we recall more generally some properties of the Möbius function of a locally �nite poset.
The Möbius function µ is going to be one the main technical ingredient in the proof of Theorem
4.5.2.

4.3.2 Poset of F -stable admissible subtori

For any two elements S, S′ of Zα, we say that S ≤ S′ if S ⊆ S′. Notice that Zα ≤ S for any
admissible S ⊆ GLα. For any S ∈ Z, we denote by Sreg the subset of regular elements of S
de�ned as

Sreg := {s ∈ S | s /∈ S′ for any S′ � S, S′ ∈ Z}. (4.3.1)

We have the following disjoint union

S =
⊔
S′≤S

(S′)reg (4.3.2)

and so, taking F -�xed points,
SF =

⊔
S′≤S

((S′)reg)F . (4.3.3)

In particular, we have an equality |SF | =
∑
S′≤S

|((S′)reg)F |. Notice that, if

[S] = ψd1(ωβ1) ∗ · · · ∗ ψdr(ωβr),

we have

SF =
r∏
j=1

(Gm)dj (Fq) =
r∏
j=1

F∗
qdj

and therefore we have
|SF | = P[S](q). (4.3.4)

4.3.3 Möbius functions of locally �nite posets

For a �nite poset (X,≤) denote by

µX : X ×X → Z

its associated Möbius functions. Recall that µX is de�ned by the following two properties:

� µ(x, x) = 1 for each x ∈ X
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� For each x � x′, we have ∑
x≤x′′�x′

µ(x, x′′) = −µ(x, x′) (4.3.5)

The Möbius function has the following property.

Proposition 4.3.13. Given f1, f2 : X → C such that

f1(x) =
∑
x′≤x

f2(x′),

we have an equality

f2(x) =
∑
x′≤x

f1(x′)µX(x′, x). (4.3.6)

Lastly, we recall the following standard Lemma about Möbius functions.

Lemma 4.3.14. Let (X,≤), (Y,≤) be two locally �nite posets and equip X × Y with the

ordering de�ned as (x, y) ≤ (x′, y′) if and only if x ≤ x′ and y ≤ y′.
For the locally �nite poset (X × Y,≤), we have

µX×Y ((x, y), (x′, y′)) = µX((x, x′))µY ((y, y′)). (4.3.7)

Proof. By induction we can assume that

µX×Y ((x, y), (x′′, y′′)) = µX((x, x′′))µY ((y, y′′)) (4.3.8)

for all (x, y) < (x′′, y′′) < (x′, y′). From eq.(4.3.5) we have therefore

µX×Y ((x, y)(x′, y′)) = −
∑

(x,y)≤(x′′,y′′)<(x′,y′)

µX(x, x′′)µY (y, y′′) = (4.3.9)

∑
x≤x′′<x′

µX(x, x′′)
∑

y≤y′′≤y′
µY (y, y′′) + µX(x, x′)

∑
y≤y′′<y′

µY (y, y′′). (4.3.10)

By eq.(4.3.5),
∑

y≤y′′≤y′
µY (y, y′′) and

∑
y≤y′′<y′ µY (y, y′′) = −µY (y, y′) and therefore

µX×Y ((x, y)(x′, y′)) = µX(x, x′)
∑

y≤y′′<y′
µY (y, y′′) = −µX(x, x′)µY (y, y′). (4.3.11)

For x ∈ X, denote by [x,∞]X ⊆ X the poset

[x,∞] = {x′ ∈ X | x′ ≥ x}.

Notice that, for each x′ ∈ [x,∞]X , from eq.(4.3.5), we deduce that we have:

µX(x, x′) = µ[x,∞]X (x, x′) (4.3.12)
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Example 4.3.15. Consider N>0 with the ordering ≤ de�ned as d ≤ n if and only if d|n. In this
case, for any r ≤ r′, we have

µN>0(r, r′) = µ

(
r′

r

)
,

where µ : N→ Z us the usual Möbius function.

4.3.4 Möbius function for admissible subtori

Notice that the ordering ≤ equips the set Z with the structure of a locally �nite poset. In the
following, we denote simply by

µ(−,−) : Z × Z → Z

the associated Möbius function.

Example 4.3.16. Let f1, f2 : Z → C be the functions de�ned as

f1(S) = |SF |

and
f2(S) = |(Sreg)F |.

By eq.(4.3.6) and eq.(4.3.3), we have the following identity:

|(Sreg)F | =
∑
S′≤S

|(S′)F |µ(S′, S) =
∑
S′≤S

P[S′](q)µ(S′, S). (4.3.13)

Consider more generally a complex valued function f : SF → C. We de�ne a function
f : Z → C as follows:

f(S′) =


0 if S′ 6≤ S∑
s∈(S′)F

f(s) otherwise .

We de�ne similarly g : Z → C by

g(S′) =


0 if S′ 6≤ S∑
s∈((S′)reg)F

f(s) otherwise .

From Identity (4.3.3) we deduce that

f(S) =
∑
S′≤S

g(S′)
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and so that, from eq.(4.3.6), we have:

∑
s∈(Sreg)F

f(s) = g(S) =
∑
S′≤S

f(S′)µ(S′, S) =
∑
S′≤S

 ∑
t∈(S′)F

f(t)

µ(S′, S). (4.3.14)

4.3.5 Multitype of a conjugacy class and admissible subtori

The correspondence between Tα and the conjugacy classes of GLα(Fq) of �3.6.1 can be ex-
plained using the notion of admissible subtori in the following way.

Consider a conjugacy class O of GLα(Fq), an element g ∈ O and its decomposition into a
semisimple and unipotent element g = gssgu. The centralizers CGLα(gss), CGLnα (gss) are Levi
subgroups of GLα,GLnα respectively.

Notice that CGLα(gss) ⊆ CGLnα (gss) and therefore there exists a maximal torus T ⊆ GLα
such that

T ⊆ CGLα(gss) ⊆ CGLnα (gss).

The center of the Levi subgroup CGLnα (gss) is thus an admissible subtorus S ⊆ GLα. Let

[S] = (d1, (1
β1)) . . . (dr, (1

βr))

be the associated semisimple type. Up to conjugacy we can assume that

S = (Zβ1)d1 × · · · × (Zβr)dr

embedded block diagonally.

Since gss ∈ Sreg and [gss, gu] = 1, we have that gu belongs to CGLα(S), i.e

gu ∈ L̃S =
∏
i∈I

(GL(β1)i)d1 × · · · × (GL(βr)i)dr

and therefore gu determines, for each i ∈ I and j = 1, . . . , r unipotent elements gu,j,i ∈
GL(βj)i(Fqdj ) for each i ∈ I. For each j = 1, . . . , r, the Jordan forms of (gu,j,i)i∈I determine a

multipartition λj ∈ PI such that |λj | = βj .

The type ωO associated to O is thus

ωO = (d1,λ1) . . . (dr,λr).

Remark 4.3.17. Let ω ∈ Tα and g ∈ GLα(Fq) such that g ∼ ω. Consider the Jordan de-
composition gssgu = g. Let S be the admissible torus given by the center of CGLnα (gss),
introduced above. Notice that gss ∈ (Sreg)F . Conversely, for every s ∈ (Sreg)F , the element
sgu ∈ GLα(Fq) is of type ω.
The map (Sreg)F → {GLα(Fq)− orbits of type ω} which sends s to the orbit of sgu is surjec-
tive. Two elements s, s′ ∈ (Sreg)F have the same image if and only if there exists g ∈ GLα(Fq)
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such that gsg−1 = s′ and gug−1 = u. Notice that, since gsg−1 = s′, we have

gCGLnα (s)g−1 = gSg−1 = CGLnα(s′) = S

and therefore
gCGLnα (S)g−1 = gLSg

−1 = CGLnα (S) = LS .

The �bers of the map are therefore identi�ed with the group

{g ∈ GLα(Fq) | gLSg−1 = LS and gug−1 = u}/L̃S
F

which has cardinality w(ω).

4.4 Admissible subtori, graphs and Möbius functions

In this section, we will associate certain graphs, said admissible, to the elements of Z. This
construction will be useful to understand the Möbius function µ : Z ×Z → Z and to develop
the combinatorial arguments of �4.4.4, both of which will be key parts of the proof of Theorem
4.5.2 about Log compatible functions.

4.4.1 Notations about graphs

We �x some notations about graphs. Let Γ be a �nite graph with set of vertices M and
m = |M |.

De�nition 4.4.1. We say that Γ is of type Km if it is the complete graph associated to M ,
i.e each pair of distinct vertices is connected exactly by one edge.

We say that Γ is admissible if each of its connected components is of type Kd for some d.

Remark 4.4.2. Notice that the property of being admissible for a graph Γ can be stated in the
following equivalent way.

For any twom,m′ ∈M , there is at most one edge of Γ joiningm tom′ and, ifm1,m2,m3 ∈M
are such that there is an edge of Γ between m1 and m2 and an edge of Γ between m2 and m3,
there is an edge of Γ between m1 and m3.

In particular, an admissible graph Γ is totally determined by the partition of M given by the
sets of vertices of the connected components of Γ.

4.4.2 Root system and graphs

Let now α ∈ NI and �x an F -stable maximal torus T ⊆ GLα ⊆ GLnα .

Denote simply by B,Φ,Φ+ the sets B(T ),Φ(T ),Φ+(T ) and by σ ∈ Snα the permutation such
that F (εi) = qεσ(i) for each εi ∈ B.
For any two admissible graphs Γ,Γ′ with set of vertices B and sets of edges ΩΓ,ΩΓ′ respectively,
we say that Γ ≤ Γ′ if ΩΓ ⊇ ΩΓ′ .
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We denote by A(B, σ) be the poset of admissible and σ-stable graph with set of vertices B and
by µB,σ(−,−) the associated Möbius function. Moreover, we will denote the complete graph
with vertices B by Γα ∈ A(B, σ).

Remark 4.4.3. From Remark 4.4.2, we see that the poset A(B, σ) is the the poset of σ-stable
partitions of the set B with ordering given by the reversed inclusion, i.e the �xed point set
lattice considered in [42].
In the latter article, the author computed certain values of the Möbius function µB,σ and in
particular the values µB,σ(Γα,Γ

′) for each Γ′. We will review this result in Proposition 4.4.4.

We prefer to introduce this graph theoretic description, as in our opinion this can ease the
notations and give a more direct understanding of the results of this section about the rela-
tionship between admissible graphs and admissible tori.

Fix now an admissible σ-stable graph Γ with set of vertices B. Notice that, as Γ is σ-stable,
σ acts by permutation on the set of connected components of Γ. Assume that this action has
r orbits of length d1, . . . , dr respectively, which we denote by O1, . . . , Or.
For each j = 1, . . . , r, denote by BΓ

j ⊆ B the set of vertices contained in the orbit Oj . Notice
that each BΓ

j is σ-stable and there is an equality

B =
r⊔
j=1

BΓ
j .

For each j = 1, . . . , r, choose a partition of BΓ
j into dj subsets

BΓ
j = BΓ

j,1

⊔
· · ·
⊔
BΓ
j,dj

such that:

� Each BΓ
j,h is given by the vertices of a connected component belonging to the orbit Oj

� We have σ(BΓ
j,h) = BΓ

j,h+1 for each h = 1, . . . , dj (here we consider the indices modulo
dj).

For each j = 1, . . . , r, let βj ∈ NI be the element de�ned as

(βj)i := |BΓ
j,1 ∩ Bi|

for i ∈ I. We denote by ωΓ ∈ Tssα the semisimple multityped de�ned as

ωΓ := ψd1(ωβ1) ∗ · · · ∗ ψdr(ωβr).

In [42], it is shown the following Proposition.

Proposition 4.4.4. For each Γ ∈ A(B, σ), we have

µA(B,σ)(Zα,Γ) = CoωΓ
. (4.4.1)
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Denote now by Γj,h the restriction of Γ to the set BΓ
j,h. Notice that Γj,h is the complete

graph with vertices BΓ
j,h and so Γ is totally determined by the subsets {BΓ

j,1}j=1,...,r. Notice,
in addition, that for each j = 1, . . . , r, we have σdj (BΓ

j,1) = BΓ
j,1.

We have the following Lemma.

Lemma 4.4.5. There is an equivalence of posets

[Γ,∞]A(B,σ)
∼=

r∏
j=1

[Γj,1,∞]
A(BΓ

j,1,σ
dj )

(4.4.2)

and, for each Γ′ ≥ Γ, denoting by Γ′j,h the restriction of Γ′ to BΓ
j,h, we have

µB,σ(Γ,Γ′) =
r∏
j=1

µBΓ
j,1,σ

dj (Γj,1,Γ
′
j,1). (4.4.3)

Proof. Notice indeed that, given admissible graphs Γ′j,1 with vertices BΓ
j,1 for each j = 1, . . . , r,

there exist a unique σ-stable and admissible graph Γ′ with vertices B containing as subgraphs
Γ′1,1, . . . ,Γ

′
r,1 and such that Γ′ ≥ Γ.

Eq.(4.4.3) is thus a consequence of eq.(4.4.2) and Lemma 4.3.7.

4.4.3 Admissible subtori and admissible graphs

Fix now an admissible torus S ⊆ T . Denote by JS ⊆ Φ the subset

JS := {ε ∈ Φ | S ⊆ Ker(ε)}.

From Lemma 4.1.1 we deduce that we have

S =
⋂
ε∈JS

Ker(ε)

and
LS = T

∏
ε∈JS

Uε.

Notice moreover that the subgroup S is F -stable if and only if JS is σ stable.

We now associate the following graph ΓS to the admissible torus S.

� The set of vertices of ΓS is B

� ΓS has an edge between vertices εi and εj if and only if εi,j ∈ JS ∩ Φ+.

We denote by ΩΓS be the set of edges of ΓS . The group S is F -stable if and only if ΓS is
σ-invariant.
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Example 4.4.6. Let I = {·} and T be the torus of diagonal matrices T ⊆ GLm. In this case,
σ is trivial.
The graph ΓT is thus the graph with no edges andm vertices, while the graph ΓZGLm

associated
to ZGLm is the complete graph with m vertices Km.

Example 4.4.7. For any I and any α ∈ NI , notice that ΓZα = Γα.

We can now state the following Lemma, relating admissible graphs and subtori.

Lemma 4.4.8. For any admissible torus S, the graph ΓS is admissible. Conversely, for any

σ-stable admissible graph Γ with set of vertices B, there is a unique F -stable admissible torus

S ⊆ T such that ΓS = Γ.

Here σ-stable means that Γ has an edge between εi and εj if and only if it has an edge between
εσ(i) and εσ(j).

Proof. For an admissible subtorus S, notice that if εi,j , εj,h ∈ JS then εi,h ∈ JS . From Remark
4.4.2 we deduce that ΓS is admissible.

Consider now an admissible Γ and the subset

JΓ := {εj,h ∈ Φ | there is an edge of Γ which has vertices εj , εh}.

From [28, Corollary 3.3.4], the subset JΓ is a root subsystem and, from [89, Lemma 8.4.2], we
have that the torus

SΓ :=
⋂
ε∈JΓ

Ker(ε) (4.4.4)

is admissible and F -stable with
LSΓ

= T
∏
ε∈JΓ

Uε. (4.4.5)

It is not di�cult to check that the graph associated to SΓ is Γ.

Let S, S′ be two admissible subtori such that S ⊇ T, S′ ⊇ T . From Lemma 4.4.8, we deduce
the following Proposition

Proposition 4.4.9. Given S, S′ ⊆ T , we have that S ≤ S′ if and only if ΓS ≤ ΓS′ .

From eq.(4.3.5), Proposition 4.4.9 and Lemma 4.4.8, we deduce the following Lemma.

Lemma 4.4.10. For any S, S′ ∈ Z such that S, S′ ⊆ T , we have an equality

µA(B,σ)(ΓS ,ΓS′) = µ(S, S′) (4.4.6)

Consider now an admissible graph Γ ∈ A(B, σ) and the admissible F -stable torus SΓ associated
to Γ. We have the following proposition.
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Proposition 4.4.11. With the notations introduced above, the multitype associated to SΓ is

[SΓ] = ψd1(ωβ1) ∗ · · · ∗ ψdr(ωβr),

i.e we have

[SΓ] = ωΓ.

Fix now Γ′,Γ ∈ A(B, σ) such that Γ ≤ Γ′, and denote by S = SΓ and S′ = SΓ′ . Notice that

we have S ⊆ S′. The torus S is GLα(Fq) conjugated to
r∏
j=1

(Zβj )dj . The admissible graphs

Γ′j,1 correspond to admissible tori S′j ⊆ GLβj , for each j = 1, . . . , r.
From eq.(4.4.6) and eq.(4.4.3), we deduce the following equality

µ(S, S′) =

r∏
j=1

µ(Zβj , S
′
j) =

r∏
j=1

Co[S′j ]
. (4.4.7)

Example 4.4.12. Consider the set I = {1, 2, 3, 4}, the dimension vector α = (2, 1, 1, 1) and the
admissible tori S1, S2, S3 ∈ Zα of Example 4.3.7. Notice that S1, S2, S3 are all contained in
the maximal torus T = T2×Gm×Gm×Gm, where T2 ⊆ GL2 is the maximal torus of diagonal
matrices and more precisely that T = S3.
With the notations just introduced, we have B = {ε1, ε2, ε3, ε4, ε5}, σ is the identity and

B1 = {ε1, ε2} B2 = {ε3}

and
B3 = {ε4} B4 = {ε5}.

The graph ΓS1 associated to the torus S1 is

ε1 ε3 ε4 ε5

ε2

The graph ΓS2 associated to the torus S2 is

ε1 ε3 ε4 ε5

ε2

The graph ΓS3 associated to the graph S3 is

ε1 ε3 ε4 ε5

ε2
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Notice that ΓS1 ,ΓS2 ≤ ΓS3 and we have corresponding inclusions S1, S2 ⊆ S3

Example 4.4.13. Consider I = {1, 2} and the dimension vector α = (2, 2) ∈ NI , i.e GLα =

GL2×GL2 and let T ⊆ GLα be the torus

T = Tε × Tε ⊆ GL2×GL2,

where Tε ⊆ GL2 is the torus of Example 3.2.8. In this case, we have B = {ε1, ε2, ε3, ε4} with

B1 = {ε1, ε2} B2 = {ε3, ε4},

and σ is the permutation σ = (12)(34) ∈ S4.

Let S ⊆ GLβ be the admissible subtorus

S =

{((
λ 0

0 λ

)
,

(
µ 0

0 µ

))
| λ, µ ∈ Fq

∗
}
.

Notice that S ⊆ T and the graph ΓS is given by

ε1 ε3

ε2 ε4

Notice that ΓS has two connected components which are both stabilized by σ. With the
notations introduced before, we have therefore two orbits O1, O2 with BΓS

1 = B1 and BΓS
2 = B2

and d1 = d2 = 1. Denote by ΓS,1,ΓS,2 the restriction of Γ to B1,B2 respectively.

Notice moreover that the associated elements β1, β2 are given by

β1 = (2, 0) β2 = (0, 2)

and, from Lemma 4.4.11 we �nd
[S] = ωβ1 ∗ ωβ2 .

Notice indeed that the torus S is Zβ1 × Zβ2 embedded block diagonally in GLα.

Moreover, from eq.(4.4.7), we deduce that

µ(S, T ) = µB1,σ(ΓS,1,ΓTε)µB2,σ(ΓS,2,ΓTε) = µ(Z2, Tε)
2, (4.4.8)

where Z2 = ZGL2 . Notice that eq.(4.4.8) can be checked directly from the de�nition of the
Möbius function µ.

Notice indeed that we have

{Zβ1 × Zβ2 , Zβ1 × Tε, Tε × Zβ2} = {S′′ ∈ Zα | Zβ1 × Zβ2 ≤ S′′ � Tε × Tε}.
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From. eq(4.3.5), we deduce that we have

µ(Zβ1 × Zβ2 , Zβ1 × Tε) = µ(Zβ1 × Zβ2 , Tε × Zβ2) = µ(Z2, Tε) = −1

and thus from eq.(4.3.5) that we have

µ(S, Tε × Tε) = −(−1− 1 + 1) = 1 = µ(Z2, Tε)
2.

Consider now the admissible and σ-stable graph Γ′ given by

ε1 ε3

ε2 ε4

and denote by S′ = SΓ′ . The torus S′ is given by

S′ =

{(
1

xq − x

(
axq − bx −a+ b

(a− b)xxq −ax+ bxq

)
,

1

xq − x

(
axq − bx −a+ b

(a− b)xxq −ax+ bxq

))
| a, b ∈ Fq

∗
}
.

(4.4.9)

Notice that in this case, the graph Γ′ has 2 connected components, which are swapped by σ.
We have therefore a single orbit O1 of length d1 = 2 with

BΓ′
1,1 = {ε1, ε3} BΓ′

1,2 = {ε2, ε4}.

Notice that the associated dimension vector β′1 is β′1 = (1, 1). Proposition 4.4.11 states
therefore that S′ is GLα(Fq)-conjugated to the torus

(Z(1,1))2 ⊆ GLα,

which is also directly seen by the expression of S′ in eq.(4.4.9).

Notice that
σ2 = Id : BΓ′

1,1 → BΓ′
1,1.

From eq.(4.4.3), we �nd therefore

µ(S′, T ) = µBΓ′
1,1,Id

(Γ′1,1,ΓT2) = µ(Z(1,1), Z(1,0) × Z(0,1)).

4.4.4 Inclusion of admissible subtori

Let ω1, ω2 ∈ Tssα . Fix a maximal torus T such that Sω2 ⊆ T ⊆ GLα . De�ne the set Pω1,ω2 as

Pω1,ω2
:= {S ∈ Zα | [S] = ω1 , S ≤ Sω2}.

In this paragraph we give a combinatorial description of Pω1,ω2 which will be used in the proof
of Theorem 4.5.2.
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Assume that
ω1 = ψd1(ωβ1) ∗ · · · ∗ ψdr(ωβr)

and
ω2 = ψd′1(ωβ′1) ∗ · · · ∗ ψd′t(ωβ′t)

respectively.
Up to reordering the factors in the product ω1 =

∏r
j=1 ψdj (ωβj ), we can assume that there

exists a strictly increasing sequence i1 < · · · < ik ∈ {1, . . . , r} such that:

� (dj , βj) = (d1, β1) for j = 1, . . . , i1

� (dj , βj) = (dip , βip) for all ip−1 < j ≤ ip for p ∈ {2, . . . , k}

Notice that i1 = m((d1,β1),ω1) and

ih −
h−1∑
p=1

ip = m((dih ,βih ),ω1).

Let Mω1,ω2 be the set of partitions of {1, . . . , t} into r non-empty disjoint subsets X1, . . . , Xr

with the following properties:

� If h belongs to Xi, then di|d′h

� For every j = 1, . . . , r, it holds
∑
h∈Xj

d′h
dj
β′h = βj .

We will denote the element of Mω1,ω2 associated to the subsets X1, . . . , Xr by (X1, . . . , Xr).

Consider now the group W ′ω1
de�ned by

W ′ω1
:= Sm((di1

,βi1
),ω1)
× · · · × Sm((dik

,βik
),ω1)

.

The set Mω1,ω2 is endowed with an action of the group W ′ω1
de�ned by the following rule.

Consider elements σ = (σ1, . . . , σk) ∈W ′ω1
and (X1, . . . , Xr) ∈Mω1,ω2 . We de�ne

σ · (X1, . . . , Xr) := (Xσ1(1), . . . , Xσ1(i1), Xσ2(i1+1), . . . , Xσk(r)).

Notice that W ′ω1
acts freely on Mω1,ω2 . We denote by Mω1,ω2 the quotient set Mω1,ω2/W

′
ω1
.

We will now de�ne the following morphism

πω1,ω2 : Pω1,ω2 →Mω1,ω2 .

We denote by Γ′ the graph associated to Sω2 with respect to the torus T . Let {BΓ′
j,h} j=1,...,t

h=1,...,d′j

be the partition of the set B introduced in Paragraph �4.4 above for the graph Γ′.
Consider an F -stable admissible torus S ⊆ Sω2 with [S] = ω1 and the corresponding σ-stable
graph Γ ≤ Γ′, i.e ΩΓ ⊇ ΩΓ′ .
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Let O1, . . . , Or be the r orbits for the action of σ on the connected components of Γ of length
d1, . . . , dr respectively and assume to have �xed representatives Γ1,1, . . . ,Γr,1 for each of the
orbits.

For each j = 1, . . . , r, there exists a subset Xj ⊆ {1, . . . , t} and, for each l ∈ Xj , a subset
Zl ⊆ {1, . . . , d′l}, such that Γj,1 is the complete graph with vertices⊔

l∈Xj

⊔
z∈Zl

BΓ′
l,z.

Notice that the subsets Xj do not depend on the choice of the representatives Γ1,1, . . . ,Γr,1
and form a partition of the set {1, . . . , t}. The partition (X1, . . . , Xr) belongs to Mω1,ω2 .

Indeed, since the orbit Oj has length dj , we must have that

σs

 ⊔
l∈Xj

⊔
z∈Zl

BΓ′
l,z

 ∩ ⊔
l∈Xj

⊔
z∈Zl

BΓ′
l,z = ∅

for any 0 < s ≤ dj − 1 and

σdj

 ⊔
l∈Xj

⊔
z∈Zl

BΓ′
l,z

 =
⊔
l∈Xj

⊔
z∈Zl

BΓ′
l,z.

Recall that σ(BΓ′
l,z) = BΓ′

l,z+1, where the index z of BΓ′
l,z is always considered modulo d′l. We

deduce therefore that Zl is such that

(Zl + s) ∩ Zs = ∅ mod dj

for each 0 < s ≤ dj − 1 and
Zl + dj = Zj mod dj .

This implies that dj |d′l and that there exists al ∈ Zl such that

Zl =

{
al + djk | k = 1, . . . ,

d′l
dj

}
.

In particular, it holds that |Zl| =
d′l
dj
, from which we deduce that

∑
l∈Xj

d′l
dj
β′l = βj .

We de�ne then
πω1,ω2(U) := [(X1, . . . , Xr)]

where [(X1, . . . , Xr)] is the class of the element (X1, . . . , Xr) in the quotient Mω1,ω2 .

Notice that the morphism πω1,ω2 is well-de�ned, i.e does not depend on the choice of the
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ordering of the orbits O1, . . . , Or and it is surjective as we are taking the class [(X1, . . . , Xr)]

in the quotient Mω1,ω2 for the action of W ′ω1
.

From the description of the subsets Zl given above, we deduce that, for each [(X1, . . . , Xr)],
the �ber π−1

ω1,ω2
([(X1, . . . , Xr)]) has cardinality

|π−1
ω1,ω2

([(X1, . . . , Xr)])| =
r∏
j=1

d
|Xj |−1
j . (4.4.10)

4.5 Log-compatible functions and plethystic identities

In this section, we recall the de�nition of a Log compatible family, �rst introduced by Letellier
[62] and we prove our main Theorem 4.5.2 about these families pf rational functions, which
will be the key tool of this paper to compute the E-series of the cohomology of non-generic
character stacks.

4.5.1 Log-compatible families

Consider a family of rational functions {Fω(t)}ω∈TI ⊆ Q(t). For any V ⊆ NI , we de�ne the
rational function Fα,V (t) ∈ Q(t) as follows:

Fα,V (t) :=
∑
ω∈Tα

Fω(t)

w(ω)

 ∑
S′≤Sω

S′ of level V

P[S′](t)µ(S′, Sω)

 . (4.5.1)

For V = {α} we will use the notation Fα,gen(t) := Fα,{α}(t). Notice that

Fα,gen(t) =
∑
ω∈Tα

Fω(t)

w(ω)
(t− 1)µ(Zα, Sω) =

∑
ω∈Tα

Fω(t)

w(ω)
(t− 1)Coωss .

We give the following de�nition of a Log-compatible family {Fω(t)}ω∈TI .

De�nition 4.5.1. We say that {Fω(t)}ω∈TI is Log compatible if for any α ∈ NI , ω ∈ Tα and
for every multitypes ν1, . . . , νr and integers d1, . . . , dr such that ψd1(ν1) ∗ · · · ∗ψdr(νr) = ω, we
have

r∏
j=1

Fνj (t
dj ) = Fω(t).

4.5.2 Plethysm and Log compatibility: main result

Fix now an element α ∈ NI and a subset V ⊆ NI . We have the following theorem:

Theorem 4.5.2. For a Log compatible family {Fω(t)}ω∈TI ⊆ Q(t), we have:
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Coeffα

Exp

∑
β∈V

Fβ,gen(t)yβ

 = Fα,V (t) (4.5.2)

Proof. There is a unique morphism Θ of λ-rings

Θ : KssI → Q(t)

obtained by extending
Θ(ωα) = Fα,gen(t).

By Lemma 3.7.9, Identity (4.5.2) is equivalent to the following Identity

∑
ν∈Tssα
level V

Θ(ν)

w(ν)
= Fα,V (t) (4.5.3)

The RHS of eq.(4.5.3), is given by

Fα,V (t) =
∑
ω∈Tα

Fω(t)

w(ω)

 ∑
S≤Sω
level V

P[S](t)µ(S, Sω)

 . (4.5.4)

Consider now β1, . . . , βr ∈ NI such that ν = ψd1(ωβ1) ∗ · · · ∗ψdr(ωβr). We have therefore that

Θ(ν)

w(ν)
=

1

w(ν)

r∏
j=1

 ∑
ωj∈Tβj

Fωβj (t
dj )

w(ωj)
(tdj − 1)µ(Zβj , Sωj )

 = (4.5.5)

∑
ω∈Tα

Fω(t)Pν(t)

w(ν)

 ∑
ω1∈Tβ1

,...,ωr∈Tβr
ψd1 (ω1)∗···∗ψdr (ωr)=ω

1

w(ω1) · · ·w(ωr)

r∏
j=1

µ(Zβj , Sωj )

 (4.5.6)

Fix now a multitype ω ∈ Tα with

$omega = (d′1,λ1) · · · (d′t,λt)

for multipartitions λ1, . . . ,λt and its associated admissible torus Sω ⊆ GLα.

Denote by Hν,ω the set de�ned by

Hν,ω := {(ω1, . . . , ωr) ∈ Tβ1 × · · · × Tβr | ψd1(ω1) ∗ · · · ∗ ψdr(ωr) = ω}
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and by δν : Hν,ω → Z the function de�ned as

δν((ω1, . . . , ωr)) :=
r∏
j=1

µ(Zβj , Sωj ).

Let Mν,ωss be the set introduced in eq. (4.4.7). Consider the following function

fν,ω : Mν,ωss → Hν,ω

de�ned as:
fν,ω((X1, . . . , Xr)) = (ω1, . . . , ωr)

where

ωi(d,λ) = #{h ∈ Xi such that

(
d′h
di
,λh

)
= (d,λ)}

for every (d,λ) ∈ N× PI .

The function fν,ω is surjective and for each (ω1, . . . , ωr), the cardinality of the �ber is given
by

|f−1
ν,ω(ω1, . . . , ωr)| =

∏
(d,λ)∈N×PI

ω(d,λ)!

ω1(d,λ)! · · ·ωr(d,λ)!
(4.5.7)

Notice that for any (ω1, . . . , ωr) ∈ Hν,ω, we have the following equality:

∏
(d,λ)∈N×PI

ω(d,λ)!

ω1(d,λ)! · · ·ωr(d,λ)!
=

w(ω)

w(ω1) · · ·w(ωr)

∏r
j=1

∏
h∈Xj

(
d′h
dj

)
∏t
l=1 d

′
l

. (4.5.8)

As
∑r

j=1 |Xj | = t, the right hand side of eq.(4.5.8) is equal to

w(ω)

w(ω1) · · ·w(ωr)

1∏r
j=1 d

|Xj |
j

. (4.5.9)

For an element m = (X1, . . . , Xr) ∈Mν,ωss , put

dm :=

r∏
j=1

d
|Xj |
j .

We can thus rewrite the RHS of eq.(4.5.6) as:

Fω(t)

w(ν)

 ∑
(ω1,...,ωr)∈Hν,ω

1

w(ω1) · · ·w(ωr)
δν((ω1, . . . , ωr))

 = (4.5.10)
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Fω(t)

w(ν)w(ω)

 ∑
m∈Mν,ω

w(ω)

w(ω1) · · ·w(ωr)

δν(fν,ω(m))

|f−1
ν,ω(m)|

 =
Fω(t)

w(ν)w(ω)

 ∑
m∈Mν,ω

δν(fν,ω(m))dm

 .

(4.5.11)

The set Hν,ω is endowed with the following action of W ′ν . An element σ = (σ1, . . . , σk) ∈ W ′ν
acts on (ω1, . . . , ωr) ∈ Hν,ω by

σ · (ω1, . . . , ωr) = (ωσ1(1), . . . , ωσ1(i1), ωσ2(1), . . . , ωσk(k)).

Notice that the function δν is W ′ν invariant and fν,ω is W ′ν equivariant. The function

δν ◦ fS,ω : Mν,ωss → Z

is therefore W ′ν invariant and descends to a function Mν,ωss → Z which we still denote by
δν ◦ fν,ω. Notice moreover that the quantity dm is W ′ν invariant too and so dm is well de�ned
for an element m ∈Mν,ωss too.

The right hand side of eq.(4.5.10) is therefore equal to

Fω(t)Pν(t)

w(ω)

 ∑
m∈Mν,ωss

δν(fν,ω(m))
dm|W ′ν |
w(ν)

 . (4.5.12)

Notice that, for any m ∈Mν,ωss , we have

dm|W ′ν |
w(ν)

=
r∏
j=1

d
|Xj |
j

dj
=

r∏
j=1

d
|Xj |−1
j

By eq.(4.4.10), we can thus rewrite the sum of eq.(4.5.12) as

Fω(t)Pν(t)

w(ω)

 ∑
S∈Pν,ωss

δν(fν,ω(πν,ωss(S)))

 . (4.5.13)

From the remarks made in �4.4 and eq. (4.4.7), we see that we have an equality

δν(fν,ω(πν,ωss(S))) = µ(S, Sω)

and so, from eq.(4.5.10), we deduce that

Θ(ν)

w(ν)
=
∑
ω∈Tα

Fω(t)Pν(t)

w(ω)

∑
S∈Pν,ωss

µ(S, Sω) (4.5.14)
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Summing over the ν ∈ Tssα of level V , we have therefore:

Coeffα

Exp

∑
β∈V

Fβ,gen(t)yβ

 =
∑
ν∈Tssα

of level V

Θ(ν)

w(ν)
= (4.5.15)

∑
ν∈Tssα

of level V

∑
ω∈Tα

Fω(t)Pν(t)

w(ω)

∑
S∈Pν,ωss

µ(S, Sω) =
∑
ω∈Tα

Fω(t)

w(ω)

 ∑
S≤Sω

of level V

P[S](t)µ(S, Sω)

 (4.5.16)

The right hand side is equal to Fα,V (t) by eq.(4.5.4).

Remark 4.5.3. The notion of a Log compatible family and the polynomials Fα,gen(t) had
already been introduced in [62, Paragraph 2.1.2]
Letellier [62, Theorem 2.2] used these notions to show the case where V = NI of Theorem
4.5.2 above. His proof is di�erent from ours as it uses symmetric funtions and does not seem
to extend immediately to the case of any V .
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5 Representation theory of �nite reductive groups and Log com-
patibility

In this chapter, G is a connected reductive group over Fq with Frobenius morphism F : G→ G.
We review the construnction of the irreducible characters of G(Fq), with a focus on the case
of GLn(Fq),GLα(Fq) for α ∈ NI . We will mostly follow the book by Digne and Michel [28].

Fix a prime ` such that (`, q) = 1 and an isomorphism Q` ∼= C. In the following, we identify
vector spaces over Q` with vector spaces over C, through this isomorphism.

Section �5.1 and �5.2 address the de�nition of Deligne-Lusztig induction and of the unipotent
characters of a �nite reductive group.

For GLα, given an F -stable maximal torus T ⊆ GLα and a character θ : TF → C∗, in section
�5.3 we de�ne an associated graph, in a sort of dual way to what has been done in �4.4.

This construction is used in section �5.4 to give the de�nition of a reduced character of a Levi
subgroup and, using the latter, to build the irreducible characters of the groups GLα(Fq).
Moreover, in section �5.6, the construction of Section �5.3 is used to show how to associate a
multitype to an irreducible character of GLα(Fq).
These results are preliminary to sections �5.7 and �5.8, where we show the main technical
results of the chapter, Theorem 5.7.5 and Theorem 5.8.4.

The latter theorems are consequences of Theorem 4.5.2 about Log compatible families and
show how to compute certain invariants in the rings (C(GLα(Fq)),⊗), (C(GLα(Fq)), ∗) respec-
tively.

These results are going to be used in chapter �8 and chapter �9 to compute multiplicities
for k-tuples of Harisha-Chandra characters/E-series of character stacks for Riemann surfaces
respectively.

5.1 Deligne-Lusztig induction

Consider an F -stable Levi subgroup L of G, a parabolic subgroup P having L as Levi factor
and denote by UP the unipotent radical of P . Recall that there is an isomorphism P/UP ∼= L

and denote by πL : P → L the associated quotient map.

Remark 5.1.1. Notice that in general P can not be taken to be F -stable. We can �nd an
F -stable parabolic subgroup P ⊇ L if and only if εL = εG.

Denote by L the Lang map L : G→ G given by L(g) = g−1F (g). The variety XL := L−1(UP )

has a left GF -action and a right LF -action by multiplication on the left/right respectively.

These actions induce actions on the compactly supported étale cohomology groupsH i
c(XL,Q`)

and so endow the virtual vector space

H∗c (XL,Q`) :=
⊕
i≥0

(−1)iH i
c(XL,Q`)

with the structure of a virtual GF -representation-LF .
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For an LF -representation M , we de�ne the Deligne-Lusztig induction RGL (M) as the virtual
GF -representation given by

RGL (M) = H∗c (XL,Q`)⊗C[LF ] M.

We will denote by RGL the induced linear map

RGL : C(LF )→ C(GF ).

Remark 5.1.2. In the case that will interest us in the thesis, it will always be true that the
functor RGL does not depend on the choice of the parabolic subgroup P ⊇ L (see for example
[13]).

5.1.1 Harisha-Chandra characters

Consider the case where L is split, i.e there exist n0, . . . , ns such that

(L,F ) ∼= GLn0 × · · · ×GLns .

In this case, we can take P,UP to be F -stable too. The variety XL is a UP -principal bundle
over the �nite variety GF /UF , see the discussion before [28, Lemma 9.1.5].
Since UP is isomorphic to an a�ne space, the cohomology H∗c (XL,Q`) is concentrated in
degree 2 dim(UP ) and we have an equality

RGL (M) = C[GF /UF ]⊗C[LF ] M

for every LF -representation M .
In the split case, we can give the following equivalent description of this functor. For an
LF -representation M , denote by InflP

F

LF (M) the natural lift to a PF -representation via the
quotient map πL.
In [28, Proposition 5.18 (1)], it is shown the following Lemma: .

Lemma 5.1.3. We have an isomorphis of functors:

RGL
∼= IndG

F

PF (InflP
F

LF ).

The functor on the right hand side is usually called Harisha-Chandra induction. For any
character γ : LF → C∗, we call RGL (γ) an Harisha-Chandra character. If an Harisha-Chandra
character is irreducible, we will call it semisimple split.

The Harisha-Chandra induction can be explicitly described on class functions. More precisely,
consider a class function f ∈ C(LF ) and g ∈ GF . By in�ation, we get a class function
f ∈ C(PF ) and we have:

RGL (f) =
∑

hPF∈GF /PF
h−1gh∈PF

f(h−1gh). (5.1.1)
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In the case of G = GLn, the formula above has the following reformulation in terms of �ag
varieties. Let n0, . . . , ns be integers such that L ⊆ GLn is the split Levi subgroup GLn0 × · · ·×
GLns embedded diagonally into GLn i.e

L =


GLns 0 0 0 0 . . . 0

0 GLns−1 0 0 0 . . . 0

0 0 GLns−2 0 0 . . . 0
...

...
...

. . . . . . . . . 0

0 0 0 0 0 0 GLn0

 .

The �nite group LF is therefore isomorphic to

LF = GLn0(Fq)× · · · ×GLns(Fq).

Let P be the F -stable parabolic subgroup containing L and the upper triangular matrices.
Recall that the quotient G/P is identi�ed with the variety of partial �ags inside Fq:

GLn /P = {F = (Fs ⊆ Fs−1 ⊆ · · · ⊆ F0 = Fnq ) | dim(Fi) =
s∑
j=i

nj}. (5.1.2)

The Fq-rational points GLn(Fq)/P (Fq) = (GLn /P )(Fq) are thus identied with partial �ags of
vector subspaces of Fnq

(GLn /P )(Fq) = {F = (Fs ⊆ Fs−1 ⊆ · · · ⊆ F0 = Fnq ) | dim(Fi) =

s∑
j=i

nj}. (5.1.3)

Notice that for g ∈ GLn(Fq) and hP (Fq) ∈ GLn(Fq)/P (Fq), we have h−1gh ∈ P (Fq), if and
only if g · hP (Fq) = hP (Fq), i.e if and only if g stabilizes the �ag associated to hP (Fq).

We end by recalling the following properties of Deligne-Lusztig induction.

Lemma 5.1.4. For a reductive group G and a Levi subgroup L, the following holds:

1. Given an F -stable Levi subgroup L′ ⊇ L, there is an isomorphism of functors: RGL′(R
L′
L ) ∼=

RGL .

2. Assume there exist reductive groups G1, G2 and Levi subgroups L1, L2 such that G =

G1×G2 and L = L1×L2. For an L
F
1 -representation M1 and an LF2 -representation M2,

there is a natural isomorphism RGL (M1 �M2) = RG1
L1

(M1) �RG2
L2

(M2).

Proof. The �rst point is shown in [28, Proposition 9.1.8]. For the second point, we can choose
parabolic subgroups G1 ⊇ P1 ⊇ L1 and G2 ⊇ P2 ⊇ L2 such that P1, P2 have as Levi factor
L1, L2 respectively. Notice thus that P = P1 × P2 ⊆ G is a parabolic subgroup having L as
Levi factor and UP = UP1 × UP2 . We have therefore

L−1(UP ) = L−1(UP1)× L−1(UP1)
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and therefore

H∗c (L−1(UP ),Q`) ∼= H∗c (L−1(UP1),Q`)⊗H∗c (L−1(UP2),Q`),

from which we deduce that

RGL (M1 �M2) = RG1
L1

(M1) �RG2
L2

(M2).

Remark 5.1.5. Consider an F -stable Levi subgroup L′ ⊇ L and a linear character θ : (L′)F →
C∗. By restriction, we can consider it as a character θ : LF → C∗.
For any f ∈ C(LF ), we have an identity RL

′
L (θf) = θRL

′
L (f) and therefore, by Lemma 5.1.4(1),

an equality
RGL (θf) = RGL′(θR

L′
L (f)).

5.2 Unipotent characters

5.2.1 Frobenius actions on Weyl groups of F -stable maximal tori

Fix a group G and an F -stable maximal torus T ⊆ G as above. We follow the notations of
[28, Chapter 11].
Denote by W the Weyl group WG(T ) and by W̃ the semidirect group W o 〈F 〉, where 〈F 〉 is
the group generated by the �nite order automorphism induced by F on W .
Denote by C(WF ) the vector space of function f : W → C constant on F -conjugacy classes.
Equivalenty, a function f ∈ C(WF ) can be seen as a function on the cosetWF ⊆ W̃ , invariant
under W -conjugation.
The vector space C(WF ) is endowed with the Hermitian product de�ned by

〈f, g〉WF =
1

|W |
∑

w∈WF

f(w)g(w),

for f, g ∈ C(WF ).

Example 5.2.1. Let G = (GLn)d and T be the torus of Example 4.2.3. By the remarks thereby
made, the morphism

ψd : C(Sn)→ C(WF )

de�ned as
ψd(f)(σ1, . . . , σd) = f(σd · · ·σ1)

is an isomorphism.
Notice that ψd is an isometry too. Indeed, for each f, f ′ ∈ C(Sn), we have:

〈ψd(f), ψd(f
′)〉 =

1

|Sdn|
∑

(σ1,...,σd)∈Sdn

f(σd · · ·σ1)f ′(σd · · ·σ1) = (5.2.1)
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=
1

|Sdn|
∑
σ∈Sn

f(σ)f ′(σ)#{(σ1, . . . , σd) ∈ Sdn | σd · · ·σ1 = σ} = 〈f, f ′〉 (5.2.2)

where the last equality comes from the fact that, for each σ ∈ Sn, we have

#{(σ1, . . . , σd) ∈ Sdn | σd · · ·σ1 = σ} = |Sd−1
n |.

In [28, Chapter 11.6], it is shown the following Lemma.

Lemma 5.2.2. For each χ ∈ (W∨)F , there exists an extension χ̃ ∈ (W̃∨). The restrictions

of these irreducible characters to the coset WF ⊆ W̃ , i.e the elements {χ̃ ∈ C(WF )}χ∈(W∨)F

are an orthonormal basis of C(WF ).

5.2.2 The case of �nite general linear groups

Consider the group G and the torus T of Example 5.2.1 above. In this case, the constructions
of Lemma 5.2.2 can be explicitly described as follows.

An irreducible character χ ∈W∨ is determined by partitions λ1, . . . , λd ∈ Pn such that

χ = χλ
1
� · · ·� χλ

d
.

The character χ is F -stable if and only if λ1 = · · · = λd = λ, i.e χ = (χλ)�d, so that (W∨)F

is in bijection with Pn.
Consider now a representation ρ : W → GL(Vλ) a�ording the irreducible character χλ.

Let τd ∈ Sd be the permutation τd = (1 2 · · · d). For ((σ1, . . . , σd), F
i) ∈ W̃ , we de�ne

ρ̃(((σ1, . . . , σd), F
i)) ∈ GL(V d

λ ) extending by linearity

ρ̃(((σ1, . . . , σd), F
i))(v1 ⊗ · · · ⊗ vd) = ρ(σ1)vτ id(1) ⊗ · · · ⊗ ρ(σd)vτ id(d)

for each v1, . . . , vd ∈ Vλ.
Notice tha, for any ((σ1, . . . , σd), F

i)((σ′1, . . . , σ
′
d), F

j) ∈ W̃ , we have

ρ̃(((σ1, . . . , σd), F
i)((σ′1, . . . , σ

′
d), F

j))(v1⊗· · ·⊗vd) = ρ̃(((σ1σ
′
τ id(1), . . . , σdσ

′
τ id(d)), F

i+j))(v1⊗· · ·⊗vd) =

(5.2.3)

= ρ(σ1σ
′
τ id(1))vτ i+jd (1)

⊗· · ·⊗ρ(σdσ
′
τ id(d))·vτ i+jd (d)

= ρ(σ1)ρ(σ′τ id(1))vτ i+jd (1)
⊗· · ·⊗ρ(σd)ρ(σ′τ id(d))·vτ i+jd (d)

=

(5.2.4)

ρ̃((σ1, . . . , σd), F
i)(ρ̃((σ′1, . . . , σ

′
d), F

j)(v1 ⊗ · · · ⊗ vd)) (5.2.5)

i.e ρ̃ de�nes a representation ρ̃ : W̃ → GL(V ⊗dλ ).

The character of the representation ρ̃ is the extension (̃χλ)�d of Lemma 5.2.2 above. Consider

the restriction of (̃χλ)�d to the coset WF ⊆ W̃ and the corresponding function (̃χλ)�d ∈
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C(WF ).

We now verify that we have

ψ−1((̃χλ)�d) = χλ ∈ C(Sn).

We have indeed, for each σ ∈ Sn,

ψ−1((̃χλ)�d)(σ) = tr(ρ̃((σ, 1, . . . , 1), F )). (5.2.6)

Fix now a basis B = {e1, . . . , eh} of Vλ. Recall that a basis of V ⊗dλ is given by

B⊗d := {ej1 ⊗ · · · ⊗ ejd | (j1, . . . , jd) ∈ {1, . . . , h}d}.

For any (j1, . . . , jd) ∈ {1, . . . , h}d, we have

ρ̃((σ, 1, . . . , 1), F )(ej1 ⊗ · · · ⊗ ejd) = ejd ⊗ ρ(σ)ej1 ⊗ · · · ⊗ ejd−1
(5.2.7)

We deduce therefore that the coe�cient of the element ej1 ⊗ · · · ⊗ ejd in the writing of
ρ̃((σ, 1, . . . , 1), F )(ej1 ⊗ · · · ⊗ ejd) in the basis B⊗d is given by

� the coe�cient of the element ej in the writing of ρ(ej) in the basis B if j1 = · · · = jd = j.

� 0 otherwise.

We deduce therefore that
tr(ρ̃((σ, 1, . . . , 1), F )) = tr(ρ(σ)),

i.e that we have
ψ−1((̃χλ)�d) = χλ.

5.2.3 De�nition of unipotent characters

In [28, Chapter 11.6] for f ∈ C(WF ), it is de�ned a class function Rf : GF → C as

Rf :=
1

|W |
∑
w∈W

f(w)RGTw(1). (5.2.8)

In locus cit, it shown that the map f → Rf induces an isometry C(WF ) → C(GF ). In
particular, the elements {Rχ̃}χ∈(W∨)F have norm 1 and are pairwise orthogonal in C(GF ).

Consider now an F -stable Levi subgroup L ⊇ T and the corresponding Weyl group WL :=

WL(T ) which is an F -stable subgroup of W . De�ne the induction map

IndWF
WLF

: C(WLF )→ C(WF )

as
IndWF

WLF
(f)(w) =

1

|WL|
∑
h∈WL

h−1wF (h)∈WL

f(h−1wF (h)).
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In [28, Proposition 11.6.6] it is shown the following Lemma.

Lemma 5.2.3. For any f ∈ C(WLF ), we have:

RGL (Rf ) = RIndWF
WLF

(f) (5.2.9)

Let G = (GLn)d and T be the torus considered above. In [28, Chapter 11.7], it is shown the
following Lemma.

Lemma 5.2.4. For each χ ∈ (W∨)F , the class function Rχ̃ is an irreducible character of GF .

The irreducible characters of this form are called unipotent characters. In particular, for every
λ ∈ Pn, there is a corresponding irreducible character R

χ̃�d
λ

, which we will denote by Rλ.

Notice that Lemma 5.2.4 is true for any group G of the form (GLn1)d1 × · · · (GLnr)dr . In this
case, the unipotent characters, by Lemma 5.1.4(2), are in bijection with the multipartitions
λ ∈ Pn1 × · · · × Pnr and we denote by Rλ the associated irreducible unipotent character.
For a such a group G, all F -stable Levi subgroups are still of the form (GLn′1)d′1×· · · (GLn′s)d′s .
By eq.(5.2.9), we deduce the following Proposition.

Proposition 5.2.5. Let G = (GLn1)d1 × · · · (GLnr)dr and L ⊆ G an F -stable Levi subgroup

such that

(L,F ) ∼= (GLn′1)d′1 × · · · (GLn′s)d′s .

For any µ ∈ Pn′1 ×· · ·×Pn′s, the character R
G
L (Rµ) belongs to the vector space spanned by the

unipotent characters of GF .

Example 5.2.6. Consider G = GLn and T = Tn the torus of diagonal matrices. In this case,
W = Sn and the action of F on Sn is trivial and therefore the functions C(SnF ) are the class
functions C(Sn).
Notice that WT (T ) is the trivial group. In particular, from Lemma 5.2.3, we deduce that we
have an equality

RGT (1) = R
IndSn{e}

(5.2.10)

The character IndSn{e} is the character of the group algebra C[Sn], i.e we have

IndSn{e} =
∑
λ∈Pn

χλ(n)χ
λ.

We deduce therefore that we have an equality

RGT (1) =
∑
λ∈Pn

χλ(n)Rλ. (5.2.11)

In particular, the Harisha-Chandra character RGT (1) is not irreductible and decomposes as a
direct sum of unipotent characters. This is the reason why we avoid using the term "semisimple
split" for an Harisha-Chandra character RGL (γ) which is not necessarily irreducible.
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Consider an F -stable Levi subgroup L ⊆ G, a unipotent character Rf ∈ C(LF ) and a linear
character θ : LF → C∗. Fix a central element γ ∈ GF . Notice that γ ∈ LF too. Mackey's
formula [28, Proposition 10.1.2] implies the following Proposition.

Proposition 5.2.7. We have an equality:

RGL (θRf )(γ) = RGL (Rf )(e)θ(γ). (5.2.12)

5.3 Characters of tori and graphs

Fix α ∈ NI , consider the group GLα and �x an F -stable maximal torus T ⊆ GLα. We follow
the notations of section �4.4.
Recall that inside Y∗(T ) there is the dual root system Φ∨ ⊆ Y∗(T ) which is provided with a
canonical bijection Φ↔ Φ∨.

Consider now a character θ : TF → C∗. In the following, we will show how to associate an
admissible graph Γθ with vertices B to the character θ.
In [28, Proposition 11.7.1] it is shown the following Lemma:

Lemma 5.3.1. Fix an isomorphism F∗q ∼= (Q/Z)p′ and let n ∈ N be such that T is split over

Fqn . For any m ∈ N, denote by NFm : T → T the map NFm(x) =
m−1∏
j=0

F j(x).

There is a short exact sequence:

1 Y∗(T ) Y∗(T ) TF 1.
F−1 δT

where δT (β) = NFn

(
β

(
1

qn − 1

))
, where we are identifying qn − 1 with an element of F∗q,

via the isomorphism F∗q ∼= (Q/Z)p′

In particular, the character θ : TF → C∗ induces by restriction a morphism

θ̃ := θ ◦ δT : Y∗(T )→ C∗.

The graph Γθ is de�ned as follows.

� The set of vertices of Γθ is B.

� For each h > j, there is an edge between εh and εj if and only if ε∨h,j ∈ Ker(θ̃).

From Remark 4.4.2, we deduce the following Lemma.

Lemma 5.3.2. For any θ : TF → C∗, the graph Γθ is admissible.

In particular, as remarked in Paragraph �4.4, there exists a unique admissible subtorus Sθ ⊆
GLα such that ΓSθ = Γθ.
We will denote by Lθ = CGLnα (Sθ) and by L̃θ = Lθ ∩ GLα. The Levi subgroup Lθ is the
connected centralizer of θ, as introduced in [26, De�nition 5.19].
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Example 5.3.3. Consider the subset I = {1, 2, 3, 4}, the dimension vector α = (2, 1, 1, 1) and
the torus T of diagonal matrices of Example 4.4.12. Notice that

TF =

{((
λ 0

0 µ

)
, γ, δ, η

)
| λ, µ, γ, δ, η ∈ F∗q

}
.

Consider (β1, β2) ∈ Hom(Fq,C∗)2 and let

θβ1,β2 : TF → C∗

de�ned as
θβ1,β2(λ, µ, γ, δ, η) = β1(λγδη)β2(µ).

If β1 6= β2, the graph Γθβ1,β2
is

ε1 ε3 ε4 ε5

ε2

and the admissible torus Sθβ1,β2
is therefore the torus S1 of Example 4.3.7.

If β1 = β2, the graph Γθβ1,β1
is

ε1 ε3 ε4 ε5

ε2

and the admissible torus Sθβ1,β1
is Zα.

5.4 Irreducible characters of �nite general linear group

5.4.1 Reduced characters and connected centralizers

Let now G = GLn (i.e |I| = 1) and consider an F -stable Levi subgroup L ⊆ GLn and a
linear character θ : LF → C∗. The Levi subgroup L contains an F -stable maximal torus T .
From θ, T , we determine the connected centralizer Lθ ⊇ L as above. The character θ is called
reduced if Lθ = L.

Remark 5.4.1. While the connected centralizer Lθ does depend on the choice of torus T ,
from [26, Proposition 5.11(ii), Proposition 5.20] we deduce that for two F -stable maximal
tori T, T ′ ⊆ L and corresponding connected centralizers Lθ, L′θ, there exists an element g ∈
GLn(Fq) such that gLθg−1 = L′θ.
In particular, the choice of the torus is not relevant to determine whether the character θ is
reduced or not.

For any two positive integers r, d such that r|d, the norm map NF∗
qd
/F∗qr : F∗

qd
→ F∗qr induces

by precomposition an injective homomorphism

Γr,d := Hom(F∗qr ,C∗)→ Hom(F∗qd ,C
∗).
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We denote by Γ the inductive limit via these maps

Γ := lim−→Hom(F∗qd ,C
∗).

Notice that, for any d ≥ 1, we can view Hom(F∗
qd
,C∗) as a subgroup of Γ through the universal

maps of the limit. The Frobenius morphism acts by precomposition on each term Hom(F∗
qd
,C∗)

(i.e F (γ) = γ ◦ F ) and so de�nes a morphism F : Γ→ Γ.

Consider the Levi subgroup

L = (GLn1)d1 × · · · × (GLnr)dr

with n1, . . . , nr, d1, . . . , dr positive integers such that d1n1 + · · ·+ drnr = n and let T be the
maximal torus

(Tn1)d1 × · · · (Tnr)dr .

The group LF is isomorphic to GLn1(Fqd1 ) × · · · × GLnr(Fqdr ). A character θ : LF → C∗ is
therefore given by an element (θ1, . . . , θr) ∈ Hom(F∗

qd1
,C∗)× · · · ×Hom(F∗

qdr
,C∗) such that

θ(M1, . . . ,Mr) =

r∏
j=1

θj(det(Mj))

with Mj ∈ GLnj (Fqdj ). We have the following Lemma

Lemma 5.4.2. The character θ is reduced if and only if the F -orbits of θ1, . . . , θr inside Γ

have length d1, . . . , dr respectively and are pairwise disjoint.

Proof. Notice that, for any h ∈ {1, . . . , n} there exist unique ih ∈ {1, . . . , r} and jh ∈
{1, . . . , dh} such that

ih−1∑
s=1

dsns < h ≤
ih∑
s=1

dsns

and
ih−1∑
s=1

dsns + nih(jh − 1) < h ≤
ih−1∑
s=1

dsns + nihjh.

From the de�nition of θ̃, we deduce that, for h1, h2 ∈ {1, . . . , n}, we have that

θ̃(ε∨h1,h2
) = 1

if and only if

θq
jh1

ih1
θ−q

jh2

ih2
= 1

as elements of Γ, from which we deduce the Lemma above.
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Example 5.4.3. Consider a split Levi subgroup L ⊆ G and n0, . . . , ns such that

(L,F ) ∼= GLn0 × · · · ×GLns .

A character γ : LF → C∗ corresponds thus to γ0, . . . , γs ∈ Hom(F∗q ,C∗) and γ is reduced if
and only if γj 6= γh for each h 6= j.

Consider now two Levi subgroups L ⊆ GLn and L′ ⊆ GLn′ and the product Levi subgroup
M = L× L′ ⊆ GLm embedded block diagonally, where m = n+ n′.

Assume that L = (GLn1)d1×· · ·×(GLnr)dr and L
′ = (GLn′1)d′1×· · ·×(GLn′s)d′s and consider two

reduced characters θ : LF → C∗ and θ′ : (L′)F → C∗ corresponding to (θ1, . . . , θr), (θ
′
1, . . . , θ

′
s)

where θi ∈ Hom(F∗
qdi
,C∗), θ′j ∈ Hom(F∗

q
d′
j
,C∗) for i = 1, . . . , r, j = 1, . . . , s.

Consider the character
γ = θ × θ′ : MF → C∗.

Its connected centralizer Mγ admits the following description. For i ∈ {1, . . . , r}, consider the
subset Ji ⊆ {1, . . . , s} de�ned by

Ji :=
{
j ∈ {1, . . . , s} | d′j = di and the F -orbits inside Γ of θi, θ

′
j have nonempty intersection

}
.

Notice that either Ji = ∅ or Ji = {ji} for an element ji ∈ {1, . . . , s}, as the characters θ, θ′ are
both reduced. Denote by I ′ ⊆ {1, . . . , r} the subset I ′ := {i | Ji = ∅} and by J ′ ⊆ {1, . . . , s}

the subset J ′ = {1, . . . , s} −
r⊔
i=1

Ji.

A similar argument to the one used to prove Lemma 5.4.2 shows that a connected centralizer
Mγ is GLn(Fq)- conjugated to the Levi subgroup∏

i∈I′
(GLni)di

∏
j∈J ′

(GLn′j )d′j

∏
i∈(I′)c

(GLni+n′ji
)di .

Via this conjugation, the character γ corresponds to the character associated to

((θi)i∈I′ , (θ
′
j)j∈J ′ , (θi)i∈(I′)c).

5.4.2 Characters of Levi subgroups

Consider L, T ⊆ GLm and θ : LF → C∗ as before. As mentioned at the end of �5.3, the
character θ can be extended to the connected centralizer θ : LFθ → C∗ and Lθ ⊇ L.
Conversely, for each character γ : TF → C∗ such that Lγ ⊇ L, the character γ can be �rst
extended to γ : LFγ → C∗ and then restricted to obtain a linear character γ : LF → C∗.
We deduce therefore the following Proposition.

Proposition 5.4.4. There is a bijection:

Hom(LF ,C∗)↔ {γ ∈ Hom(TF ,C∗) | Lγ ⊇ L}. (5.4.1)
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Consider nowG = GLα, an admissible torus S, the associated Levi subgroups LS = ZGLmα (S) ⊆
GLmα and L̃S = LS ∩ GLα. Consider an F -stable maximal torus T with LS ⊇ T ⊇ S. The
correspondence (5.4.1) can be rewritten as the following partition of Hom(LFS ,C∗).

Proposition 5.4.5. There are bijections:

{θ ∈ Hom(L̃S
F
,C∗) | Γθ ≤ ΓS} ↔

⊔
U≤S
{θ ∈ Hom(TF ,C∗) | Γθ = ΓU} ↔ Hom(LFS ,C∗).

(5.4.2)

5.5 Construction of irreducible characters

In this paragraph, we quickly recall how to build the character table of the general linear
group GLn(Fq). We start from the following Lemma, which will also be needed later.

Lemma 5.5.1. Consider G = GLn, a Levi subgroup L ⊆ G and two characters Rϕ1 , Rϕ2 for

ϕ1, ϕ2 ∈ C(WLF ). Let θ : LF → C∗ be a reduced character. We have the following equality:

〈RGL (θRϕ1), RGL (θRϕ2)〉GF = 〈Rϕ1 , Rϕ2〉LF .

Notice in particular that if ϕ1 = ϕ2 = ψ̃ with ψ ∈ (W∨L )F , we obtain that

〈RGL (θRψ̃), RGL (θRψ̃)〉 = 〈Rψ̃, Rψ̃〉 = 1.

In particular, the character RGL (θRψ̃) is a virtual irreducible character, i.e an irreducible
character up to a sign.
From these remarks, in [69, Theorem 3.2], it is shown the following Theorem.

Theorem 5.5.2. For an irreducible character χ ∈ GLn(Fq)∨, we have

χ = εGεLR
G
L (θRϕ̃),

where L is an F -stable Levi subgroup, ϕ ∈ (W∨L )F and θ : LF → C∗ is a reduced character.

Two characters χ1, χ2 with associated data (L1, θ1, ϕ1) and (L2, θ2, ϕ2) are equal if and only

if the triple (L1, θ1, ϕ1), (L2, θ2, ϕ2) are GLn(Fq)-conjugated.

For an irreducible character χ with associated datum (L, θ, ϕ), we will refer to the couple
(L, θ) as the semisimple part of χ. This is well de�ned up to GLn(Fq)-conjugacy.

Example 5.5.3. For a split Levi subgroup L ⊆ GLn, with

L ∼=Fq GLn0 × · · · ×GLns ,

from Theorem 5.5.2 above, we deduce that, for any γ = (γ0, . . . , γs) : LF → C∗, the Harisha-
Chandra character RGL (γ) is irreducible if and only if γ is reduced, i.e if and only if γh 6= γj
for each h 6= j.
In �8.4.1, we show how to prove the latter result in an alternative way, using quiver represen-
tations and our main result about multiplicities, Theorem 8.2.8.
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Remark 5.5.4. Let G = GLn and consider now an F -stable Levi subgroup L, a character γ :

LF → C∗ (not necessarily reduced) and a unipotent irreducible character Rψ̃ for ψ ∈ (W∨L )F .

Let Lγ be the connected centralizer of γ. By Remark 5.1.5, we have an equality

RGL (γRψ̃) = RGLγ (γR
Lγ
L (Rψ̃)). (5.5.1)

Notice that from Proposition 5.2.5, we have that RLγL (Rψ̃) belongs to the vector space spanned
by the unipotent characters of Lγ . We deduce thus the following Proposition.

Proposition 5.5.5. For any γ : LF → C∗ and any ψ ∈ (W∨L )F , the character RGL (γRψ̃)

belongs to the vector space spanned by the irreducible characters of GLn(Fq) with semisimple

part (Lγ , γ).

For any α ∈ NI , the irreducible characters GLα(Fq)∨ have a similar description to that of
Theorem 5.5.2. Namely, as each χ ∈ GLα(Fq)∨ is of the form

χ = �i∈Iχi,

with χi ∈ GL∨αi(Fq), from Lemma 5.1.4, we deduce that there exist an F -stable Levi subgroup
L ⊆ GLα, a unipotent character Rψ̃ with ψ ∈ (W∨L )F and a reduced character θ : LF → C∗

such that χ = εGεLR
G
L (θRψ̃).

5.6 Type of an irreducible character

Let χ ∈ GLn(Fq)∨ with associated datum (L, θ, ϕ). Up to conjugacy, L is equal to (GLn1)d1×
· · · × (GLnr)dr and ϕ = Rλ for λ = (λ1, . . . , λr) ∈ Pn1 × · · · × Pnr a multipartition. The type

ω = (d1, λ1) . . . (dr, λr) ∈ Tn

is called the type of the irreducible character χ.

Example 5.6.1. Consider a split Levi subgroup L, a reduced θ : LF → C∗ and the irreducible
character RGL (θ). There exists a partition µ = (µ1, . . . , µh) ∈ Pn such that L is GLn(Fq)-
conjugated to Lµ = GLµ1 ×GLµ2 × · · · × GLµh ⊆ GLn. The type of the character RGL (θ)

is
(1, (µ1)) · · · (1, (µh)).

In a similar way, for any �nite set I and any α ∈ NI , to each irreducible character χ ∈
GLα(Fq)∨, we can associate a multitype ωχ ∈ Tα. Let χ = εGLαεLR

GLα
L (Rϕ̃θ) with θ : LF →

C∗ a reduced character and Rϕ̃ a unipotent character of LF with ϕ ∈ (W∨L )F .

Consider an F -stable torus T ⊆ L and the restriction of θ : TF → C∗. As explained in �5.3,
this determines a Levi subgroup Lθ ⊆ GL|α| with admissible center Sθ ⊆ T and such that

Lθ ∩GLα = L̃θ = L.
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Consider the semisimple multitype

[Sθ] = (d1, (1
β1)) . . . (dr, (1

βr)).

By Remark 4.3.8, we see that L̃θ is GLα(Fq)-conjugated to

∏
i∈I

r∏
j=1

(GL(βj)i)dj ⊆
∏
i∈I

GLαi .

The set (W∨L )F is thus in bijection with

∏
i∈I

r∏
j=1

S∨(βj)i =
∏
i∈I

r∏
j=1

P(βj)i .

The element ϕ determines multipartition λ1, . . . ,λr ∈ PI such that |λj | = βj . The type ωχ
associated to χ is given by

ωχ = (d1,λ1) . . . (dr,λr).

Example 5.6.2. Let I = {1, 2, 3, 4} and α = (2, 1, 1, 1). Let T ⊆ GL2 be the F -stable torus of
diagonal matrices, consider β 6= γ ∈ Hom(F∗q ,C∗) and the associated character (β, γ) : TF →
C∗. Let χ be the character χ ∈ GLα(Fq)∨

χ = RGT ((β, γ)) � γ(det) � γ(det) � γ(det).

Let β1 = (1, 1, 1, 1) and β2 = (1, 0, 0, 0). The associated multitype is

ωχ = (1, (β1))(1, (β2)).

Remark 5.6.3. Given ω ∈ Tα, consider an irreducible character χ ∈ GLα(Fq)∨ of type ω. Fix
S ∈ Zα such that [S] = ωss (for example S = Sω). We can assume then that

χ = ε
L̃S
εGLαR

GLα
L̃S

(θRϕ̃)

with θ : L̃S
F
→ C∗ such that Sθ = S and Rϕ̃ a unipotent character of L̃S

F
. For any

γ : L̃S
F
→ C∗ such that Sγ = S, the character ε

L̃S
εGLαR

GLα
L̃S

(γRϕ̃) is irreducible and of type
ω.

The map from

{γ : L̃S
F
→ C∗ | Sγ = S}

to
{χ ∈ GLα(Fq)∨ of type ω}

which sends γ to ε
L̃S
εGLαR

GLα
L̃S

(γRϕ̃) is surjective. A similar argument to the one used to

de�ne the multitype of a conjugacy class of GLα(Fq) in �4.3.5 shows that its �bers have
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cardinality w(ω).

Recall that the value
χ(1)

|GLα(Fq)|
for χ ∈ GLα(Fq)∨ depends only on the type of χ. More

precisely, for a partition λ ∈ P, let Hλ(t) be the hook polynomial

Hλ(t) =
∏
s∈λ

(1− th(s)).

For a multipartition λ = (λi)i∈I ∈ PI , we de�ne Hλ(t) :=
∏
i∈I

Hλi(t). Given a multitype

ω = (d1,λ1) . . . (dr,λr), de�ne H∨ω (t) as

H∨ω (t) :=
(−1)f(ω)

q

(∑
i∈I

αi(αi−1)

2
−n(ω)

)∏r
j=1Hλj (t

dj )

(5.6.1)

where if |λ1| = β1, . . . , |λr| = βr, then f(ω) =
r∑
j=1

|βj |. We have the following Proposition

(see for example [70, IV, 6.7]).

Proposition 5.6.4. For any χ ∈ GLα(Fq), we have:

χ(1)

|GLα(Fq)|
= H∨ωχ(q). (5.6.2)

5.7 Log compatibility for family of class functions

5.7.1 Multiplicative parameters

Given σ = (σi)i∈I ∈ Hom(F∗q ,C∗)I and δ ∈ NI , we denote by σδ the element of Hom(F∗q ,C∗)
de�ned as

σδ :=
∏
i∈I

σδii .

We denote by Hσ the subset of NI de�ned as

Hσ := {δ ∈ NI | σδ = 1}

and, for any α ∈ NI , by Hσ,α the intersection Hσ,α := Hσ ∩ NI≤α.

De�nition 5.7.1. For an admissible torus S ∈ Zα , we say that S is of level σ if it is of level
Hσ,α.

Let S ⊆ GLα be an admissible torus and γ = (γi)i∈I ∈ Hom(F∗q ,C∗)I . Let detI be the
morphism detI : GLα(Fq)→ (F∗q)I de�ned as

det I((gi)i∈I) := (det(gi))i∈I .
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For an element γ = (γi)i∈I ∈ Hom(F∗q ,C∗)I denote by ργ the character

ργ((gi)i∈I) :=
∏
i∈I

γi(det(gi)).

By eq.(4.3.14), there is an equality

∑
s∈(Sreg)F

ργ(s) =
∑
S′≤S

 ∑
s′∈(S′ )F

ργ(s′)

µ(S′, S). (5.7.1)

As detI is invariant up to conjugation, to evaluate
∑

s′∈(S′ )F

ργ(s′), we can assume S′ to be equal

to
S′ = (Zβ1)d1 × · · · × (Zβr)dr

embedded block diagonally, for certain β1, . . . , βr ∈ NI and d1, . . . , dr ∈ N>0. The �nite group
(S′)F is identi�ed with F∗

qd1
× · · · × F∗

qdr
and, via this identi�cation, we see that

ργ(z1, . . . , zr) = γβ1(NF∗
qd1

/F∗q (z1)) · · · γβr(NF∗
qdr

/F∗q (zr)).

Therefore, we have that ργ |(S′)F = 1 if and only βj ∈ Hγ,α for each j = 1, . . . , r, i.e if and
only if S′ is of level γ. We deduce the following Proposition.

Proposition 5.7.2. For any γ ∈ Hom(F∗q ,C∗)I and any S ∈ Zα, we have:∑
s∈(Sreg)F

ργ(s) =
∑
S′≤S

of level γ

|(S′)F |µ(S′, S) =
∑
S′≤S

of level γ

P[S′](q)µ(S′, S) (5.7.2)

5.7.2 Multiplicities for Log compatible families

Assume now to have been given a family {rα}α∈NI with rα ∈ C(GLα(Fq)).

De�nition 5.7.3. We say that {rα}α∈NI is Log compatible if, for each α ∈ NI , the value of
rα is constant on conjugacy classes of the same type and its value at a type ω ∈ Tα is of the
form Rω(q) where Rω(t) ∈ Q(t) and the family {Rω(t)}ω∈TI is Log compatible.

Remark 5.7.4. Notice that given two Log compatible families {rα}α∈NI , {r′α}α∈NI the family
{rαr′α}α∈NI is Log compatible too.

For each ω ∈ T, denote by R̃ω(t) :=
Rω(t)

Zω(t)
. From eq.(3.6.1), we deduce tht {Zω(t)}ω∈TI is

Log compatible and therefore the family {R̃ω(t)}ω∈TI is Log compatible too.

For each α ∈ NI and for each σ ∈ Hom(F∗q ,C∗)I , we will denote the polynomial R̃α,Hσ,α(t)

introduced in eq.(4.5.1) by R̃α,σ(t).
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Notice that for each α ∈ NI and any character γ ∈ Hom(F∗q ,C∗)I , there is an equality

〈rα ⊗ ργ , 1〉 =
1

|GLα(Fq)|
∑

g∈GLα(Fq)

rα(g)ργ(g) =
1

|GLα(Fq)|
∑
ω∈Tα

∑
g∼ω

rα(g)ργ(g) = (5.7.3)

∑
ω∈Tα

Rω(q)

|GLα(Fq)|

(∑
g∼ω

ργ(g)

)
=
∑
ω∈Tα

Rω(q)

Zω(q)

∑
O∈Cl(GLα(Fq))

O∼ω

ργ(O). (5.7.4)

Using the parametrization of the set {O ∼ ω} introduced in Remark 4.3.17, we deduce that
the RHS of eq.(5.7.4) is equal to

∑
ω∈Tα

Rω(q)

Zω(q)w(ω)

 ∑
s∈(Sreg

ω )F

ργ(s)

 =
∑
ω∈Tα

R̃ω(q)

w(ω)

 ∑
S′≤Sω
of level γ

P[S′](q)µ(S′, Sω)

 = R̃α,γ(q)

(5.7.5)
where the equality at the middle is a consequence of eq.(5.7.2).

From Theorem 4.5.2 we thus get the following result:

Theorem 5.7.5. For any Log compatible family {rα ∈ C(GLα(Fq))}α∈NI , for any α ∈ NI and
any γ ∈ Hom(F∗q ,C∗)I , there is an equality:

〈rα ⊗ ργ , 1〉 = Coeffα

Exp

∑
β∈Hγ

R̃β,gen(q)yβ

 (5.7.6)

Remark 5.7.6. The de�nition of a Log compatible family of class functions had already been
introduced by Letellier in [62, Paragraph 2.1.2].
The author [62, Theorem 2.2] thereby showed the case where γi = 1 for each i ∈ I of Theorem
5.7.5. However, his method is di�erent from ours and does not seem to extend to the case of
a general γ ∈ Hom(F∗q ,C∗)I .

Remark 5.7.7. For σ ∈ Hom(F∗q ,C∗)I and β ∈ NI , we say that σ is generic with respect to β
if Hσ,β = {β}. If q is big enough, for any β there exists a character σ generic with respect to
β.

Fix now α ∈ NI . Assume that q is su�ciently big and for any 0 < β ≤ α, choose γβ,gen ∈
Hom(F∗q ,C∗)I generic with respect to β. The argument preceding Theorem 5.7.5, shows that
for any 0 < β ≤ α, there is an equality

〈rβ ⊗ ργβ,gen , 1〉 = R̃β,gen(q). (5.7.7)

Notice that the multiplicity 〈rβ⊗ργβ,gen , 1〉 is therefore given by a polynomial in q which does
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not depend on γβ,gen but only on the dimension vector β. Eq.(5.7.7) had already been proved
in [62, Theorem 2.2].
Eq.(5.7.6) and eq.(5.7.7) give therefore a way to express the multiplicity 〈rα ⊗ ργ , 1〉 for any
γ ∈ Hom(F∗q ,C∗)I in terms of the analogous multiplicities for generic parameters.

5.8 Dual Log compatibility for families of class functions

5.8.1 Multiplicative parameters

Given an element η = (ηi)i∈I ∈ (F∗q)I and δ ∈ NI , we de�ne

ηδ =
∏
i∈I

ηδii .

We denote by Hη the subset of NI de�ned as

Hη := {δ ∈ NI | ηδ = 1}

and, for any α ∈ NI , by Hη,α the intersection Hη,α := Hη ∩ NI≤α.

De�nition 5.8.1. For an admissible torus S ∈ Zα , we say that S is of level η if it is of level
Hη,α.

Assume now to have �xed, for each S ∈ Zα, an F -stable maximal torus GLα ⊇ TS ⊇ S in
such a way that if S ≤ S′ then TS = TS′ . De�ne then the functions gη, fη : Zα → C as

gη(S) :=
∑

θ:TFS →C
∗

Γθ=ΓS

θ(η)

and
fη(S) :=

∑
θ:TFS →C

∗

Γθ≤ΓS

θ(η).

By Identity (4.3.6), we have
gη(S) =

∑
S′≤S

µ(S′, S)fη(S
′) (5.8.1)

Notice that by the bijection of eq.(5.4.2), for each S ∈ Zα, we have

fη(S) =
∑

θ:LFS→C∗
θ(η).

Fix now S with type [S] = (d1, β1) . . . (dr, βr), with β1, . . . , βr ∈ NI . Notice that there exists
h ∈ GLα(Fq) such that

hSh−1 =

r∏
j=1

(Zβj )dj
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and so

hLSh
−1 =

r∏
j=1

(GLnβj )dj .

In particular, a character θ : LFS → C∗, via the conjugation above, corresponds to an element
(θ1, . . . , θr) ∈ Hom(F∗

qd1
,C∗)× · · · ×Hom(F∗

qdr
,C∗) such that

θ(M1, . . . ,Mr) =
r∏
j=1

θj(det(Mj))

with Mj ∈ GLnj (Fqdj ).
As the element η ∈ GLα(Fq) is central, we have the following equality

θ(η) =

r∏
j=1

θj(η
βj ). (5.8.2)

In particular, eq.(5.8.2) implies that fη(S) 6= 0 if and only if ηβj = 1 for each j = 1, . . . , r, i.e
if and only if S is of level η. We deduce the following Proposition.

Proposition 5.8.2. For each S ∈ Zα, there is an equality

gη(S) =
∑
S′≤S

of level η

|Hom(LFS′ ,C
∗)|µ(S′, S) =

∑
S′≤S

of level η

P[S′](q)µ(S′, S). (5.8.3)

5.8.2 Convolution for dual Log compatible families

Assume to have been given a family {cα}α∈NI with cα ∈ C(GLα(Fq)).

De�nition 5.8.3. The family {cα}α∈NI is said to be dual Log compatible if, for any χ ∈
GLα(Fq), the product 〈cα, χ〉 depends only on the type of χ and the value of 〈cα, χ〉 for χ ∼ ω
is of the form Cω(q) where {Cω(t) ∈ Q(t)}ω∈T is a family of rational functions such that for
any d1, . . . , dr ∈ N and ω1 ∈ Tβ1 , . . . , ωr ∈ Tβr such that ψd1(ω1) ∗ · · · ∗ψdr(ωr) = ω, we have:

Cω1(td1) · · ·Cωr(tdr)
r∏
j=1

H∨ωj (t
dj ) = Cω(t)H∨ω (t). (5.8.4)

i.e the family {Cω(t)H∨ω (t)}ω∈T is Log compatible.

For each ω ∈ T, denote by C̃ω(t) := Cω(t)H∨ω (t). The family {C̃ω}ω∈T is therefore Log
compatible. For each α ∈ NI and for each η ∈ (F∗q)I , we will denote the polynomial C̃α,Hη,α(t)

introduced in eq.(4.5.1) by C̃α,η(t).

For each α ∈ NI and any parameter η ∈ (F∗q)I , by eq.(3.1.4), we deduce the following chain of
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equalities:
cα(η)

|GLα(Fq)|
=

∑
χ∈GLα(Fq)∨

〈cα, χ〉
χ(η)

χ(1)

χ(1)

|GLα(Fq)|
= (5.8.5)

=
∑
ω∈Tα

∑
χ∈GLα(Fq)∨

χ∼ω

〈cα, χ〉
χ(η)

χ(1)
H∨ω (q) =

∑
ω∈Tα

C̃ω(q)

 ∑
χ∈GLα(Fq)∨

χ∼ω

χ(η)

χ(1)

 . (5.8.6)

By Remark 5.2.7, the RHS of eq.(5.8.6) is equal to

∑
ω∈Tα

C̃ω(q)

w(ω)

 ∑
θ:L̃Sω→C∗

Γθ=ΓSω

θ(η)

 =
∑
ω∈Tα

C̃ω(q)

w(ω)

 ∑
S′≤Sω
of level η

P[S′](q)µ(S′, Sω)

 = C̃α,η(q) (5.8.7)

where the equality at the middle is a consequence of eq.(5.8.3). We deduce therefore the
following Theorem:

Theorem 5.8.4. For any dual Log compatible family {cα}α∈NI and any η ∈ (F∗q)I , there is

an equality

cα(η)

|GLα(Fq)|
= Coeffα

Exp

∑
β∈Hη

C̃β,gen(q)yβ

 (5.8.8)

Remark 5.8.5. For β ∈ NI and η ∈ (F∗q)I , say that η is generic with respect to β if Hη,β = {β}.
For any β, if q is su�cienty big, there exists an element of (F∗q)I generic with respect to it.

Fix now α ∈ NI . Assume that q is su�ciently big and for any 0 < β ≤ α, choose ηβ,gen ∈ (F∗q)I

generic with respect to β. The reasoning used to prove Theorem 5.8.4, shows that for any
0 < β ≤ α, there is an equality

cβ(ηβ,gen)

|GLβ(Fq)|
= C̃β,gen(q). (5.8.9)

Notice therefore that the quantity
cβ(ηβ,gen)

|GLβ(Fq)|
is given by a rational function in q which does

not depend on ηβ,gen but only on the dimension vector β.

Eq.(5.8.8) and eq.(5.8.9) give therefore a way to express the quantity
cα(η)

|GLα(Fq)|
for any central

element η ∈ (F∗q)I in terms of the analogous values for generic parameters.

Remark 5.8.6. While the notion of a Log compatible family of class functions already appeared
in Letellier's article [62], the de�niton of a dual Log compatible family seems to not have been
given before in the literature.
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The latter notion is going to be the key technical point to show our Theorem 9.3.2 about
E-series of character stacks for Riemann surfaces.

Example 5.8.7. Let I = {·} and, for any n ∈ N, let fn : GLn(Fq)→ C be the class function

fn(h) := #{(x, y) ∈ GLn(Fq)×GLn(Fq) | [x, y] = h}

for h ∈ GLn(Fq). For any χ ∈ GLn(Fq)∨ of type ω, it holds 〈fn, χ〉 =
1

H∨ω (q)
. More generally

for any �nite group G and any irreducible character χ ∈ G∨ it holds:

∑
(a,b)∈G2

χ([a, b]) =
|G|
χ(1)

. (5.8.10)

This equality is obtained by applying Schur's lemma in a classical way as explained in [44,

Paragraph 2.3]. Notice that, from the identity 〈fn, χ〉 =
1

H∨ω (q)
, we immediately deduce that

the family {fn}n∈N is dual Log compatible.

The notion of dual Log compatibility is well behaved with respect to convolution, as explained
by the following Lemma.

Lemma 5.8.8. Let {fα}α∈NI , {f ′α}α∈NI be two families of dual Log compatible functions. The

family {kα}α∈NI , de�ned as kα :=
fα ∗ f ′α
q
∑
i∈I α

2
i

is dual Log compatible.

Proof. Let Fω,α(t), F ′ω,α(t) be the polynomials such that 〈fα, χ〉 = Fω,α(q) and 〈f ′α, χ〉 =

F ′ω,α(q) for every χ ∈ GLα(Fq)∨ of multitype ω ∈ Tα. By eq.(3.1.3), we see that

〈kα, χ〉 =
Fω,α(q)F ′ω,α(q)

H∨ω (q)q
∑
i∈I α

2
i

.

Fix d1, . . . , dr ∈ N and ω1 ∈ Tβ1 , . . . , ωr ∈ Tβr such that ψd1(ω1) ∗ · · · ∗ψdr(ωr) = ω. To check
eq.(5.8.4) for the functions kα, we need to verify that

r∏
j=1

Fωj ,βj (q
dj )F ′ωj ,βj (q

dj )

H∨ωj (q
dj )qdj

∑
i∈I(βj)2

i

r∏
j=1

H∨ωj (q
dj ) =

Fω,α(q)F ′ω,α(q)

H∨ω (q)q
∑
i∈I α

2
i

H∨ω (q). (5.8.11)

By dual Log compatibiliy for fα, f ′α, this is equivalent to verify the equality(∏r
j=1H

∨
ωj (t

dj )

H∨ω (t)

)2

=
t
∑
i∈I α

2
i∏r

j=1 t
∑r
j=1 dj

∑
i∈I(βj)2

i

(5.8.12)

which is a direct consequence of the Identity (5.6.1).
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Remark 5.8.9. From Lemma 5.8.8 above and Example 5.8.7, we deduce that for any g ≥ 1,
the family of class function {fgn : GLn(Fq)→ C}n∈N, where

fgn(h) =
#{(x1, y1, . . . , xg, yg) |

∏g
i=1[xi, yi] = h}

q(n2(g−1))

is dual Log compatible.

In [44, Section 2.3], it is shown that 〈fgn, χ〉 =

(
|GLn(Fq)|
χ(1)

)2g−1

, from which it is possible to

check Dual log compatibility directly from eq.(5.8.4).
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6 Quiver representations and a generalization of Kac polyno-
mials

In this chapter, we study representations of a �nite quiver Q = (I,Ω).

In section �6.1, we recall the de�nition of representations of Q over a �eld K and we review
some properties of the representation theory of a quiver Q = (I,Ω).

For K = Fq, we recall the results of Kac [52] and Hua [50], regarding the counting of the
isomorphism classes of Fq-representations.
More precisely, in [52], the author showed that, for any β ∈ NI , there exists a polynomial
aQ,β(t) ∈ Z[t], called Kac polynomial, such that aQ,β(q) counts the number of isomorphism
classes of absolutely indecomposable representations of Q over Fq of dimension β.

These polynomials have a geometric interpretation in terms of the cohomology of certain
quiver varieties, see for example [47].

In [50], the author uses Kac polynomials to give formulas for the number of isomorphism
classes of representations of Q over Fq of �xed dimension α ∈ NI .
In section �6.2, we introduce the notion of levels for representations of a quiver Γ. For V ⊆
NI , a representation M over K is called of level at most V if the dimension vector of the
indecomposable components of M ⊗K belong to V .

We show that, for any V, α, there exists a polynomial MQ,α,V (t) ∈ N[t] such that MQ,α,V (q)

counts the number of isomorphism classes of representations of level at most V of dimension
α over Fq. Notice that for V = {α}, we have an equality MQ,α,{α}(t) = aQ,α(t).

In general, in Lemma 6.2.2 we show a formula expressing MQ,α,V (t) in terms of the Kac
polynomials aQ,β(t) for β ∈ V . The polynomials MQ,α,V (t) will be used in Chapter �8 to
compute the multiplicities for k-tuples of Harisha-Chandra characters of GLn(Fq).
In �6.2.2, we show how to express the polynomialsMQ,α,V (t) in terms of certain representations
of the �nite group GLα(Fq), generalizing the results of Letellier [62] about Kac polynomials
and DT invariants.

6.1 Quiver representations

A quiver Q is an oriented graph Q = (I,Ω), where I is its set of vertices and Ω is its set of
arrows. We will always assume that I,Ω are �nite sets. For an arrow a : i→ j in Ω we denote
by i = t(a) its tail and by j = h(a) its head.

Fix a �eld K. A representation M of Q over K is given by a (�nite dimensional) K-vector
space Vi for each vertex i ∈ I and by linear maps Ma : Mt(a) →Mh(a) for each a ∈ Ω.

Given two representations M,M ′ of Q, a morphism f : M → M ′ is given by linear maps
{fi : Mi →M ′i}i∈I such that, for all a ∈ Ω, we have:

fh(a)Ma = M ′aft(a).

The category of representations of Q over K is denoted by RepK(Q). For a representation
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M , the dimension vector dimM ∈ NI is de�ned as

dimM := (dimMi)i∈I .

It is an isomorphism invariant of the category Repk(Q).

For a representation M of dimension α, up to �xing a basis of the vector spaces Mi for each
i ∈ I, we can assume that Mi = Kαi . For a ∈ Ω, the linear map Ma : Kt(a) → Kh(a) can be
therefore identi�ed with a matrix in Mat(αh(a), αt(a),K).
Consider then the a�ne space

R(Q,α) :=
⊕
a∈Ω

Mat(αh(a), αt(a),K).

We can endow R(Q,α) with the action of the group GLα =
∏
i∈I

GLαi de�ned by

g · (Ma)a∈Ω = (gh(a)Mag
−1
t(a))a∈Ω.

The orbits of this action are exactly the isomorphism classes of representations ofQ of dim = α.

Denote by (−,−) : ZI × ZI → Z the Euler form of Q, de�ned by

(α, β) =
∑
a∈Ω

αt(a)βh(a) −
∑
i∈I

αiβi.

We brie�y recall also the de�nition of the moment map of Q. Denote by Q the double quiver
Q = (I,Ω) with the same vertices of Q and as set of arrows Ω = {a, a∗ | a ∈ Ω} where
a∗ : j → i for a : i→ j. For α ∈ NI , the moment map µα is the morphism

µα : R(Q,α)→ End0(α)

x = (xa, xa∗)a∈Ω →
∑
a∈Ω

[xa, xa∗ ]

where
End0(α) = {(Mi) ∈ End(α) |

∑
i∈I

tr(Mi) = 0}.

Given λ ∈ KI such that λ · α = 0, the element (λiIαi)i∈I (which we still denote by λ) is a
central element of End0(α) and the �ber µ−1

α (λ) is GLα invariant. We denote by Qλ,α the
quiver variety associated to λ, which is de�ned as the GIT quotient

Qλ,α := µ−1
α (λ)//GLα .

The quiver stackMλ,α is de�ned as the quotient stack

Mλ,α := [µ−1
α (λ)/GLα].
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6.1.1 Multiplicative quiver stacks

There is also a multiplicative version of the moment map µα, usually called multiplicative
moment map.

More precisely, for α ∈ NI , let R(Q,α)◦ be the open subvariety of R(Q,α) such that (1 +

xbxb∗), (1 + xb∗xb) is invertible for every b ∈ Ω.

Assume to have �xed an ordering < on Ω. The multiplicative moment map Φα is the GLα-
equivariant morphism

Φα : R(Q,α)◦ → GLα

(xa, xa∗)→
∏
a∈Ω

(1 + xaxa∗)(1 + xa∗xa)
−1 (6.1.1)

where we are taking the ordered product with respect to <.

For σ ∈ (K∗)I , the element (σiIαi)i∈I ∈ GLα, which we still denote by σ, is central and the
�ber Φ−1

α (σ) is GLα-invariant.

We de�ne the multiplicative quiver stackMσ,α of parameters σ, α as the quotient stack

Mσ,α := [Φ−1
α (σ)/GLα].

Remark 6.1.1. While the morphism Φα depends on the ordering <, the isomorphism class of
the multiplicative quiver stackMσ,α does not depend on it, see for example [19, Proposition
1.4].

6.1.2 Krull-Schmidt decomposition and endomorphism rings

Recall that the category RepK(Q) is abelian and Krull-Schimdt, i.e we have the following
Theorem, see for example [56, Theorem 1.11].

Theorem 6.1.2. Each object M ∈ RepK(Q) admits a decomposition into a direct sum of

indecomposable ones

M =
⊕
j∈J

M
nj
j

and such a decomposition is unique up to permuting the factors.

Recall that a representation M is indecomposable if and only if End(M) is a local algebra.
Its maximal ideal is denoted by Rad(M) ⊆ End(M). It is the set of nilpotent endomorphisms
of M . The quotient End(M)/Rad(M) is thus a division algebra, which is usually denoted by
top(M).

More generally, given two representations M,N it is possible to de�ne a subset Rad(M,N) of
Hom(M,N) as

Rad(M,N) = {g ∈ Hom(M,N) | 1 + gf ∈ Aut(N) , ∀f ∈ Hom(N,M)}.
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If M = N and M is indecomposable, Rad(M) = Rad(M,M). In general, Rad(N,N) is
still an ideal of End(N) and if M,N are non-isomorphic indecomposable representations,
Rad(M,N) = Hom(M,N). The radical is additive i.e

Rad(M ⊕M ′, N) = Rad(M,N)⊕ Rad(M ′, N).

We have the following proposition (see [36, Section 3.2]):

Proposition 6.1.3. Given a representation X of Q and an endomorphism ϕ ∈ End(X), ϕ

is invertible if and only if its class ϕ in End(X)/Rad(X) is invertible.

Remark 6.1.4. Fix a representation X and its Krull-Schmidt decomposition X =
⊕

j∈J X
rj
j .

For an endomorphism ϕ ∈ End(X), we denote by ϕj the associated element in End(X
rj
j ) and

by ϕj the associated element in

End(X
rj
j )/Rad(X

rj
j ) ∼= Mat(rj , top(Xj)).

As Rad(Xi, Xj) = Hom(Xi, Xj) for every i 6= j, the following isomorphism of K-algebras
holds:

End(X)/Rad(X) ∼=
⊕
j∈J

Mat(rj , top(Xj)). (6.1.2)

ϕ −→ (ϕj)j∈J (6.1.3)

Proposition 6.1.3 can therefore be rephrased as: ϕ is an isomorphism if and only if ϕj is
invertible for each j ∈ J .

6.1.3 Indecomposable over �nite �elds and Kac polynomials

In this paragraph, unless explicitly speci�ed, we assume K = Fq. Wedderburn's theorem
implies that every �nite dimensional division algebra over Fq is a �nite �eld. For an indecom-
posable representation M ∈ RepFq(Q), we have therefore top(M) = Fqd for some d ≥ 1.

Fix a representation X with Krull-Schimdt's decomposition

X =
⊕
j∈J

X
rj
j

and integers dj such that top(Xj) = F
qdj

for each j ∈ J . From Remark 6.1.4, there is a
morphism of �nite groups

pX : Aut(X)→
∏
j∈J

GLrj (Fqdj ) (6.1.4)

ϕ −→ (ϕ)j∈J . (6.1.5)

and its kernel Ker(pX) is the subset UX := {1 + f | f ∈ Rad(X)} ⊆ Aut(X). In particular,
all the elements inside Ker(pX) are unipotent.
The integers dj admit the following description in terms of absolutely indecomposable repre-
sentations (see De�nition 6.1.5 below).
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De�nition 6.1.5. A representation V over a �eld K is absolutely indecomposable if V ⊗KK
is indecomposable.

To relate absolutely indecomposable and indecomposable representations over Fq, we introduce
the action of the Frobenius.

Denote by (Fq)Fri the set Fq with the structrure of Fq vector space given by

λ · v = F i(λ)v.

Consider an Fq-representation N . We de�ne Fri(N) to be the representation N ⊗Fq (Fq)Fri .

Over the parameter space R(Q,α)(Fq), the Frobenius action corresponds to the usual (geo-
metric) Frobenius, i.e for x ∈ R(Q,α)(Fq) the representation Fri(x) is given by the element
F i(x) ∈ R(Q,α)(Fq), where F : R(Q,α)→ R(Q,α) is the canonical Frobenius.

Consider a representation M of Q over Fq and d ∈ N>0 such that Frd(M) ∼= M . Since the
stabilizers of the action of GLα on R(Q,α) are connected, by [28, Proposition 4.2.14] there
exists an Fqd-representation M0 of Q such that

M0 ⊗F
qd
Fq ∼= M.

In this case, we say thus that M is de�ned over Fqd . De�ne size(M) to be the smallest d such
that Frd(M) ∼= M , i.e such that M is de�ned over Fqd . Notice that, for M ∈ R(Q,α)(Fq), the
size size(M) is the cardinality of the orbit ofM for the action of the Frobenius on R(Q,α)(Fq).
Notice moreover that size(M) is an isomorphism invariant and we can therefore talk about
the size of an isomorphism class.

By what we just said, we deduce that, for any β ∈ NI and d > 0, we have the following
equality.

aQ,β(qd) = #{ Isomorphism classes of indecomposable representations M over Fq | (6.1.6)

dim(M) = β and Frd(M) ∼= M}} = (6.1.7)

=
⊔
r|d

#{ Isomorphism classes of indecomposable representations M over Fq | (6.1.8)

dim(M) = β and size(M) = r} (6.1.9)

Indecomposable representations are described in terms of absolutely indecomposable ones by
the following Lemma, see [52].

Lemma 6.1.6. For every indecomposable representation W of Q of dimension α over Fq
such that size(W ) = d, there exists an indecomposable representation M over Fq such that

top(M) = d and

M ⊗Fq Fqd ∼=
d−1⊕
i=0

Fri(W ).
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Conversely, for an indecomposable representation M over Fq, such that top(M) = Fqd , there
exists an absolutely indecomposable representation W of Q over Fqd such that dim(W ) = α

d ,

size(W ) = d and we have :

M ⊗Fq Fqd ∼=
d−1⊕
i=0

Fri(W ). (6.1.10)

Remark 6.1.7. Notice that Lemma 6.1.6 implies in particular that, given an indecomposable
representation M of Q of dimension α over Fq with top(M) = Fqd , we have d|α := gcd(αi)i∈I .

Moreover, absolutely indecomposables of Q over �nite �elds are described by the following
result, see [52, Theorem A].

Theorem 6.1.8. (i) There exists a polynomial with integer coe�cients aQ,α(t) ∈ Z[t] such

that, for each q, aQ,α(q) is equal to the number of isomorphism classes of absolutely indecom-

posable representations of Q over Fq of dimension vector α.

(ii) The Kac polynomial aQ,α(t) 6= 0 if and only if α ∈ Φ(Q)+. Moreover, aQ,α(t) ≡ 1 if and

only if α is a real root (see [52, Section (a)] for a de�nition). Otherwise aQ,α(t) is monic of

degree 2− αtCα

Here Φ+(Q) ⊆ NI is the root system of Q, introduced in [52, Section (a)] and C = (Ci,j)i,j∈I
is the Cartan matrix of the quiver given by

Cij =

{
2− 2(the number of edges joining i to itself) if i = j

−(the number of edges joining i to j) otherwise.

Thanks to the isomorphism (6.1.10), in [52, Section 1.14] it is shown the following Proposition.

Proposition 6.1.9. There exists a polynomial IQ,α,d(t) such that, for any q, IQ,α,d(q) is

equal to the number of isomorphism classes of indecomposable representations M such that

dimM = α and top(M) = Fqd and we have

IQ,α,d(t) =
1

d

∑
r|d

µ

(
d

r

)
aQ,α

d
(tr) (6.1.11)

Proof. Let Xd = {r ∈ N | r divides d}. Notice that Xd is a poset with the ordering given by
r′ ≤ r if and only if r′|r. Consider the functions f1, f2 : Xd → N de�ned as

f1(r) = aQ,α
d
(qr)

f2(r) = #{ Isomorphism classes of indecomposable representations M over Fq |

dim(M) =
α

d
and size(M) = r}.
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By eq.(6.1.8), we have that f1(r) =
∑

r′≤r f2(r) and, therefore, by Proposition 4.3.13, we have

f2(d) =
∑
r|d

µ

(
d

r

)
f1(r) =

∑
r|d

µ

(
d

r

)
aQ,α

d
(qr). (6.1.12)

Notice that, by Lemma 6.1.6, we have that

df2(d) = #{Isomorphism classes of indecomposable representations of Q over Fq |

dim(M) = α, top(M) = Fqd},

from which we deduce Proposition 6.1.9.

We �nish the section by recalling the Kac conjecture which was proved by Hausel, Letellier,
Rodriguez-Villegas in [47, Corollary 1.5]

Theorem 6.1.10. For any α ∈ NI , the Kac polynomial aQ.α(t) has nonnegative integer

coe�cients.

6.2 Quiver representations of level V

Let Q = (I,Ω) be a �nite quiver and let V be a subset of NI . For α ∈ NI we denote by NI≤α
the subset NI≤α := {0 ≤ β ≤ α | β ∈ NI} and similarly V≤α := {0 ≤ β ≤ α | β ∈ V }.

Example 6.2.1. Given λ ∈ CI , we denote by Vλ the subset Vλ := {β ∈ NI | β · λ = 0}, where ·
is the canonical orthogonal product on NI . Notice that for λ = 0 we have Vλ = NI .

To a representation X of dimension α, we associate the following subset HX ⊆ NI≤α. Given
the decomposition of X ⊗K K into indecomposable components

X ⊗K K =
⊕
j∈J

Y
rj
j ,

we de�ne
HX := {dimYj}j∈J . (6.2.1)

For any V ⊆ NI , we give the following de�nition of the representations of the quiver Q of level
V .

De�nition 6.2.2. A representation X of dimension α is said to be of level V if we have
HX = V≤α. For V = Vλ with λ ∈ CI , we say that X is of level λ.

Example 6.2.3. Let V = {α} for a vector α ∈ NI . A representation X ∈ R(Q,α) is of level
{α} if and only if X⊗KK is indecomposable, i.e if and only if X is absolutely indecomposable.

The notion of being of level V induces a strati�cation (indexed by the subsets of NI≤α) on the
representations of Q of dimension α.
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Since on the set of subsets of NI≤α there is a natural order relation, induced by inclusion, we
can also consider the �ltration associated to such a strati�cation. In particular, we give the
following de�nition of a representation of level at most V .

De�nition 6.2.4. For a subset V ⊆ NI , a representation X is said to be of level at most V if
it is of level V ′ for some V ′ ⊆ V . For V = Vλ we say that a representation is of level at most
λ.

Remark 6.2.5. Notice that a representation X of dimension α is of level at most V if and only
if HX ⊆ V≤α. In particular, for V = NI , any representation of Q is of level at most NI .

If K = Fq and λ ∈ CI , De�nition 6.2.4 for representations of level at most λ is equivalent to
the following one:

De�nition 6.2.6. A representation X is of level at most λ if given its Krull-Schimdt decom-
position X =

⊕
j∈J

X
rj
j we have dimXj · λ = 0 for each j ∈ J .

Proof. Given the Krull-Schidmt decomposition X =
⊕
j∈J

X
rj
j , from Lemma 6.1.6, for each

j ∈ J there is an isomorphism

Xj ⊗Fq Fq = Yj ⊕ Fr(Yj)⊕ · · · ⊕ Frdj−1(yj)

where top(Xj) = F
qdj
. The decomposition in indecomposable factors of X ⊗Fq Fq is thus

X ⊗Fq Fq =
⊕
j∈J

(Yj ⊕ Fr(Yj)⊕ · · · ⊕ Frdj−1(Yj))

with dimYj =
dimxj
dj

. We have then dimYj · λ = 0 if and only if dimXj · λ = 0, for each
j ∈ J .

For α ∈ NI , the representations of Q of level at most V form a constructible subset of R(Q,α),
as explained by the following proposition:

Proposition 6.2.7. There exists a constructible subset R(Q,α, V ) ⊆ R(Q,α) such that ,for

each extension K ⊆ L, the set of L-points R(Q,α, V )(L) is the subset of representations of

level at most V of Q over L. If V = Vλ for λ ∈ CI , we denote R(Q,α, Vλ) by R(Q,α, λ).

Proof. In [52, Section 1,8], Kac showed that, for any α ∈ NI , there exists a constructible subset
A(Q,α) ⊆ R(Q,α), such that, for any �eld extension K ⊆ L, the set of L-points A(Q,α)(L)

is the subset of absolutely indecomposable representationsover L.
Let ΨV,α be the constructible subset de�ned by

ΨV,α =
⊕

α1,...,αr∈V
s.t α1+···+αr=α

A(Q,α1)× · · · ×A(Q,αr).
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Consider the morphism
ΦV,α : GLα×ΨV,α → R(Q,α)

de�ned by
ΦV,α(g,M1, . . . ,Mr) := g · (M1 ⊕ · · · ⊕Mr).

for g ∈ GLα, M1 ∈ A(Q,α1), . . . ,Mr ∈ A(Q,αr) and α1 + · · ·+αr = α. We de�ne R(Q,α, V )

to be the image of ΦV,α, which is a constructible subset by Chevalley's theorem.

Example 6.2.8. Consider the case where Q is the Jordan quiver (the quiver with one vertex
and one arrow), i.e |I| = |Ω| = 1.

◦

For n ∈ N and a �eld K, the representation space R(Q,n) is given by the n × n matri-
ces Mat(n,K). The isomorphism classes of R(Q,n) correspond to the conjugacy classes of
Mat(n,K).
If K = K, the indecomposable representations correspond to matrices conjugated to a single
Jordan block and the decomposition into indecomposable components of a representation
M ∈ Mat(n,K) corresponds to the writing of M into its Jordan form.
Consider now the subset V = {1} ⊆ N. Notice that in this case, a representation is of level
{1} if and only if is of level at most {1}.
A matrix M ∈ Mat(n,K) is of level {1} if and only if its Jordan form over K has only blocks
of size 1, i.e if and only if M is diagonalizable over K.
The subset R(Q,n, {1}) ⊆ R(Q,n) = Mat(n,K) is therefore given by the semisimple matrices
of size n.

Remark 6.2.9. Let k be an algebraically closed �eld of char = 0 and let λ be an element
of kI . We denote by π the projection map πλ : µ−1

α (λ) → R(Q,α) sending (xa, xa∗)a∈Ω to
π((xa, Xa∗)a∈Ω) = (Xa)a∈Ω.
From the result of Crawley-Boevey [17, Lemma 3.2], we deduce that a representation x ∈
R(Q,α) belongs to Im(πλ) if and only if, given its Krull-Schimdt decomposition x =

⊕
j∈J xj ,

we have dimxj · λ = 0 for each j ∈ J .

From Remark 6.2.9, we deduce therefore the following Proposition.

Proposition 6.2.10. For K = C, for any α ∈ NI and any λ ∈ CI , we have

R(Q,α, λ) = Im(πλ).

Remark 6.2.11. Altough the result of Crawley-Boevey is there stated only for algebraically
closed �eld of char = 0, Remark 6.2.9 above can be extended over a �nite �eld Fq of su�ciently
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big characteristic. More precisely, consider λ ∈ ZI and still denote by λ the corresponding
element of FIq .

Using an argument similar to the one of Proof 6.2, we deduce that, if q >> 0, we have

Im(πλ) = R(Q,α, λ).

The following Lemma provides a way to compute the number of isomorphism classes of rep-
resentations of level at most V of dimension α over a �nite �eld Fq .

Lemma 6.2.12. For each V ⊆ NI and α ∈ NI there exists a polynomialMQ,α,V (t) ∈ Z[t] such

that, for any q, MQ,α,V (q) is equal to the number of isomorphism classes of representations of

level at most V of dimension vector α over Fq. Moreover, the following identity holds:

Exp

∑
β∈V

aQ,β(t)yβ

 =
∑
α∈NI

MQ,α,V (t)yα (6.2.2)

Proof. For β ∈ NI denote by aQ,β,V (t) the polynomial de�ned by:

aQ,β,V (t) =

{
0 if β 6∈ V
aQ,β(t) if β ∈ V

.

With an argument similar to that of Proposition 6.1.9, the number of isomorphism classes
of indecomposable representations M of level at most V of dimension β over Fq such that
top(M) = Fqd is equal to

1

d

∑
r|d

µ

(
d

r

)
aQα

d
,V (qr).

Let then IQ,β,V (t) be the polynomial de�ned by:

IQ,α,V (t) =
∑
d|α

1

d

∑
r|d

µ

(
d

r

)
aQ,α

d
,V (tr) (6.2.3)

Notice that for any q, IQ,β,V (q) is equal to the number of isomorphism classes of indecompos-
able representations of level at most V and of dimension β over Fq. For each γ ∈ NI , denote
by MQ,γ,V (t) the polynomials de�ned by the following identity:∑

γ∈NI
MQ,γ,V (t)yγ =

∏
β∈NI

(1− yβ)−IQ,β,V (t). (6.2.4)

As RepFq(Q) is a Krull-Schimdt category, we deduce that, for any q, MQ,γ,V (q) is equal to
the number of isomorphism classes of representations of level at most V of dimension γ over
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Fq. Specializing the identity (6.2.4) at t = q we can rewrite it as the following identity :

∑
α∈NI

MQ,α,V (q)yα =
∏
α∈NI

∏
M∈Ind(Q,α,V )/∼=

top(M)=F
qd

1

1− y
α
d

(d)
=
∏
α∈NI

∏
d|α

ψd

(
1

1− y
α
d

) 1
d

∑
r|d µ(

d
r )aQ,αd ,V (qr)

(6.2.5)

The right hand side of Equation (6.2.5) can be rewritten as

∏
α∈NI

∏
d|α

ψd

(
1

1− y
α
d

) 1
d

∑
r|d µ(

d
r )aQV ,αd (qr)

=
∏
γ∈NI

∏
d≥1

ψd

(
1

1− yγ

) 1
d

∑
r|d µ(

d
r )aQ,γ,V (qr)

(6.2.6)

As Equation (6.2.6) holds for any q, we deduce that the following identity holds

log

∑
α∈NI

MQ,α,V (t)yα

 =
∑
γ∈NI
d≥1

ψd

(
1

1− yγ

)
(aQ,γ,V (t))d (6.2.7)

where (aQ,γ,V (t))d =
1

d

∑
r|d

µ

(
d

r

)
aQ,γ,V (tr). By Lemma 3.7.8 and Equation (6.2.7), we de-

duce �nally:

Log

∑
α∈NI

MQ,α,V (t)yα

 =
∑
α∈NI

aQ,α,V (t) Log

(
1

1− yα

)
=
∑
α∈V

aQ,α(t)yα. (6.2.8)

Example 6.2.13. Consider the Jordan quiver Q of Example 6.2.8, V = {1} and apply Formula
(6.2.2). As aQ,1(t) = t, we �nd∑

n∈N
MQ,n,{1}(t)y

n = Exp (ty) =
∑
n∈N

tnyn (6.2.9)

where the last equality comes from Example 3.7.13. We obtain therefore

MQ,n,{1}(t) = tn.

Evaluating MQ,n,{1}(t) at t = q, by Example 6.2.8, we �nd that the number of semisimple
conjugacy classes of Mat(n,Fq) is qn. This is a classical combinatorial result (see for example
[58]) which comes from the observation that the semisimple conjugacy classes are in bijection
with the monic polynomials of Fq[t] of degree n.

From Lemma 6.2.12, we deduce the following proposition.
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Proposition 6.2.14. 1. For any subset V ⊆ NI and α ∈ NI , the polynomial MQ,α,V (t)

has nonnegative integers coe�cients.

2. The polynomial MQ,α,V (t) is non-zero if and only there exist

� β1, . . . , βr ∈ (Φ+(Q) ∩ V )

� h1, . . . , hr ∈ N

such that h1β1 + · · ·+ hrβr = α

Proof. By Lemma 3.7.7 the polynomialsMQ,α,V (t) have integer coe�cients. By the de�nition
of Exp and Lemma 6.2.12, MQ,α,V (t) is a sum of products of the form

aQ,β1(tn1)m1

k1

aQ,β2(tn2)m2

k2
· · ·

aQ,βl(t
nl)ml

kl
(6.2.10)

with k1, . . . kl,m1, . . . ,ml, n1, . . . , nl positive integers such that m1n1β1 + · · · + nlmlβl = α.
Kac conjecture (see Theorem 6.1.10) implies that these products have nonnegative coe�cients.
By Proposition 6.1.8, we see that a product as in Equation (6.2.10) is di�erent from 0 if and
only if β1, . . . , βl ∈ Φ+(Q) and so we deduce property (2).

6.2.1 Quiver stacks

Let K = C and �x λ ∈ CI . Let α ∈ NI and consider the associated quiver stack Mλ,α.
Davison [22, Theorem B] showed that we have:

Pc(Mλ,α, t) = t−2(α,α) Coeffα

Exp

∑
β·λ=0

t2

t2 − 1
aQ,β(t2)yβ

 (6.2.11)

where (α, α) is the Euler form of Q. From Identity (6.2.11) and Proposition 6.2.12 in the case
where V = Vλ, we deduce the following Proposition.

Proposition 6.2.15. 1. The quiver stack Mλ,α (and so the quiver variety Qλ,α) is non

empty if and only MQ,α,λ(t) 6= 0.

2. The number of irreducible components of top dimension of the stack Mλ,α is equal to

the top degree coe�cient of MQ,α,λ(t).

6.2.2 Counting representations of level at most V

In the paper [62, Theorem 1.1], Letellier linked the Kac polynomial aQ,α(t) to the representa-
tion theory of the �nite group GLα(Fq). In this paragraph, we will explain how to generalize
his results to the case of representations of level at most V for certain subsets V ⊆ NI .

The �nite group GLα(Fq) acts on the �nite set R(Q,α)(Fq). We denote the associated complex
character of GLα(Fq) by rα.
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Remark 6.2.16. Fix a dimension vector β ∈ NI , an integer r ∈ N, an indecomposable rep-
resentation M ∈ R(Q, β)(Fq) and denote by N the representation N = M⊕r. As seen at
the beginning of paragraph §6.1.3, there is an isomorphism Aut(N)/UN ∼= GLr(Fqd) where
top(M) = Fqd .
As UN is a unipotent subgroup, the morphism detI passes to the quotient Aut(N)/UN and
induces thus a morphism detI : GLr(Fqd) → (F∗q)I . Its value at a matrix A ∈ GLr(Fqd) is
given by

det I(A) = (NF∗
qd
/F∗q (det(A)

βi
d ))i∈I (6.2.12)

Consider now a subset V ⊆ NI . The main result of this paragraph is the following Theorem:

Theorem 6.2.17. If there exists an element σ ∈ Hom(F∗q ,C∗)I such that V≤α = Hσ,α, we
have:

〈rα ⊗ ρσ, 1〉 = MQ,α,V (q) (6.2.13)

Proof. Fix a representation x inside R(Q,α)(Fq). We start by showing that ρσ|Stab(x)
∼= 1 if

and only if x ∈ R(Q,α, V )(Fq). Consider the Krull-Schmidt decomposition

x =
⊕
j∈J

x
rj
j .

Let βj be the dimension vector dimxj and dj the integer such that F
qdj

= top(xj) for j ∈ J .
As explained at the beginning of �6.1.3, quotienting by the subgroup Ux ⊆ Stab(x) there is
an isomorphism

Stab(x)/Ux ∼=
∏
j∈J

GLrj (Fqdj ).

The character ρσ is trivial over Ux and induces therefore a character ρσ :
∏
j∈J

GLrj (Fqdj )→ C∗

which by Remark 6.2.16 is given by

ρσ((Aj)j∈J) =
∏
j∈J

σ
βj
dj (NF∗

q
dj
/F∗q (Aj)).

Therefore, we deduce that ρσ|Stab(x) ≡ 1 if and only if
βj
dj
∈ Hσ,α = V≤α for each j ∈ J . This

is exactly the condition that must hold for x to be of level at most V .

From the discussion above, we deduce therefore that we have:

〈rα ⊗ ρσ, 1〉 =
1

|GLα(Fq)|
∑

x∈R(Q,α)(Fq)

∑
g∈Stab(x)

ρσ(g) =
1

|GLα(Fq)|
∑

x∈R(Q,α,V )(Fq)

|Stab(x)|.

(6.2.14)
Applying the Burnside formula to the RHS of eq.(6.2.14) we obtain thus the equality

〈rα ⊗ ρσ, 1〉 = MQ,α,V (q).
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Theorem 6.2.17 can also be proved using the results of Section �5.7. Hua [50, Proof of Theorem
4.3] showed indeed the following formula for the class functions rα.

Lemma 6.2.18. For α ∈ NI and g ∈ GLα(Fq) such that g ∼ ω and ω = (d1,λ1) . . . (dr,λr),

we have

rα(g) =

r∏
j=1

∏
a∈Ω

(qdj )〈λ
s(a)
j ,λ

t(a)
j 〉. (6.2.15)

Notice that Formula (6.2.15) implies in particular that the family of class functions {rα}α∈NI
is Log compatible. This was already remarked by Letellier [62], where the author in addition
[62, Proposition 2.4] showed that

R̃α,gen(t) = aQ,α(t) (6.2.16)

for any α ∈ NI and used the latter equality to show the case of V = NI of Lemma 6.2.12.
However, Letellier's approach is di�erent from ours as it involves symmetric functions and
does not seem to extend immediately to the case of any V .
Notice that Theorem 5.7.5, Formula (6.2.16) and Lemma 6.2.12 give an alternative way to
show Theorem 6.2.17.
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7 Star-shaped quivers, multiplicative quiver stacks and charac-
ter stacks for Riemann surfaces

In this chapter, we review some properties of star-shaped quivers and of the associated mul-
tiplicative quiver stacks. This type of quivers will be of fundamental importance for showing
both the results of Chapter �8 regarding multiplicities for k-tuples of Harisha-Chandra char-
acters of GLn(Fq) and the results of Chapter �9 about the cohomology of character stacksMC
for a Riemann surface.
In section �7.1, we introduce star-shaped quivers, �x some notations about their representa-
tions and recall the results of [46] expressing the Kac polynomials for these quivers in terms
of the HLRV kernel, see �3.8.
In section �7.2, we review the de�nition of the multiplicative moment map Φ∗α for star-shaped
quivers and of the associated multiplicative quiver stacksM∗σ,α. The map Φ∗α is the restriction
of the morphism Φα introduced in �6.1.1 to a certain open subset R(Q,α)◦,∗ ⊆ R(Q,α)◦.
In section �7.3, we show that, for each σ ∈ (C∗) and β ∈ NI , the multiplicative quiver stack
M∗σ,β is isomorphic to a certain stackML,P,σ, de�ned in terms of partial Springer resolutions
of conjugacy classes of GLn(C). The latter stacks are the stacky versions of the varieties
considered by Letellier [61] in the generic case.
In section �7.4, we review the de�nition of character stacks for a punctured Riemann surface Σ

and a k-tuple C of conjugacy classes of GLn(C) and show how they are related to multiplicative
quiver stacks for star-shaped quivers.
In particular, for any k-tuple C of semisimple conjugacy classes, we show that there exists
γC ∈ (C∗)I , αC ∈ NI such that we have an isomorphism

MC ∼=M∗γC ,αC .

The latter isomorphism is going to be one of the key ingredients of our proof of Theorem 9.3.2
about E-series of character stacks.

7.1 Star-shaped quivers

Fix g, k ≥ 0, integers s1, . . . , sk ∈ N and let Q = (I,Ω) be the following star-shaped quiver

with g loops on the central vertex:

◦[1,1] ◦[1,2] . . . ◦[1,s1]

◦[2,1] ◦[2,2] . . . ◦[2,s2]

◦0 · ·

· ·

· ·

◦[k,1] ◦[k,2] . . . ◦[k,sk]

···
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We will denote the vertex 0 also by [i, 0] for i = 1, . . . , k.

For a representation x ∈ R(Q,α), for each h = 1, . . . , k and j = 0, . . . , sh, we denote by
xh,j ∈ Mat(α[h,j], α[h,j+1],K) the matrix associated to the arrow a having s(a) = [h, j + 1]

and t(a) = [h, j], where we put xh,sh = 0.

Similarly, for an element x ∈ R(Q,α) we denote by x∗h,j ∈ Mat(α[h,j+1], α[h,j],K) the matrix
associated to the arrow a∗ ∈ Ω.

Lastly, for i = 0, . . . , g and a representation x ∈ R(Q,α), we denote by e1, . . . , eg, e
∗
1, . . . , e

∗
g ∈

Mat(α0,K) the matrix associated to the g loops of Q and the corresponding reversed arrows
of Q respectively.

We denote by (NI)∗ the subset of dimension vectors that are non increasing along the legs
and for a subset V ⊆ NI , by V ∗ = V ∩ (NI)∗.
For any β ∈ NI , denote by R(Q, β)∗ ⊆ R(Q, β) the representations which have injective maps
along the legs. Notice that if β 6∈ (NI)∗, we have R(Q, β)∗ = ∅.

Remark 7.1.1. Consider β ∈ (NI)∗ and denote by

GL′β =
∏

i∈I\{0}

GLβi .

Notice that GLβ = GLβ0 ×GL′β and the action of GL′β obtained by restriction of the action of
GLβ on R(Q, β)∗ is free. Indeed, consider an element x ∈ R(Q, β)∗ and g = (gi)i∈I\{0} ∈ GL′β
such that

g · x = x.

For each j = 0, . . . , k, we have
xj,0g

−1
[j,1] = xj,0

and, since xj,0 is injective, we deduce that g[j,1] = Iα[j,1]
. Similarly, for each j = 0, . . . , k, we

have
g[j,1]xj,1g

−1
[j,2] = xj,1g

−1
[j,2] = xj,1

and therefore g[j,2] = Iα[j,2]
. By recurrence, we deduce that g = (Iβi)i∈I\{0}.

For any such Q, we denote by Q0 = (I,Ω0) the quiver with same vertices of Q, where we
eliminate the g loops on the central vertex. Notice that we have

R(Q,α) = gl⊕gα0

⊕
R(Q0, α).

7.1.1 Indecomposable of star-shaped quivers

The indecomposable representations of the quiver Q have the following property (for a proof
see [46, Lemma 3.2.1]).

Lemma 7.1.2. IfM ∈ RepK(Q) is an indecomposable representation such that (dimM)0 6= 0,

then all the maps of M along the legs are injective. In particular dimM ∈ (NI)∗.
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Using Lemma 7.1.2, Kac polynomials of star-shaped quivers were computed in [46]. More
precisely, for any β ∈ (NI)∗ and for any j = 1, . . . , k, the integers

(β[j,0] − β[j,1], . . . , β[j,sj−1] − β[j,sj ], β[j,sj ])

up to reordering form a partition µjβ ∈ P.
Denote by µβ ∈ Pk the multipartition

µβ = (µ1
β, . . . , µ

k
β)

and the associated element µβ ∈ Tkn, as in Example 3.6.1. Moreover, denote by Hβ(z, w) the
function

Hβ(z, w) = Hµβ ,2g(z, w).

In [46], the authors show the following Theorem.

Theorem 7.1.3. For any β ∈ (NI)∗, we have

aQ,β(t) = Hβ(0,
√
t). (7.1.1)

7.2 Multiplicative quiver stacks for star-shaped quiver stacks

For a star-shaped quiver Q = (I,Ω), we introduce two variants of the multiplicative moment
map, which are going to be the key objects for our study of character stacks.

Let R(Q,α)◦,l ⊆ R(Q,α)◦ be the open subset of representations

R(Q,α)◦,l := {(xa, xa∗)a∈Ω ∈ R(Q,α) | xa is invertible for every loop a around 0}.

Notice that R(Q,α)◦,l = ∅ if α0 = 0. We denote by

Φl
α = Φα|R(Q,α)◦,l

the restriction of the multiplicative moment map, i.e

Φl
α : R(Q,α)◦,l → GLα

(e1, . . . , eg, e
∗
1, . . . , e

∗
g, x1,1, . . . , xk,sk , x

∗
k,sk

)→
g∏
i=1

(1+eie
∗
i )(1+e∗i ei)

−1
k∏

h=1

sh∏
j=1

(1+xh,jx
∗
h,j)(1+x∗h,j+1xh,j+1)−1.

For σ ∈ (K∗)I , we de�ne the multiplicative quiver stackMl
σ,α as the quotient stack

Ml
σ,α := [(Φl

α)−1(σ)/GLα].

Notice that, for a point x ∈ (Φl
α)−1(σ), we have the following relationships. At the central

vertex, we have:



135

k∏
h=1

(1 + xi,0x
∗
i,0) = σ0Iα0 (7.2.1)

For any h = 1, . . . , k and j = 1, . . . , sh, we have

(1 + xh,jx
∗
h,j)(1 + x∗h,j−1xh,j−1)−1 = σ[h,j]Iα[h,j]

(7.2.2)

which can be rewritten as

xh,jx
∗
h,j − σ[h,j]x

∗
h,j−1xh,j−1 = (σ[h,j] − 1)Iα[h,j]

. (7.2.3)

Notice that, for j = sh, we have

σ[h,sh]x
∗
h,sh−1xh,sh−1 = (1− σ[h,sh])Iα[h,sh]

. (7.2.4)

Example 7.2.1. Let Q = (I,Ω) be the Jordan quiver, i.e the quiver with 1 vertex and one
arrow. For n ∈ N, the variety R(Q,n) is gln(K)× gln(K) and the variety R(Q,n)◦,l is given
by

R(Q,n)◦,l = {(e, e∗) ∈ gln(K)× gln(K) | e, 1 + ee∗, 1 + e∗e ∈ GLn(K)}.

Notice that the variety R(Q,n)◦,l is isomorphic to GLn(K)×GLn(K) via the isomorphism

R(Q,n)◦,l → GLn(K)×GLn(K)

(e, e∗)→ (e, e−1 + e∗).

Via this identi�cation, the multiplicative moment map Φl
n corresponds to the morphism

Φl
n : GLn(K)×GLn(K)→ GLn(K)

given by
µ◦,∗n (A,B) = [A,B].

Consider now the open subset R(Q,α)◦,∗ ⊆ R(Q,α)◦,l de�ned as

R(Q,α)◦,∗ = {(xa, xa∗)a∈Ω ∈ R(Q,α) | xa is injective for each a ∈ Ω}.

Notice that R(Q,α)◦,∗ = ∅ if α /∈ (NI)∗.
The multiplicative moment map which will interest most in the thesis is the restriction of Φα

to R(Q,α)◦,∗, which we will denote by

Φ∗α := Φα|R(Q,α)◦,∗ .

For σ ∈ (K∗)I , we de�ne the multiplicative quiver stackM∗σ,α of parameter σ, α as the quotient
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stack
M∗σ,α := [(Φ∗α)−1(σ)/GLα].

7.3 Geometric description of multiplicative quiver stacks

In the rest of the chapter, we assume K = C. In this section, for a star-shaped quiver
Q = (I,Ω), we describe an isomorphism between the multiplicative quiver stacks M∗σ,α and
certain quotient stacks de�ned in terms of Springer resolutions of conjugacy classes of GLn(C).

7.3.1 Springer resolutions of conjugacy classes

Consider a Levi subgroup L ⊆ GLn(C) and a parabolic subgroup P ⊇ L having L as Levi
factor. Let UP ⊆ P be the unipotent radical. Fix an element z ∈ ZL and let Yz be the variety

Yz := {(X, gP ) ∈ GLn(C)×GLn(C)/P | g−1Xg ∈ zU}.

Let πz : Yz → GLn(C) be the projection πz((gP,X)) = X. The following proposition is well
known (see for instance [35] and the reference thereby for unipotent orbits).

Proposition 7.3.1. The image of πz is the Zariski closure C of a conjugacy class C ⊆ GLn(C)

and the morphism πz is a resolution of singularities.

If z ∈ (ZL)reg, the map πz is an isomorphism between Yz and the conjugacy class of z in

GLn(C).

The morphism πz : Yz → C ⊆ GLn(C) is sometimes called a partial Springer resolution.

Remark 7.3.2. The variety Yz can be described in the following equivalent way. Consider
n0, . . . , ns such that L = GLn0 × · · · × GLns . The element z ∈ ZL corresponds therefore to
z0, . . . , zs ∈ C∗ such that

z = (zsIns , . . . , z0Ins).

Identify GLn /P with the corresponding partial �ag variety, as in �4.1.2. We have

Yz =

{
(X,F) ∈ GLn(C)×GLn(C)/P | X(Fj) ⊆ Fj for each j = 0, . . . , s

and the morphism induced by X on Fj/Fj+1 is zjInj

}

7.3.2 Multiplicative quiver stacks for star-shaped quivers and resolution of con-

jugacy classes

Consider now a star-shaped quiver Q = (I,Ω), a dimension vector β ∈ (NI)∗ and a parameter
σ ∈ (C∗)I . For each h = 1, . . . , k and j = 0, . . . , sh, de�ne

nh,j := β[h,j] − β[h,j+1] (7.3.1)
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where we are identifying β[h,0] = β0 and β[h,sh+1] = 0. For h = 1, . . . , k let then Lh be the
Levi subgroup of GLn(C)

Lh =

sh∏
j=0

GLnh,j (C).

Fix parabolic subgroups Ph ⊇ Lh such that the Levi factor of Ph is Lh and let Uh ⊆ Ph the
associated unipotent subgroup.

The element σ ∈ (C∗)I determines, for each h = 1, . . . , k, the following element zh ∈ ZLh .
Choose elements z1,0, . . . , zk,0 ∈ C∗ such that

z1,0 · · · zk,0 = σ0.

Let then zh be the central element

zh := (z1,0Inh,0 , z1,0σ[h,1]In1,1 , . . . , zh,0σ[h,1] · · ·σ[h,sh]Inh,sh ) ∈
sh∏
j=0

GLnh,j (C).

Denote by L the k-tuple of Levi subgroups (L1, . . . , Lk) and by P the k-tuple of parabolic
subgroups (P1, . . . , Pk).

Let now XL,P,σ be the variety de�ned as

XL,P,σ :=

{
(A1, B1, . . . , Ag, Bg, y1P1, X1, . . . ) ∈ GL2g

n (C)×
k∏

h=1

Yzh |
g∏
i=1

[Ai, Bi]X1 · · ·Xk = 1

}

andML,P,σ the quotient stack

ML,P,σ := [XL,P,σ/GLn(C)].

We have the following Theorem for the stackML,P,σ.

Theorem 7.3.3. For any β ∈ (NI)∗ and any σ ∈ (C∗)I , there is an isomorphism of stacks

M∗β,σ ∼=ML,P,σ

for L,P as above.

In the proof, we suppose g = 0 to simplify the notations. The case of higher genus is an
immediate generalization.

Proof. We de�ne the following morphism

f : (Φ∗β)−1(σ)→ XL,P,σ.

For an element x ∈ (Φ∗β)−1(σ), consider the �ag

Fj,x = (Cn ⊇ Im(xj,0) ⊇ Im(xj,0xj,1) ⊇ · · · ⊇ Im(xj,0 · · ·xj,sj−1)).
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Notice that, for each h = 0, . . . , sj − 1, we have

dim(Im(xj,0 · · ·xj,h)) = β[j,h],

since xj,r is injective for each j and r. In particular, Fj,x belongs to the partial �ag variety
GLn /Pj . We de�ne therefore

f(x) = (F1,x, z1,0 + z1,0x1,0x
∗
1,0,F2,x, . . . , zk,0 + zk,0xk,0x

∗
k,0).

For each h = 1, . . . , k, put Xh := zh,0 + zh,0xh,0x
∗
h,0. Notice that from eq.(7.2.1), we have that

X1 · · ·Xk = 1.

To check that the morphism f is well de�ned we need to check thus the following two condi-
tions.

1. The �ag Fh,x is Xh invariant for each h.

2. The morphism that Xh induces on the the quotient space

Im(xh,0 · · ·xh,j)/ Im(xh,0 · · ·xh,j+1)

and which we denote by Xh,j is equal to zh,jIβ[h,j]
.

From eq.(7.2.3), by recurrence, we deduce that for each h = 1, . . . , k and each j = 0, . . . , sh−1

and v ∈ Cα[h,j] , we have

Xj(xh,0 · · ·xh,j(v)) = zh,0xh,0 · · ·xh,j(v) + zh,0xh,0x
∗
h,0xh,0 · · ·xh,j(v) = (7.3.2)

=
zh,0

σ[h,1] · · ·σ[h,j+1]
xh,0 · · ·xh,j(v) + xh,0 · · ·xh,jxh,j+1x

∗
h,j+1(v) (7.3.3)

where we are putting xh,sh = x∗h,sh = 0.
Notice that

zh,0
σ[h,1] · · ·σ[h,j+1]

= zh,j .

From eq.(7.3.3), we deduce therefore that properties 1), 2) above are respected for each h, j
and therefore f is well de�ned.

We use the notations of Remark 7.1.1. Notice that from the aforementioned remark, the action
of GL′β on (Φ∗β)−1(σ) is free.
In addition, notice that the map f is GL′β-invariant. Denote by

f̃ : (Φ∗β)−1(σ)/GL′β → XL,P,σ

the associated morphism. By Lemma 3.3.5, to show that

M∗β,σ ∼=ML,P,σ,
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it is su�cient to show that f̃ is an isomorphism.

We de�ne the following morphism θ : XL,P,σ → (Φ∗β)−1(σ)/GL′β . Consider an element

(F1, X1, . . . ,Fk, Xk) ∈ XL,P,σ.

For each h = 1, . . . , k and j = 1, . . . , sh, �x a basis of the vector space Fh,j and denote by

xh,j−1 : Cβ[h,j] → Cβ[h,j−1]

the morphism such that zh,j−1xh,j−1 corresponds to the writing of the inclusion Fh,j ⊆ Fh,j−1

in the respective �xed basis.
By de�nition of XL,P,σ, we have that

(Xh − zh,jIn)(Fh,j) ⊆ Fh,j+1,

i.e Xh − zh,jIn de�nes a morphism Fh,j → Fh,j+1 and we denote by

x∗h,j : Cβ[h,j] → Cβ[h,j+1]

its associated matrix in the �xed basis.
Notice that, by de�nition, for each h = 1, . . . , k, we have

Xh = zh,0 + zh,0xh,0x
∗
h,0 (7.3.4)

Notice moreover, that, for each j = 1, . . . , sh, we have that zh,jxj,hx∗h,j is the matrix associated
to the morphism

Xj − zh,jIn : Fh,j → Fh,j

and x∗h,j−1zh,j−1xh,j−1 is the matrix associated to the morphism

Xj − zh,j−1In : Fh,j → Fh,j

in the respective basis.
In particular, we have that

zh,jxj,hx
∗
h,j − zh,j−1x

∗
h,j−1xh,j−1 = (zh,j − zh,j−1)Iβ[h,j]

(7.3.5)

and, since
zh,j−1

zh,j
= σ[h,j], we �nd

xj,hx
∗
h,j − σ[h,j]x

∗
h,j−1xh,j−1 = (1− σ[h,j])Iβ[h,j]

(7.3.6)

By eq.(7.2.3), we deduce that (xh,j , x
∗
h,j) h=1,...,k

j=0,...,sh−1
de�nes a point x ∈ (Φ∗β)−1(σ) and we put

θ(F1, X1, . . . ,Fk, Xk) = x.

From eq.(7.3.4) and the de�nition of x, we deduce that θ and f̃ are inverse one to each other,
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i.e that f̃ is an isomorphism.

Remark 7.3.4. Notice that Theorem 7.3.3 shows in particular that the isomorphism class of
the stackML,P,σ does not depend on the choice of the central elements z1, . . . , zk.

7.4 Character stacks for Riemann surfaces and multiplicative quiver stacks

Fix integers g, k ∈ N, a Riemann surface Σ of genus g and a subset D = {d1, . . . , dk} ⊆ Σ.
In this paragraph we recall the de�nition of character stacks for the Riemann surface Σ with
punctures at the points of D and their relationship with multiplicative quiver stacks for star-
shaped quivers.

Let C be a k-tuple of adjoint orbits C = (C1, . . . , Ck). Denote by XC the following a�ne variety

XC := {ρ ∈ Hom(π1(Σ \D),GLn(C)) | ρ(δh) ∈ Ch for h = 1, . . . , k}

where, for each h = 1, . . . , k, we denote by δh a small loop around the point dh.
The variety XC is the variety of representations of the fundamental group of Σ\D with image
lying in Ch around the points of D or, equivalently, the variety of local systems on X \D with
prescribed monodromy around D.

Recall that the fundamental group π1(Σ \D) admits the following explicit presentation

π1(Σ \D) = 〈a1, b1, . . . , ag, bg, δ1, . . . , δk | [a1, b1] · · · [ag, bg]δ1 · · · δk = 1〉

where each δi is a loop around the puncture xi.
The variety XC can therefore be written down in the following explicit way:

XC =

{
(A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ GLn(C)2g×C1×· · ·×Ck | [A1, B1] · · · [Ag, Bg]X1 · · ·Xk = 1

}
.

The character stackMC associated to (Σ, D, C) is de�ned as the quotient stack

MC := [XC/GLn(C)].

We de�ne also the character variety MC , given by the GIT quotient,

MC := XC//GLn(C).

Consider now L,P, σ as before and let C = (C1, . . . , Ck) be the k-tuple such that Cj is the
image of the projection Yzj → GLn.
Notice that the projections πz1 , . . . , πzh induce a morphism

πC : XL,P,σ → XC

(A1, B1, . . . , Ag, Bg, g1P1, X1, . . . , gkPk, Xk)→ (A1, B1, . . . , Ag, Bg, X1, . . . , Xk).
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As π is GLn(C)-equivariant, it descends to a morphism of quotient stacks , which we still
denote by π :ML,P,σ →MC and so, by Theorem 7.3.3, to a morphism,

π :M∗β,σ →MC .

Remark 7.4.1. Notice that, if z1 ∈ (ZL1)reg, . . . , zk ∈ (ZLk)reg, the morphism π is actually an
isomorphism.

Remark 7.4.2. Notice that the morphism πC is obtained by restricting the product of the partial
Springer resolution Yzh → Ch and then quotienting by GLn. The decomposition theorem (and
its equivariant version) for partial Springer resolutions are well understood in terms of the
representation theory of Weyl groups.
Altough we will not cover this in the thesis, it is natural to expect that the cohomological
properties of the morphism πC could have a similar description.

Example 7.4.3. Consider the case where g = 0, k = 2, where σi = 1 for each i ∈ I and
β[h,j] = n− j for each h = 1, 2.
In this case, we have L1 = L2 = T where T ⊆ GLn(C) is the maximal torus of diagonal
matrices. We can therefore take P1 = P2 = B, where B is the Borel subgroup of upper
triangular matrices. Denote by U the unipotent radical of B, i.e the upper triangular matrices
having only 1's on the diagonal.
It is not di�cult to see that for the corresponding orbits C1 = C2 and C1 = N , where N ⊆
GLn(C) is the subvariety of unipotent matrices. The variety XC is therefore given by

XC = {(X1, X2) ∈ N2 | X1X2 = 1}.

The morphism which sends (X1, X2) to X1 is an isomorphism between XC ∼= N . There is thus
an isomorphismMC ∼= [N/GLn(C)].
Similarly, the variety XL,P,σ is isomorphic to the variety

{(X, g1B, g2B) ∈ N ×GLn(C)/B ×GLn(C)/B | g−1
1 Xg1 ∈ U and g−1

2 Xg2 ∈ U} ∼= Ye ×N Ye.

The variety Ye×N Ye is the so-called Steinberg variety, well studied in geometric representation
theory of reductive groups and Weyl groups (see for example [16]).
There is thus an isomorphism

M∗β,σ ∼= [Ye ×N Ye/GLn(C)].

Via these identi�cations, the morphism π :M∗β,σ →MC corresponds to the morphism

π : [Ye ×N Ye/GLn(C)]→ [N/GLn(C)]

obtained by taking the quotient by GLn(C) of the canonical morphism Ye ×N ×Ye → N .

Conversely, to a k-tuple C, we start by associating the following star-shaped quiver Q = (I,Ω),



142

the following αC ∈ NI and γC ∈ (C∗)I .

Assume that each Ch has eigenvalues γh,0, . . . , γh,sh with Jordan forms associated to partitions
λh,0, . . . , λh,sh ∈ P.

Put

ŝh =

sh∑
r=0

l(λ′h,r)

and Q = (I,Ω) be the star-shaped quiver with k legs of length ŝ1, . . . , ŝk respectively.

Consider the dimension vector αC ∈ (NI)∗ de�ned as follows. For each h = 1, . . . , k and each

j ∈ {1, . . . , ŝh} there exists unique pj ∈ {0, . . . , sh} such that
pj−1∑
r=0

l(λ′h,r) < j ≤
pj∑
r=0

l(λ′h,r).

Put

rj = j −
pj−1∑
r=0

l(λ′h,r).

We de�ne then

(αC)[h,j] =


n if j = 0
pj−1∑
r=0

|λh,r|+
rj∑
r=1

(λ′h,pj )r otherwise.

For each h = 1, . . . , k, denote by γ̂h ∈ (C∗){0,...,ŝh} the element such that (γ̂h)0 = γh,0 and

(γ̂h)j = γh,pj .

We de�ne then the element γC ∈ (C∗)I as follows:

(γC)[h,j] :=


k∏

h=1

γ−1
h,0 if j = 0

γ̂h
−1
j γ̂hj−1 otherwise .

.

Example 7.4.4. Assume now that each Ch is semisimple (i.e Ch = Ch) and it is the conjugacy
class of a diagonal matrix Ch with distinct eigenvalues γh,0, . . . , γh,sh ∈ C∗ and multiplicities
mh,0, . . . ,mh,sh respectively.

Notice that for each h = 1, . . . , k and each j = 0, . . . , sh, we have λh,j = (1mh,j ) and therefore
ŝh = sh. The quiver Q = (I,Ω) is therefore the star-shaped quiver with k legs of length
s1, . . . , sk respectively.

The dimension vector αC ∈ (NI)∗ is given by

(αC)[h,j] =

sh∑
l=j

mh,l
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and γC ∈ (C∗)I is given by

(γC)[h,j] =


k∏

h=1

γ−1
i,0 if j = 0

γ−1
h,jγh,j−1 otherwise

.

From αC , γC , de�ne L = (L1, . . . , Lk), P = (P1, . . . , Pk) and z1 ∈ ZL1 , . . . , zk ∈ ZLk as above.
Notice that, for each h = 1, . . . , k, we have that the image of πh : Yzh → GLn is Cj .

From the reasoning above, we have therefore a morphism

π :M∗αC ,γC →MC .

Notice that if Ch is semisimple for each h = 1, . . . , k, we have that z1 ∈ (ZregL1
), . . . , zk ∈

(ZLk)reg. In particular, from Remark 7.4.1, we deduce the following Theorem.

Theorem 7.4.5. For any k-tuple of semisimple conjugacy classes C, we have an isomorphism

of stacks

M∗γC ,αC ∼=MC .

7.4.1 Remarks on character stacks for k-tuples of not necessarily semisimple

conjugacy classes

In paragraph �7.2, we introduced two versions of the multiplicative moment map for a star-
shaped quiver: the morphism Φ∗β and the morphism Φl

β .

While we described the relationship between multiplicative quiver stacksM∗σ,β and character
stacksMC , we did not give such a description for the map Φl

β .

In this paragraph, we make a few remarks on the behaviour of the multiplicative quiver stack
Ml

β,σ, which in general is far more complicated than that ofM∗β,σ.

Firstly, we show that for k-tuples of semisimple conjugacy classes, which are the objects which
interest us in this thesis, the two maps give the same result as explained by the following
Lemma.

Lemma 7.4.6. For a k-tuple C such that Ch is semisimple for each h = 1, . . . , k, we have

Ml
γC ,αC =M∗γC ,αC , i.e

(Φl
αC)
−1(γC) = (Φ∗αC)

−1(γC).

Proof. For an element x ∈ (Φl
αC)
−1(γC) we show that xh,j is injective for every h = 1, . . . , k

and j = 1, . . . , sh in the following way.

Firstly, consider the case where j = sh and let v ∈ C(αC)[h,sh] such that xh,sh−1(v) = 0.

By eq.(7.3.2), we have
v + x∗h,sh−1xh,sh−1(v) = (γC)

−1
[h,sh]v (7.4.1)
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and therefore v = (γC)
−1
[h,sh]v. Since (γC)[h,sh] = γ−1

h,sh
γh,sh−1 6= 1, we deduce that v = 0.

Consider now j < sh and let v ∈ C(αC)[h,j] such that xh,j−1(v) = 0. By eq.(7.2.3), we have

xh,jx
∗
h,j(v) = ((γC)[h,j] − 1)v. (7.4.2)

and using eq.(7.2.3), we show in a similar way that

xh,rx
∗
h,r · · ·x∗h,j(v) = (γC)[h,r] − 1) = (

r−1∏
s=j

(γC)[h,j] − 1)x∗h,r−1 · · ·x∗h,j(v). (7.4.3)

Notice that
∏r−1
s=j (γC)[h,j] = γh,j−1γ

−1
h,r−1 6= 1 and, for each r, we have thus

xh,j+1 · · ·xh,rx∗h,r · · ·x∗h,j+1(v) =
xh,j+1 · · ·xh,r+1x

∗
h,r+1 · · ·x∗h,j+1(v)

(
∏r−1
s=j (γC)[h,j] − 1)

. (7.4.4)

We deduce that we have an equality

v =
xh,j+1 · · ·xh,shx∗h,sh · · ·x

∗
h,j+1(v)∏sh

r=j+1(
∏r−1
s=j (γC)[h,j] − 1)

. (7.4.5)

At the same time, eq.(7.4.3), for r = sh − 1, gives the equality:

xh,shx
∗
h,sh
· · ·x∗h,j+1(v) = (

sh−1∏
s=j

(γC)[h,j] − 1)x∗h,sh−1 · · ·x∗h,j+1(v) (7.4.6)

From eq.(7.3.2), we deduce that we have

x∗h,sh · · ·x
∗
h,j+1(v) = (γC)[h,sh](x

∗
h,sh
· · ·x∗h,j+1(v) + x∗h,shxh,shx

∗
h,sh
· · ·x∗h,j+1(v)) = (7.4.7)

=

sh∏
s=j

(γC)[h,j]x
∗
h,sh
· · ·x∗h,j+1(v). (7.4.8)

Notice that (γC)[h,j] = γh,j−1γ
−1
h,sh
6= 1 and therefore x∗h,sh · · ·x

∗
h,j+1(v) = 0. From eq.(7.4.5),

we see that v = 0.

For a general k-tuple C (i.e of not necessarily semisimple conjugacy classes), we can have
that Φl

αC(γC) 6= Φ∗αC(γC). However, we can relate the character variety MC (rather than the
character stack) to the multiplicative quiver variety M l

γC ,αC , as explained by the following
Theorem, shown in [90].

Theorem 7.4.7. For any k-tuple C of conjugacy classes, we have an isomorphism

MC ∼= M l
γC ,αC .
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Notice that the analogous of Theorem 7.4.7 does not hold in general for character stacks and
multiplicative quiver stacks, i.e in general

Ml
γC ,αC 6∼=MC

as explained by the following Example.

Example 7.4.8. Consider as in Example 7.4.3, n = k = 2, g = 0 and the pair C = (C1, C2),
with C2 = C2 and C1 is the regular unipotent conjugacy class of GL2, i.e the conjugacy class
of (

1 1

0 1

)
.

As remarked in Example 7.4.3, we have an isomorphism

MC ∼= [N/GL2].

Notice in particular that the stackMC is irreducible.

In this case, the associated quiver Q = (I,Ω) and the dimension vector αC are depicted below

1

2 1

The associated element γC is given by

(γC)i = 1 for each i ∈ I.

As explained in [53, Example 2.3], in this case we have an isomorphism

Ml
γC ,αC

∼=M0,αC ,

where we denote by 0 = (0)i∈I ∈ CI andM0,αC is the associated quiver stack, see �6.1.
By Lemma 6.2.15, we have therefore that the number of irreducible components of maximal
dimension is the top degree coe�cient of the polynomial

MQ,0,αC(t) = MQ,αC(t).

A direct computation shows that
MQ,αC(t) = 5

and, in particular, the stack Ml
γC ,αC is not irreducible and therefore not isomorphic to the

character stackMC .
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8 Multiplicities for tensor product of representations of �nite
general linear group

In this chapter, we study multiplicities 〈X1 ⊗ · · · ⊗ Xk, 1〉 for k-tuples X = (X1, . . . ,Xk) of
irreducible characters of GLn(Fq).
These multiplicities are well understood when the k-tuple is generic, thanks to Hausel, Letellier
and Rodriguez-Villegas' works [45],[46] and their later generalization by Letellier [63]. These
results will be reviewed in section �8.1.

Our main result is a formula for the multiplicity 〈RGL1
(γ1)⊗ · · · ⊗RGLk(γk), 1〉 for any k-tuple

of Harisha-Chandra characters (RGL1
(γ1), . . . , RGLk(γk)) (not necessarily generic). We will show

this formula in two di�erent ways.

At �rst istance, we follow a more algebraic approach. In section �8.2 we show how to relate
the multiplicity 〈RGL1

(γ1) ⊗ · · · ⊗ RGLk(γk), 1〉 to the counting of representations of at most a
certain level of a certain star-shaped quiver Q = (I,Ω). This quiver-theoretic interpretation
gives a way to express 〈RGL1

(γ1)⊗ · · · ⊗RGLk(γk), 1〉 in terms of the Kac polynomials aQ,β(t).

In section �8.3 we show the same formula by following a more combinatorial approach. In par-
ticular, we apply the results of �5.7 to the Log compatible family of class functions {r∗α}α∈NI ,
where r∗α is the character of the GLα(Fq)-representation C[R(Q,α)∗(Fq)].
For both approaches, we use in a key way Lemma 8.2.11, which relates Deligne-Lusztig induc-
tion to quiver representations. Such a result does not appear to have been previously reported
in the literature.

Lasty, in section �8.4, we show some concrete applications of our results. In particular, we
show through quiver representations the classical criterion for the irreducibility of an Harisha-
Chandra character RGL (γ) of GLn(Fq) and we compute explicitly the multiplicity 〈X1 ⊗ · · · ⊗
Xk, 1〉 for any k-tuple of semisimple split characters of GL2(Fq).

8.1 Multiplicities in the generic case

Hausel, Letellier, Rodriguez-Villegas [46, De�nition 2.2.5] gave the following de�nition of
genericity for k-tuples of irreducible characters of GLn(Fq).

De�nition 8.1.1. We say that the a k-tuple X = (X1, . . . ,Xk) is generic, where Xi =

εLiεGLnR
G
Li

(γiRϕi), if for any F -stable Levi subgroup M ⊆ GLn and g1, . . . , gk ∈ GLn(Fq)
such that ZM ⊆ giLig−1

i , the character ΓM of ZFM de�ned as

ΓM (z) =
k∏
i=1

γi(gizg
−1
i )

for z ∈ ZFM , is a generic linear character of ZFM .

By this, it is meant that ΓM |ZFG is trivial and for any F -stable M ⊆ M ′ ( G the restriction
ΓM |ZF

M′
is non trivial.
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Example 8.1.2. Consider a k-tuple of irreducible characters (α1 ◦ det, . . . , αk ◦ det), with αi ∈
Hom(F∗q ,C∗). This k-tuple is generic if and only if the element α1 · · ·αk has order n.

Consider now a k-tuple X = (X1, . . . ,Xk) of irreducible characters of GLn(Fq) and the element
ωX := (ωX1 , . . . , ωXk) ∈ Tkn. Letellier [63, Theorem 6.10.1] showed the following result.

Theorem 8.1.3. Fix g ∈ N and let Λ be the character of the representation of GLn(Fq) on

C[gln(Fq)g], where GLn(Fq) acts by conjugation. For any generic k-tuple X , we have

HωX ,2g(0,
√
q) = 〈Λ⊗X1 ⊗ · · · ⊗ Xk, 1〉. (8.1.1)

Assume that each Xi is semisimple split, i.e Xi = RGLi(γi) and let µi = (µi1, . . . , µ
i
si) be the

partition such that ωXi = (1, (µi1)) . . . (1, (µisi)). We have therefore ωX = µ = (µ1, . . . , µk)

and
Hµ,2g(0,

√
q) = 〈Λ⊗RGL1

(γ1)⊗ · · · ⊗RGLk(γk), 1〉 (8.1.2)

Formula (8.1.2) was already proved in [46, Theorem 1.4.1].

8.1.1 Star-shaped quivers and Harisha-Chandra characters

Fix an integer g ≥ 0 and let X be a k-tuple of Harisha-Chandra characters

X = (RGL1
(γ1), . . . , RGLk(γk))

with
Lj = GLnj,0 × · · · ×GLnj,sj .

Let Q = (I,Ω) be the following star-shaped quiver :

◦[1,1] ◦[1,2] . . . ◦[1,s1]

◦[2,1] ◦[2,2] . . . ◦[2,s2]

◦0 · ·

· ·

· ·

◦[k,1] ◦[k,2] . . . ◦[k,sk]

···

We will denote the vertex 0 also by [i, 0] for i = 1, . . . , k. Let αX ∈ NI be the dimension
vector de�ned as

(αX )[i,j] = n−
si∑
h=j

ni,j otherwise.
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Notice that Q and αX depend only on L1, . . . , Lk and not on the characters γ1, . . . , γk.

If X is generic, notice that Formula (8.1.2) can be rewritten as

HαX (0,
√
q) = 〈Λ⊗RGL1

(γ1)⊗ · · · ⊗RGLk(γk), 1〉 (8.1.3)

i.e, from Theorem 7.1.3, that we have

aQ,αX (q) = 〈Λ⊗RGL1
(γ1)⊗ · · · ⊗RGLk(γk), 1〉 (8.1.4)

8.2 Multiplicities for Harisha-Chandra characters and quiver representa-
tions

8.2.1 Levels for k-tuples of characters

Consider now, for each i = 1, . . . , k, a character γi = (γi,0, . . . , γi,si) : LFi → C∗. To the
k-tuple of characters X = (RGLi(γi))

k
i=1 we associate an element σX ∈ Hom(F∗q ,C∗)I de�ned

as:

(σX )[i,j] :=


k∏
i=1

γi,0 if j = 0

γi,jγ
−1
i,j−1 otherwise

. (8.2.1)

Recall that the subset H∗σX ,αX ⊆ (NI)∗ is de�ned as follows

H∗σX ,α := {δ ∈ (NI)∗ | 0 < δ ≤ αX , σδγ = 1}.

For a subset V ⊆ (NI)∗, we give the following de�nition of a k-tuple (RGL1
(γ1), . . . , RGLk(γk))

of level V .

De�nition 8.2.1. The k-tuple (RGL1
(γ1), . . . , RGLk(γk)) is said to be of level V if H∗σX ,αX =

V≤αX . For λ ∈ CI , we say that (RGL1
(γ1), . . . , RGLk(γk)) is of level λ if it is of level Vλ.

Remark 8.2.2. Notice that any k-tuple X = (RGL1
(γ1), . . . , RGLk(γk)) is automatically of level

H∗σX ,αX .

Example 8.2.3. Notice the k-tuple of split Levi characters (RGLi(1))ki=1 is of level (NI)∗. In this
case indeed σX = 1 and so H∗σX ,αX = (NI≤αX )∗.

We have the following Lemma for generic k-tuples of Harisha-Chandra characters.

Lemma 8.2.4. For a k-tuple of Harisha-Chandra characters X = (RGL1
(γ1), . . . , RGLk(γk)), if

H∗σX ,αX = {α}, then X is generic as in De�nition 8.1.1. On the other side, if the k-tuple X
is generic, there are no elements δ, ε ∈ H∗σX ,αX \ {αX } such that δ + ε = αX .
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Proof. Pick M ⊆ G an F -stable Levi subgroup and let m1 . . . ,mr, d1, . . . , dr be the non-
negative integer associated to M such that

(M,F ) ∼= (GLm1)d1 × · · · × (GLmr)dr .

There is therefore an isomorphism

(ZM , F ) ∼= (Gm)d1 × · · · × (Gm)dr .

There exist elements g1, . . . , gk ∈ GF such that giZMg
−1
i ⊆ Li if and only if there exist k

embeddings
λi : (Gm)d1 × · · · × (Gm)dr ↪→ (Li, F )

respecting the condition about weights we will explicitate in Equation (8.2.2) below. For
j = 1, . . . , r, we denote by λji : (Gm)dj → (Li, F ) the restriction of λi to the subgroup
{1} × · · · × (Gm)dj × {1} × · · · so that

λi =
r∏
j=1

λji .

The composition of λji and the inclusion Li ⊆ G de�nes a morphism which we still denote by
λji : (Gm)dj → GLn that must respect the following equality:

|λji | = mj (8.2.2)

For i = 1, . . . , k and l = 0, . . . , si, denote by pi,l the projection pi,l : Li → GLni,l and by λji,l
the morphism

λji,l := pi,l ◦ λji : (Gm)dj → GLni,l .

Denote by γgii : ZFM → C∗ the morphism given by γgii (z) = γi(gizg
−1
i ). Via the identi�cations

above, the character γgii corresponds to the character

γi ◦ λi : (Gm)d1(Fq)× · · · × (Gm)dr(Fq) = F∗
qd1
× · · · × F∗qdr → C∗

given by

(x1, . . . , xr) −→
∏
j,l

γi,l(NF∗
q
dj
/F∗q (xj))

|λji,l| (8.2.3)

The equality

1 =

k∏
i=1

γgii : ZFM → C∗

therefore holds if and only if for every j = 1, . . . , r∏
i,l

γi,l(NF∗
q
dj
/F∗q (xj))

|λji,l| = 1 (8.2.4)
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Put NF
q
dj
/Fq(xj) = y. The following equality holds:

∏
i,l

γi,l(y)|λ
j
i,l| =

(∏
i

γi,0(y)

)mj∏
i,l

(γi,lγ
−1
i,l−1(y))mj−

∑l−1
s=1 |λi,s| = σ

δj
X (y) (8.2.5)

where δj is the element of NI given by δ0 = mj and

δ[i,j] = mj −
l−1∑
s=1

|λi,s|.

Therefore, from Equation (8.2.5), we deduce that if H∗σX ,αX = {αX } the k-tuple of characters
X = (RGL1

(γ1), . . . , RGLk(γk)) is generic.

Conversely, assume that the k-tuple X is generic and assume the existence of δ ∈ H∗σX ,αX
such that δ 6= αX and ε := αX − δ belongs to H∗σX ,α too. Consider the F -stable split Levi
subgroup M = GLδ0 ×GLε0 ⊆ GLn embedded block diagonally. Notice that in particular
ZM ∼= Gm ×Gm.
For each i = 1, . . . , k, there exist embeddings λ1

i , λ
2
i : Gm → (Li, F ) such that, with the

notations used before,
|λ1
i,l| = δ[i,l] − δ[i,l+1]

and
|λ2
i,l| = ε[i,l] − ε[i,l+1].

The associated embeddings λ1
i × λ2

i : (ZM , F ) → (Li, F ) correspond to elements g1, . . . , gk ∈
GF such that giZMg

−1
i ⊆ Li and for (x1, x2) ∈ ZFM = F∗q × F∗q we have

ΓM (z) =

k∏
i=1

γgii (x1, x2) = σδX (x1)σεX (x2) = 1.

Remark 8.2.5. For any β ∈ (NI)∗, there exists a generic k-tuple X of Harisha-Chandra char-
acters such that αX = β if q is su�ciently big (see for example the discussion after [46,
Proposition 2.2.4] ).

8.2.2 Star-shaped quiver of type A and Harisha-Chandra characters

Consider the case in which k = 1, g = 0 i.e X = (RGL (γ)) and the associated type A quiver
Q = (I,Ω). In this paragraph, we show how to express the character RGL (γ) in terms of the
representations of Q.

This relationship is going to be the main ingredient to prove Theorem 8.2.8, which is the main
result of this chapter.
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Consider n0, . . . , nl ∈ N such that

(L,F ) ∼= GLn0 × · · · ×GLnl .

Denote by I = {0, . . . , l} the set of vertices of Q and by α = αX the dimension vector
associated to RGL (γ). Notice that

α = (α0, α1, . . . , αl)

with

αj =

l∑
h=j

nh.

Let γ0, . . . , γl ∈ Hom(Fq,C∗) such that γ = (γ0, . . . , γl), with the notations of �5.4.1. In this
case, denote by σγ ∈ Hom(F∗q ,C∗)I the associated element and put

ργ = ρσγ .

Lastly, denote by r∗α the character of GLα(Fq) given by its action on the �nite set R(Q,α)∗(Fq).
We have the following Lemma.

Lemma 8.2.6. For any g0 ∈ GLn(Fq), we have:

RGL (γ)(g0) =
∑

j=1,...,l
gj∈GLαj (Fq)

r∗α(g0, g1, . . . , gl)
ργ(g0, g1, . . . , gl)

|GLα1(Fq)| · · · |GLαl(Fq)|
(8.2.6)

Proof. Let P be the unique parabolic subgroup of GLn containing the upper triangular ma-
trices and L. Recall that by Formula (5.1.1) we have:

RGL (γ)(g0) =
∑

h∈GLn(Fq)/P (Fq)
g0·hP (Fq)=hP (Fq)

γ(h−1g0h).

The character r∗α satis�es:

r∗α(g0, g1, . . . , gl) = #

{
fl ∈ Hominj(Fαlq ,F

αl−1
q ), . . . ,

f1 ∈ Hominj(Fα1
q ,Fnq ) s.t g0f1g

−1
1 = f1, . . . , gl−1flg

−1
l = fl

}
.

We denote by X(g0) the set de�ned as:

X(g0) :=

{
g1 ∈ GLα1(Fq), . . . , gl ∈ GLαl(Fq), fl ∈ Hominj(Fαlq ,F

αl−1
q ), . . . ,
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f1 ∈ Hominj(Fα1
q ,Fnq ) s.t g0f1g

−1
1 = f1, . . . , gl−1flg

−1
l = fl

}
and for x = (f1, . . . , fl, g1, . . . , gl) ∈ X(g) we put

ργ(x) := ργ(g0, g1, . . . , gl).

For a �xed g0 ∈ GLn(Fq), we have thus the following equality :

l∑
j=1,

gj∈GLαj (Fq)

r∗α(g0, g1, . . . , gl)ργ(g0, g1, . . . , gl)

|GLα1(Fq)| · · · |GLαl(Fq)|
=

∑
x∈X(g0)

ργ(x)

|GLα1(Fq)| · · · |GLαl(Fq)|
.

There is a map ψ : X(g0)→ (GLn(Fq)/P (Fq))g0 de�ned as

ψ((g1, . . . , gl, f1, . . . , fl)) = (Im(f1 · · · fl) ⊆ Im(f1 · · · fl−1) ⊆ · · · ⊆ Im(f1) ⊆ Fnq ).

To see that ψ is well de�ned we need to verify that the subspaces Im(f1 · · · fl),Im(f1 · · · fl−1)

. . . , Im(f1) are all g0-stable.

Start with Im(f1). We have g0f1 = f1g1 and so g0(Im(f1)) ⊆ Im(f1). For a general j ≥ 1 we
see similarly

g − 0f1 · · · fj = f1g1f2 · · · fj = · · · · · · = f1 · · · fjgj .

Let us show that the map ψ is surjective. Given a g0-stable �ag

(Vl ⊆ Vl−1 ⊆ · · · ⊆ V1 ⊆ Fnq ) = hP (Fq),

we can choose for each j = 1, . . . , l a basis Bj of Vj such that Bj ⊆ Bj−1 as ordered sets.
The choices of the Bjs de�ne morphisms fj : Fαjq ↪→ Fαj−1

q such that Im(f1f2 · · · fj) ⊆ Fnq is
g0-stable for any j = 1, . . . , l.

For each j = 1, . . . , l, the automorphism g0|Im(f1f2···fj) written in the basis Bj de�ne an
element gj ∈ GLαj (Fq) and the element xh ∈ X(g) de�ned as xh := (g1, . . . , gl, f1, . . . , fl) is
such that

ψ(x) = (Vl ⊆ Vl−1 ⊆ · · · ⊆ V1 ⊆ Fnq ),

i.e the morphism ψ is surjective.

There is an action of
l∏

j=1

GLαj (Fq) on X(g) de�ned as

(m1, . . . ,ml)·(g1, . . . , gl, f1, . . . , fl) := (m1g1m
−1
1 , . . . ,mlglm

−1
l , f1m

−1
1 ,m1f2m

−1
2 , . . . , flm

−1
l ).

Notice that the latter action is free by Remark 7.1.1. The map ψ is
l∏

j=1

GLαj (Fq) invariant
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and, for each h ∈ GLn(Fq)/P (Fq), the �ber ψ−1(h) is equal to the orbit

 l∏
j=1

GLαj (q)

 · xh.
Therefore, as ργ((m1, . . . ,ml) · x) = ργ(x) for any (m1, . . . ,ml) ∈

l∏
j=1

GLαj (Fq), we have

∑
x∈X(g0)

ργ(x)

|GLα1(Fq)| · · · |GLαl(Fq)|
=

∑
h∈GLn(Fq)/P (Fq))g

ργ(ψ−1(h)).

We are thus left to show that ργ(ψ−1(h)) = γ(h−1g0h). On the one side, by evaluating ργ at
the element xh ∈ ψ−1(h) de�ned above, we see that:

ργ(ψ−1(h)) = ((γ−1
l−1γl)(det(g0|Vl))) · · · (γ0(det(g0))).

On the other side, the matrix h−1g0h is a block upper triangular matrix:

h−1gh =



g′l
0 g′l−1

0 0 g′l−2

0 0 0 ∗
0 0 0 0 · · ·
0 0 0 0 0 g′0


where g′l is g0|Vl written in the basis Bl, the matrix

(
g′l ∗
0 g′l−1

)
is equal to g0|Vl−1

written in

the basis Bl−1 and so on. Thus, we have the following identity:

γ(h−1g0h) =

l∏
j=0

γj(det(g′j)) =

= γl(det(g0|Vl))(γl−1(det(g0|Vl−1
))γ−1

l−1(det(g0|Vl)))(γl−2(det(g0|Vl−2
))γ−1

l−2(det(g − 0|Vl−1
))))

· · · (γ0(det(g0))γ−1
0 (det(g0|V1))) =

= (γ−1
l−1γl(det(g0|Vl))) · · · (γ0(det(g0))).

Remark 8.2.7. Notice that Lemma 8.2.6 gives a way to express Harisha-Chandra induction (or
split Deligne-Lusztig induction) in terms of quiver representation. A similar formula seems to
not have been known before in the literature.

It would be interesting to �nd a way to relate quiver representations to Deligne-Lusztig char-
acters associated to non-split Levi subgroups too.
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8.2.3 Main result

The main result of this chapter is the following Theorem.

Theorem 8.2.8. Let V ⊆ (NI)∗ and let X = (RGL1
(γ1), . . . , RGLk(γk)) be a k-tuple of Harisha-

Chandra characters of GLn(Fq) of level V . The following equality holds:〈
Λ⊗

k⊗
i=1

RGLi(γi), 1

〉
= MQ,αX ,V (q) = CoeffαX

Exp

∑
β∈V

Hβ(0,
√
q)yβ

 . (8.2.7)

Notice that the last equality of eq.(8.2.7) is a consequence of Lemma 6.2.2 and Theorem 7.1.3.
Before giving the proof of Theorem 8.2.8, we make some examples of cases in which this result
was already known.

Remark 8.2.9. Consider a generic k-tuple X = (RGL1
(δ1), . . . , RGLk(δk)). By Lemma 8.2.4 and

Lemma 6.2.12, we haveMQ,αX ,H∗σX ,αX
(t) = aQ,αX (t) and therefore Formula (8.2.7) implies the

following Identity: 〈
Λ⊗

k⊗
i=1

RGLi(δi), 1

〉
= aQ,αX (q) (8.2.8)

which had already been proved in [46, Theorem 3.4.1.].

Example 8.2.10. Consider the case where V = (NI)∗. As remarked in Example 8.2.3, the
k-tuple (RGLi(1))ki=1 is of level (NI)∗.
From Lemma 7.1.2, we deduce that for a subset V ⊆ (NI)∗ and any β ∈ (NI)∗, the represen-
tations R(Q, β, V ) of level V are all contained in R(Q, β)∗.

In particular, for V = (NI)∗ we have an identity R(Q, β, (NI)∗) = R(Q, β)∗. Formula (6.2.2)
implies thus the following identity:

∑
β∈(NI)∗

M∗Q,β(t)yβ = Exp

 ∑
β∈(NI)∗

aQ,β(t)yβ

 (8.2.9)

where the polynomials M∗Q,β(t) are such that, for any q, M∗Q,β(q) is equal to the number of
isomorphism classes of representations of dimension β with injective maps along the legs over
Fq.
By eq.(8.2.7) we obtain the identity

〈RGL1
(1)⊗ · · · ⊗RGLk(1), 1〉 = M∗Q,αX (q) (8.2.10)

The latter identity was already proved in [46, Proposition 3.2.5]. Roughly speaking, in this

case Identity (8.2.10) comes from the fact that
k∏
i=1

RGLi(1)(h), for each h ∈ GLn(Fq), is the
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number of k-tuple of �ags of Fnq of type αX �xed by h and Burnside's formula (see [46, Lemma
2.1.1]).

Fix now a k-tuple X = (RGL1
(γ1), . . . , RGLk(γk)) and, to ease the notations, denote by ρX the

character ρσX as in �6.2.2. For any α ∈ NI , we denote by r∗α the complex character of GLα(Fq)
given by its action on the �nite set R(Q,α)∗(Fq).

Notice that Lemma 8.2.6 implies the following Lemma:

Lemma 8.2.11. We have the following identity:

〈
r∗αX ⊗ ρX , 1

〉
=

〈
Λ⊗

k⊗
i=1

RGLi(γi), 1

〉
(8.2.11)

Proof of Theorem 7.2.8. The proof of Theorem 6.2.17 can be slightly modi�ed to show that
for V ⊆ (NI)∗ such that V≤αX = H∗σX ,αX we have

〈r∗αX ⊗ ρX , 1〉 = MQ,αX ,V (q). (8.2.12)

From eq.(8.2.11) and eq.(8.2.12) we deduce directly Theorem 8.2.8.

8.2.4 Non-vanishing of multiplicities

From Proposition 6.2.14, we deduce the following proposition.

Proposition 8.2.12. 1. For a k-tuple of Harisha-Chandra characters

X = (RGL1
(γ1), . . . , RGLk(γk)),

the multiplicity 〈Λ ⊗ RGL1
(γ1) ⊗ · · · ⊗ RGLk(γk), 1〉 is the evaluation at q of a polynomial

with non-negative coe�cients.

2. Given Q,αX as above the multiplicity
〈

Λ⊗RGL1
(γ1)⊗ · · · ⊗RGLk(γk), 1

〉
is non-zero if

and only there exist

� β1, . . . , βr ∈ (Φ+(Q) ∩ V )

� m1, . . . ,mr ∈ N

such that m1β1 + · · ·+mrβr = αX .

Notice that this implies that if Φ+(Q) ∩ V = ∅ the multiplicity is 0. Similarly, if αX 6∈ V
we have that the multiplicity is 0. Indeed, as V≤αX = H∗σX ,αX , if βi ∈ V with βi ≤ α and
miβi ≤ α too, we have miβi ∈ V and αX = m1β1 + · · ·+mrβr ∈ V .

Remark 8.2.13. Identity (8.2.7) implies that the multiplicity

〈
Λ⊗

k⊗
i=1

RGLi(γi), 1

〉
does not

depend on the characters γ1, . . . , γk but only on the Levi subgroups L1, . . . , Lk and the subset
H∗σX ,αX .
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As aQ,β(t) 6= 0 if and only if β ∈ Φ+(Q), we deduce more precisely that the multiplicity
depends only on the intersection of H∗σX ,αX and Φ+(Q).

8.3 Multiplicities for Harisha-Chandra characters and Log compatibility

In this paragraph, we give a alternative proof of Theorem 8.2.8 which uses the results of
Section �5.8.2, rather than the levels of representations of quivers.
We start by noticing that we have the following Lemma.

Lemma 8.3.1. For α ∈ NI and g ∈ GLα(Fq) such that g ∼ ω and ω = (d1,λ1) . . . (dr,λr),

we have

r∗α(g) =


Λ(g0)

r∏
j=1

∏
a∈Ω0

(qdj )〈λ
s(a)
j ,λ

t(a)
j 〉−1(qdj − 1) if |λj | ∈ (NI)∗ for all j

0 otherwise

(8.3.1)

In particular, the family of functions {r∗α}α∈NI is Log compatible.

The proof follows closely the arguments of Hua's [50, Proof of Theorem 4.3] for the family
{rα}α∈NI . We give a sketch of the proof for completeness.

Proof. Notice that we have:

r∗α(g) = Λ(g0)
∏
a∈Ω0

|{M ∈ Hominj(s(a), t(a),Fq) | gs(a)Mg−1
t(a) = M}|. (8.3.2)

Put
r∗α,0(g) =

∏
a∈Ω0

|{M ∈ Hominj(s(a), t(a),Fq) | gs(a)Mg−1
t(a) = M}|.

We use the notations of �3.6.1. Consider F -orbits θ1, . . . , θr of cardinality d1, . . . , dr respec-
tively and multipartitions λ1, . . . ,λr of size β1, . . . , βr respectively, such that g is conjugated
to

r∏
j=1

J(θj ,λj).

Hua's arguments show that

r∗α,0(g) =

r∏
j=1

r∗dβj ,0(J(θj ,λj)).

Notice that if there exists j ∈ {1, . . . , r} such that βj 6∈ (NI)∗, we have r∗dβj ,0(J(θj ,λj)) = 0

and therefore r∗α(g) = 0.
Otherwise, we have∏
a∈Ω0

|{M ∈ Hominj(s(a), t(a),Fq) | J(θj ,λj)s(a)M(J(θj ,λj))
−1
t(a) = M}| =

∏
a∈Ω0

(qdj )〈λ
s(a)
j ,λ

t(a)
j 〉−1(qdj−1)

(8.3.3)
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We deduce therefore the equality of Lemma 8.3.1.

By Theorem 5.7.5, for any σ ∈ Hom(F∗q ,C∗)I , we have an identity

〈r∗α ⊗ ρσ, 1〉 = Coeffα

Exp

∑
β∈Hσ

R̃∗β,gen(q)yβ

 (8.3.4)

where R̃∗α,gen(t) are the polynomials associated to the Log compatible family {r∗α}α∈NI . Notice
that R̃∗β,gen(t) = 0 if β 6∈ (NI)∗. In particular, if σ is such that H∗σ,β = {β}, we have that

R̃β,gen(q) = 〈r∗β ⊗ ρσ, 1〉.

From Remark 5.7.7 and Theorem 7.1.3, we see that we have

R̃β,gen(t) = aQ,β(t) = Hβ(0,
√
t) (8.3.5)

if β ∈ (NI)∗.
Eq.(8.3.4) gives therefore another way to show Identity (8.2.7).

8.4 Computations

8.4.1 Irreducibility for semisimple split characters

Consider the case of g = 0 and k = 2. Consider a split F -stable Levi subgroup L ⊆ GLn and
γ : LF → C∗. Let X be the couple of Harisha Chandra characters X = (RGL (γ), RGL (γ−1)).

Notice that RGL (γ−1) is the dual of RGL (γ) and therefore we have

〈RGL (γ)⊗RGL (γ−1), 1〉 = 〈RGL (γ), RGL (γ)〉.

Using Theorem 4.5.2 we give an alternative proof of the classical result that

〈RGL (γ), RGL (γ)〉 = 1 (8.4.1)

if and only if γi 6= γj for all i 6= j. Notice that the Identity (8.4.1) holds if and only if the
character RGL (γ) is irreducible.

Let L = GLn0 × · · · ×GLnl and g = 0. The associated quiver Q is thus the following type A
quiver.

◦[1,l] ◦[1,l−1] . . . ◦[1,1] ◦0 ◦[2,1] ◦[2,2] . . . ◦[2,l]

The associated dimension vector αX is

αX = (nl, nl + nl−1, . . . , nl + · · ·+ n1, n, n1 + · · ·+ nl, . . . , nl−1 + nl, nl)
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and the element σX is equal to

σX = (γlγ
−1
l−1, γl−1γ

−1
l−2, . . . , γ1γ

−1
0 , 1, γ0γ

−1
1 , . . . , γ−1

l−1γl−2, γ
−1
l γl−1).

As Q is a Dynkin quiver of type A, the subset Φ+(Q) has an explicit description and each root
β ∈ Φ+(Q) is real, i.e aQ,β(t) = 1 (see Proposition 6.1.8). For j = 0, . . . , l and h = 0, . . . , l

de�ne the dimension vector βj,h as

(βj,h)i :=

{
0 if i = [1, a] with a > j or i = [2, b] with b > h

1 otherwise
.

The set Φ+(Q) ∩ (NI)∗ is given by {βj,h}j,h=0,...,l. Let us denote by Mj,h the absolutely

indecomposable representation of dimension vector βj,h over Fq. Notice that σ
βj,h
X = γjγ

−1
h

and so we see that σ
βi,i
X = 1 for every i = 0, . . . , l. The representation

M =
l⊕

j=0

M
⊕nj
j,j

is thus of level at most H∗σX ,αX and the dimension vector of M is equal to α. If γj = γh for
j 6= h, we have βj,h, βh,j ∈ H∗σX ,αX . The representation

N =

 ⊕
m 6=0,j,h

M⊕nmm,m

⊕Mnj−1
j,j ⊕Mnh−1

h,h ⊕Mn0−1
0,0 ⊕Mj,h ⊕Mh,j

is therefore of level at most H∗σX ,αX and of dimension vector dimN = αX . We deduce that
MQ,αX ,H∗σX ,αX

(t) = 1 if and only if γj 6= γh for every j 6= h.

8.4.2 Explicit computation for n = 2

Let us look at the case where X is a k-tuple of semisimple split characters of GL2(Fq) with
X = (RGT (γ1), . . . , RGT (γk)) where T ⊆ GL2 is the (split) maximal torus of diagonal matrices.
Each character γi is thus of the form

γi = (δi, βi) : F∗q × F∗q → C∗

with δi, βi : F∗q → C∗.

We �x g = 0 in the following. The associated quiver Q = (I,Ω) has thus a central vertex
0 and k other vertices [1, 1], . . . , [k, 1]. We will denote the vertex [i, 1] simply by i for each
i = 1, . . . , k.

The associated dimension vector α is given by α0 = 2 and αi = 1 for each i = 1, . . . , k. The
quiver Q and the dimension vector αX for k = 4 are depicted below.
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1

1 2 1

1

For the sake of simplicity, we assume that δ−1
i = βi and β2

i 6= 1, for each i = 1, . . . , k. The

element σX associated to X = (RGT (γi))
k
i=1 is thus given by (σX )0 =

k∏
i=1

δi and (σX )i = δ−2
i .

Notice that σαXX = 1.

We will explicitly verify that the following equality holds:〈
k⊗
i=1

RGT (γi), 1

〉
= CoeffαX

Exp

 ∑
η∈H∗σX ,αX

aQ,η(q)y
η

 = MQ,αX ,H∗σX ,αX
(q) (8.4.2)

Notice that if η ≤ α and η ∈ (NI)∗ then either (η)0 = 1 or (η)0 = 2. For an element η ∈ (NI)∗

such that η0 = 1, we have aQ,η(t) = 1. An element η ∈ (NI)∗ such that η0 = 1 is identi�ed by
the subset Aη ⊆ {1, . . . , k} de�ned as Aη := {1 ≤ i ≤ k s.t. ηi = 1}.
For such an η, we have thus

σηX =

(
k∏
i=1

δi

) ∏
j∈Aη

δ−2
j =

∏
j∈Aη

δ−1
j

∏
h∈Acη

δh.

For η1, . . . ηr ∈ (NI)∗ and m1, . . . ,mr ∈ N∗ such that m1η1 + · · · + mrηr = α we have that
either r = 1, m = 1 and η = α, either r = 2, m1 = m2 = 1 and η1 + η2 = α with η1 6= η2 and
(η1)0 = (η2)0 = 1 . The right hand side of Equation (8.4.2) is thus equal to:

CoeffαX

Exp

 ∑
η∈H∗σX ,α

aQ,η(q)y
η

 = aQ,α(q)+
1

2

∑
η∈H∗σX ,αX
s.t η0=1

aQ,η(q)aQ,α−η(q) = aQ,αX (q)+
|H∗σX ,αX − {αX }|

2

(8.4.3)

Notice that the cardinality |H∗σX ,α−{α}| is even as the set H∗σX ,αX −{α} admits the involution
without �xed points which sends η to αX − η.
The left hand side of Equation (8.4.2) can be computed explicitly using the character table of
GL2(Fq), which can be found for example on [28, Page 194].

We have indeed four types for the conjugacy classes of GL2(Fq).

1. We say that g is of type ω1 (and we write g ∼ ω1) if g is of the form

(
λ 0

0 λ

)
for λ ∈ F∗q



160

2. We say that g is of type ω2 (and we write g ∼ ω2) if g is conjugated to a Jordan block(
λ 1

0 λ

)
for λ ∈ F∗q . The centralizer of such a g has cardinality q(q − 1)

3. We say that g is of type ω3 (and we write g ∼ ω3) if g is conjugated to a diagonal matrix(
λ 0

0 µ

)
with λ 6= µ ∈ F∗q . The centralizer of such a g has cardinality (q − 1)2

4. We say that g is of type ω4 (and we write g ∼ ω4) if g is conjugated to a matrix of the

form

(
0 −1

xxq x+ xq

)
with x 6= xq ∈ F∗q2 . The centralizer of such a g has cardinality

q2 − 1

For a semisimple split character of the form RGT (γ) and g ∈ GL2(Fq), the value RGT (γ)(g)

depends on the type of g in the following way:

1. If g ∼ ω1, then RGT (γ)(g) = (q + 1)γ(λ)

2. If g ∼ ω2, then RGT (γ)(g) = γ(λ)

3. If g ∼ ω3 and g is conjugated to

(
λ 0

0 µ

)
, then RGT (γ)(g) = γ(λ, µ) + γ(µ, λ)

4. If g ∼ ω4, then RGT (γ)(g) = 0.

To compute the left hand side of Equation (8.4.2), we will split the sum over the types of the
conjugacy classes:

〈
k⊗
i=1

RGT (γi), 1

〉
=

1

|GL2(Fq)|
∑

g∈GL2(Fq)

k∏
i=1

RGT (γi)(g) =
1

|GL2(Fq)|
∑
ω∈T2

∑
g∼ω

k∏
i=1

RGT (γi)(g).

We see that
1

|GL2(Fq)|
∑
g∼ω1

RGT (γi)(g) =
(q + 1)k(q − 1)

(q − 1)2q(q + 1)
=

(q + 1)k−1

q(q − 1)

and
1

|GL2(Fq)|
∑
g∼ω2

RGT (γi)(g) =
(q − 1)

q(q − 1)
=

1

q
.

In a similar way,

1

|GL2(Fq)|
∑
g∼ω3

RGT (γi)(g) =
1

2(q − 1)2

∑
λ,µ∈F∗q
λ6=µ

k∏
i=1

(δi(λµ
−1) + δ−1

i (λµ−1)) =

1

2(q − 1)2

∑
λ,µ∈F∗q

k∏
i=1

(δi(λµ
−1) + δ−1

i (λµ−1))− 2k(q − 1)

2(q − 1)2
.
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As the homomorphism F∗q × F∗q → F∗q which sends (λ, µ) to λµ−1 is surjective, we can rewrite
the sum above as:

− 2k−1

(q − 1)
+

(q − 1)

2(q − 1)2

∑
ε∈F∗q

∑
B⊆{1,...,k}

∏
i∈B

δi(ε)
∏
i∈Bc

δ−1
i (ε) =

− 2k−1

(q − 1)
+

1

2(q − 1)

∑
η∈(NI)∗

η0=1

∑
ε∈F∗q

σηγ(ε) =
|H∗σγ ,αX − {α}|

2
− 2k−1

(q − 1)
.

and so 〈
k⊗
i=1

RGT (γi), 1

〉
=

(q + 1)k−1

q(q − 1)
+

1

q
+
|H∗σγ ,α − {α}|

2
− 2k−1

(q − 1)
(8.4.4)

=
(q + 1)k−1 + (q − 1)− 2k−1q

q(q − 1)
+
|Hσγ ,α − {α}|

2
. (8.4.5)

Recall that the Identity (8.2.8) gives an equality aQ,αX (q) =
〈⊗k

i=1R
G
T (µi), 1

〉
for a generic

k-tuple (RGT (µi))
k
i=1. The multiplicity

〈⊗k
i=1R

G
T (µi), 1

〉
can be computed in the same way

as Identity (8.4.4) above and gives the identity:

aQ,α(q) =
(q + 1)k−1 + (q − 1)− 2k−1q

q(q − 1)
. (8.4.6)

From Identity (8.4.3) and Identity (8.4.5), we deduce Identity (8.4.2).
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9 Cohomology of non-generic character stacks for Riemann sur-
faces

In this chapter we study cohomology of character stacks for punctured Riemann surfacesMC ,
when the conjugacy classes of the k-tuple C are semisimple. If the k-tuple C is generic, the
cohomology admits an almost complete description due to the results of the articles [45],[72],
which we review in Section �9.1.

Our main result is a formula for the E-series E(MC , q) for any k-tuple C, not necessarily
generic, and a conjecture for the mixed Poincaré series Hc(MC , q, t). The proof of this formula
is obtained using the results of Section �5.8.

More precisely, in section �9.2, we show that the family of class functions associated to the
multiplicative moment map for a star-shaped quiver over Fq is dual Log compatible.

The proof of this result is obtained by reducing the statement to the case of the Kronecker
quiver through some convolution arguments and it is the main technical point of the chapter.

In section �9.3, we show how to apply this result to express the E-series E(MC , q) in terms of
the E-series for generic character stacks and we propose our conjecture for the mixed Poincaré
series.

Finally, in section �9.4, we verify that this conjecture holds in the case of Σ = P1, k = 4

and a certain family of non-generic k-tuples, by giving an explicit geometric description of the
corresponding character stacks.

9.1 Generic character stacks

Let C be a k-tuple of semisimple conjugacy classes of GLn(C). Let Q = (I,Ω) be the associated
quiver and γC ∈ (C∗)I , αC ∈ (NI)∗ the associated parameters, introduced in �7.4. With similar
notations to �5.8.1, we put

H∗γC ,αC = {δ ∈ (NI)∗ | γδC = 1 and δ ≤ αC}.

In [45], it is given the following de�nition of a generic C.

De�nition 9.1.1. The k-tuple C is generic if given a subspace W of Cn which is stabilized
by some Xi ∈ Ci, for each i = 1, . . . , k, such that

k∏
i=1

det(Xi|W ) = 1

then either W = {0} or W = Cn.

Example 9.1.2. Let k = 1 and C = {e
2πid
n }. In this case, the stack MC is denoted by Mn,d.

The conjugacy class C is generic if and only if (n, d) = 1. E-series for generic character stacks
Mn,d were computed in [44].



163

Remark 9.1.3. For any β ∈ (NI)∗, there exists a generic k-tuple C′ with associated dimension
vector αC′ = β (see for example [45, Lemma 2.1.2]).

If C is generic, the geometry of the character stack MC is particularly well behaved. In
particular, the variety XC is smooth and the action of PGLn on XC is schematically free, see
[45, Theorem 2.15]. From Lemma 3.3.1, we deduce that we have [XC/PGLn(C)] = MC and
the variety MC is smooth.

In addition, from Lemma 3.4.8, the canonical morphism MC → MC is a Gm-gerbe and we
have an equality

Hc(MC , q, t) =
Hc(MC , q, t)

qt2 − 1
. (9.1.1)

In particular, the cohomology ofMC is determined from that of the smooth variety MC .

We have the following Lemma for generic k-tuples, whose analogous result for k-tuples of
Harisha-Chandra characters is Lemma 8.2.4.

Lemma 9.1.4. If H∗γC ,αC = {αC} the k-tuple C is generic. On the other side, if C is generic,

there are no δ, ε ∈ H∗γC ,αC \ {αC} such that δ + ε = αC.

Proof. Suppose that for a k-tuple C there exists a proper subspace 0 ⊂ W ⊂ Cn and X1 ∈
C1, . . . , Xk ∈ Ck such that Xi(W ) ⊆W for each i and

k∏
i=1

det(Xi|W ) = 1.

For i = 1 . . . , k and j = 0, . . . , si, put Vγi,j = Ker(Xi − γi,jIn) and Wγi,j = W ∩ Vγi,j . Notice
that, for each i, we have

W =

si⊕
j=0

Wγi,j

and

det(Xi|W ) =

si∏
j=0

γ
dimWγi,j

i,j .

Consider now the dimension vector β ∈ (NI)∗ de�ned as

β[i,j] =

si∑
h=j

dim(Wγi,j ).

Notice that β < αC . Moreover, we have

γβC =
k∏
i=1

γ−β0
i,0

si∏
j=1

(γ−1
i,j γi,j−1)β[i,j] =

k∏
i=1

γ
−
∑si
h=0 dimWγi,j

i,0

si∏
j=1

γ
−
∑si
h=j dimWγi,j

i,j γ

∑si
h=j dimWγi,j

i,j−1 =

(9.1.2)
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=
k∏
i=1

si∏
j=0

γ
− dimWγi,j

i,j =
k∏
i=1

det(Xi|W )−1 = 1. (9.1.3)

Conversely, suppose that there exists β ∈ H∗γC ,αC \ {αC} such that ε := αC − β belongs to
H∗γC ,αC \ {αC} too. Notice that, since ε ∈ (NI)∗, for each j, h, we have

β[h,j] − β[h,j+1] ≤ (αC)[h,j] − (αC)[h,j+1] = mh,j ,

where mh,j is the multiplicity of the eigenvalue γh,j in the orbit Cj .
Put m = β0 and let W = Cm ⊆ Cn be the span of the �rst m vectors of the canonical basis.
Notice that m < n, since ε ∈ (NI)∗.
For each i = 1, . . . , k, there exists a diagonal matrix Xi ∈ Ci such that its �rst m diagonal
entries are given by β[i,si] times the element γi,si , then β[i,si−1]−β[i,si] times the element γi,si−1

and so on. Notice that W is Xi-stable for each i = 1, . . . , k and, moreover,

det(Xi|W ) = γβC = 1,

from which we deduce that C is not generic.

Remark 9.1.5. It is not true that for a generic k-tuple C we have H∗γC ,αC = {αC}. Consider for
instance the case where k = 3, n = 2 and C = (C1, C2, C3) where each Ci is the conjugacy class
of the following matrix Xi:

X1 =

(
−1 0

0 −1
2

)
, X2 =

(
−1 0

0 −1
2

)
, X3 =

(
−1 0

0 −4

)
.

The associated quiver Q and dimension vector αC are:

1

1 2 1

The associated parameter γC is given by

2

2 −1
1

4

Notice in particular that H∗γC ,αC = {αC , β}, where β0 = 2 and β[i,1] = 0 for each i = 1, 2, 3.
By Lemma 9.1.4 we deduce that C is generic, while H∗γC ,αC 6= {αC}.

Hausel, Letellier, Rodriguez-Villegas [45, Theorem 5.2.3] showed the following result:
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Theorem 9.1.6. For any generic k-tuple C of semisimple conjugacy classes, we have:

E(MC , q)
q(αC ,αC)

=

qHαC

(
√
q,

1
√
q

)
q − 1

. (9.1.4)

Remark 9.1.7. The quantity (αC , αC) can be expressed in terms of the multiplicities of the
eigenvalues of C1, . . . , Ck as follows. Notice indeed that µαC is the multipartition given by the
multiplicities of the eigenvalues of C1, . . . , Ck and we have

(αC , αC) = n2(2g − 2 + k)−
∑
i,j

(µjαC)
2
i .

In [45, Theorem 2.15] it is also shown that we have

dim(MC) = 2(αC , αC) + 2. (9.1.5)

In the same paper, the authors [45, Conjecture 1.2.1] proposed the following conjectural iden-
tity for the mixed Poincaré series of the character stack MC , when C is generic, naturally
deforming eq.(9.1.4):

Conjecture 9.1.8. For any generic k-tuple C of semisimple conjugacy classes, we have

Hc(MC , q, t)
(qt2)(αC ,αC)

=

(qt2)HαC

(
t
√
q,

1
√
q

)
qt2 − 1

. (9.1.6)

The specialization at q = 1 of Conjecture 9.1.8, i.e the Poincaré series of generic character
stacks, was veri�ed by Mellit [72] by counting rational points over �nite �elds of the corre-
sponding moduli spaces of parabolic Higgs bundles .

9.2 Dual log compatibility for multiplicative moment map

In this chapter, we show how to relate the results about dual Log compatible families of �5.8.2
to the study of multiplicative quiver stacks for star-shaped quivers.

Consider now the construction of �7.2 in the case in which K = Fq. Fix β ∈ NI , consider the
multiplicative moment map

Φ∗β : R(Q, β)◦,∗ → GLβ

over Fq. We denote by mβ : GLβ(Fq)→ C the class function de�ned by

mβ(g) :=
|(Φ∗β)−1(g)(Fq)|

q(β,β)
.
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Notice that, for σ ∈ (F∗q)I , we have:

〈mβ ∗ 1σ, 1e〉 =
#M∗σ,β(Fq)

q(β,β)
.

For the family of class functions {mα}α∈NI we have the following Theorem:

Theorem 9.2.1. The family {mα}a∈NI is dual Log compatible

The proof of Theorem 9.2.1 is the most technical part of the chapter and is going to be given
through several steps.

We start by showing Proposition 9.2.1 in the case where Q = (I,Ω) is the star-shaped quiver
with two vertices I = {0, 1} and one arrow a : 1 → 0 between them (i.e g = 0 and k = 1).
This is usually called the Kronecker quiver, see below.

0 1a

A dimension vector α is thus a couple α = (α0, α1) ∈ N2 and the function mα(g0, g1) for a
couple (g0, g1) ∈ GLα0(Fq)×GLα1(Fq) is given by

mα(g0, g1) =
#{f ∈ Hominj(Fα1

q ,Fα0
q ), f∗ ∈ Hom(Fα0

q ,Fα1
q ) | 1 + ff∗ = g0, 1 + f∗f = g−1

1 }
qα0α1−α2

0−α2
1

.

Remark 9.2.2. Notice that given f ∈ Hominj(Fα1
q ,Fα0

q ) and f∗ ∈ Hom(Fα0
q ,Fα1

q ) such that
1 + ff∗ ∈ GLα0(Fq) then 1 + f∗f ∈ GLα1(Fq). It is enough to check indeed that 1 + f∗f is
injective. Given x, y ∈ Fα1

q such that (1 + f∗f)(x) = (1 + f∗f)(y) we have indeed

f ◦ (1 + f∗f)(x) = f ◦ (1 + f∗f)(y)

and, given that f ◦ (1 + f∗f) = (1 + ff∗) ◦ f and 1 + ff∗ is invertible, we deduce that
f(x) = f(y) and so that x = y.

Lemma 9.2.3. In the case where Q is the Kronecker quiver, the family {mα}α∈NI is Dual log
compatible.

Proof. Notice that mα ≡ 0 if α 6∈ (NI)∗. Fix then α ∈ (NI)∗ and denote by α2 = α0−α1. Fix
an irreducible character χ = χ0 � χ1 ∈ GLα(Fq)∨ with χi ∈ GLαi(Fq)∨ for i = 0, 1. We have:

〈mα, χ〉 =
1

|GLα(Fq)|q(α,α)

∑
f∈Hominj(Fα1

q ,Fα0
q )

f∗∈Hom(Fα0
q ,Fα1

q )
s.t 1+ff∗∈GLα0 (Fq)

χ0(1 + ff∗)χ1((1 + f∗f)−1).
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Let Jα ∈ Hominj(Fα1
q ,Fα0

q ) be the block matrix given by the identity on the �rst α1 rows and
0 everywhere else, i.e

Jα =



1 0 0 0 0 . . . 0

0 1 0 0 0 . . . 0

0 0 1 0 0 . . . 0
...

...
...

. . . . . . . . . 0

0 0 0 0 0 0 1

0


Let Pα be the centralizer of Jα inside GLα,, i.e

Pα = {g ∈ GLα | gJαg−1 = Jα}.

Notice that if g = (g0, g1) ∈ Pα, then g0 preserves Im(Jα) and g1 = g0|Im(Jα). Denote by
π0 : GLα → GLα0 the canonical projection. We deduce that π0 is an isomorphism from Pα to
the image P := π0(Pα).

Notice that P ⊆ GLα0 is the parabolic subgroups given by the matrices which preserve the
image of Jα.

We denote by L ⊆ P its Levi factor given by GLα1 ×GLα2 embedded block diagonally.

The action of GLα(Fq) on Hominj(Fα1
q ,Fα0

q ) is transitive and we can therefore identity the
latter set with GLα(Fq)/Pα(Fq) via the map which sends (g0, g1)Pα(Fq)→ g0Jαg

−1
1 . We can

thus rewrite the sum above as :

1

|GLα(Fq)|q(α,α)

∑
(g0,g1)Pα(Fq)∈GLα(Fq)/Pα(Fq)

∑
f∗∈Hom(Fα0

q ,Fα1
q )

s.t. 1+g0Jαg
−1
1 f∗∈GLα0 (Fq)

χ0(1+g0Jαg
−1
1 f∗)χ1((1+f∗g0Jαg

−1
1 )−1).

(9.2.1)

For each (g0, g1)Pα(Fq) we can rewrite the last term of eq.(9.2.1) as∑
f∗∈Hom(Fα0

q ,Fα1
q )

s.t. 1+Jαg
−1
1 f∗g0∈GLα0 (Fq)

χ0(g0(1 + Jαg
−1
1 f∗g0)g−1

0 )χ1(g1(1 + g−1
1 f∗g0Jα)−1g−1

1 ). (9.2.2)

Notice that for any (g0, g1) ∈ GLα(Fq), we have a bijection

{f∗ ∈ Hom(Fα0
q ,Fα1

q ) s.t. 1+Jαg
−1
1 f∗g0 ∈ GLα0(Fq)} ↔ {f∗ ∈ Hom(Fα0

q ,Fα1
q ) s.t. 1+Jαf

∗ ∈ GLα0(Fq)}

g1f
∗g−1

0 ←− f∗.

As χ0, χ1 are class functions, from eq.(9.2.2), we can rewrite the sum in eq.(9.2.1) as

1

|Pα(Fq)|q(α,α)

∑
f∗∈Hom(Fα0

q ,Fα1
q )

s.t. 1+Jαf∗∈GLα0 (q)

χ0(1 + Jαf
∗)χ1((1 + f∗Jα)−1). (9.2.3)
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Writing f∗ as a block matrix (A|B) with A ∈ Mat(α1,Fq), we have

1 + Jαf
∗ =

(
1 +A B

0 1

)

and 1 + f∗Jα = 1 +A. Let α2 = α0 − α1. We can rewrite the sum of eq.(9.2.3) as

1

|Pα(Fq)|q(α,α)

∑
M∈GLα1 (Fq)

B∈Mat(α2,α1,Fq)

χ0

((
M B

0 1

))
χ1(M−1). (9.2.4)

By eq.(3.1.1), the latter sum can be rewritten as

1

|P (Fq)|q(α,α)

∑
χ2∈GLα2 (Fq)∨

∑
h∈P (Fq)

χ0(h) InflPL (χ∗1 � χ2)(h)
χ2(1)

|GLα2(Fq)|
= (9.2.5)

=
1

q(α,α)

∑
χ2∈GLα2 (Fq)∨

〈ResP (Fq)(χ0), InflPL (χ1 � χ2)〉 χ2(1)

|GLα2(Fq)|
= (9.2.6)

=
1

q(α,α)

∑
χ2∈GLα2 (Fq)∨

〈χ0, R
G
L (χ1 � χ2)〉 χ2(1)

|GLα2(Fq)|
. (9.2.7)

We start by the case where the type of χ = χ0 � χ1 is (1,λ), where λ = (λ0, λ1) with
λ0 ∈ Pα0 , λ

1 ∈ Pα1 . We have then

χ0 = (γ ◦ det)Rλ0

and
χ1 = (γ ◦ det)Rλ1 ,

with γ ∈ Hom(F∗q ,C∗).
Let χ2 = εGLα2

εL2R
GLα2
L2

(θ2Rϕ̃2) for a certain ϕ2 ∈ (WL2)F . From Lemma 5.1.4,we have an
equality

RGL (χ1 � χ2) = RGGLα1 ×L2
(((γ ◦ det)× θ2)(Rλ1 �Rϕ̃)).

Let L′ be the connected centralizer of

(γ ◦ det)× θ2 : GLα1(Fq)× LF2 → C∗.

By Remark 5.5.5, the character RGL (χ1�χ2) belongs to the vector space spanned by irreducible
characters with semisimple part (L′, (γ ◦ det)× θ2).

The multiplicity 〈(γ ◦ det)Rλ0 , R
G
L ((γ ◦ det)Rλ1 � χ2)〉 is therefore equal to 0 if L′ is di�erent

from GLα0(Fq).
To compute the right hand side of eq.(9.2.6) we can thus restrict to the case when χ2 is given
by (γ ◦ det)Rλ2 for λ2 ∈ Pα2 . From Remark 5.1.5, the right hand side of eq. (9.2.6) is thus
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equal to:

1

q(α,α)

∑
λ2∈Pα2

〈(γ ◦ det)Rλ0 , (γ ◦ det)RGL (Rλ1 �Rλ2)〉 (−1)α2

q
α2(α2−1)

2
−n(λ2)Hλ2(q)

. (9.2.8)

From eq.(5.2.9) , the sum in eq.(9.2.8) is equal to

1

q(α,α)

∑
λ2∈Pα2

〈χλ0 , Ind
Sα0
Sα1×Sα2

(χλ1�χλ2)〉 (−1)α2

q
α2(α2−1)

2
−n(λ2)Hλ2(q)

=
1

q(α,α)

∑
λ2∈Pα2

cλ
0

λ1,λ2

(−1)α2

q
α2(α2−1)

2
−n(λ2)Hλ2(q)

(9.2.9)

For any couple of partitions (λ, µ) denote by Cλ,µ(t) ∈ Q(q) the function de�ned as

Cλ,µ(t) =


0 if |λ| < |µ|

1

t|λ||µ|−|λ|2−|µ|2
∑

ν∈P|λ|−|µ|

cλµ,ν
(−1)|λ|−|µ|

t
|ν|(|ν|−1)

2
−n(ν)Hν(t)

.
.

The reasoning above shows that for any χ ∈ GLα(Fq)∨ of type (1,λ), there is an equality

〈mα, χ〉 = Cλ0,λ1(q).

Let now δ ∈ NI and consider χ = χ0 � χ1 ∈ GLδ(Fq)∨ of type ω ∈ Tδ, where

ω = (d1,λ1) · · · (dr,λr),

where for j = 1, . . . , r we have λj = (λ0
j , λ

1
j ) ∈ P2 and we denote by βj = |λj |. Consider the

Levi subgroups L0 =
r∏
j=1

(GL(βj)0
)dj and L1 =

r∏
j=1

(GL(βj)1
)dj .

There exist reduced characters θ0 : LF0 → C∗ and θ1 : LF1 → C∗ such that θ0 : LF0 → C∗ and
θ1 : LF1 → C∗ are reduced and

χ0 = RGL0
(θ0Rλ0

1
� · · ·�Rλ0

r
)

and
χ1 = R

GLδ1
L1

(θ1Rλ1
1
� · · ·�Rλ1

r
)

and θ0, θ1 are associated to the same r-tuple (θ1, . . . , θr) ∈ Hom(F∗
qd1
,C∗)×· · ·×Hom(F∗

qdr
,C∗),

via the correspondence of �5.4.1. We denote by λ0,λ1 ∈ Pr the multipartitions λ0 =

(λ0
1, . . . , λ

0
r),λ1 = (λ1

1, . . . , λ
1
r).

To verify the Dual log compatibility of the family {mα}α∈NI , it is enough to check that it
holds:

〈mδ, χ〉H∨ω (q) =

r∏
j=1

Cλ0
j ,λ

1
j
(qdj )H∨(1,λj)(q

dj ) (9.2.10)
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Notice that, if δ 6∈ (NI)∗, there must exist βj such that βj 6∈ (NI)∗. Eq.(9.2.10) therefore holds
as both sides are equal to 0.

Assume then that δ ∈ (NI)∗. From eq.(9.2.6), there is an equality

〈mδ, χ〉 =
1

q(δ,δ)

∑
χ2∈GL∨δ2

〈χ0, R
G
M (χ1 � χ2)〉 χ2(1)

|GLδ2(q)|
(9.2.11)

where M = GLδ1 ×GLδ2 ⊆ G. Let χ2 = εGLδ2
εL2R

G
L2

(θ2Rϕ̃2), with L2 ⊆ GLδ2 a Levi
subgroup and θ2 : LF2 → C∗ a reduced character. From Lemma 5.1.4, there is an equality

RGM (χ1 � χ2) = RGL1×L2
((θ1 × θ2)(Rλ1

�Rϕ̃2)).

Let L′ be the connected centralizer of θ1 × θ2 : L1 × L2 → C∗. As remarked above, the
multiplicity 〈χ0, R

G
M (χ1 � χ2)〉 = 0 if the semisimple part (L′, θ1 × θ2) is not GLα0(Fq)-

conjugated to (L0, θ
0). From Remark 5.4.1, we deduce that, for (L′, θ1 × θ2) to be GLα0(Fq)-

conjugated to (L0, θ0), we must have |λ0
j | ≥ |λ1

j |, i.e βj ∈ (NI)∗, for each j = 1, . . . , r.

If there exists j ∈ {1, . . . , r} such that βj 6∈ (NI)∗, eq.(9.2.10) is thus veri�ed as both sides are
equal to 0.

If β1, . . . , βr ∈ (NI)∗, from Remark 5.4.1, we deduce that there exist a unique couple (L2, θ
2),

up to GLδ2(Fq)-conjugacy, such that (L′, θ1 × θ2) is GF -conjugated to (L0, θ0). In particular,
we can take L2 to be

L2 =

r∏
j=1

(GL(βj)2
)dj

and θ2 : LF2 → C∗ the reduced character associated to the r-tuple (θ1, . . . , θr). We have
therefore

〈mδ, χ〉 =
∑

λ2=(λ2
1,...,λ

2
r)∈

P(β1)2
×···×P(βr)2

〈RGL0
(θ0Rλ0

), RGL1×L2
((θ1 × θ2)Rλ1

�Rλ2
)〉

q(δ,δ)

(−1)(β1)2+···(βr)2

q
δ2(δ2−1)

2
−
∑r
j=1 djn(λ2

j )
∏r
j=1Hλ2

j
(qdj )

(9.2.12)

By Lemma 5.1.4 and Lemma 5.5.1, we have

〈RGL0
(θ0Rλ0

), RGL1×L2
((θ1×θ2)Rλ1

�Rλ2
)〉 =

r∏
j=1

〈Rλ0
j
, R

(GL(βj)0
)dj

(GL(βj)1
)dj×(GL(βj)2

)dj
(Rλ1

j
�Rλ2

j
)〉(GL(βj)0

)dj (Fq).

By Proposition 5.2.2 and 5.2.9, for each j = 1, . . . , r, we deduce that we have an equality

〈Rλ0
j
, R

(GL(βj)0
)dj

(GL(βj)1
)dj×(GL(βj)2

)dj
(Rλ1

j
�Rλ2

j
)〉(GL(βj)0

)dj
(Fq) = 〈χλ0

j
, Ind

S(βj)0

S(βj)1
×S(βj)2

(χλ1
j
�χλ2

j
)〉S(βj)0

= c
λ0
j

λ1
j ,λ

2
j
.

(9.2.13)
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From eq.(9.2.13), we deduce that we have

〈mδ, χ〉 =
1

q(δ,δ)+
δ2(δ2−1)

2

r∏
j=1

 ∑
λ2
j∈P(βj)2

c
λ0
j

λ1
j ,λ

2
j

(−1)(βj)2

q−djn(λ2
j )Hλ2

j
(qdj )

 (9.2.14)

From eq.(9.2.14) above, we deduce that we have:

〈mδ, χ〉∏r
j=1Cλ0

j ,λ
1
j
(qdj )

=

∏r
j=1 q

dj(|λ0
j ||λ1

j |−|λ0
j |2−|λ1

j |2+
|λ2
j |

2−|λ2
j |

2
)

q(δ,δ)+
δ2(δ2−1)

2

(9.2.15)

From the fact that δ2
2 = δ2

0 +δ2
1−2δ0δ1 and, for each j = 1, . . . , r, |λ2

j |2 = |λ0
j |2+|λ1

j |2−2|λ0
j ||λ1

j |
and Identity (5.8.12), we have the following equality

∏r
j=1 q

dj(|λ0
j ||λ1

j |−|λ0
j |2−|λ1

j |2+
|λ2
j |

2−|λ2
j |

2
)

q(δ,δ)+
δ2(δ2−1)

2

=
q
∑r
j=1 dj(−

|λ0
j |

2

2
−
|λ1
j |

2

2
)

q−
δ20
2
−
δ21
2

=
H∨ω (q)∏r

j=1H
∨
(1,λj)

(qdj )
.

From the Identity right above and eq.(9.2.15), we deduce therefore equality (9.2.10).

We now show how Lemma 9.2.3 implies Theorem 9.2.1.

Proof of Theorem 8.2.1. We proceed by induction on the cardinality of I.

Let |I| = 1. The quiver Q has thus 1 vertex and g loops. The argument of Example 7.2.1
shows that in this case, for each n ∈ N, we have an equalitymn = fgn, where f

g
n : GLn(Fq)→ C

is the function de�ned as

fgn(h) =
#{(x1, y1, . . . , xg, yg) ∈ GLn(Fq)2g |

∏g
i=1[xi, yi] = h}

q(n2(g−1))

introduced in Remark 5.8.9. It was thereby shown that {fgn}n∈N is a dual Log compatible
family.

Assume now to have shown Proposition 9.2.1 for all star-shaped quivers with m vertices and
k legs and �x a star-shaped quiver Q = (I,Ω) with |I| = m+ 1. We can assume that sk > 1.
Let Q̃ = (Ĩ , Ω̃) be the subquiver of Q, with set of vertices Ĩ = I−{[k, sk]} and as set of arrows
the arrows of Q between elements of Ĩ.

For a dimension vector α ∈ NI , we denote by α̃ the element of NĨ obtained by the natural
projection NI → NĨ and we denote by πα the natural projection πα : GLα(Fq)→ GLα̃(Fq).
For α ∈ NI , let mα̃ be the function associated to the star-shaped quiver Q̃ = (Ĩ , Ω̃) and α̃ and
denote by gα : GLα(Fq)→ C the class function de�ned by
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gα(h) =


mα̃(πα(h))

q
−α2

[k,sk]

if h[k,sk] = 1,

0 otherwise

Notice that the function gα can be equally rewritten as:

gα(h) =
mα̃(πα(h))

q
−α2

[k,sk]

∑
X∈GLα[k,sk]

(Fq)∨
X (h[k,sk])

X (1)

|GLα[k,sk]
(Fq)|

(9.2.16)

Using identity (9.2.16) and the dual Log compatibility of the functions {mα̃}, it is not di�cult
to verify that the family of functions {gα}α∈NI is dual Log compatible. Indeed, for each
χ ∈ GLα(Fq), write χ = χ̃� χk, with χ̃ ∈ GLα̃(Fq)∨ and χk ∈ GL∨α[k,sk]

(Fq). We have

〈gα, χ〉 =
1

|GLα(Fq)|
∑

h∈GLα(Fq)

gα(h)χ(h) = (9.2.17)

 1

|GLα̃(Fq)|
∑

h̃∈GLα̃(Fq)

mα̃(h̃)χ̃(h̃)




q
α2

[k,sk]

|GLα[k,sk]
(Fq)|

∑
χ∈GLα[k,sk]

(Fq)∨

hk∈GLα[k,sk]

X (hk)
X (1)

|GLα[k,sk]
(Fq)|

χk(hk)

 =

(9.2.18)

= 〈mα̃, χ̃〉q
α2

[k,sk]H∨ωχk
(q). (9.2.19)

and therefore, if we put ωχ = ω, ωχ̃ = ω̃ and ωχk = ωk, we have

〈gα, χ〉H∨ω (q) = 〈mα̃, χ̃〉H∨ω̃ (q)q
α2

[k,sk](H∨ωk(q))2. (9.2.20)

Since the family {mα̃}α̃∈NĨ is dual Log compatible, from eq.(9.2.20), we deduce that Identity
(9.2.16) is equivalent to show that, for any n ∈ Tn, any ν ∈ Tn and any d1, . . . , dr and types
ν1, . . . , νr such that ω = ψd1(ν1) ∗ · · · ∗ ψdr(νr), we have

(Hν(t))2∏r
j=1(H∨νj (t

dj ))2
=

∏r
j=1 t

dj |νj |2

tn
(9.2.21)

which is a direct consequence of eq.(5.6.2).

Let now I = I−{[k, sk−1], [k, sk]} and, for α ∈ NI , denote by α the element of NI obtained by
the natural projection NI → NI and by πα : GLα(Fq) → GLα(Fq) the associated projection.
For a couple (β, γ) ∈ N2, denote by mKr

(β,γ) the class function associated to the Kronecker
quiver and the dimension vector (β, γ) for it, which was studied in Lemma 9.2.3.
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Consider then the function kα : GLα(Fq)→ C de�ned as

kα(h) =


mKr
α[k,sk−1],α[k,sk]

(h[k,sk−1], h[k,sk])

q−
∑
i∈I α

2
i

if πα(h) = 1

0 otherwise

.

Notice that the function kα can be equally rewritten as

kα(h) =
∑

χ∈GL∨α(Fq)

χ(πα(h))
χ(1)

|GLα(Fq)|
mKr
α[k,sk−1],α[k,sk]

(h[k,sk−1], h[k,sk])

q−
∑
i∈I α

2
i

. (9.2.22)

By identity (9.2.22) and Lemma 9.2.3,it can be veri�ed that the family of functions {kα}α∈NI
is dual Log compatible in a similar way to what has been done for {gα}α∈NI . By Lemma 5.8.8,
the family of class functions {

gα ∗ kα
q
∑
i∈I α

2
i

}
α∈NI

is dual Log compatible too.

By direct calculation, we verify lastly that, for every α ∈ NI , we have the equality

mα =
gα ∗ kα
q
∑
i∈I α

2
i

.

Lemma 5.8.8 implies therefore the family {mα}α∈NI is dual Log compatible.

9.3 Main result about non-generic character stacks

Consider a star-shaped Q = (I,Ω). For any σ ∈ (C∗)I and any β ∈ (NI), we will construct a
spreading out of the stackM∗σ,β in the following way.

Let E0 = Z[xi, x
−1
i ]i∈I be the ring in |I| invertible variables. For any δ ∈ NI , denote by

xδ ∈ E0 the element xδ :=
∏
i∈I

xδii .

Let Nσ,β = (NI≤β)∗ \ Hσ,β. Consider the multiplicative set S ⊆ E0 generated by the elements
xδ − 1 for δ ∈ Nσ,β . Denote by J ⊆ S−1E0 the ideal generated by (xδ − 1) for δ ∈ Hσ,β and
let E be the quotient

E := S−1E0/J.

Notice that, given a �eld K, a map ϕ : E → K corresponds to an element γϕ ∈ (K∗)I such
that Hγϕ,β = Hσ,β .

Let A0 be the polynomial E-algebra in 2
∑
a∈Ω

s(a)t(a) variables corresponding to the entries

of matrices (xa, xa∗)a∈Ω. Let W ⊆ A0 be the multiplicative system generated by det(1 +

xaxa∗), det(1 + xa∗xa) for a ∈ Ω and let A′0 :=W−1A0.



174

Consider the ideal I ⊆ A′0 generated by the entries of∏
a∈Ω

(1 + xaxa∗)(1 + xa∗xa)
−1 −

∏
i∈I

(xiIαi)

and let
A = A′0/I.

Let Y = Spec(A) and let Y ∗ ⊆ Y be the open subset given by y ∈ Y such that for any
algebraically closed �eld K and any morphism Spec(K)→ Y with image y, the corresponding
element (xa, xa∗)a∈Ω ∈ R(Q,α,K) has injective maps (xa)a∈Ω.

Let now ψ : E → C be the map induced by the element σ ∈ (C∗)I . Notice that

Y ∗ ×Spec(E),ψ Spec(C) ∼= (Φ∗β)−1(σ)

and therefore Y ∗ is a spreading out of (Φ∗β)−1(σ). Similarly, for any ϕ : E → Fq corresponding
to an element γϕ ∈ (F∗q)I with Hγϕ,β = Hσ,β , we have

((Φ∗β)−1(σ))ϕ = (Φ∗β)−1(γϕ).

Let GLα,E be the E-group scheme
∏
i∈I GLαi,E . The stack Y∗ = [Y ∗/GLα,E ] is therefore a

spreading out ofM∗σ,β .
By Remark 3.4.5 and the results of Theorem 5.8.4 and Theorem 9.2.1, we deduce that the
stackM∗σ,β is rational count and that we have:

E(M∗σ,β, q)
q(β,β)

= Coeffβ

Exp

∑
δ∈Hσ

M̃δ,gen(q)yβ

 (9.3.1)

where M̃δ,gen(t) are the rational functions associated to the dual Log compatible family
{mδ}δ∈NI , as in �5.8.2. Notice that M̃δ,gen(t) = 0 if δ /∈ (NI)∗.
In particular, if σ is such that H∗σ,β = {β}, we have that E(M∗σ,β, q) = q−(β,β)M̃β,gen(q). From
Remark 9.1.3, we see that for any δ ∈ (NI)∗ it holds

M̃δ,gen(q) =
qHδ

(√
q, 1√

q

)
q − 1

.

We can resume all the arguments above in the following Theorem:

Theorem 9.3.1. For any β ∈ (NI)∗ and any σ ∈ (C∗)I , there is an equality:

E(M∗σ,β, q)
q(β,β)

= Coeffβ

Exp

 ∑
δ∈H∗σ,β

qHδ
(√

q, 1√
q

)
q − 1

yδ

 (9.3.2)
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9.3.1 E-series for character stacks with semisimple monodromies

From Theorem 9.3.1, we deduce the following Theorem about E-series for character stacks
associated to k-tuples of semisimple orbits.

Theorem 9.3.2. For any k-tuple C of semisimple orbits of GLn(C), we have:

E(MC , q)
q(αC ,αC)

= CoeffαC

Exp

 ∑
β∈H∗γC ,αC

qHβ
(√

q, 1√
q

)
q − 1

 . (9.3.3)

Remark 9.3.3. Notice that Theorem 9.3.3 implies that the E-series E(MC , q) does not depend
on the values on the eigenvalues {γj,h} j=1,...,k

h=0,...,sj

but only on the subset H∗γC ,αC .

From Theorem 9.3.2, it seems natural to formulate the following generalization of Conjecture
9.1.8

Conjecture 9.3.4. For any k-tuple of semisimple orbits C, we have:

Hc(MC , q, t)
(qt2)(αC ,αC)

= CoeffαC

Exp

 ∑
β∈H∗γC ,αC

(qt2)Hβ
(
t
√
q, 1√

q

)
qt2 − 1

 . (9.3.4)

9.4 Mixed Poincaré series of character stacks for P1
C with four punctures

In this section we will verify Conjecture 9.3.4 for a certain family of non-generic character
stacks.

Let Σ = P1
C (i.e g = 0), k = 4 and n = 2. Let D = {x1, . . . , x4} ⊆ P1

C. For j = 1, . . . , 4, pick
λj ∈ C∗ with λj 6= ±1 and denote by Cj the conjugacy class of the diagonal matrix(

λj 0

0 λ−1
j

)
.

Let C be the k-tuple (C1, . . . , C4). The variety XC is therefore

XC = {(X1, . . . , X4) ∈ C1 × · · · × C4 | X1X2X3X4 = 1}.

Denote by MC the GIT quotient MC := XC//GL2(C). Recall that the points of MC are in
bijection with the isomorphism classes of semisimple representations of π(Σ \D) inside XC .

The study of the geometry of the character varieties MC goes back to Fricke and Klein [33],
who gave a description of them in terms of cubic surfaces. Denote by ai = λi + λ−1

i .

The character variety MC is isomorphic to the cubic surface de�ned by the equation in 3
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variables x, y, z

xyz+x2+y2+z2−(a1a2+a3a4)x−(a2a3+a1a4)y−(a1a3+a2a4)z+a1a2a3a4+a2
1+a2

2+a2
3+a2

4−4 = 0.

(9.4.1)

If C is generic, this description identi�es MC with a smooth (a�ne) Del Pezzo cubic surface
(see [32, Theorem 6.1.4]), i.e a smooth cubic projective surface with a triangle cut out of it.
The cohomology of this kind of surfaces is well known. In particular, if C is generic, it holds:

Hc(MC , q, t) = q2t4 + 4qt2 + t2

and therefore we have

Hc(MC , q, t) =
q2t4 + 4qt2 + t2

qt2 − 1
.

The Identity above agrees with Hausel, Letellier, Rodriguez-Villegas Conjecture 9.1.8, as ex-
plained in [45, Paragraph 1.5].

Pick now λ1, . . . , λ4 ∈ C∗ \ {1,−1} with the following property. For ε1, . . . , ε4 ∈ {1,−1} such
that λε11 · · ·λ

ε4
4 = 1, then either ε1 = · · · = ε4 = 1 or ε1 = · · · = ε4 = −1. Notice that in this

case, the associated k-tuple C is not generic.

In the following section, we will compute the mixed Poincaré series Hc(MC , q, t) and verify
that it respects Conjecture 9.3.4.

For the character stackMC , the associated quiver Q = (I,Ω) is the star-shaped quiver with
one central vertex and four arrows pointing inwards. We denote the central vertex by 0 and
the other vertices by [i, 1] for i = 1, . . . , 4.

The dimension vector αC is the dimension vector for Q de�ned as (αC)0 = 2 and (αC)[i,1] = 1

for i = 1, . . . , 4. The quiver Q with the dimension vector α is depicted below.

1

1 2 1

1

The associated parameter γC is given by

(γC)0 = (λ1λ2λ3λ4)−1 = 1

and, for i = 1, . . . , 4

(γC)[i,1] = λ2
i .

Denote by β1, β2 ∈ (NI)∗ the elements de�ned as (β1)0 = 1, (β1)[i,1] = 1 and (β2)1 =
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1, (β2)[i,1] = 0 for i = 1, . . . , 4. Notice that it holds H∗γC ,αC = {α, β1, β2}. There are equalities

Hβ1

(
t
√
q,

1
√
q

)
= Hβ2

(
t
√
q,

1
√
q

)
= 1.

Conjecture 9.3.4 predicts then the following equality

Hc(MC , q, t) =
qt2HαC

(
t
√
q, 1√

q

)
qt2 − 1

+
q2t4Hβ1

(
t
√
q, 1√

q

)
Hβ2

(
t
√
q, 1√

q

)
(qt2 − 1)2

= (9.4.2)

=
q2t4 + 4qt2 + t2

qt2 − 1
+

q2t4

(qt2 − 1)2
=
q3t6 + 4q2t4 + qt4 − 4qt2 − t2

(qt2 − 1)2
. (9.4.3)

Denote by M′C the quotient stack M′C = [XC/PGL2]. Notice that MC is a Gm-gerbe over
M′C and from Lemma 3.4.8 we have

Hc(MC , q, t) =
Hc(M′C , q, t)
qt2 − 1

. (9.4.4)

We can thus reduce ourselves to compute the cohomology of the stackM′C .

Inside XC there is the open (dense) subset which we denote by Xs
C ⊆ XC , given by quadruple

(X1, X2, X3, X4) ∈ C1 × · · · × C4 corresponding to irreducible representations of π1(Σ \ D).
Recall that Xs

C is smooth (see for example [31, Proposition 5.2.8]).

Denote by N s
C the quotient stack [Xs

C/PGL2]. Notice that the action of PGL2 is schematically
free on Xs

C and therefore by Lemma 3.3.1 the stack N s
C is an algebraic variety.

The non irreducible representations of XC all have the same semisimpli�cation, up to isomor-
phism, which corresponds to the point m ∈ MC , associated to the isomorphism class of the
representation

m =

((
λ1 0

0 λ−1
1

)
,

(
λ2 0

0 λ−1
2

)
,

(
λ3 0

0 λ−1
3

)
,

(
λ4 0

0 λ−1
4

))
. (9.4.5)

We denote by O ⊆ XC the GL2(C)-orbit associated to m. A representation x ∈ XC which is
neither irreducible nor semisimple, i.e neither inside Xs

C nor inside O, can be of the following
two types. Either x is isomorphic to a quadruple of the form

m+
a,b,c :=

((
λ1 0

0 λ−1
1

)
,

(
λ2 a

0 λ−1
2

)
,

(
λ3 b

0 λ−1
3

)
,

(
λ4 c

0 λ−1
4

))
(9.4.6)

with (a, b, c) ∈ C3 − {(0, 0, 0)} and

λ1λ2λ3c+ λ1λ2µ4b+ λ1λ2λ3c = 0 (9.4.7)
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or of the form

m−a,b,c :=

((
λ1 0

0 λ−1
1

)
,

(
λ2 0

a λ−1
2

)
,

(
λ3 0

b λ−1
3

)
,

(
λ4 0

c λ−1
4

))

with (a, b, c) ∈ C3 − {(0, 0, 0)} and

λ4λ
−1
1 λ3a+ λ−1

1 λ−1
2 λ4b+ λ−1

1 λ−1
2 λ−1

3 c = 0. (9.4.8)

We denote by Z+
C ⊆ XC and by Z−C ⊆ XC the locally closed subsets of representations

isomorphic to elements of the form m+
(a,b,c) or m−(a,b,c) for some (a, b, c) ∈ C3 − {(0, 0, 0)}

respecting the conditions of eq.(9.4.7), eq.(9.4.8) respectively.

9.4.1 Cohomology of the character variety in the non-generic case

As recalled before, the varietyMC is a cubic surface de�ned by the equation of formula (9.4.1).
Denote by MC ⊆ P3

C the associated projective cubic surface. Notice that MC is obtained by
adding to MC the triangle at in�nity xyz = 0, which we will denote by U ⊆MC .
Unlike the case where C is generic, for our choice of quadruples the surface MC is singular,
with m being is its only singular point. We have moreover an isomorphism

N s
C
∼= MC − {m}.

It is a well known result (see for example [60]) that for such a singular cubic surfaceMC , there
exists a resolution of singularities

f : M̃C →MC

such that f−1(m) ∼= P1
C and f is an isomorphism over MC − {m}, i.e

f−1(MC − {m}) ∼= MC − {m}.

Moreover, it is known that M̃C is the blow-up of P2
C at 6 points. There is thus an equality

Hc(M̃C , q, t) = q2t4 + 7qt2 + 1.

Using the long exact sequence in compactly supported cohomology for the open-closed decom-
position M̃C = f−1(MC − {m})

⊔
f−1(m), we �nd that

Hc(MC − {m}, q, t) = Hc(f
−1(MC − {m}), q, t) = q2t4 + 6qt2

and so that Hc(MC , q, t) = q2t4 + 6qt2 + 1.

It is not di�cult to check that the compactly supported Poincaré polynomial of U isHc(U, q, t) =

3qt2 + t + 1. Applying the long exact sequence in compactly-supported cohomology for the
open-closed decomposition MC = MC

⊔
U we �nd �nally that

Hc(MC , q, t) = q2t4 + 3qt2 + t2. (9.4.9)
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From eq.(9.4.9), using the long exact sequence for the open-closed decompositionMC = (MC−
{m})

⊔
{m} we deduce that it holds

Hc(N s
C , q, t) = Hc(MC − {m}, q, t) = q2t4 + 3qt2 + t2 + t. (9.4.10)

9.4.2 Cohomology of the character stack in the non-generic case

We introduce the following notations. Let YC = XC − O and NC = [YC/PGL2]. Notice that
the action of PGL2 on YC is set-theoretically free so that NC is at least an algebraic space.

Let Y +
C = YC \ Z−C and Y −C = YC \ Z+

C and denote their quotients by N+
C = [Y +

C /PGL2] and
N−C = [Y −C /PGL2] respectively.

Notice that there is an isomorphism [O/PGL2] ∼= BGm and an open-closed decomposition

M′C = NC
⊔

[O/PGL2].

Applying the long-exact sequence for compactly supported cohomology to the decomposition
above and knowing that H∗c (BGm) is concentrated in strictly negative even degrees, we obtain

Hc(M′C , q, t) = Hc(NC , q, t) +Hc(BGm, q, t) = Hc(NC , q, t) +
1

qt2 − 1
. (9.4.11)

We have then reduced ourselves to compute the cohomology ofNC . We will apply Lemma 3.3.4
in the following way in the case where X = XC , G = PGL2 and H ⊆ PGL2 is the maximal
torus of diagonal matrices. In the following, we identify H ∼= Gm, via the map Gm → PGL2,

which sends z ∈ C∗ to the class of

(
z 0

0 1

)
.

Recall that there is an isomorphism C1
∼= G/H. Via this latter isomorphism, the projection

on the �rst factor induces a G-equivariant morphism

p : XC → G/H ∼= C1

(X1, X2, X3, X4)→ X1.

Notice that

(XC)H =

{
X2 ∈ C2, X3 ∈ C3, X4 ∈ C4 | X2X3X4 =

(
λ−1

1 0

0 λ1

)}
.

Denote by (MC)H := (XC)H//H. Lemma 3.3.4 implies that there is an isomorphism

(MC)H ∼= MC .

We employ similar notations for (NC)H , (N+
C )H , (N−C )H , (N s

C )H . Reapplying Lemma 3.3.4, we
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see that there is an isomorphism (N s
C )H ∼= N s

C . In particular,

Hc((N S
C )H , q, t) = q2t4 + 3qt2 + t2 + t. (9.4.12)

Consider now the character θ+ : H = Gm → Gm given by θ+(z) = z. The character θ induces
a linearization of the H-action on the a�ne variety (XC)H (see for example [54, Section 2]).
Using Mumford's criterion (see [54, Proposition 2.5]), we check that the semistable points
(XC)

ss,θ+

H are given by

(XC)
ss,θ+

H = (Y +
C )H .

We have indeed four type of points inside (XC)H :

� Notice that O ∩ (XC)H is the singleton {m}, corresponding to the quadruple (9.4.5).
The point m, being a Gm �xed point, is unstable. Indeed, considering the 1-parameter
subgroup λ : Gm → Gm given by λ(z) = z−1, we have 〈θ+, λ〉 = −1 < 0 while it exists
lim
t→0

λ(t) ·m = m.

� The points of (Xs
C)H are stable. Each x ∈ (XC)H corresponds to an irreducible repre-

sentation. For a 1-parameter subgroup λ : Gm → Gm, the limit lim
t→0

λ(t) · x exists if and

only if λ is trivial, i.e 〈θ+, λ〉 = 0.

� The points of (Z+
C )H are semistable. Notice that (Z+

C )H is given by points of the form
m+

(a,b,c) as in eq.(9.4.6), for (a, b, c) ∈ C3 − {(0, 0, 0)} which respects eq.(9.4.7).

For λ : Gm → Gm given by λ(t) = tn for n ∈ Z and t ∈ C∗, we have

λ(t) ·m+
(a,b,c) = m(tna,tnb,tnc).

In particular, we see that the limit lim
t→0

λ(t) ·m+
(a,b,c) exists (and it is given by m) if and

only if n ≥ 0, i.e if and only if 〈θ+, λ〉 ≥ 0.

� By a similar reasoning to the case of (Z+
C )H , the points of (Z−C )H are unstable.

The algebraic space (N+
C )H = [(Y +

C )H/H] is therefore an algebraic variety and the canonical
map

f+ : (N+
C )H → (MC)H

is proper. Notice moreover that (f+)−1(m) = (Z+
C )H/H. As recalled above, (Z+

C )H is isomor-
phic to C2−{(0, 0)}. Via this identi�cation Gm acts on C2−{(0, 0)} by scalar multiplication
on both coordinates. We have therefore:

(Z+
C )H/H ∼= (C2 − {(0, 0)})/Gm = P1

C.
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Consider now the Leray spectral sequence for compactly supported cohomology

Ep,q2 : Hp
c ((MC)H , R

qf+
∗ Q)⇒ Hp+q

c ((N+
C )H ,Q).

Notice that Rqf+
∗ Q 6= 0 if and only if q = 0, 2. More precisely, we have f+

∗ Q = Q and
R2f+

∗ Q = (im)∗Q, where im is the closed embedding

im : {m} → (MC)H .

Recall that the di�erential maps of the spectral sequence go in the direction

dp,qr : Ep,qr → Ep+r,q−r+1
r .

As Rqf+
∗ Q is 0 for odd q, the di�erential dp,q2 is the zero map for each p, q and therefore we

have Ep,q3 = Ep,q2 for each p, q. Moreover, notice that the di�erentials on the third page go in
the direction dp,q3 : Ep,q3 → Ep+3,q−2

3 . Notice that, if q 6= 0, 2, the vector space Ep,q3 is equal to
0.

Moreover, if q = 0, we have E3,−3
3 = {0} and so dp,q3 = 0. Lastly, if q = 2, we have Ep,q3 = {0}

if p ≥ 1 and if p = 0, we have E3,0
3 = H3

c ((MC)H ,Q) = {0}.
We deduce therefore that the di�erential maps dp,q3 are all zero. In a similar way, it is possible
to verify that dp,qr = 0 if r ≥ 2, for any p, q and so that the spectral sequence collapses at the
second page.

From the description of the sheaves Rqf+
∗ Q given above, we deduce that we have

Hc((N+
C )H , q, t) = q2t4 + 4qt2 + t2 (9.4.13)

Remark 9.4.1. Notice that the variety (N+
C )H is smooth, the morphism f+ is proper and we

have (f+)−1(m) ∼= P1
C.

In particular, (N+
C )H is a resolution of singularity of the variety (MC)H . By the isomorphisms

of Lemma 3.3.4, we see that the variety N+
C is the canonical resolution of singularity of the

singular a�ne cubic surface MC .

We have therefore found a natural way to build the resolution of singularity of the GIT
quotient MC as a locally closed subvariety of the quotient stackM′C . It would be interesting
to generalize the same approach to other type of character stacks.

A similar reasoning can be applied to the opposite linearization, induced by the character
θ− : Gm → Gm given by θ−(z) = z−1. In this case in a similar way we can argue that the
semistable points (XC)

ss,θ−

H are given by (Y −C )H .

For the corresponding quotient (N−C )H there is therefore an equality

Hc((N−C )H , q, t) = q2t4 + 4qt2 + t2.

Denote now by j+, j− the open embeddings j+ : (N+
C )H → (NC)H and j+ : (N−C )H → (NC)H
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and by j the open embedding (N s
C )H → (NC)H . Notice that there is a short exact sequence

of sheaves on (NC)H

0 j!Q j+
! Q⊕ j

−
! Q Q 0

and therefore an associated long exact sequence in compactly supported cohomology

H i−1
c ((NC)H ,Q) H i

c(N s
C ,Q) H i

c((N+
C )H ,Q)⊕H i

c((N−C )H ,Q) H i
c((NC)H ,Q)

Notice that from Lemma 3.3.4, there is an isomorphism (NC)H ∼= NC . From the long exact
sequence above and equations(9.4.13),(9.4.12), it is therefore not di�cult to see that

Hc(NC , q, t) = q2t4 + 5qt2 + t2 + 1. (9.4.14)

Plugging this result into eq.(9.4.11) and using identity (9.4.4), we verify �nally identity (9.4.3).
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10 Character stacks for non-orientable surfaces

In this chapter we study character stacks for real non-orientable surfaces, rather than Riemann
surfaces. Our approach to real geometry follows the one introduced in [3], i.e a real non-
orientable surface is a pair (X,σ), where X is a compact Riemann surface and σ : X → X an
antiholomorphic involution without �xed points. The associated non-orientable surface is the
quotient X/〈σ〉.

In section �10.1, we review some generalities about fundamental groups of non-orientable
surfaces. In section �10.2, we de�ne character stacks for non-orientable surfacesMε

C associated
to a k-tuple of semisimple conjugacy classes C and we show how they are related to involutions
on character stacks for the Riemann surface X.

In section �10.3, we review the results of Letellier and Rodriguez-Villegas [65], where the
authors compute the E-series E(Mε

C , q), when C is generic. Their formula strongly resembles
Formula (9.1.6) for the E-series of character stacks for Riemann surfaces and the authors
[65, Theorem 4.8] veri�ed that a formula analogous to Conjecture 9.1.8 holds for the mixed
Poincaré series Hc(Mε

C , q, t) when X = P1
C and k = 1.

It would be natural to expect that a similar formula would be true for any X and any k.

The main result of this chapter is a counterexample to such a conjectural formula, obtained
in section �10.5 by explicitly describing these spaces in the case in which X is an elliptic curve
and C = {e

πid
n }, for (d, n) = 1.

To completely describe these spaces we will need some general results about character stacks
for non-orientable surfaces for C = {e

πid
n }, which we review in �10.4.

10.1 Notations and fundamental groups for real curves

Let X be a compact and connected Riemann surface of genus g. Assume to have �xed a real
structure on X, i.e an antiholomorphic involution σ : X → X. The involution σ determines
a real projective curve XR, i.e a smooth projective variety of dimension 1 over Spec(R) such
that

XR ×Spec(R) Spec(C) ∼= X

and, via the isomorphism above, σ corresponds to the complex conjugation on the second
factor, see for example [3].

Notice that XR(R) = Xσ. From now on, we will assume that Xσ = ∅, (i.e that XR has no
real points). Notice that this implies that the action of 〈σ〉 on X is free.

In particular, the quotient space
S := X/〈σ〉

has the structure of a real non-orientable surface. We denote by p : X → S the quotient
morphism. Recall that S is homeomorphic to the the connected sum of r := g + 1 projective
planes.

Remark 10.1.1. Consider conversely a connected, compact real non-orientable surface Y , the
orientation cover p : Ỹ → Y and the orientation reversing involution σ : Ỹ → Ỹ .
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Notice that Ỹ is a compact, connected and orientable real surface, i.e can be equipped with
the structure of a Riemann surface.With respect to this complex structure, the involution σ
is antiholomorphic.

Let k ∈ N and consider a subset D ⊆ X of 2k points D = {y1,1, . . . , y1,k, y2,1, . . . , y2,k} with
σ(y1,i) = y2,i for each i = 1, . . . , k. Fix now a point x0 ∈ X \D and denote by

Π := π1(x0, X \D)

the fundamental group with basepoint x0.

Fix a path λσ from x0 to σ(x0). De�ne then the morphism

σ∗ : Π→ Π

α→ λ−1
σ σ(α)λσ.

Notice that σ2
∗ is the conjugation for the element λ−1

σ σ(λ−1
σ ) which, in general, is di�erent

from the identity. In particular, in general σ2
∗ is not the identity, i.e σ∗ is not an involution.

Denote by z0 = p(x0), by xi = p(y1,i) for each i = 1, . . . , k and by D′ = {x1, . . . , xk}, i.e
D′ = p(D′). We put then

Πε := π1(z0, S \D′)

the fundamental group with basepoint z0.

Recall that in this case, there is an explicit presentation of the fundamental group Πε given
by

Πε = 〈d2
1 · · · d2

rz1 · · · zk = 1〉,

where each zi is a loop around xi.

Notice that there is a short exact sequence

1 // Π
p∗
// Πε ε

// Z/(2) // 1 . (10.1.1)

For each j = 1, . . . , r, we have ε(dj) = −1.

Example 10.1.2. Consider the elliptic curve X associated to the lattice 〈1, i〉 ⊆ C i.e

X ∼= C/ 〈1, i〉

and let π be the projection π : C→ X. Let σ : X → X be the involution without �xed points
de�ned by

σ(z) = z̄ +
1

2

and p : X → S := X/〈σ〉 be the associated quotient.

We �x a point z1 ∈ S and we let its preimage in X be p−1(z1) = {y1,1, y1,2}. Put z0 = p(0)
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and x0 = 0 as base points and
λσ = π(γ(t))

where γ(t) =
1

2
t.

Denoting by a, b the paths a(t) = π(it) and b(t) = π(t), the fundamental group Π = π1(z0, X \
{y1,1, y1,2}) admits the presentation

〈b−1a−1ba = x2x1〉. (10.1.2)

where x1, x2 are two loops around y1, y2. It is not di�cult to compute that

σ∗(a) = x1a
−1 (10.1.3)

and
σ∗(b) = b (10.1.4)

Moreover, the following equalities hold:

λ−1
σ σ(x1)λσ = ax−1

1 x−1
2 x1a

−1 and λ−1
σ σ(x2)λσ = bax−1

1 a−1b−1.

10.2 Character stacks for non-orientable surfaces

We �x an algebraically closed �eld K (which for us will be either C or Fq). We denote by G
the general linear group GLn over K and by θ : G→ G the Cartan involution g → (tg)−1.

The corresponding semidirect product will be denoted by

G+ := Goθ Z/(2).

Let C = (C1, . . . , Ck) be a k-tuple of semisimple conjugacy classes of G. We consider the variety

Xε
C := {ρ : Πε → G+ | π(ρ(dj)) = −1 and ρ(zi) ∈ h(Ci) for all i, j}

where π : G+ → Z/(2) is the natural projection and h : G→ G+ the natural inclusion.

Given the explicit presentation of Πε we can rewrite Xε
C as

Xε
C = {(D1, . . . , Dr, Z1, . . . , Zk) ∈ Gr × C1 × · · · Ck | D1θ(D1) · · ·Drθ(Dr)Z1 · · ·Zk = 1}.

The variety Xε
C is endowed with a G-action de�ned as:

g ·Di = gDi
tg g · Zi = gZig

−1. (10.2.1)

The character stacks for the non-orientable surface (X,σ) are the quotient stacks

Mε
C = [Xε

C/G].
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As Xε
C is a�ne and G is reductive, we can also consider the GIT quotient

M ε
C := Xε

C//G

and the universal map q :Mε
C →M ε

C .

The stacks Mε
C admit an alternative description in terms of the so-called real σ-invariant

representations (which can be found, for instance, in [81, Section 2][79, Section 3, 3.2] and
[65, Remark 4.2]).

A representation ρ ∈ Xε
C gives by restriction a representation ρ̃ : Π → G such that the

following diagram commutes

1 // Π
p∗
//

ρ̃

��

Πε χ
//

ρ

��

Z(2) //

Id
��

1

1 // G
ι
// G+ π

// Z/(2) // 1

(10.2.2)

It is therefore natural to ask conversely which representations ρ̃ of Π can be lifted to a mor-
phism ρ : Πε → G+ which makes the diagram (10.2.2) commute. To answer to the question,
it is necessary to precisely describe monodromies around the punctures, as explained in [65,
Remark 4.2].

We can rewrite the standard presentation of Π as

〈[a1, b1] · · · [ag, bg]x1,1 · · ·x1,kx2,1 · · ·x2,k = 1〉.

where each xi,j is a path around yi,j . Let C̃ be the 2k-tuple C̃ = (C1, . . . , Ck, C1, . . . Ck) and
consider the associated representation variety XC̃ .

For a representation ρ̃ ∈ XC̃ we say that ρ̃ is σ-invariant if

ρ̃ ∼= θ(ρ̃(σ∗)).

This is equivalent to asking for the existence of an element hσ ∈ G which veri�es

hσρ̃h
−1
σ = θ(ρ̃(σ∗)). (10.2.3)

De�nition 10.2.1. Given a σ-invariant ρ̃ ∈ XC̃ , we say that the representation ρ̃ is real if
there exists hσ as in eq.(10.2.3) such that

ρ̃(σ(λσ)λσ) = h−1
σ θ(h−1

σ ). (10.2.4)

We say that ρ̃ is quaternionic if there exists hσ as in eq.(10.2.3) such that ρ̃(σ(λσ)λσ) =

−h−1
σ θ(h−1

σ ).

If the conditions of Equations (10.2.3),(10.2.4) are satis�ed, the couple (ρ̃, hσ) can be extended



187

to a map ρ ∈ Xε
C such that the diagram (10.2.2) commutes. Let ŨC be the variety

ŨC = {(ρ̃, hσ) ∈ XC̃ ×G which verify Equations 10.2.3, 10.2.4}. (10.2.5)

The variety ŨC is endowed with a G-action de�ned by

g · (ρ̃, hσ) := (gρ̃g−1, θ(g)hg−1). (10.2.6)

The arguments above imply the following Proposition

Proposition 10.2.2. There is an isomorphism of quotient stacks

Mε
C
∼= [ŨC/G].

Remark 10.2.3. If ρ̃ is an irreducible representation and h is such that there is an equality
hρ̃h−1 = θ(ρ̃(σ∗)), then either h−1θ(h−1) = ρ̃(σ(λσ)λσ) or h−1θ(h−1) = −ρ̃(σ(λσ)λσ) and
only one of the two is true (see [82, III.5.1.2]), i.e an irreducible σ-invariant representation is
either real or quaternionic.

Remark 10.2.4. It is natural to consider the stackMC̃ and the associated GIT quotient MC̃ .
The stacks MC̃ and MC̃ admit an involution, which we denote again by σ, induced by the
map

σ(ρ̃) := θ(ρ̃(σ∗)).

We can de�ne a morphism f : M ε
C →Mσ

C̃ which maps a couple (ρ̃, h) as in Equation (10.2.5)
to the representation ρ̃.

In a slightly more involved way, it would be possible to lift the map f to a morphism of
quotient stacks F :Mε

C →Mσ
C̃ . These morphisms are in general not even surjective. We will

describe the image of f in certain cases in Proposition 10.4.3.

10.3 Cohomology results for generic character stacks for non-orientable
surfaces

Put K = C and let us now explain one of the main results of [65] about the stacksMε
C . Let

C = (C1, . . . , Ck) be a k-tuple of semisimple conjugacy classes of G.

In [65, Theorem 4.6], the authors showed the following Theorem.

Theorem 10.3.1. For any generic C, the following equality holds:

E(Mε
C , q) =

q
dµ
2

q − 1
Hµ,r

(
√
q,

1
√
q

)
(10.3.1)

where µ = (µ1, . . . , µk) is the multipartition given by the multiplicities of the eigenvalues of
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C1, . . . , Ck respectively and

dµ = n2(r − 2 + k) + 2−
∑
i,j

(µji )
2.

This result is surprisingly similar to Theorem 9.1.6 about generic character stacks for Riemann
surfaces. Notice, for instance, that for r = 2h the E-polynomial ofMε

C agrees thus with the
one ofMC for a Riemann surface Σ of genus h.

In [65, Theorem 4.6] it is proved that a formula analogous to Formula (9.1.6) holds in the
non-orientable setting for r = k = 1 i.e that the following equality holds

Hc(Mε
C , q, t) =

(qt2)
dµ
2

qt2 − 1
Hµ,1

(
t
√
q,− 1
√
q

)
. (10.3.2)

It would therefore have been natural to expect that such a formula holds for all r, k i.e that

Hc(Mε
C , q, t) =

(qt2)
dµ
2

qt2 − 1
Hµ,r

(
t
√
q,− 1
√
q

)
. (10.3.3)

for a generic C. The main result of this paper is a counterexample to Formula (10.3.3), obtained
by an explicit description of these spaces in the case r = 2, i.e when X is an elliptic curve.

10.4 Character stacks for k = 1 and generic central orbit

In this section we assume that K = C. We �x r ≥ 1 and a Riemann surface X of genus
g := r − 1 with an antiholomorphic involution σ : X → X.

Consider a point z1 ∈ S = X/〈σ〉 and the subset D′ := {z1} ⊆ Σ (i.e k = 1). Let d, n ∈ N
such that d is even and (d, n) = 1.

Let C be the generic semisimple orbit of GLn(C) given by C = {eπi
d
n In}. We denote the

associated character stack in this case by Mε
n,d := Mε

C and similarly the associated GIT
quotient by M ε

n,d.

Remark 10.4.1. As C is a central orbit, the character stackMC is the twisted character stack

Mn,d =
[
{A1, B1, . . . , Ag, Bg ∈ GLn | [A1, B1] · · · [Ag, Bg] = e

2πid
n }/GLn

]
.

As d and n are coprime, the representations ρ̃ ∈ Mn,d are irreducible, see for example [44,
Lemma 2.2.6]. In this case, given an element ρ ∈ Xε

C corresponding to a couple (ρ̃, hσ) with
ρ̃ ∈ XC̃ we have StabG(ρ) = ±1 (see [82, III.5.1.3]). The morphism

q :Mε
n,d →M ε

n,d

is thus a µ2-gerbe.

Remark 10.4.2. The canonical morphism q :Mε
n,d → M ε

n,d, being a µ2-gerbe, is proper. The
proper base change for Artin stacks implies that for every x ∈ M ε

n,d and for every i ∈ Z we
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have
(Riq∗C)x = H i(Bµ2).

As the rational higher cohomology of Bµ2 vanishes, Riq∗C = 0 if i 6= 0 and q∗C = C. The
Leray spectral sequence for cohomology with compact support implies that we have

Hp
c (Mε

n,d)
∼= Hp

c (M ε
n,d).

The cohomology of the quotient stack is isomorphic to that of the GIT quotient. In particular,
the (compactly-supported) cohomology ofMε

n,d is 0 in negative degrees.

The main result of this paragraph is the following proposition:

Proposition 10.4.3.

(i) If r is odd there are no quaternionic representations inside Mσ
n,d . If r is even, M

σ
n,d admits

a decomposition into open-closed subvarieties

Mσ
n,d = Mσ,+

n,d

⊔
Mσ,−
n,d

where Mσ,+
n,d ,M

σ,−
n,d are given by real/quaternionic representations respectively and there is an

isomorphism Mσ,+
n,d
∼= Mσ,−

n,d .

(ii) The map f : M ε
n,d →Mσ,+

n,d introduced in Remark 10.2.4 is an isomorphism.

Remark 10.4.4. Proposition 10.4.3 and the other results of this section are probably known
to the experts but we could not locate a reference in the literature. We review them here for
the sake of completeness.

Before proving Proposition 10.4.3, we notice that the quaternionic and the real representations
form disjoint subsets by Remark 10.2.3.

To see that there are no quaternionic representations for r odd, we will use the equivalence
between quaternionic representations and quaternionic Higgs bundles. As this correspondence
is crucial for the study of the varieties M ε

n,d, let us brie�y review it here. For more details,
see for example [11],[80],[6],[7],[9]

10.4.1 Real and quaternionic Higgs bundles

A Higgs bundle over X is a pair (E ,Φ) where E is a vector bundle over X and Φ a morphism
Φ : E → E ⊗ Ω1

X .

The moduli space of (stable) Higgs bundle over Σ̃ of rank n and degree d is denoted byMDol,n,d

(for a de�nition of stability see for example [6, Section 4.1] or [11, De�nition 2.3]).

It is a fundamental result (see for example [88]) that there is a homeomoprhism (called non
abelian Hodge correspondence)

MDol,n,d
∼= Mn,d. (10.4.1)
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We consider the involution on MDol,n,d , which we denote again by σ, given by

σ((E ,Φ)) = (σ∗(E),−σ∗(Φ))

and we say that a Higgs bundle (E ,Φ) is σ-invariant if there exists an isomorphism

α : (E ,Φ)→ σ((E ,Φ)).

Real Higgs bundles are pairs ((E ,Φ), α) such that

σ∗(α)α = IE .

In a similar way, quaternionic Higgs bundles are de�ned by asking for the equality

σ∗(α)α = −IE .

In [11, Proposition 5.6],[9, Theorem 4.8] it is shown that the homemorphism (10.4.1) restricts
to a homeomorphism

Mσ
n,d
∼= Mσ

Dol,n,d.

In loc.cit it is shown moreover that this bijection sends real/quaternionic representations into
real/quaternionic Higgs bundles respectively. We will denote the subsets of MDol,n,d given by
real/quaternionic Higgs bundles by Mσ,+

Dol,n,d/M
σ,−
Dol,n,d respectively.

Notice that, as
σ : MDol,n,d →MDol,n,d

is antiholomorphic, the �xed points locusMσ
Dol,n,d is not a complex algebraic variety anymore.

It is a real analytic variety which is identi�ed with the set of R-points ofMDol,n,d with respect
to the real structure induced by σ.

For odd r, if a quaternionic couple (ρ̃, h) existed (i.e Mσ,−
n,d 6= ∅) there would exist a stable

quaternionic Higgs bundle (E ,Φ) on X. Its determinant det(E) would be a quaternionic line
bundle of degree d over X.

The quaternionic condition is preserved under taking the determinant as n is odd. The
existence of a quaternionic line bundle for odd r is ruled out by the topological criterion of
[79, Theorem 2.4].

To prove Proposition 10.4.3, we will need the following preliminary Lemma.

Lemma 10.4.5. Put Xn,d := XC̃ and let us consider the varieties Yn,d, Zn,d de�ned by

Yn,d := Xn,d ×Mn,d
Xn,d = {(ρ̃1, ρ̃2) | ρ̃1

∼= ρ̃2}

and

Zn,d := {(ρ̃1, ρ̃2, h) | (ρ̃1, ρ̃2) ∈ Y , h ∈ GLn | hρ̃1h
−1 = ρ̃2}.

The projection map ψ : Zn,d → Yn,d is a principal Gm-bundle for the étale topology.
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Proof. The variety Zn,d is endowed with the Gm action de�ned as

t · (ρ1, ρ2, h) = (ρ1, ρ2, th).

This action is free and transitive on the �bers of ψ, as all the representations inside Xn,d are
irreducible. Moreover ψ(t · z) = ψ(z) for all z ∈ Zn,d. We are thus reduced to show that ψ is
locally trivial for the étale topology.
As the map q̃ : Xn,d → Mn,d is a principal PGLn-bundle for the étale topology, there exists
an étale open covering {Ui}i∈I of Mn,d such that q̃−1(Ui) ∼= Ui × PGLn for each i ∈ I.
Put YUi := Yn,d ×Mn,d

Ui and similarly ZUi := Zn,d ×Mn,d
Ui. It is enough to show that the

pullback map ψ : ZUi → YUi is locally trivial in the étale topology for each i ∈ I.
Fix then i ∈ I and put Ui = U . Notice that the variety YU admits the following isomorphism:

YU = q̃−1(U)×U q̃−1(U) ∼= (U × PGLn)×U (U × PGLn) ∼= U × PGLn×PGLn .

In a similar way, the variety ZU is isomorphic to

ZU = ψ−1(YU ) = {(u, g, h, s) ∈ U × PGLn×PGLn×GLn | gh−1 = [s]}

so that ψ corresponds to the morphism ψ(u, g, h, s) = (u, g, h). We can view YU as a subset
of U × PGLn×PGLn×PGLn as

YU = {(u, g, h, s) ∈ U × PGLn×PGLn×PGLn | gh−1 = s}.

Via these identi�cations, the map ψ corresponds to the restriction of the morphism

U × PGLn×PGLn×GLn → U × PGLn×PGLn×PGLn

given by the identity on the �rst three factors and the quotient map GLn → PGLn on the last
one. This is a principal Gm-bundle because GLn → PGLn is so.

We now prove Proposition 10.4.3. We keep the notations of Lemma 10.4.5.

Proof of Proposition 10.4.3.

Let q̃ : Xn,d →Mn,d be the quotient map. Put Xσ
n,d := q̃−1(Mσ

n,d) and X
σ,+
n,d = q̃−1(Mσ,+

n,d ) and

similarly for quaternionic representations Xσ,−
n,d = q̃−1(Mσ,−

n,d ). The variety Xσ
n,d is isomorphic

to the closed subvariety Y σ
n,d of Yn,d given by:

Y σ
n,d = {(ρ̃1, ρ̃2) ∈ Yn,d | ρ̃2 = θρ̃1σ∗}

via the map p1|Y σn,d : Y σ
n,d → Xσ

n,d, where p1 is the projection onto the �rst factor of Yn,d. Put

Y σ,+
n,d = p−1

1 (Xσ,+
n,d ) and similarly Y σ,−

n,d . From Remark 10.2.3 there is a well-de�ned morphism

p3 : ψ−1(Y σ
n,d)→ {In,−In}
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(ρ̃1, ρ̃2, h)→ θ(h)hρ̃(σ(λσ)λσ).

Notice that Y σ,+
n,d = ψ(p−1

3 (In)) and Y σ,−
n,d = ψ(p−1

3 (−In)). As ψ is open, we deduce that

Xσ,+
n,d , X

σ,−
n,d are disjoint and open and so closed too inside Xσ

n,d. The same is true then for

Mσ,+
n,d ,M

σ,−
n,d . The projection (ρ̃1, ρ̃2, h)→ (ρ̃1, h) induces an isomorphism ψ−1(Y σ,+

n,d ) = Xε
n,d.

By Proposition 10.4.5, the morphism

Xε
n,d → Xσ,+

n,d

is thus a principal Gm-bundle. The G-action on Xε
n,d de�ned by the Formula (10.2.6) induces

an action of the center ZG = Gm which di�ers from the one coming from the principal Gm-
bundle structure by a square factor. The morphism Xε

n,d → Xσ,+
n,d induces thus a G-equivariant

isomorphism
Xε
n,d/(Gm/(±In)) ∼= Xσ,+

n,d (10.4.2)

We deduce the following chain of isomorphisms:

M ε
n,d = Xε

n,d/(GLn(C)/(±In)) ∼= (Xε
n,d/(Gm/(±In)))/(GLn(C)/Gm) ∼= Mσ,+

n,d .

To end the proof of Proposition 10.4.3, it actually remains to show that Mσ,+
n,d ,M

σ,−
n,d are

isomorphic if r is even. For r even there exists a quaternionic representation τ ∈Mσ,−
1,0 of rank

1 over X (see [80, Theorem 2.4]).

Taking the tensor product by τ gives then an isomorphism −⊗ τ : Mσ,+
n,d → Mσ,−

n,d : the same
proof was carried out for real and quaternionic vector bundles in [80, Theorem 1.1].

10.5 Character stacks for (real) elliptic curves

We focus now on the case r = 2. We consider the elliptic curve X and the antiholomorphic
involution σ introduced in Example 10.1.2. We keep the notations introduced in the Example
10.1.2.

In [44, Lemma 2.2.6] it is shown that for (n, d) = 1 there is an isomorphism

Mn,d = C∗ × C∗. (10.5.1)

To see this, notice that a representation ρ̃ ∈Mn,d corresponds to a pair of matrices A,B such
that

B−1A−1BA = e
2πid
n 1n.

where ρ̃(a) = A and ρ̃(b) = B. Let z, w ∈ C∗ such that An = zIn and Bn = wIn(see [44,
Theorem 2.2.17]). The isomorphism (10.5.1) is obtained by mapping ρ̃ to the couple (z, w).
Via this identi�cation, the involution σ is given by:

σ(z, w) = (z, w−1)
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and so
Mσ
n,d = C∗

⊔
C∗.

From Equation (10.1.3) we deduce indeed that

θ(ρ̃(σ∗(b))) = θ(ρ̃(b)) = θ(B)

and so (θ(ρ̃(σ∗(b))))
n = θ(B)n = w−1In. By Equation (10.1.4) the following equality holds:

θ(ρ̃(σ∗(a))) = θ(ρ̃(x1a
−1)) = θ(ρ̃(x1))θ(A−1) = e−

πd
n At

and so (θ(ρ̃(σ∗(a)))n = (At)n = zIn. By Proposition 10.4.3, we deduce the following result :

Theorem 10.5.1. For r = 2, the character variety M ε
n,d is isomorphic to C∗ as an a�ne

variety and the character stackMε
n,d is a µ2-gerbe over C∗.

By Remark 10.4.2, for r = 2 we have the following identity:

Hc(Mε
n,d, q, t) = qt2 + t. (10.5.2)

As suggested in the introduction, this does not agree with the expected formula (10.3.3). If
the Formula (10.3.3) were true, the following identity would hold

Hc(Mε
n,d, q, t) =

qt2

qt2 − 1
Hn,2

(
t
√
q,− 1
√
q

)
where Hn,2(z, w) are the functions de�ned in �3.8 for µ = ((n)). The functions Hn,2(z, w) have
been explicitly computed in [14, Theorem 1.0.2]. The result of [14] agrees with the conjectural
formula (9.1.8) for the mixed Poincaré series of character varietiesMn,d for elliptic curves, i.e

(qt2)Hn,2
(
t
√
q,− 1
√
q

)
= (qt2 + t)2.

This implies that

(qt2 + t)2

qt2 − 1
=

qt2

qt2 − 1
Hn,2

(
t
√
q,− 1
√
q

)
6= (qt2 + t) (10.5.3)

giving a counterexample to the conjectural formula (10.3.3).
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