
A brief introduction to C0-symplectic topology

Vincent Humilière

July 2012

This note summarizes a talk that I gave at the ”Workshop on Geometric
Group Theory, Hyperbolic Dynamics and Symplectic Geometry” held in the
MFO Oberwolfach in July 2012. It will appear in the Oberwolfach reports.
The goal of the talk was to give an idea of what is ”C0-symplectic topology”.
It was impossible to speak about all known results and point of views on
this subject in 50 minutes so I decided to concentrate on three particular
theorems, to motivate them and to give an idea of their proof.

We will denote by (M,ω) a symplectic manifold. A Hamiltonian is a
smooth compactly supported map H : [0, 1] × M → R. Its symplectic
gradient XH generates a flow denoted φtH . The poisson bracket of two
smooth functions H and K is given by the formula {H,K} = ω(XH , XK).
The following theorems hold on any symplectic manifold.

Theorem 1 (Gromov-Elishberg , see [6]) Let φk be a sequence of sym-
plectic diffeomorphisms. Suppose that it converges in the C0-sense to some
diffeomorphism φ. Then, φ is symplectic.

Theorem 2 (Hofer [3], Lalonde-McDuff[5]) Let Hk be a sequence of
Hamiltonians. Suppose that

1. φ1Hk
C0-converges to some homeomorphism h,

2. Hk C
0-converges to 0.

Then h = Id.

Theorem 3 (Cardin-Viterbo [2]) Let Fk, Gk be sequences of Hamilto-
nians. Suppose that

1. Fk and Gk C
0-converge to some smooth functions F and G,

2. the Poisson bracket {Fk, Gk} C0-converges to 0.

Then, {F,G} = 0.
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Comments, motivations, applications

1. First note that these results are surprising! Indeed, in Theorem 1,
being a symplectic diffeomorphism is a condition on the differential of
the diffeomorphism. So their should be no such C0-rigidity. Similarly,
the Poisson bracket is defined only in terms of the derivatives of the
functions, so in Theorem 3 the Poisson bracket should not behave well
with respect to the C0-topology.

2. Once we have these results, it is natural to wonder whether the right
objects of symplectic topology are actually the smooth ones or whether
they are less regular. More concretely, can one define C0 counterparts
to the classical smooth symplectic objects? For example, Theorem 1
allows to give a definition of what could be a symplectic homeomor-
phism: a homeomorphism which a C0-limit of symplectic diffeomor-
phism. The question of defining a C0-Hamiltonian dynamics is more
subtle. We will discuss it later on.

3. The C0-rigidity results can also help to understand better the smooth
objects themselves. The best example of this is the recent story of
the Poisson bracket. After Theorem 3 was discovered, many papers
have been published to understand the phenomenon and improve this
result. In the end, this has lead Buhovsky, Entov and Polterovich to
define new symplectic invariants [1] and derive nice results in (smooth!)
Hamiltonian dynamics.

A word on the proofs

Amazingly the three theorems above can all be deduced from the follow-
ing well known result. As defined by Hofer, the energy of a Hamiltonian
diffeomorphism is:

‖φ‖ = inf

{∫ 1

0
(maxHt −minHt)dt

∣∣φ = φ1H

}
.

Theorem 4 (Hofer [3], Lalonde-McDuff[5]) For any symplectic ball B
of radius r, if a Hamiltonian diffeomorphism φ satisfies φ(B)∩B = ∅, then
‖φ‖ ≥ πr2.

Theorems 2 and 3 follows from that after some elementary differential cal-
culus. To prove Theorem 1, a method is to define the notion of a symplectic
capacity which is a way to measure the ”symplectic size” of a subset of
a symplectic manifold. The existence of symplectic capacities follows for
example from Theorem 4. Then, one proves that a diffeomorphism is (anti-
)symplectic if and only if it preserves symplectic capacities. Since the prop-
erty of preserving a capacity is C0-closed, Theorem 1 follows. This proof is
nicely exposed in [6].
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Attempts to define a continuous Hamiltonian dynamics

A first attempt has been proposed by Müller and Oh [7]. They define a
continuous Hamiltonian isotopy as a path of homeomorphisms ht with h0 =
Id and such that there exists a sequence of Hamiltonians Hk such that

1. φtHk
C0-converges to ht,

2. Hk C
0-converges to some continuous function H.

A Hamiltonian homeomorphism is then any element of such an isotopy ht.
It follows from Theorem 2 that given a continuous H there is at most ont
isotopy ht such that the definition above is fullfilled. Therefore we can say
that H ”generates” ht. Conversely, it is known (this is due independently
to Viterbo and Buhovsky-Seyfaddini) that given a continuous Hamiltonian
isotopy ht there is a unique possible H up to constant. These uniqueness
results show that this framework is a good generalization of what happens
in the smooth case. Nevertheless, the existence problem is very hard. It is
unknown which continuous functions actually generate a continuous Hamil-
tonian isotopy.

Another attempt (that would avoid this problem but create others)
would be to work inside the completion of the Hamiltonian group for Hofer’s
distance. It is by definition given by d(φ, ψ) := ‖ψ−1◦φ‖. The map between
metric spaces (C∞([0, 1]×M), ‖ · ‖C0)→ (Ham(M,ω), d), H 7→ φtH is Lips-
chitz. Thus, it extends to completions giving rise to a map C0([0, 1]×M)→
Ham(M,ω). Hence, any continuous function has a flow in the completion.
As before we can wonder whether the continuous Hamiltonian is unique up
to constant. This question is answered positively on rationnal symplectic
manifolds by a joint work with R. Leclercq and S. Seyfaddini [4].

Some open problems

There are many open interesting problems in this subject. Here my favorite
ones:

1. Is the group of Hamiltonian diffeomorphisms C0-closed in the group of
symplectic diffeomorphisms? This is only known for surfaces, for the
standard 2n-torus (Herman 83) and for a few more examples (Lalonde-
McDuff-Polterovich 97).

2. Is the group of area preserving and compactly supported homeomor-
phisms of the 2-disk a simple group? The group of Hamiltonian home-
omorphisms defined by Oh and Müller is a normal subgroup but so
far no one has been able to prove that it is proper.
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3. Which symplectic invariants are invariant under conjugation by a sym-
plectic homeomorphism? For example in the case of the Calabi invari-
ant it has been established by Gambaudo and Ghys that two Hamil-
tonian diffeomorphisms of the 2-disk that are conjugated by an area
preserving homeomorphism have the same Calabi invariant. The anal-
ogous problem in higher dimension is open.

4. Understand ”symplectically” Le Calvez’s theory of area-preserving
homeomorphisms of surfaces.

5. Extend Aubry-Math theory to general non-convex Hamiltonians. It is
likely that one needs to consider symplectic objects (e.g., Lagrangian
submanifolds) having low regularity to develop such an extension.
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