
ON THE v-PICARD GROUP OF STEIN SPACES

VERONIKA ERTL, SALLY GILLES, AND WIESŁAWA NIZIOŁ

Abstract. We study the image of the Hodge-Tate logarithm map (in any cohomological degree),
defined by Heuer, in the case of smooth Stein varieties. Heuer, motivated by the computations
for the affine space of any dimension, raised the question whether this image is always equal to
the group of closed differential forms. We show that it indeed always contains such forms but
the quotient can be non-trivial: it contains a slightly mysterious Zp-module that maps, via the
Bloch-Kato exponential map, to integral classes in the pro-étale cohomology. This quotient is
already non-trivial for open unit discs of dimension strictly greater than 1.
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1. Introduction

Let OK be a complete discrete valuation ring with fraction field K of characteristic 0 and with
perfect residue field k of positive characteristic p. Let C be the p-adic completion of an algebraic
closure of K.

In [12], Heuer constructed a Hodge-Tate logarithm map HTlog such that, for any smooth rigid
analytic space X over C, there is an exact sequence

(1.1) 0→ Pican(X)→ Picv(X
�)

HTlog−−−−→ Ω1(X)(−1),

where X� denotes the associated diamond, and he proved the following result:

Theorem 1.2. (Heuer, [12, Th. 1.3, Th. 6.1]) Let X be a smooth rigid analytic space over C.
(1) If X is proper or a curve, then the map HTlog from (1.1) is surjective.
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(2) If X is the affine space AdC of dimension d, then the image of HTlog is equal to the kernel
of the differential, i.e., we have an exact sequence:

(1.3) 0→ Pican(X)→ Picv(X
�)

HTlog−−−−→ Ω1(X)d=0(−1)→ 0.

Heuer has also raised the question (see [12, Rem. 6.9]) whether we have an analog of the exact
sequence (1.3) for any smooth Stein space over C, i.e., whether the image of HTlog is equal to the
closed differential forms. Using a simple functoriality argument he has shown that, for all smooth
rigid analytic spaces, this image contains all exact forms.

The goal of this paper is to extend Theorem 1.2 and to compute the image of the Hodge-Tate
logarithm for more general Stein rigid analytic spaces. More precisely, we show the following:

Theorem 1.4. Let X be a smooth Stein rigid analytic space over C and let i ≥ 1. Then, the
image of the restriction of the Hodge-Tate logarithm to the cohomology group of principal units

HTlogU : Hi
v(X

�, U)→ ΩiX(X)(−i)

fits into a short exact sequence of abelian groups

(1.5) 0→ Ωi(X)(−i)d=0 → Im(HTlogU )
Exp−−→ I i(X)→ 0

where the Zp-module I i(X) ⊂ Hi+1
proét(X,Qp(1)) is the intersection Im(Exp) ∩ Im(ι), where ι :

Hi+1
proét(X,Zp(1))→ Hi+1

proét(X,Qp(1)) is the canonical map.

The map Exp in (1.5) is the Bloch-Kato exponential map

(1.6) Exp : (Ωi(X)/Ker d)(−i) ↪→ Hi+1
proét(X,Qp(1))

from the fundamental diagram of Colmez-Dospinescu-Nizioł computing the p-adic pro-étale coho-
mology of Stein spaces [5], [7].

In particular, the above result shows that the closed differential forms are all in the image of
the morphism HTlog. In the cases where the group I i(X) is non-trivial, it also shows that this
image is larger than what the result for the affine space was suggesting, since it also includes the
differential forms coming from the integral pro-étale cohomology. We show that group I i(X) is
non-trivial already in the case of the unit open disc of dimension at least 2.

The strategy we follow here is similar to the one of Heuer in the case of the affine space (see
[12, Sec. 6.2]): we compare the image of the Hodge-Tate logarithm to the kernel of the map from
Ωi(X)(−i) to the pro-étale cohomology. In the work of Heuer, this map is defined as the boundary
morphism coming from the fundamental exact sequence of p-adic Hodge Theory:

0→ Qp(1)→ Bϕ=p → B+
dR/t ' O → 0

In the case of the affine space, Heuer was able to compute this kernel using the computation of
the cohomologies of Bϕ=p and BdR by Le Bras in [18] and the Poincaré Lemma of Scholze [20].
However, for a general Stein space, this is not sufficient: to determine completely the kernel we
need to use the Bloch-Kato exponential (1.6) from Colmez-Dospinescu-Nizioł (in the form defined
by Bosco in [4]); the fact that this map is injective follows from slope properties of Hyodo-Kato
cohomology of X. The equality between the map Exp and the one used by Heuer is checked in
Section 3.

We end the paper with a discussion of a number of examples: a torus, a Drinfeld space, analyti-
fications of algebraic varieties, an open disc, where we try to determine the v-Picard group. Having
Theorem 1.4, the main difficulty is in proving that the Picard group can be computed using the
sheaf of principal units.

Acknowledgments. This paper is a product of a collaboration started during WINE4 (Women in
Numbers Europe – 4), in the summer of 2022 at Utrecht. We would like to thank the organizers
for giving us the opportunity to work together in such a great place ! Special thanks go to Annette



ON THE v-PICARD GROUP OF STEIN SPACES 3

Werner who coorganized with W.N. the research group on “Relative p-adic Hodge Theory” as well
as to members of the group for many discussions on p-adic geometry. We would also like to thank
Piotr Achinger, Pierre Colmez, Gabriel Dospinescu, Ben Heuer, Damien Junger and Peter Scholze
for helpful comments concerning the content of this paper. S.G. would like to thank the MPIM
of Bonn and the IAS of Princeton for their support and hospitality during the academic years
2022-2023 and 2023-2024 when parts of this paper were written. V.E. would like to thank the
IMPAN in Warsaw for their support and hospitality during the academic year 2023-2024.

Notation and conventions. Let OK be a complete discrete valuation ring with fraction field K of
characteristic 0 and with perfect residue field k of characteristic p. Let K be an algebraic closure
of K and let OK denote the integral closure of OK in K. Let C = K̂ be the p-adic completion
of K. Let W (k) be the ring of Witt vectors of k with fraction field F (i.e., W (k) = OF ). Set
GK = Gal(K/K) and let ϕ be the absolute Frobenius on W (k). We will denote by B̂st,BdR the
semistable and de Rham period rings of Fontaine.

All rigid analytic spaces considered will be over K or C. We assume that they are separated,
taut1, and countable at infinity.

2. Preliminaries

We gather here the basic facts needed later on in the paper.

2.1. Vector bundles in the v-topology. We gather here a few facts about v-vector bundles.
Recall that the v-topology on a perfectoid space X is defined as the topology whose covers are

generated by all open covers (in the analytic topology) and by all the surjective maps of affinoids
(see [22, Lecture 17]). We have that all diamonds are v-sheaves. If Y is a diamond over Spd(C),
a v-sheaf V is a v-vector bundle of rank n, n ∈ N, on Y if it is a GL�n-torsor for the v-topology
(where GL�n denotes the diamond associated to the usual rigid space GLn). If q : X → Y is a
v-cover of diamonds and V a vector bundle on X then every descent datum on V is effective,
i.e. the descent datum comes from a v-vector bundle on Y (see [12, Def. 2.5 and Lem. 2.6]). In
particular, the v-vector bundles of rank n on a diamond Y (up to isomorphism) are classified by
H1
v (Y,GL�n). In this paper, we are interested in the group of line bundles:

Picv(Y ) := H1
v (Y,GL�1).

The diamond Y can also be equipped with the étale topology and the quasi-pro-étale topology
(see [22, Sec. 9.2]). If Y comes from a rigid space X (i.e. Y = X�), then we have an equivalence
Yét ' Xét ([22, Th. 10.4.2]) and we have the following inclusion of sites:

Xan ⊂ Xét ' X�ét ⊂ Xproét ⊂ X�qproét ⊂ X�v .

If X is an affinoid perfectoid, we know from a result of Kedlaya-Liu [15, Th. 3.5.8] that the notions
of vector bundles in all these topologies coincide. The pro-étale, quasi-pro-étale and v-topologies
being locally affinoid perfectoid, it follows that for a general smooth rigid spaceX, we also have that
the groups of vector bundles in these three topologies are equal. It is also known ([10, Prop. 8.2.3])
that Pican(X) ' Picét(X). We are left to study the map

(2.1) Picét(X) ↪→ Picv(X
�).

2.2. Topologies on X. Let X be a smooth rigid space over C and X� be the associated diamond.
In the following we write Xv for the site X�v . We denote by Oét, Oproét and Ov the structure sheaves
for the étale, pro-étale and v-topology. For τ one of these topologies, we also denote by O×τ the
sheaf of invertible functions, by O+

τ the sheaf of integral elements and by Uτ := 1 + mCO+
τ ⊂ O×τ

the sheaf of principal units. Let O
×

be the quotient of O×τ by Uτ . For G ∈ {O×τ ,O
×
τ }, we write

1That is, for all quasi-compact opens V of X, the closure V of V in X is quasi-compact.
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G [ 1
p ] for the sheaf of abelian groups lim−→x 7→xp

G . If X is quasi-compact then O×τ [ 1
p ](X) = O×τ (X)[ 1

p ].

By [12, Lem. 2.16], we have O
×
τ [ 1

p ] ' O
×
τ .

We summarize in the following proposition the various equalities that we have between the
H1-groups of these sheaves:

Proposition 2.2. We denote by ν : Xv → Xét the canonical morphism. It decomposes as Xv
λ−→

Xproét
µ−→ Xét.

(1) The sheaf O×: we can interchange pro-étale and v-topologies:

H1
proét(X,O

×)
∼→ H1

v (X,O×).

(2) The sheaf O
×
v : we can interchange all three topologies:

λ∗O
×
v ' O

×
proét, R1λ∗O

×
v = 0, and in particular, H1

proét(X,O
×

)
∼→ H1

v (X,O
×

)

µ∗O
×
proét ' O

×
ét, R1µ∗O

×
proét = 0, and in particular, H1

ét(X,O
×

)
∼→ H1

proét(X,O
×

)

ν∗O
×
v ' O

×
ét, R1ν∗O

×
v = 0, and in particular, H1

ét(X,O
×

)
∼→ H1

v (X,O
×

).

(3) More generally, we have natural isomorphisms

(2.3) Rν∗O
×

= O
×
, Rµ∗O

×
= O

×
.

Proof. The first point follows from the result of Kedlaya-Liu [15, Th. 3.5.8], as explained above.
For the second point, see the proof of Lemma 2.22 in [12]. The third claim is proved in [13, Th. 1.7,
Cor. 2.11]. �

We recall now the exponential and logarithm maps from [12]. They will be used to define the
Hodge-Tate logarithm HTlog. The logarithm exact sequence stated below will play an important
role in the computation of the cokernel of the map (2.1) as it will allow us to compare it to the
p-adic pro-étale cohomology.

The usual p-adic exponential and logarithm maps exp(x) =
∑
n x

n/n! and log(x) = (−1)n(x−
1)/n define morphisms of sheaves

exp : p′O+ → 1 + p′O+ and log : 1 + mO+ → O

where p′ = p if p > 2 and p′ = 4 if p = 2, such that log(1 + p′O+) ⊂ p′O+, exp ◦ log = Id on
1 + p′O+ and log ◦ exp = Id on O+. We have the following result:

Lemma 2.4. (Heuer, [12, Lem. 2.18, Lem. 2.21]) Let X be a smooth rigid space over C and ν :

Xv → Xét and µ : Xproét → Xét as before.
(1) For τ ∈ {v,proét}, there are exact sequences of sheaves on Xτ :

1→ (Qp/Zp)(1)→ Uτ
log−−→ Oτ → 1,(2.5)

1→ Oτ
exp−−→ O×τ [ 1

p ]→ Ō×τ → 1.

(2) Let i ≥ 1. The maps (2.5) and the isomorphisms (2.3) induce natural isomorphisms

log : Riν∗U
∼−→ Riν∗O and Riµ∗U

∼−→ Riµ∗O;

exp : Riν∗O
∼−→ Riν∗O

× and Riµ∗O
∼−→ Riµ∗O

×.

2.3. The Hodge-Tate logarithm. We recall here the definition of the Hodge-Tate logarithm
from [12].

Proposition 2.6 (Hodge-Tate morphisms). Let X be a smooth rigid space over C, ν : Xv → Xét

and µ : Xproét → Xét as before. Then for all i ≥ 0, there are OX-linear isomorphisms:

HT : Riν∗O
∼−→ ΩiX(−i), HT : Riµ∗O

∼−→ ΩiX(−i) on Xét.
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For µ, the result is due to Scholze in [20, Cor. 6.19], [21, Prop. 3.23]: the Hodge-Tate morphism
HT is defined as the inverse of the connecting morphism in the Faltings extension (see Section 3.1.3).
We obtain the result for ν using that Rλ∗Ov = Oproét.

The Leray spectral sequence for the morphism ν : Xv → Xét and the sheaf O×

(2.7) Ei,j2 = Hi
ét(X,R

jν∗O
×)⇒ Hi+j

v (X,O×)

induces an exact sequence:

(2.8) 0→ H1
ét(X, ν∗O

×)→ H1
v (X,O×)→ H0

ét(X,R
1ν∗O

×)→ H2
ét(X, ν∗O

×)→ H2
v (X,O×).

For i ≥ 1, we define the Hodge-Tate logarithm

HTlogi : Hi
v(X,O

×)→ H0
ét(X,Ω

i
X(−i))

as the composition:

(2.9) HTlogi : Hi
v(X,O

×)→ H0
ét(X,R

iν∗O
×)

exp←−−
∼

H0
ét(X,R

iν∗O)
∼−→ H0

ét(X,Ω
i
X(−i)),

where the first arrow is the edge map of the Leray spectral sequence (2.7), the second one is the
exponential map from Lemma 2.4, and the third one is the isomorphism from Proposition 2.6. We
obtain an analogous morphism replacing the v-topology by the pro-étale one.

Since ν∗O× = O× and using the map (2.9), we can rewrite the exact sequence (2.8) as

0→ Pican(X)→ Picv(X)
HTlog−−→Ω1(X)(−1)→ H2

ét(X,O
×)→ H2

v (X,O×)

Remark 2.10. By Lemma 2.4, we can also consider the restriction of HTlog to U and use the
pro-étale and v-topology interchangeably. For i ≥ 1, we define the Hodge-Tate logarithm

HTlogU : Hi
v(X,U)→ H0

ét(X,Ω
i
X(−i))

similarly as the composition:

(2.11) HTlogU : Hi
v(X,U)→ H0

ét(X,R
iν∗U)

log−−→
∼

H0
ét(X,R

iν∗O)
∼−→ H0

ét(X,Ω
i
X(−i)).

It is compatible with the map HTlog from (2.9).

Remark 2.12. For a Stein space, we know that for a coherent sheaf F , the group Hi
ét(X,F )

is zero for i > 0. In particular, we obtain that Hi
ét(X,R

jµ∗O) = 0, i ≥ 1, and hence the Leray
spectral sequence for µ : Xproét → Xét and the sheaf O, induces an isomorphism

Hi
proét(X,O)

∼−→ H0
ét(X,R

iµ∗O).

In the following, when X is Stein, we still write HT for the composition:

HT : Hi
proét(X,O)

∼−→ H0
ét(X,R

iµ∗O)
∼−→ Ωi(X)(−i).

And similarly for the v-topology:

HT : Hi
v(X,O)

∼−→ H0
ét(X,R

iν∗O)
∼−→ Ωi(X)(−i).

2.4. The Leray spectral sequence for Stein spaces. We show here that, in the case of smooth
Stein spaces, the Leray spectral sequence for the projection ν : Xv → Xét and the sheaf O×

simplifies enormously.

Proposition 2.13. Let X be a smooth Stein rigid analytic variety of dimension d over C. Then:
(1) H0

ét(X,O
×) ' H0

v (X,O×) and Hi
ét(X,O

×) ' Hi
v(X,O

×) for i ≥ d+ 2.
(2) We have exact sequences:

0→ H1
ét(X,O

×)→ H1
v (X,O×)

HTlog1−−−−−→ Ker(d×2 : Ω1(X)(−1)→ H2
ét(X,O

×))→ 0

0→ Hi
ét(X,O

×)/Im d×i → Hi
v(X,O

×)
HTlogi−−−−→ Ker(d×i+1 : Ωi(X)(−i)→ Hi+1

ét (X,O×))→ 0 for all d ≥ i ≥ 2.

(3) Hd+1
ét (X,O×)/Im d×d+1 ' Hd

v (X,O×).
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Here the maps d×i+1 : Ωi(X)(−i)→ Hi+1
ét (X,O×) (for i ≥ 1) are the maps given by the compo-

sition

(2.14) d×i+1 : Ωi(X)(−i) HT←−−
∼

H0(X,Riν∗O)
exp−−→
∼

H0(X,Riν∗O
×)

di+1−−→Hi+1
ét (X,O×),

where di+1 is the only differential on the Ei+1-page of the Leray spectral sequence (see the proof):

Ei,j2 = Hi
ét(X,R

jν∗O
×)⇒ Hi+j

v (X,O×)

Proof. We analyze the terms of the above spectral sequence.
(i) The E2-page. For all i, j ≥ 1, we have isomorphisms

Hi
ét(X,R

jν∗O
×)
∼−→ Hi

ét(X,Ω
j
X(−j))

and the term on the right is zero since X is Stein. So, on the page E2, the only non-zero terms
will be in the row j = 0 and column i = 0 (for 0 ≤ j ≤ d) and we have:

Ei,02 = Hi
ét(X,O

×) and E0,j
2 = H0

ét(X,R
jν∗O

×) for all i ≥ 0, d ≥ j ≥ 1.

There is only one non-zero differential d2 : H0
ét(X,R

1ν∗O×)→ H2
ét(X,O

×).
(ii) The E3-page. The terms Ei,j3 are equal to Ei,j2 except for (i, j) ∈ {(2, 0), (0, 1)} where they

are

E2,0
3 ' H2

ét(X,O
×)/Im d2 and E0,1

3 ' Ker(d2).

There is only one non-zero differential d3 : H0
ét(X,R

2ν∗O×)→ H3
ét(X,O

×).
(iii) The E∞-page. Iterating the above computation, we get that the spectral sequence degen-

erates at d+ 2 and we have:

E0,0
∞ = H0

ét(X,O
×), E1,0

∞ = H1
ét(X,O

×)

Ei,0∞ ' Hi
ét(X,O

×)/Im di, for d+ 1 ≥ i ≥ 2,

Ei,0∞ ' Hi
ét(X,O

×), for i ≥ d+ 2,

E0,j
∞ ' Ker(dj+1 : H0

ét(X,R
jν∗O

×)→ Hj+1
ét (X,O×)), for d ≥ j ≥ 1,

as wanted. �

Corollary 2.15. Let X be a smooth Stein space of dimension d over C. For d ≥ i ≥ 2, there is
an exact sequence:

(2.16) 0→ Coker(HTlogi−1)→ Hi
ét(X,O

×)
ν∗
i−−→Ker(HTlogi)→ 0,

where ν∗i is the pullback map Hi
ét(X,O

×)→ Hi
v(X,O

×).

Proof. Let d ≥ i ≥ 2. The second exact sequence from Proposition 2.13 shows that ν∗i factor-
izes through Hi

ét(X,O
×)/Im d×i and that its image is equal to Ker(HTlogi). Hence we get the

surjectivity on the right in (2.16).
Let us now compute the kernel of ν∗i . By Proposition 2.13, it is equal to the image of the map

d×i : Ωi−1(X)(−i+ 1)→ Hi
ét(X,O

×).

Using the second exact sequences from Proposition 2.13 but in degree i − 1, we obtain that the
kernel of d×i is equal to the image of HTlogi−1. This gives an isomorphism:

d×i : Coker(HTlogi−1)
∼−→ Im(d×i ),

as wanted. �
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3. Comparison of two boundary maps

To compute the image of the Hodge-Tate logarithm, we will relate it to the kernel of the
boundary morphism appearing in the fundamental diagram from [5, Th. 1.8], [7, Th. 5.14]. In
order to check the compatibility between the morphism HTlog and the map from [7], we use the
alternative definition of the latter given by Bosco in [3]. We start this section by recalling briefly
the construction of the two maps.

3.1. Hodge-Tate map revisited. We express here the Hodge-Tate map as a Poincaré Lemma
projection map.

3.1.1. Poincaré Lemma. We first state the Poincaré Lemma for the de Rham period sheaves B+
dR

and BdR from [20]. We start by recalling the definitions of the various period sheaves and some
of their properties. We work here on the pro-étale site of a locally noetherian adic space X over
Spa(Qp,Zp).

The Fontaine period sheaf Ainf is defined as the sheaf W (O[,+
proét). It comes with a morphism

θ : Ainf → O+. We write Binf := Ainf [
1
p ]. The morphism θ extends to θ : Binf → O+. The de

Rham period sheaf

B+
dR := lim

n
Binf/(Ker(θ)n

admits a filtration FiliB+
dR := Ker(θ)iB+

dR. Let t be a generator of Fil1B+
dR. We set BdR := B+

dR[t−1]

and equip it with the induced filtration. The morphism θ induces an isomorphism B+
dR/t

∼−→ O.
For 0 < u ≤ v, we define A[u,v] as the p-adic completion of the sheaf Ainf [

p
[α] ,

[β]
p ] for elements α

and β in OC[ such that v(α) = 1
v and v(β) = 1

u and

B := lim
0<u≤v

A[u,v].

We have the relative fundamental exact sequence of p-adic Hodge theory:

0→ Qp → B[ 1
t ]
ϕ=1 → BdR/B+

dR → 0(3.1)

0→ Qp(r)→ Bϕ=pr → B+
dR/t

rB+
dR → 0,

for all r ≥ 1. We note that the map Bϕ=p → B+
dR/t

rB+
dR

θ−→
∼

O can be identified, via the identifica-

tion of Bϕ=pr with the C-points of the universal cover of the multiplicative p-divisible group, with
the composition (see [18, Prop. 2.20, Rem. 2.21, Example 2.22 ]):

(3.2) lim
x 7→xp

(1 + mO) = U [
x7→x]

−−−−→ U
log−−→ O,

where the first map is the sharp map given by the projection on the first factor.
Similarly, for a smooth adic space X over K, we define2 OBinf := µ∗Oét ⊗2

W (k) Binf . We still
have a map θ : OBinf → Oproét. Then we set:

OB+
dR := lim

n
OBinf/Ker(θ)n, OFilrB+

dR := Ker(θ)rOB+
dR.

Finally, for a generator t of Fil1B+
dR, we take OB+

dR[t−1] and equip it with the filtration induced
from OB+

dR. Let OBdR be the completion of OB+
dR[t−1] with respect to this filtration. 3

Theorem 3.3 (Poincaré Lemma). [20, Cor. 6.13], [9, Cor. 2.4.2] Let X be a smooth rigid space
of dimension d over K. Then:

2Here the 2 refers to the solid tensor product.
3This definition of OBdR is due to [9, Def. 2.2.10, Rem. 2.2.11]. The Poincaré Lemma is still valid in this setting

and all the arguments of [20], [21] remain essentially unchanged.
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(1) There are exact sequences of pro-étale sheaves on X:

0→ B+
dR → OB+

dR
∇→ OB+

dR ⊗
2
µ∗O Ω1 ∇→ · · · ∇→ OB+

dR ⊗
2
µ∗O Ωd → 0,(3.4)

0→ FilrB+
dR → FilrOB+

dR
∇→ Filr−1OB+

dR ⊗
2
µ∗O Ω1 ∇→ · · · ∇→ Filr−dOB+

dR ⊗
2
µ∗O Ωd → 0

for all r ∈ Z, where Ωi := µ∗Ωiét for i ≥ 1 (recall that µ is the canonical projection4

µ : Xproét → Xét). We have analogues of the exact sequences in (3.4) for BdR and OBdR.
(2) For r ∈ Z, the quotient complex

0→ grrF BdR → grrF OBdR
∇→ grr−1

F OBdR ⊗2
µ∗O Ω1 ∇→ · · · ∇→ grr−dF OBdR ⊗2

µ∗O Ωd → 0

is exact and can be identified with the complex

0→ O(r)→ OC(r)
∇→ OC(r)⊗2

µ∗O Ω1(−1)
∇→ · · · ∇→ OC(r)⊗2

µ∗O Ωd(−d)→ 0,

where we set OC := gr0
F OBdR. We note that, by [20, Ch. 6], griF OBdR ' OC(i).

We denote by ε the map gr0
F BdR → gr0

F OBdR. Using that µ∗(coker ε)→ Ω1(−1) is an isomor-
phism, we get a long exact sequence:

0→ µ∗gr0
FBdR → µ∗gr0

FOBdR → Ω1(−1)→ R1µ∗gr0
FBdR → R1µ∗gr0

FOBdR.

We denote by PL−1 the connecting morphism:

PL−1 : Ω1(−1)→ R1µ∗(B+
dR/t).

It will follow from Lemma 3.13 below that PL−1 is an isomorphism and we write PL for its inverse.
The above construction can be made more explicit. Theorem 3.3 has the following useful

corollary (see [18, Rem. 3.18] or [3, (6.4), (6.5)] for a more general statement):

Proposition 3.5. Let X be a smooth rigid space of dimension d over K and let r ∈ Z. Let
µ : XC,proét → XC,ét be the canonical projection. Then we have the following quasi-isomorphisms
(the differentials are BdR-linear):

Rµ∗(BdR)
∼←
(
O⊗2

KBdR
d→ Ω1⊗2

KBdR
d→ · · · d→ Ωd⊗2

KBdR

)
Rµ∗(FilrBdR)

∼←
(
O⊗2

KFilrBdR
d→ Ω1⊗2

KFilr−1BdR
d→ · · · d→ Ωd⊗2

KFilr−dBdR

)
.

These are topological quasi-isomorphisms, i.e., more specifically, quasi-isomorphisms in the ∞-
derived category of sheaves with values in solid K-modules. We will denote this category by
D(Xét,K2). In particular, it follows from this proposition, that the pro-étale cohomologies of
BdR/B+

dR and B+
dR/t are computed by the following complexes on XC,ét:

Rµ∗(BdR/B+
dR)

∼←
(
O⊗2

K(BdR/B
+
dR)

d→ Ω1⊗2
K(BdR/t

−1B+
dR)

d→ · · · d→ Ωd⊗2
K(BdR/t

−dB+
dR)
)
,

(3.6)

Rµ∗(B+
dR/t)

∼←
(
O⊗2

KC
0−→ Ω1⊗2

KC(−1)
0−→ · · · 0−→ Ωd⊗2

KC(−d)
)
.

The maps

(3.7) PL : Rµ∗(B+
dR/t)→ Ωi⊗2

KC(−i)[−i], PL : Hi
proét(XC ,B+

dR/t)→ Ωi(XC)(−i)

are given by the canonical projections.

4The notation here is slightly different from the one of [20] since the pro-étale sheaf that we denote by Oproét is
the completion of µ∗Oét.
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3.1.2. Stein spaces. We now apply the above computations to the case when X is a Stein space
defined over K. The quasi-isomorphism (3.6) yields the quasi-isomorphism

RΓproét(XC ,B+
dR/t) '

(
O(X)⊗2

KC
0−→ Ω1(X)⊗2

KC(−1)
0−→ · · · 0−→ Ωd(X)⊗2

KC(−d)
)
.(3.8)

The case of BdR/B+
dR is a bit subtler because of the usual problems with topological tensor

products and limits, respectively colimits. Let {Xn}, n ∈ N, be a strictly increasing dagger
affinoid covering of X (i.e., we have Xn b Xn+1: the adic closure of Xn is contained in Xn+1).
Then a dagger analogue of (3.6) yields a quasi-isomorphism

RΓproét(Xn,C ,BdR/B+
dR) '

(
O(Xn)⊗2

K(BdR/B
+
dR)→ Ω1(Xn)⊗2

K(BdR/t
−1B+

dR)→ · · · → Ωd(Xn)⊗2
K(BdR/t

−dB+
dR)

)
.

Passing to the limit over n we obtain a quasi-ismorphism

RΓproét(XC ,BdR/B+
dR) ' R lim

n

(
O(Xn)⊗2

K(BdR/B
+
dR)→ Ω1(Xn)⊗2

K(BdR/t
−1B+

dR)→ · · · → Ωd(Xn)⊗2
K(BdR/t

−dB+
dR)

)
.

We used here the fact that RΓproét(XC ,BdR/B+
dR)

∼→ R limn RΓproét(Xn,C ,BdR/B+
dR).

For i, n ≥ 0, we have

Hi
proét(Xn,C ,BdR/B+

dR) = Ker di/Im di−1,

Ωi−1(Xn)⊗2
K(BdR/t

−i+1B+
dR)

di−1−−→Ωi(Xn)⊗2
K(BdR/t

−iB+
dR)

di−−→Ωi+1(Xn)⊗2
K(BdR/t

−i−1B+
dR).

This yields an exact sequence and an isomorphism

0→ Ωi(Xn)d=0 ⊗2
K (BdR/t

−iB+
dR)→ Ker di → (Ωi(Xn,C)/Ker d)(−i− 1)→ 0,

Im di−1 ' Im d⊗2
K (BdR/t

−iB+
dR).

Putting them together we obtain the exact sequence
(3.9)

0→ Hi
dR(Xn)⊗2

K (BdR/t
−iB+

dR)→ Hi
proét(Xn,C ,BdR/B+

dR)→ (Ωi(Xn,C)/Ker d)(−i− 1)→ 0

We note here that Hi
dR(Xn) is of finite rank over K. Passing to the limit over n we get the exact

sequence

0→ lim
n

(Hi
dR(Xn)⊗2

K(BdR/t
−iB+

dR))→ lim
n
Hi

proét(Xn,C ,BdR/B+
dR)→ (Ωi(XC)/Ker d)(−i−1)→ 0.

The exactness on the right follows from the fact that R1 limn(Hi
dR(Xn) ⊗2

K (BdR/t
−iB+

dR)) = 0

because the pro-system {Hi
dR(Xn) ⊗2

K (BdR/t
−iB+

dR)}n∈N is Mittag-Leffler. We note that, since
R1 limn(Ωi(Xn,C)/Ker d) = 0, we also have

Hi
proét(XC ,BdR/B+

dR)
∼→ Hi(R lim

n
RΓproét(Xn,C ,BdR/B+

dR)) ' lim
n
Hi

proét(Xn,C ,BdR/B+
dR).

Hence we have obtained an exact sequence
(3.10)
0→ lim

n
(Hi

dR(Xn)⊗2
K (BdR/t

−iB+
dR))→ Hi

proét(XC ,BdR/B+
dR)

π−→ (Ωi(XC)/Ker d)(−i− 1)→ 0

Remark 3.11. If we do not assume that X is the base change of a variety defined over K, we still
get the maps PL and π from (3.7) and (3.10):

PL : Hi
proét(X,B

+
dR/t)→ Ωi(X)(−i),

π : Hi
proét(X,BdR/B+

dR)→ (Ωi(X)/Ker d)(−i− 1).

Indeed, for a covering {Xn}n as above, since the Xn’s are dagger affinoids, they are defined over
finite extensions Kn of K and we still have the exact sequence (3.9) (replacing K by the Kn for
each n ∈ N). By taking limits over n, we obtain the map π:

π : Hi
proét(X,BdR/B+

dR)→ lim
n
Hi

proét(Xn,BdR/B+
dR)→ lim

n
(Ωi(Xn)/Ker d)(−i− 1)

∼← (Ωi(X)/Ker d)(−i− 1).
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Similarly for the map PL. We have a dagger analog of (3.8):

RΓproét(Xn,B+
dR/t) '

(
O(Xn,Kn

)⊗2
Kn
C

0−→ Ω1(Xn,Kn
)⊗2

Kn
C(−1)

0−→ · · · 0−→ Ωd(Xn,Kn
)⊗2

Kn
C(−d)

)
.

This yields the maps PLn : Hi
proét(Xn,B+

dR/t)→ Ωi(Xn)(−i). Passing to the limit over n, we get
the map

PL : Hi
proét(X,B

+
dR/t)→ lim

n
Hi

proét(Xn,B+
dR/t)

PLn−−→ lim
n

Ωi(Xn)(−i) ∼← Ωi(X)(−i).

3.1.3. Hodge-Tate morphism revisited. Let X be a smooth rigid analytic space over K. A conse-
quence of Theorem 3.3 is the following short exact sequence of pro-étale sheaves (called Faltings
extension) on Xproét:

0→ O(1)→ gr1
FOB+

dR → O ⊗2
µ∗O Ω1 → 0,

which yields the boundary map

(3.12) O ⊗2
µ∗O Ω1 → O(1)[1].

Then the Hodge-Tate morphism HT from Proposition 2.6 in degree 1 is given by the inverse of the
projection of the map (3.12) from the pro-étale to the étale site of X

∂B+ : Ω1 → R1µ∗O(1);

in higher degrees it is the inverse of its wedge product (see the proof of [21, Lem. 3.24]).
We have the following result:

Lemma 3.13. (1) Let X be a smooth rigid analytic space over K. Let i ≥ 1. There is a
commutative diagram

Hi
proét(X,O)

HT

∼
// Ωi(X)(−i)

PL−1
ww

Hi
proét(X,B

+
dR/t)

θ o

OO
.

In particular, PL−1 is an isomorphism.
(2) Let X be a smooth Stein space over C. Let i ≥ 1. There is a commutative diagram

Hi
proét(X,O)

HT

∼
// Ωi(X)(−i)

Hi
proét(X,B

+
dR/t).

θ o

OO

PL

77

In particular, PL is an isomorphism.

Proof. We start with the first claim. Let i = 1. Consider the canonical map of exact sequences

0 // O(1) // gr1
FOB+

dR
//

��

O ⊗2
µ∗O Ω1 //

��

0

0 // O(1) // gr1
FOBdR

// OC⊗2
µ∗O Ω1 // 0,

where the first sequence is obtained from the B+
dR-Poincaré Lemma and the second one from its

BdR-version. The latter sequence is exact on the right because the map gr0
F OBdR → gr−1

F OBdR is
zero since∇ : F 0OBdR → F 0OBdR. (We think of the second sequence as a BdR-Faltings extension).
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By projecting the above diagram to the étale site we obtain a map of exact sequences

0 // µ∗O(1) // µ∗gr1
FOB+

dR
//

o
��

Ω1
∂B+ // R1µ∗O(1)

0 // µ∗O(1) // µ∗gr1
FOBdR

// Ω1 ∂B // R1µ∗O(1).

Since, by [20, Prop. 6.16], Rµ∗griFOBdR ' O(i), all the vertical maps are isomorphisms.
Consider now the following map of exact sequences (obtained from the BdR-Poincaré Lemma)

0 // O(1) // gr1
FOBdR

// OC⊗2
µ∗O Ω1 // 0

0 // O
ε //

t

OO

gr0
FOBdR

//

t

OO

OC⊗2
µ∗O Ω1(−1).

t

OO

By projecting it to the étale site we obtain a map of exact sequences

0 // µ∗O(1) // µ∗gr1
FOBdR

// Ω1 ∂B // R1µ∗O(1)

0 // µ∗O
∼ //

t

OO

µ∗gr0
FOBdR

0 //

t

OO

Ω1(−1)

t

OO

PL−1

// R1µ∗O.

t

OO

We used here that the canonical map µ∗ coker ε→Ω1(−1) is an isomorphism. This proves the first
claim of our lemma for i = 1. The case of i ≥ 1 is obtained by taking wedge products.

For the second claim of the lemma, choose a Stein covering of X by Stein spaces {Xn} such that
each Xn is defined over a finite extension Kn of K (to do that you may start with a Stein affinoid
covering and then take the naive interiors of these affinoids containing the previous affinoids). The
wanted diagram is obtained by taking the limit over n of the diagram in claim (1) (note that
R1 limn is trivial for all the terms of the diagram). �

3.2. The Bloch-Kato exponential. We restrict our attention now to smooth Stein spaces. We
will introduce here the Bloch-Kato exponential and show how it can be obtained, via the filtered
BdR-Poincaré Lemma, from a boundary map induced by a fundamental exact sequence.

3.2.1. The definition of the map Exp. We first recall how the geometric p-adic pro-étale cohomology
of Stein spaces can be computed. In [5, Th. 1.8], [8, Th. 5.14], Colmez-Dospinescu-Nizioł proved
the following theorem:

Theorem 3.14. Let X be a Stein smooth rigid analytic space over C. For i ≥ 0, there is a map
of exact sequences in D(Qp,2):

(3.15) 0 // Ωi−1(X)/Ker d
Exp// Hi

proét(X,Qp(i)) //

dLog
��

(Hi
HK(X)⊗2

F̆
B̂+

st)
N=0,ϕ=pi

ιHK⊗θ��

// 0

0 // Ωi−1(X)/Ker d
d // Ωi(X)d=0 // Hi

dR(X) // 0.

If X is defined over K, this map is Galois equivariant.

Remark 3.16. The maps in diagram (3.15) were constructed using a comparison of p-adic pro-étale
cohomology with syntomic cohomology of Bloch-Kato type. We call the map Exp the “Bloch-Kato
exponential”; this is supposed to suggest the Bloch-Kato exponential map from [2].

The cohomology Hr
HK(X) appearing on the right of the first exact sequence is the Hyodo-

Kato cohomology as defined by Colmez-Nizioł in [7, Sec. 4] (it is built from the logarithmic crys-
talline cohomology RΓcr(XOL,0/W (kL)0) for L/K a finite extension with residue field kL, where
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XOL
→ Spf(OL) is a semistable formal scheme andW (kL)0 denotes the formal scheme Spf(W (kL))

equipped with the log-structure induced by N → W (kL), 1 7→ 0). It is a (ϕ,N,GK)-module over
F̆ equipped with a Hyodo-Kato isomorphism ιHK : Hi

HK(X)⊗2

F̆
C
∼→ Hi

dR(X).
An alternative construction of diagram (3.15) was given by Bosco5 in [4, Th.7.7]. His construc-

tion is closely related to the subject of this paper and we will now briefly describe how to get the
top row in (3.15)6. The starting point is the exact sequence

0→ Qp → Be → BdR/B+
dR → 0

of pro-étale sheaves on X, where we set Be := B[1/t]. It yields an exact sequence

Hi−1
proét(X,Be)

αi−1−−→Hi−1
proét(X,BdR/B+

dR)→ Hi
proét(X,Qp)→ Hi

proét(X,Be)
αi−−→Hi

proét(X,BdR/B+
dR)

Because of limit considerations it is better to work with the dagger analog of the above exact
sequence. Let {Xn}, n ∈ N, be a strictly increasing dagger affinoid covering of X. Each affinoid
Xn is the base change to C of an affinoid Xn,Kn defined over a finite extension Kn of K.

For n ∈ N, we have an exact sequence

Hi−1
proét(Xn,Be)

αi−1−−→Hi−1
proét(Xn,BdR/B+

dR)→ Hi
proét(Xn,Qp)→ Hi

proét(Xn,Be)
αi−−→Hi

proét(Xn,BdR/B+
dR).

Since, by [4, Th. 4.1] and (3.9), we have an isomorphism and an exact sequence

Hi
proét(Xn,C ,Be) ' (Hi

HK(Xn,C)⊗2

F̆
B̂+

st[
1
t ])

N=0,ϕ=1,

0→ Hi
dR(Xn,Kn)⊗2

Kn
(BdR/t

−iB+
dR)→ Hi

proét(Xn,C ,BdR/B+
dR)→ (Ωi(Xn,C)/Ker d)(−i− 1)→ 0,

it suffices to show that the map αi−1 surjects onto Hi
dR(Xn,Kn

)⊗2
Kn

(BdR/t
−iB+

dR) and

Kerαi ' (Hi
HK(Xn,C)⊗2

F̆
B̂+

st)
N=0,ϕ=pi .

But this follows from the analysis of the slopes of Frobenius on the Hyodo-Kato cohomology.
For all n ≥ 0, we have constructed compatible exact sequences

(3.17)

0 // Ωi−1(Xn,C)/Ker d
Exp// Hi

proét(Xn,C ,Qp(i)) // (Hi
HK(Xn,C)⊗2

F̆
B̂+

st)
N=0,ϕ=pi // 0.

We obtain the top row in (3.15) by passing to the limit over n and using the isomorphism
Hi

proét(X,Qp(i))
∼→ limnH

i
proét(Xn,C ,Qp(i)).

3.2.2. Comparison of two boundary maps. The purpose of this section is to prove the following
comparison result:

Proposition 3.18. Let X be a rigid analytic space, which is Stein and smooth over C. Let i ≥ 1.
(1) There is a commutative diagram:

Ωi(X)(−i)
Exp(−i) // Hi+1

proét(X,Qp(1))

Hi
proét(X,B

+
dR/t),

PL o

OO

∂BdR

66

where ∂BdR is the edge map coming from the exact sequence of pro-étale sheaves (3.1) and
Exp(−i) is the (−i)-Tate twist of the map from (3.15).

(2) We have the exact sequence

0→ Ωi(X)d=0(−i)→ Hi
proét(X,B

+
dR/t)

∂BdR−−→Hi+1
proét(X,Qp(1)).

5Bosco’s construction is given for Stein spaces that are base change to C of varieties defined over K but as we
will see here, the result is still valid when it is not the case.

6We did not check that the map Exp constructed in [4] is the same as the one constructed in [8] but we will not
need it.
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Proof. The second claim follows immediately from the first one and diagram (3.15). For the first
claim, note that the exact sequences (3.1) fit into a commutative diagram

0 // Qp(1) // Be(1) // (BdR/B+
dR)(1) // 0

0 // Qp(1) //

o Id

OO

Bϕ=p //

t−1

OO

B+
dR/t

//

t−1

OO

0.

This yields that the outer square in the following diagram commutes.

Hi
proét(X, (BdR/B+

dR)(1))
∂ //

π

**

Hi+1
proét(X,Qp(1))

(Ωi(X)/Ker d)(−i)
( �

Exp(−i)
55

Ωi(X)(−i)

can

OOOO Exp(−i)

;;

Hi
proét(X,B

+
dR/t)

PL

∼

44

∂BdR //

t−1

OO

Hi+1
proét(X,Qp(1)).

oId

OO

The map π is the one from (3.10) and Remark 3.11. The top triangle commutes by the construction
of the map Exp described in Section 3.2.1. Using the computations in Section 3.1.2, it is easy to
check that the left trapezoid commutes. This gives us claim (1) of the proposition. �

4. The image of HTlog

The goal of this section is to prove the following result:

Theorem 4.1. Let X be a smooth Stein rigid space over C. For i ≥ 1, the image of the restriction
of the Hodge-Tate logarithm to the group of principal units

HTlogU : Hi
v(X,U)→ Ωi(X)(−i)

fits into a short exact sequence of solid Zp-modules

0→ Ωi(X)d=0(−i)→ Im(HTlogU )
Exp−−→ I i(X)→ 0

where I i(X) ⊂ Hi+1
proét(X,Qp(1)) is the intersection

Im(Exp) ∩ Im(ιi+1) = Im(Exp) ∩Ker(πi+1),

with

ιj : Hj
proét(X,Zp(1))→ Hj

proét(X,Qp(1)), πj : Hj
proét(X,Qp(1))→ Hj

proét(X,Qp/Zp(1)).

Remark 4.2. Alternatively, using diagram (3.15), the group I i(X) can be seen as exact forms
in Ωi+1(X) coming from Hi+1

proét(X,Zp(1)).

In particular, we have the following immediate corollary:

Corollary 4.3. Let X be a smooth Stein space over C. Then,
(1) The image by HTlog of Picv(X) contains all the closed differentials. More generally, the

image by HTlog of Hi
v(X,O

×), i ≥ 1, contains all the closed differentials.
(2) If the map H1

v (X,U) → Picv(X) is surjective then there is an exact sequence of solid
Zp-modules

0→ Ω1(X)d=0(−1)→ Im(HTlog)→ I 1(X)→ 0.
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Concerning the first claim of the corollary, note that Heuer already proved in [12, Cor. 4.4] that
for any smooth rigid space, the image by HTlog of Picv(X) contains all the df ∈ Ω1(X), for f in
O(X).

Remark 4.4. (1) There is no integral cohomology in degree 2 for the affine space. This is
why the extra term I 1(X) does not appear in Heuer’s computation. In fact this holds in
any degree and we have

Ωi(AnC)d=0(−i) ∼→ Im(HTlogU ).

(2) As for Stein curves, we have that the rational cohomology Hi
proét(X,Qp), i ≥ 2, is zero,

hence I 1(X) is also trivial in that case. Moreover, Ω1(X)d=0 ∼→ Ωi(X).
(3) Let i ≥ 1. Since we have an exact sequence:

0→ Ωi(X)/Ker d
Exp−−→ Hi+1

proét(X,Qp(i+ 1))→ (Hi+1
HK (X)⊗2

F̆
B̂+

st)
N=0,ϕ=pi+1

→ 0

we see that the intersection I i(X) is zero when the map from Hi+1
proét(X,Zp(i + 1))/T ,

where T is the maximal torsion subgroup, to the Hyodo-Kato term above is injective. This
will be the case when X is a torus or, more generally, the analytification of an algebraic
variety, or the Drinfeld upper half space (see below).

In fact, in general, we have a commutative diagram

0 // Ĩ i(X)(i) //

��

Hi+1
ét (X,Zp(i+ 1))/T //

can

��

(Hi+1
HK (X)⊗2

F̆
B̂+

st)
N=0,ϕ=pi+1

0 // Ωi(X)/Ker d
Exp //// Hi+1

proét(X,Qp(i+ 1)) // (Hi+1
HK (X)⊗2

F̆
B̂+

st)
N=0,ϕ=pi+1 // 0,

where the left square is cartesian. The group Ĩ i(X) surjects onto I i(X). We like to
think of the Hyodo-Kato term as carrying `-adic information, for ` 6= p. Then Ĩ i(X) can
be seen as a genuinely p-adic phenomena.

(4) The groups I j(X) need not be zero in general. This is the case for open unit discs Dd
C of

dimension d > 1 over C. See Section 5.1.7 below.

Proof of Theorem 4.1. Recall from Section 2, that we can pass from the v-topology to the pro-étale
one without changing the groups Hi

?(X,U) and Hi
?(X,O×). We then work on the pro-étale site.

As in [12, Sec. 6.2], we start from the logarithmic exact sequence (point (1) of Lemma 2.4) on the
pro-étale site:

0→ Qp/Zp(1)→ U
log−−→ O → 0.

It induces a commutative diagram:

(4.5) Hi
proét(X,U)

log //

HTlogU ''

Hi
proét(X,O)

∂log ////

HTo
��

Hi+1
proét(X,Qp/Zp(1))

Ωi(X)(−i),
∂log◦HT−1

66

where the first row is exact. We have used here that X is Stein (the isomorphism HT is the one
from Remark 2.12). We deduce from the diagram that the image of HTlogU is equal to the kernel
of ∂log ◦HT−1. We prove in Lemma 4.7 below that the following square commutes:

(4.6) Ωi(X)(−i)

����

∂log◦HT−1

// Hi+1
proét(X,Qp/Zq(1))

Ωi(X)/Ker d(−i) �
� Exp // Hi+1

proét(X,Qp(1)).

OO
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It immediately follows that we have an inclusion Ωi(X)d=0(−i) ⊂ Ker(∂log◦HT−1). Now, since the
kernel of the right vertical map is given by the image of ιi+1 : Hi+1

proét(X,Zp(1))→ Hi+1
proét(X,Qp(1)),

we get an exact sequence:

0→ Ωi(X)d=0(−i)→ Ker(∂log ◦HT−1)
Exp−−→ Im(Exp) ∩ Im(ιi+1)→ 0

and this concludes the proof of Theorem 4.1. �

Lemma 4.7. The diagram (4.6) is commutative.

Proof. It suffices to show that we have the commutative diagram

Ωi(X)(−i) Hi
proét(X,O)

HT

∼
oo ∂log // Hi+1

proét(X,Qp/Zq(1))

Ωi(X)(−i)

����

Hi
proét(X,B

+
dR/t)

PL

∼
oo

θ o

OO

∂BdR // Hi+1
proét(X,Qp(1))

πi+1

OO

Ωi(X)/Ker d(−i)
Exp

22

as the outer trapecoid is exactly the diagram in question. The commutativity of the upper left
square follows from the definition of the morphism HT (it is defined using the Poincaré Lemma,
see Remark 3.1.3). The right square comes from the map of short exact sequences:

0 // Qp/Zp(1) // U
log // O // 0

0 // Qp(1) //

OO

Bϕ=p //

OO

B+
dR/tB

+
dR

//

∼ θ

OO

0,

where the map in the middle is the sharp map appearing in (3.2) (by [18, Example 2.22], it
makes the right square commutative). Hence, it is commutative. The triangle commutes by
Proposition 3.18. Therefore the outer trapezoid is commutative as well, which is what we wanted.

�

5. Examples

Let us look now at some examples of computations of Hi
τ (X,Gm), for i = 1, 2, for certain

smooth Stein space X over C.

5.1. Picard group. We start with the Picard group.

5.1.1. Curves. Smooth Stein rigid analytic varieties X of dimension 1 were already treated in [12,
Sec. 4.1]: as H2

ét(X,O
×) vanishes in this case, the exact sequence (2.8) becomes

0→ Pican(X)→ Picv(X)
HTlog−−→Ω1(X)→ 0.

Moreover, if such a curve X is defined over K, we have H2
proét(X,Qp) = 0 (because H2

dR(X) = 0)
hence I 1(X) = 0 and, by Theorem 4.1, Picv(X) surjects onto Ω1(X), as desired.

5.1.2. Affine space. The case of the affine space was treated in two different ways in [12, Sec. 6].
Our approach here is similar to the one presented in [12, Sec. 6.2]. Let AdC be the rigid analytic
affine space of dimension d over C. For i ≥ 1, since Hi

dR(AdC) = 0 and, hence, Hi
HK(AdC) = 0, by

diagram (3.15), we have an isomorphism

Ωi(AdC)/Ker d
∼→ Hi+1

proét(A
d
C ,Qp(i+ 1)).



16 VERONIKA ERTL, SALLY GILLES, AND WIESŁAWA NIZIOŁ

Since Hi+1
proét(AdC ,Zp(i + 1)) = 0 (by comparison with the algebraic case), we have I i(AdC) = 0.

Thus, by Theorem 4.1, we have an isomorphism

Im(HTlogU : Hi
v(AdC , U)→ Ωi(AdC)(−i)) ∼← Ωi(AdC)d=0(−i).

Moreover, by [12, Lem. 6.6], the map from H1
v (AdC , U) to the v-Picard group is surjective. Thus

we obtain an exact sequence

0→ Pican(AdC)→ Picv(AdC)→ Ω1(AdC)d=0(−1)→ 0.

Since the analytic Picard group of the affine space is trivial7, this implies that the Hodge-Tate
logarithm is an isomorphism

HTlog : Picv(AdC)
∼→ Ω1(AdC)d=0(−1).

5.1.3. Torus. Consider the rigid analytic torus Gdm,C of dimension d over C. This case is similar
to the case of affine space because the analytic Picard group is trivial (see [14, Th.A]) but also
different because the de Rham cohomology is non-trivial (though of finite rank).

For i ≥ 0, by (3.15), we have the exact sequence:

(5.1) 0→ Ωi(Gdm,C)/Ker d→ Hi+1
proét(G

d
m,C ,Qp(i+ 1))→ ∧i+1Qd

p → 0.

Since we haveHi+1
ét (Gdm,C ,Zp(i+1)) ' ∧i+1Zdp (compare with the étale cohomology of the algebraic

torus), we see that the map from the integral cohomology to the Hyodo-Kato term is injective. We
used here that the projection from pro-étale cohomology to the Hyodo-Kato term is compatible
with products and symbol maps: this is because the comparison theorem between the pro-étale
cohomology and syntomic cohomology and the projection from syntomic cohomology to the Hyodo-
Kato term both satisfy these compatibilities. We obtain that the intersection between the elements
coming from Ω1(Gdm,C)/Ker d and the ones coming from the integral pro-étale cohomology is trivial.
Thus, by Theorem 4.1, we have an isomorphism

(5.2) Im(HTlogU : Hi
v(Gdm,C , U)→ Ωi(Gdm,C)(−i)) ∼← Ωi(Gdm,C)d=0(−i).

Moreover, we have:

Lemma 5.3. The map from H1
v (Gdm,C , U) to H1

v (Gdm,C ,O×) is surjective.

Proof. We will show that H1
v (Gdm,C ,O

×
) is zero. Let {Xn}n∈N be the Stein covering of Gdm,C from

[14, Proof of Th. 7.1]. On each Xn the sheaf O×an is acyclic. We have the exact sequence

(5.4) 0→ R1 lim
n
H0
v (Xn,O

×
)→ H1

v (Gdm,C ,O
×

)→ lim
n
H1
v (Xn,O

×
)→ 0

But, by [13, Lem. 2.14], [14, Proof of Th. 7.1] we have

(5.5) H0
v (Xn,O

×
) = H0

an(Xn,O
×

)[1/p] = Mn[1/p],

where Mn is an abelian group of finite type. Moreover, the maps Mn+1 →Mn are surjective, and
they remain so after inverting p. We get R1 limnH

0
v (Xn,O

×
) = 0.

We also claim that H1
v (Xn,O

×
) = 0, for all n. Indeed, by the point (2) of Proposition 2.2, we

see that it suffices to check this for the étale topology. Using the exponential sequence (point (1)
of Lemma (2.4)), it is enough to show that

H1
ét(Xn,O

×[
1

p
]) = 0 and H2

ét(Xn,O) = 0.

The second equality follows from the fact that Xn is an affinoid. For the first one, we use
that Picét(Xn) = Pican(Xn) = 0 and since Xn is quasi-compact, we have H1

ét(Xn,O×[ 1
p ]) =

H1
ét(Xn,O×)[ 1

p ] = 0. Our claim follows.

Hence limnH
1
v (Xn,O

×
) = 0, and, by (5.4), H1

v (Gdm,C ,O
×

) = 0, as wanted. �

7In fact, by [11, Ch.V.3, Prop. 2], every analytic vector bundle on Ad
C is trivial.
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Thus we obtain an exact sequence

0→ Pican(Gdm,C)→ Picv(Gdm,C)→ Ω1(Gdm,C)d=0(−1)→ 0.

Since the analytic Picard group of the torus is trivial, this means that the Hodge-Tate logarithm
is an isomorphism

(5.6) HTlog : Picv(Gdm,C)
∼→ Ω1(Gdm,C)d=0(−1).

Remark 5.7. Let d, n ≥ 0. Combining (5.6) and [12, Th. 6.1], we obtain an isomorphism

(5.8) HTlog : Picv(Gdm,C × AnC)
∼→ Ω1(Gdm,C × AnC)d=0(−1).

This isomorphism can be also obtained arguing as above, in the case of the torus. More precisely,
since de Rham cohomology satisfies a Künneth formula, replacing Gdm,C with Gdm,C × AnC yields
an analogue of the exact sequence (5.1) and then also an analogue of the isomorphism (5.2). The
rest of the argument goes through yielding (5.8).

5.1.4. Analytification of algebraic varieties. The examples of the affine space and the torus gener-
alize. Let X be the analytification of an affine smooth algebraic variety Xalg over C. Then X is
Stein. In this case both the algebraic and the analytic de Rham cohomologies are of finite rank
(they are functorially isomorphic but not as filtered objects). Let i ≥ 1. We have a commutative
diagram (see Remark 4.4)

0 // Hi+1
ét (Xalg,Zp(i+ 1))/T //

cano
��

(Hi+1
HK (Xalg)⊗2

F̆
B̂+

st)
N=0,ϕ=pi+1

cano
��

0 // Ĩ i(X)(i) //

��

Hi+1
ét (X,Zp(i+ 1))/T //

can

��

(Hi+1
HK (X)⊗2

F̆
B̂+

st)
N=0,ϕ=pi+1

0 // Ωi(X)/Ker d
Exp // // Hi+1

proét(X,Qp(i+ 1)) // (Hi+1
HK (X)⊗2

F̆
B̂+

st)
N=0,ϕ=pi+1 // 0.

The rows are exact. For the top row this follows from the algebraic p-adic comparison theorems
[1]. The top square commutes by the compatibility of the algebraic and analytic p-adic comparison
morphisms. This fact and the proof of the isomorphism between the algebraic and the analytic
Hyodo-Kato cohomologies can be found in [19]. It follows that Ĩ i(X) = 0 and hence I i(X) = 0.
We have proved:

Corollary 5.9. Let X be the analytification of an affine smooth algebraic variety over C. Let
i ≥ 1. Then I i(X) = 0 and we have an isomorphism

Im(HTlogU : Hi
v(X,U)→ Ωi(X)(−i)) ∼← Ωi(X)d=0(−i).

5.1.5. Almost proper varieties. Even more generally, let X be a smooth rigid analytic variety over
C that is of the form X = Y \ Z, where Y is a proper and smooth rigid analytic variety over C
and Z is a closed rigid analytic subvariety of Y . Assume that X is Stein. Let i ≥ 1. We have a
commutative diagram

0 // Ĩ i(X)(i) //

��

Hi+1
ét (X,Zp(i+ 1))/T

α //

can

��

(Hi+1
HK (X)⊗2

F̆
B̂+

st)
N=0,ϕ=pi+1

0 // Ωi(X)/Ker d
Exp // // Hi+1

proét(X,Qp(i+ 1)) // (Hi+1
HK (X)⊗2

F̆
B̂+

st)
N=0,ϕ=pi+1 // 0.

The rows are exact. The étale cohomology group Hi+1
ét (X,Zp(i + 1))/T is of finite type, by [16,

Th. 1.3], and the map α is injective since we have the standard (almost proper) p-adic comparison
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theorem [19]. It follows that Ĩ i(X) = 0 and hence I i(X) = 0. We have proved an analog of
Corollary 5.9 for X.

5.1.6. Drinfeld space. In this example, the analytic Picard group is also trivial (see [14, Th.A])
but the de Rham cohomology is not of finite rank anymore. For d an integer, the Drinfeld space
over K of dimension d is defined by

HdK := PdK \
⋃

H∈H

H

where H := P((Kd+1)×) denotes the set of the K-rational hyperplanes in the rigid-analytic
projective space PdK .

For Λ a topological ring, we denote by Spr(Λ) the associated generalized Steinberg representation
and by Spr(Λ)∗ its dual. Recall that we have the following computation:

Proposition 5.10. [5, Th. 1.3][6, Th. 1.1] Let i ≥ 0. Then:

(1) There is an exact sequence:

0→ Ωi−1(HdC)/Ker d→ Hi
proét(HdC ,Qp(i))→ Spi(Qp)

∗ → 0.

(2) There are isomorphisms:

Hi
ét(HdC ,Zp(i)) ' Spi(Zp)

∗ and Hi
ét(HdC ,Qp(i)) ' Spcont

i (Qp)
∗.

(3) The above morphisms are compatible, i.e. there is a commutative diagram

Hi
ét(HdC ,Zp(i))⊗Zp Qp

∼ //

∼

��

Hi
ét(HdC ,Qp(i))

∼

��

// Hi
proét(HdC ,Qp(i))

����
Spi(Zp)

∗ ⊗Zp Qp
∼ // Spcont

i (Qp)
∗ � � // Spi(Qp)

∗.

As in the case of torus, we see that the map from Hi
proét(HdC ,Zp(i)) to the Hyodo-Kato term is

injective8, and we deduce that the intersection I i(HdC) is zero. Moreover, we have:

Lemma 5.11. The map from H1
v (HdC , U) to H1

v (HdC ,O×) is surjective.

Proof. Analogous to the proof of Lemma 5.3. �

Using Lemma 5.11, we get an exact sequence:

0→ Pican(HdC)→ Picv(HdC)→ Ω1(HdC)d=0(−1)→ 0.

Since the analytic Picard group of the Drinfeld space is trivial, finally, we obtain an isomorphism

(5.12) HTlog : Picv(HdC)
∼→ Ω1(HdC)d=0(−1).

5.1.7. Open disc. Let now d > 1. Consider Dd
C , the the open unit disc Dd of dimension d over

C. We will prove that the intersection I 1(Dd) is nonzero, which shows that the image of the
Hodge-Tate logarithm need not be reduced to the closed differentials in general.

Write Dd = D1×CD2, where D1, D2 are open unit discs of dimension 1 and d−1, respectively.
Choose functions fi ∈ O∗(Di,C). We have d log fi ∈ Ω1(Di), ω := d log f1 ∧ d log f2 ∈ Ω2(D), and
clearly dω = 0, i.e., ω ∈ Ω2(D)d=0. We note that, since de Rham cohomology of D is trivial in
positive degrees, we have the isomorphism

d : Ω1(Dd)/Ker d
∼→ Ω2(Dd)d=0.

8The same argument concerning compatibilities applies.
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and, from diagram 3.15, the commutative diagram

Ω1(Dd)/Ker d ∼
Exp // H2

proét(D
d,Qp(2))

dLogo
��

Ω1(Dd)/Ker d ∼
d // Ω2(Dd)d=0.

Let now δ(f1), δ(f2) be the images by the Kummer maps δ : O∗(Di)→ H1
ét(Di,Zp(1)) of f1, f2.

Then δ(f1) ∪ δ(f2) ∈ H2
ét(D,Zp(2)). (Here we abuse the notation slightly.) We claim that the

image of δ(f1) ∪ δ(f2) in Ω2(Dd)d=0 is equal to ω. Indeed, we compute

dLog(δ(f1) ∪ δ(f2)) = dLog(δ(f1)) ∪ dLog(δ(f2)) = d log f1 ∪ d log f2 = ω.(5.13)

The first equality follows from the fact that the map dLog commutes with cup products: it is
defined using comparison with syntomic cohomology and the composition

H2
proét(D

d,Qp(2))→ H2(F 2RΓdR(Dd/B+
dR))

θ→ Ω2(Dd)d=0;

both of which commute with cup products. The second equality in (5.13) is the compatibility of
the étale and de Rham symbol maps: the symbol maps are induced by the first Chern class maps
and the passage from étale cohomology to syntomic one as well as the projection from the latter
to the filtered de Rham cohomology are both compatible with the Chern class maps.

Now, it suffices to make sure that ω 6= 0. But, for that it is enough to choose nonconstant
functions f1, f2. An analogous argument will show that I i(Dd) is nonzero for all d− 1 ≥ i ≥ 1.

Remark 5.14. This example is a curious one: de Rham cohomology is trivial in positive degrees
but the analytic Picard group depends on the ground field (it will be non-trivial in our case). More
precisely, recall that we have the following result (see [23, Prop. 3.5]):

Proposition 5.15. ([11, Ch.V, Prop. 2]) Let L be a complete, non-archimedean, non-trivially
valued field. Let r ∈ (|L| ∪ {∞})d and let Xr be an open polydisc of polyradius r:

Xr =
⋃

|ηi|=si<ri

Sp(L < η−1
1 T1, · · · , η−1

d Td >).

The Picard group Pic(Xr) is trivial if and only if one of the following holds:
(1) the field L is spherically complete or
(2) the polyradius is r = (∞, ...,∞), that is, Xr = AnL is the analytic affine space.

The “only if” part was shown by Lazard [17, Prop. 6]: Assume that L is not spherically complete
and let r ∈ |L|; then Lazard constructs a divisor onXr which is not a principal divisor. This implies
that open discs Xr which are bounded in at least one direction have non-trivial line bundles (see
[11, p. 87, Rem. 2]).

We have:

Lemma 5.16. The canonical map H1
v (Dd, U)→ Picv(D

d) is surjective.

Proof. We will show that H1
v (Dd,O

×
) is zero. Take {Xn}n∈N – a Stein covering of Dd by closed

balls Xn. We have the exact sequence

(5.17) 0→ R1 lim
n
H0
v (Xn,O

×
)→ H1

v (Dd,O
×

)→ lim
n
H1
v (Xn,O

×
)→ 0

But, by [12, Lem. 6.5]),

(5.18) H0
v (Xn,O

×
) = C×/(1 + mOC), H1

v (Xn,O
×

) = 0.

Hence
R1 lim

n
H0
v (Xn,O

×
) = 0, lim

n
H1
v (Xn,O

×
) = 0.
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Thus, by (5.17), H1
v (Dd,O

×
) = 0, as wanted. �

Hence we have exact sequences of non-trivial groups:

0→ Pican(Dd)→ Picv(D
d)→ Im(HTlog)→ 0,

0→ Ω1(Dd)d=0(−1)→ Im(HTlog)
Exp−→ I 1(Dd)(−1)→ 0.

We note that Ω1(Dd)d=0 ∼← O(Dd)/C.

5.2. The group H2
ét(X,Gm). The above computations allow us to deduce a little bit about the

structure of the groups H2
ét(X,Gm).

Let X be a smooth Stein space of dimension d over C. Let d ≥ i ≥ 2. By Corollary 2.15, we
have an exact sequence

(5.19) 0→ Coker(HTlogi−1)→ Hi
ét(X,O

×)
ν∗
i−−→Ker(HTlogi)→ 0.

We have Coker(HTlogi−1) = Ωi−1(X)(−i+1)/Im(HTlogi−1). Since Im(HTlogi−1) ⊃ Im(HTlogU,i−1),
we have Coker(HTlogU,i−1) � Coker(HTlogi−1). In the case that the inclusion map above is an
isomorphism, by Theorem 4.1, we have an exact sequence

0→ Ωi−1(X)d=0(−i+ 1)→ Im(HTlogi−1)→ I i−1(X)→ 0,

which, in combination with the exact sequence (5.19), yields the exact sequence9

(5.20) 0→ Ωi−1(X)(−i+ 1)/[Ker d−I i−1(X)]→ Hi
ét(X,O

×)
ν∗
i−−→Ker(HTlogi)→ 0.

Hence, by Sections 5.1.2, 5.1.3, and 5.1.6, if X is an affine space, a torus, or a Drinfeld space
(base changed to C), we have the exact sequence

(5.21) 0→ Ω1(X)(−1)/Ker d→ H2
ét(X,Gm)

ν∗
i−−→Ker(HTlogi)→ 0.

Moreover, in the case H1
ét(X,O

×
) = 0, we have the injection

Ker(HTlogU,i) ↪→ Ker(HTlogi).

Again, this is the case for an affine space, a torus, or a Drinfeld space.

5.2.1. Comparison with p-adic cohomology. To get a handle on Ker(HTlogU,i), we can use the
logarithmic exact sequence

0→ (Qp/Zp)(1)→ U
log−−→ O → 0

and diagram (4.5) to obtain the bottom sequence in the following commutative diagram with exact
rows:
(5.22)

0 // (Ωi−1(X)/Ker d)(1− i)
Exp //

f1

��

Hi
proét(X,Qp(1))

f2

��

// HKi(X)(1)

f3

��

// 0

0 // Coker(HTlogU,i−1) // Hi
proét(X,Qp/Zp(1)) // Ker(HTlogU,i) // 0,

where we set HKi(X) := (Hi
HK(X)⊗2

F̆
B̂+

st)
N=0,ϕ=pi . The top row comes from diagram 3.15. The

left square commutes by diagram (4.6). Hence if we are in a case where:

(1) we have the isomorphisms Coker(HTlogi−1
U )

∼→ Coker(HTlogi−1) and Ker(HTlogiU )
∼→

Ker(HTlogi);
(2) the map f1 in (5.22) is an isomorphism

the right square in (5.22) is bicartesian and we can compute Ker(HTlogi) using p-adic cohomologies.

9The expression in the denominator denotes an extension of the two terms.
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5.2.2. Examples of Ker(HTlogU,i). We present here the following computation:

Proposition 5.23. For i ≥ 1, we have the natural isomorphisms:

Ker(HTlogU,i(AdC)) = 0,

Ker(HTlogU,i(Gdm,C)) ∼= ∧i(Qp/Zp)
d,

Ker(HTlogU,i(HdC)) ∼= Spi(Zp)
∨,

denoting by (−)∨ the Pontryagin dual.

Proof. Let us start with the affine space X = AdC . Since Hi
proét(AdC ,Zp) = 0, for i ≥ 1, the

canonical map Hi
proét(AdC ,Qp) → Hi

proét(AdC ,Qp/Zp) is an isomorphism. Since HKi(AdC) = 0,
from diagram (5.22), we obtain indeed that Ker(HTlogiU ) = 0.

In the case of the torus X = Gdm,C , we know that the map Hi
proét(Gdm,C ,Zp) → HKi(Gdm,C) is

injective. This implies that the map f2 in diagram (5.22) is surjective and so is the map f3. It
follows that

Ker(HTlogU,i(Gdm,C)) ' HKi(Gdm,C)/Hi
proét(Gdm,C ,Zp) ' ∧i(Qp/Zp)

d,

as wanted.
Finally for the Drinfeld space X = HdC , the argument is analogous to the one in the case of the

torus and we get

Ker(HTlogU,i(HdC)) ' HKi(HdC)/Hi
proét(HdC ,Zp) ' Spi(Qp)

∗/Spi(Zp)
∗ ' Spi(Zp)

∨,

as claimed. �
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