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ABELIAN CATEGORIES 3

Introduction

This work contains a few general theorems about abelian categories and
some applications of these theorems to the study of modules. We spent a lot
of paper on reminders and on the statement of basic properties of abelian
categories; there are two reasons for this: the first is that the subject is quite
new and that we want to give the statements the right form for us.

The second reason is that we would like to convince non-specialists and
offer them an overview: so let’s say to this group of readers that abelian
categories were introduced by Buchsbaum and Grothendieck to generalize
homological methods of Cartan and Eilenberg|6]. A comparison will show
immediately the interest of this notion: let (M;);er be a family of modules
over a ring A, let T; be the lattice of the submodules of M;(i € I) and
let Hom 4 (M;, Mj) be the abelian group formed of A—linear maps from M;
to M;(i,j € I); likewise, the goal of homological algebra is the study of
M; by means of the groups Hom4(M;, M;) and the composition laws that
connect these groups. For a suitable choice of the family (M;);cs, the data
of Hom4 (M;, M;) and the composition laws makes it possible to reconstruct
the lattice T;(7; is the lattice of 'subobjects’ of M;). The data are therefore
more abundant in homological algebra; it follows that the results are more
accurate.

The results we get apply mainly to the following special cases:

a. Categories of right modules over a right noetherian ring.— Our state-
ments then translate into the classical language of the theory of mod-
ules; we partially do this translation to conform to established trans-
lations. There is no doubt, however, that the study of the categories
of modules involves more general abelian categories(see the concept
of quotient category).

b. Category of quasi coherent sheaves over a noetherian scheme(Note
by the translator : the author used the word ’prescheme’)(This
application is treated in Part VI).

c. Category of commutative algebraic groups(see[19], this application
will be the subject of a subsequent publication).

d. Category of connected, commutative and cocommutative Hopf alge-
bras(which are associative and coassociative) over a field (this appli-
cation does not deserve a publication).

The Part I consists of reminders and complements to the published literature
until this day. We insist especially on the concept of equivalence of two
categories: two categories A and B are equivalent if they are isomorphic
when defining the morphisms in the following way: a morphism from A to B
is the class of functors from A to B which are isomorphic to a given functor.
If we adopt this point of view, we have, for example, the following result:
Let A be a ring with identity such that any unital right A—module which is
fintely generated projective is free; let A(resp. B) be the category of right
unital A—modules(resp. M,,(A)—modules); the group of automorphisms of
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A(resp. B) is the quotient of the group of automorphisms of the ring A(resp.
the ring M, (A)) by the subgroup of inner automorphisms. As categories .4
and B are equivalent(cf.Part.V.§1), we find that the quotients considered are
isomorphic.

The Part II presents the topics we are working on later: let’s say roughly
that an abelian category is noetherian if all objects of this category are noe-
therian, that an abelian category is locally noetherian if there are inductive
limits, if the inductive limit functor is exact and if any object is an induc-
tive limit of noetherian objects. We show that any noetherian category A
is equivalent to the category of noetherian objects of a locally noetherian
category B. Reciprocally the category B is equivalent to the category of
contravariant left exact additive functors from A to the category abelian
groups. The category B is therefore equivalent to a quotient category of
the category of all contravariant addtive functors from A to the category of
abelian groups; it follows that B is ’almost’ a category of modules(cf.Part.II,
§1).

In the Part III, we are interested in the 'language modulo C’ of Serre: let
A and B be two abelian categories and let 7" and S be two additive functors,
T:A— B, S:B— A We suppose that T is exact, that S is (note by the
translator: the author means ’right adjoint’) adjoint to 7" and that T'o S is
isomorphic to the identity functor of B. Under these conditions, the category
KerT', which is formed of objects A of A such that T'A is a zero object, is
épaisse [10]; furthermore, T' defines by passing to the quotient an equivalence
between the quotient category of A by KerT [10], and the category B.

Reciprocally, let C be a épaisse subcategory of A, and let T' be the canon-
ical functor from A to A/C [10]. We say that C is a localizing subcategory
of A if T has a right adjoint functor.

When A is the category of modules over a commutative ring A, we can
give the following example: let X be a multiplicative subset of A, let B be
the category of modules over the ring Ay, and let T' be the functor which
associates with any A—module M the ’localized’ My,. The functor T defines
by passing to the quotient an equivalence between A/Ker T and B.

The Part IV contains some results about locally noetherian categories:
we prove that an injective object of such a category A is the direct sum
of a family of indecomposable injective objects. We also take care of Krull
dimension of A; for this, we 'filter’ A using localizing subcategories Ay C
Ay C Ag C -+ such that the quotients A4;;1/.A; are locally finite categories
( which means A;;1/A; is locally noetherian and that any object is an
inductive limit of objects of finite length ); we associate with these locally
finite categories complete topological rings which play the same role as
complete local rings in commutative algebra.

The Part V treats the application to the theory of modules. When A
contains in its center a noetherian commutative ring R, and is a finitely
generated R—module, we explain the proposed constructions in Part V. We
show, in particular, that the study of categories A;;1/.4; is equivalent to the
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study of the completion of A for certain topologies. This part proposes a
plan to attack the non-commutative noetherian rings. It remains to be seen
whether the methods considered are practicable in the study of the usual
rings. Note in this regard a ring that Dieudonné introduced in the study of
formal groups:

Let k be an algebraically closed field of characteristic p > 0, let W be
the ring of Witt vectors with coefficients in k& and let o be the Frobenius
automorphism of W. Denote by A the ring whose elements are the formal

series of the form
oo oo
a=w-+ Zar.F’" + st.Vs
r=1 s=1

where w, a, and bs run through the ring W; the multiplication is defined by
the following rules:

V.F=FV =p, Fw=oc(w).F and w.V =V.o(w) if w € W.

The ring A is noetherian (both left and right ). If we take into account
the category A of right A—modules, we have :

— Any simple object of A is isomorphic to A/(F.A+ V. A).

— If Ap is the smallest localizing subcategories of A which contains
A/(F.A+V.A), any simple object of A/ Ay is of one of the following
types: A/F.A, A/V.Aor A/(V" — F9).A with (r,q) = 1.

— If A; is the smallest localizing subcategory of A which contains the
above modules, any simple object of A/A; is isomorphic to A.

This work has already been presented in three exposes:

— Objets injectifs dans les catégories abéliennes, Séminaire Dubreil-
Pisot, tome 12, 1958-1959, no.17, 32 pages.

— Lalocalisation dans les anneaux non commutatifs, Séminarie Dubreil-
Pisot, tome 13, 1959-1960, no.2, 35 pages.

— Sur les catégories localement noethériennes et leurs applications aux
algebres étudiées par Dieudonné (Groupes formels), Séminaire J.-P.
Serre, 1959-1960.
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Part 1. Some reminders on categories

The object of this part is to recall some definitions and notations of
categories. We suppose that the reader has read the chapters I and II of [10].
However, as time has done its work since 1957, we add some complements
to the article of Grothendieck; these complements are due in large part to
Grothendieck himself and they will be exposed in a future book [7]. That’s
why we allow ourselves to omit most demonstrations.

1. THE GROTHENDIECK UNIVERSE

A set il is a universe if the following axioms are satisfied:

Uy @ If (X;)ier is a family of sets belonging to 4, and if I is an element
of U, then the union | J; X; is an element of 4.

Uy : If z belongs to 4, then the set {z} with an element belongs to Ll.

U;s : If x belongs to X and if X belongs to 4, then = belongs to 4.

Uy @ If X is a set belonging to 4, the set S(X) of subsets of X is an
element of i1.

Us : The pair (z,y) is an element of 4l if and only if x and y are elements
of 4.

It is necessary to add to the usual axioms of the theory of sets an axiom
ensuring that any set belonging to universe. In this case there exists a
smallest universe containing a given set. We choose once and for all a
universe b which will not "vary’ in everything that follows. Of course, we
suppose that i is large enough that the set Z of integers and other sets if
necessary are elements of I. The reader will be albe to practice proving the
following corollaries of the axioms:

e If Y is a subset of X, and if X belongs to 4, then Y belongs to 4.

e If X and Y are two sets belonging to i, the union X UY and the
cartesian product X x Y are elements of 4.

e If x and y belongs to 4, the set {z,y} belongs to L.

o If (X;);cs is a family of sets belonging to i, and if I belongs to 4,
then the product [];.; X; belongs to 4.

e If X is a set belonging to i, the cardinal of X is strictly less than
the cardinal of l.

2. DEFINITION OF CATEGORIES

A category C is constituted by the following data:

e A set OC whose elements are called the objects of C.
e For each pair (M, N) of objects of C, we give ourselves a set denoted
by Home¢ (M, N) whose elements are called morphisms from M to

N |We will often write f : M — N or M Iy N instead of f e
Home (M, N)).

e For each triple (M, N, P) of objects of C, we give ourselves a map p
from the product Hom¢ (M, N) x Home (N, P) to Home (M, P) [We
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will write g o f or g oc f instead of u(f,g); we will say that u is the
composition map]|.

These data are subject to the axioms C; and Co:

C; : Let f,g and h be three morphisms : f: M — N, g: N — P and
h : P — @. Under these conditions, we have the law ho (go f) =
(hog)of.

Cq : For any object M of C, there exists a morphism 1,7 : M — M such
that we have 137 o f = f and g o 1y = g whenever these equalities
make sense.

If C is a category, there exists for each object M only one morphism 1,
satisfying Cs. It is called the identity morphism of M. If f : M — N is a
morphism of C, the object M is called the source of f, the object N is called
the target of f. We will denote by MC from now on the disjoint union of
the sets Home (M, N) and we will call it the set of morphisms of C. In the
following, {{ Ens or Ens ( resp. {4 Ab or Ab) denotes the category of sets (
resp. category of abelian groups ):
e The objects of Ens (resp. of Ab ) are the sets belonging to &l ( resp.
the abelian groups whose underlying sets belong to i1).
e If M and N are two objects of Ens ( resp. of Ab ), a morphism
from M to N is a map from M to N ( resp. a linear map from M
to N).
e The law (f,g) — g o f is the usual law of composition of maps.
The given definitions coincide with those of [10], except that the objects of
a category here are the elements of a set. The reader should refer to [10]
for the definition of notions such as the following : commutative diagram,
monomorphism, sub-object (called sous-truc in [10]), generator, etc. We are
content to specify some notations and abuses of language:

A sub-object of M (resp. a quotient of M) is a monomorphism ZAN/[ :N —
M (resp. an epimorphism pgl : M — Q). We will often say that N is a
sub-object of M and that z% is the canonical monomorphism fromm N to M
(resp. that @ is a quotient of M and that pg is the canonical epimorphism
from M to Q).

If C is a category, the dual category of C is denoted by C°. If (C;)icr is a
family of categories, we denote by [[;c; C; the product category :

e The objects of the product [[;,.;C; are the elements of product of
the sets OC;.

o If (M;);er and (N;);cr are two objects of the product category, a
morphism from the first to the second is an element of the product

[ [ Home, (M;, N;).
i€l
e The composition is defined by the formula

(fi) o (gi) = (fioc; gi)-
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Finally let’s note that a full subcategory of C is a category D satisfying the
following conditions :

e The objects of D are objects of C.

e If M is an object of D, any object of C isomorphic to M is an object
of D.

e If M and N are two objects of D, Homp(M, N) is equal to Home (M, N).

e The composition law of D is induced by that of C.

We will say from now on that a category C is a {—category if Home (M, N)
belongs to the universe 4 for any pair (M, N) of objects of C. Unless stated
otherwise explicitly, all categories considered in this article are $1— categories.
Whenever we talk about an inductive system (resp. a projective system) of
objects of a il—category, we suppose implicitly that this inductive system
(resp. this projective system) is indexed by a set belonging to {{. Whenever
we talk about a direct sum or direct product of a family of objects of
a $—category, this family will be supposed to be indexed by an element
of . We say that C is a category with inductive limits if any inductive
system (indexed by an element of §1) of objects of C has an inductive limit.
Similarly, we say that C is a category with generators if there exists a family
of generators which is indexed by an element of .

3. FUNCTORS

Let C and D be two categories. A functor F' from C to D (we write
F :C — D) is constituted by the following data:

e A map M ~~ FFM from OC to OD.

e For any pair (M, N) of objects of C, we are given a map F (M, N)
from Home (M, N) to Homp(FM, FN).| We will also denote it by F
instead of F'(M,N).|

We suppose also that (F'f) o (Fg) is equal to F(f o g) whenever the source
of f coincides with the target of g.

For example, if C is a full subcategory of D, we call canonical functor from
C to D the functor F which is defined by the following equalities: FM = M
it M e OC; Ff = fif f e MC. In the case where C coincides with D, we
will also say that F' is the identity functor of C. We will then denote F' by
Ic.

The reader should note, that with the terminology of [10], we only consider
covariant functors here. When no confusion is caused, it will happen to us
not to explain the maps F'(M, N), but only the map from OC to OD which
is associated with F'. The symbol M ~» FM will then denote the functor F'.

The functors from C to D is the objects of a category which we denote by
Hom(C, D) and whose morphisms are defined by the following way : let F’
and G be two functors from C to D; a morphism ( or functorial morphism )
@ from F' to G consists of the data, for each obect M of C, of a morphism
©(M): FM — GM. We further assume that for any morphism f: M — N
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of C, the following diagram is commutative :

a2 e

lFf in
N 2 aN

Ifo: F — Gand vy : G — H are two functorial morphisms, the composition
1 o  is defined by the formula:

(o) (M) = (M) op p(M).
It follows in particular that ¢ is an isomorphism of Hom(C, D) if and only
if (M) is an isomorphism for each object M of C; we say then that ¢ is a
functorial isomorphism.

Now consider two objects X and Y of C; as we suppose that C is a
{—category, Home(X,Y) is an element of 4. We denote by X, Home(X, .)
or Hom(X,.) the functor Y ~» Hom(X,Y) from C to Ens. If f: X — X' is
a morphism of C, we denote by f or by Hom(f,.) the functorial morphism
which maps an element g of XY = Hom(X’,Y) to the element g o f of
XY = Hom(X,Y).

The maps X ~» X and f ~ f obviously define a functor from C° to
Hom(C, Ab). We will examine this functor a little more closely: for this, let
F be any functor from C to Ab; each element £ of FX defines a functorial
morphism f from X to F: for each object Y of C, f( ) is the map f ~
(Ff)() from XY = Hom(X,Y) to FY.

Proposition 1. For any object X of C, the map & ~ éfrom FX to
Hom(X, F') is bijective.

In fact, let ¢ be a functorial morphism from X to F; let ¢ be the image
of 1x under the map ¢(X) from Hom(X, X) to FX. In the case where ¢ is
equal to §, is no other than . It remains to prove that ¢ = 5 if £ = .
In other words, we have to show that for any object ¥ of C and for any
morphism f: X — Y, we have the equality

e(Y)(f) = (Ff)(&)

This results from the commutative diagram

Hom(X, V) 2% Fy

Hom(X,f)T FfT
Hom)(X, X)) Fx
and from the fact that £ = o(X)(1x).

Corollary 1 ([11]). If X and X' are two objects of C, the map f ~~ Hom(f,.)
from Hom (X', X) to the set of functorial morphisms from Hom(X,.) to
Hom(X',.) is bijective.
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We prove the corollary by replacing F' by X in the proposition 1.

Corollary 2. Any isomorphism from the functor Hom(X,.) to the functor
Hom(X',.) is induced by an isomorphism from X' to X.

We will say in the following that a functor F' from C to Ens is representable
[11] if F' is isomorphic to a functor Hom(X,.). We also say that X is a
representative of F'. One such representative is evidently defined up to an
isomorphism.

In particular, if the functor F' which associates with any object the set {(}
is representable, we choose once and for all a representative O of F'. This
representative is called an initial object of C. For any object Y of C, we then
denote by ny the only morphism from O to Y.

By duality, the final object O’ of C, if exists, is such that Hom(Y,O’)
contains one and only one element ¢y for any object Y.

We say that O is zero if it is both initial and final. If M and N are then
two objects of C, we denote by Oy, n or simply O instead of nys o en.

We give another example: we recall that a direct sum of two objects M
and N is a triple (P,u,v) formed of an object P and of two morphisms,
w: M — P and v : N — P; furthermore, we suppose that the maps
Hom(u, X) and Hom(v, X) define for any object X an isomorphism between
Hom(P, X) and the cartesian product Hom(M, X) x Hom(N, X). The object
P is hence a representative of functor

X ~» Hom(M, X) x Hom(N, X)

If the direct sum of M and N exists, we choose one that we denote it by
(MXN, jar, j7%). We then say that MXN is the direct sum of M and N and
that jas and j are the canonical morphisms. The dual notion is the notion
of direct product of M and N: if it exists, we denote the product by MIIN;
the canonical morphisms are denoted by gas and ¢/y.

Now consider the diagrams (1) and (2):

A fibre sum of diagram (1) is a triple (P, u,v) formed of an object P and of
two morphisms, u : B — P, v : C — P, such that we have: uoh =vok;
for any couple (b, ) of morphisms such that bo h and c o k are defined and
equal, there exists one and only one morphism a whose source is P, which
has the same target as b and ¢ and satisfies the equalities b = aou, ¢ = aow.
If the fibre sum of diagram (1) exists, we choose one that we denote it by

(BXAC, i, i)
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We then say that BX 4C is the fibre sum of diagram (1) and that jp and j;
are the canonical morphisms.

The dual notion is that of fibre product: if it exists, we denote by BII4C
the fibre product of diagram (2); the canonical morphisms are denoted by

g and q.

4. ADDITIVE CATEGORIES (AFTER GROTHENDIECK )

If C is a category satisfying the following axioms:

C Ad 1 There exists a zero object O.
C Ad 2 For any couple (M, N) of objects of C, the direct product of M and
N, as well as the direct sum of M and N exist.

Lemma 1. If M and N are two objects of C, there exists one and only one
morphism h(M,N) : MXN — MIIN such that we have

av o h(M,N) o jar =1n, dyoh(M,N)ojyu =0, gyoh(M,N)ojy=1y
qu o h(M,N)ojN=0
If we denote by II(reps. ¥) the functor
(M,N) ~» MIIN [ resp. (M,N) ~ MYXN |
from the product category CIIC to C, the lemma 1 can be completed by the

Lemma 2. The morphisms h(M,N) define a functorial morphism from the
functor ¥ to the functor II.

Now suppose that C satisfies one more axiom:

C Ad 3 For any couple (M, N) of objects of C, the morphism A(M, N) from
MYN to MIIN is an isomorphism.

Under these conditions, we can suppose that M N is chosen to be equal
to MIIN and such that hA(M, N) is the identity morphism of MIIN. We
then denote by M @ N instead of MXN or MIIN. It is easy to prove
that the identification between the direct sum and the direct product is
compatible with 'the exchange of factors M and N’ and with the canonical
isomorphisms between (MXN)XP and MX(NYXP) and between (MIIN)IIP
and MTII(NILP).

If M is an object of C, we denote by Ay (resp. 3js) the morphism, called
diagonal, from M to M @& M (resp. from M & M to M) which is defined
by the equalities gar © Ay = 1as, @iy © Ay = 1ag (resp. Eag o jvr = 1,
Yaro gy = 1a). If f and g are two morphisms of the same source M and
of the same target IV, we denote by f + ¢ the composite of the following
morphisms:

M2 oM I NeN 24N
Lemma 3. The internal law (f,g) — f+ g is commutative and associative.
The morphism Oy v is an identity element for this law.
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Lemma 4. Let f,f': M — N and g,g' : N — P be morphisms of C. We
have the equalities go (f + f') = gof+gof and (9+¢)of =gof+gof.
There are categories satisfying the axioms C Ad 1, 2, 3 and for which

the monoids Hom(M, N) are not abelian groups. This cannot happen if the
category C satisfies the axiom C Ad 4.

C Ad 4 For any object M, there is a morphism ¢(M) : M — M such that
the following diagram is commutative:

M—2 M
lAIM EJVIT
1 M
a2 YN e p

The commutativity of the diagram implies that ¢(M) is an inverse element
of 157 in Hom(M, N). It follows that a morphism f : M — N has the

composite as the inverse

¢(N)o f=foc(M).

Proposition 2. If C is a category, the following two assertions are equiva-
lent:

a. The category C satisfies the axioms C Ad 1, 2, 3 and 4.

b. The category C satisfies C Ad 1 and one or the other assertion of
C Ad 2; in addition, we can equip the sets Hom(M, N') with abelian
group structure in such a way that the laws of composition are bilinear
maps.

The implication (a) = (b) results from the previous lemmas. The impli-
cation (b) = (a) is classical; It is shown in [10].

We call any category satisfying axioms C Ad 1, 2, 3 and 4 an additive
category.

Proposition 3. Let C and D be two additive categories and let F' be a functor
from C to D. The following assertions are equivalent:
a. For any couple (M,N) of objects of C, the maps F(M,N) from
Home (M, N) to Homp(FM, FN) is linear.
b. For any couple (M, N) of objects of C, the triple

(F(M @ N), Fjm, Fiy)
is a direct sum of Fyy and Fy.

If the equivalent conditions of the proposition 3 are fulfilled, we say that F'
is an additive functor. We express the condition (b) by saying that an additive
functor commutes with the direct sum. Of course, an additive functor also
commutes with the direct product.

Unless explicitly stated otherwise, in all following, the functors from an
additive category to another are supposed to be additive. For example let C
be an additive category. We have seen that for any couple (M, N) of objects
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of C, the set Hom¢(M, N) is equipped with a natural structure of abelian
group. We again denote by Hom¢ (M, N) this abelian group. The lemma 4
then shows that the functor Y ~» Hom¢(M,Y') from C to Ab is additive for
any M.

We remark also that the dual category of an additive category C is additive.
Thus X ~» Home(X, N) is an additive functor from C° to Ab.

5. ABELIAN CATEGORIES

Let C be an additive category and f : M — N a morphism of C. We
suppose that f has kenel, cokernel, image, coimage [10]. Let ¢ and j (resp.
p and ¢q) be the canonical morphisms from the kernel Ker f to M and from
the image Im f to N (resp. from N to the cokernel Coker f and from M to
the coimage Coim f). We know that there is one and only one morphism ¢
from Coim f to Im f such that we have f = j o1 o q. We say that 9 is the
canonical morphism from Coim f to Im f.

An additive category C is abelian if the following axioms are satisfied:

C Ab 1 For any morphism f, the kernel and cokernel of f exist.
C Ab 2 For any morphism f, the canonical morphism from Coim f to Im f
is an isomorphism.

The dual category of an abelian category is abelian.

We suppose that the reader is familiar with elementary arguments of
abelian categories. When only a finite number of objects and morphisms
are considered, the arguments used are those of abelian groups. To increase
this similarity, we usually use the following notations: if N is a sub-object of
M, M/N denotes the cokernel of z]\N/[ ; if N and P are two sub-objects of M,
N + P is the image of the morphism from N & P to M which is defined by
z% and i% ; in the same way M NN denotes the kernel of the morphism from
M to M/N @& M /P which is defined by the canonical epimorphisms from M
to M/N and M/P. If f: M — N is a morphism of an abelian category and
P is a sub-object of M, f(P) denotes the image of f oi}/; in the same way,
if Q is a sub-object of N, f71(Q) denotes the kernel of the composite of f
with the canonical morphism from N to N/Q.

The theorems of Noether’s isomorphism remain valid in an abelian cate-
gory. The same is true of the results on the composition series of an object,
of the Jordan-Holder composition series, of the length of an object. In the
same way, we refer to [6] for the usual results on the exact sequences, the
exact functors, left exactness, right exactness, the direct factors, the injective
objects.

Proposition 4. If C is an abelian category, there is a fiber sum (resp. fiber
product) for the diagram (1)of paragraph 3 [resp. for the diagram (2) of
paragraph 3J.

We recall only the construction of BY4C" if jp and j;. are the canonical
morphisms from B and C' to B® C, BX 4C' is the cokernel of the morphism
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jBoh—jiok. The canonical morphism j from B to BY4C' is the composite
of jp and the canonical morphism from B & C to BX 4C. The kernel of
j is the image of h from Ker k; the canonical morphism from C to BX,C
induces an isomorphism between Coker k& and Coker j.

Recall also the construction of BII4C: if gp and g, are the canonical
morphisms from B @ C' to B and C, BII4C is the kernel of the morphism
foge—gogqp. The canonical morphism g from BIT4C to B is the composite
of the canonical morphism from BII4C to B @ C and gp. The cokernel of ¢
is the quotient of B from f~!(g(C)); the canonical morphism from BII4C
to C' induces an isomorphism between Ker g and Ker g.

6. CATEGORIES WITH GENERATORS AND EXACT INDUCTIVE LIMITS

Proposition 5. If C is an abelian category with gemerators and X is an
object of C, there exists a set belonging to I and having the same cardinal as
the set of all sub-objects of X .

Indeed let (X;)i € I be a family of generators of C, the set I belonging to
il We know that the union of the sets Hom(X;, X) is an element of 4[. We
associate to every sub-object Y of X the subset EY of E which is formed
of the morphisms whose images is contained in Y. If Y’ is a sub-object of
X which is not contained in Y, there is an element of EY not belonging to
E(Y NY"), since (X;) is a family of generators of C. In other words, the map
Y — EY is an injective map from the set of sub-objects of X to the set of
subsets of E. This proves the proposition.

Suppose now, and for the end of this paragraph, that C is a category with
generators and inductive limits. According to [10], it is the same to say that
C is a category with generators and that there is a direct sum for any family
of objects indexed by a set belonging to L. If these conditions are satisfied,
any increasing filtering family (M,,),ecg of sub-objects of an object M has
an upper bound: according to the previous proposition, we can suppose
that E belongs to 4; the canonical morphisms from M, to M then define a

morphism from the direct sum »_ M, to M. The image of this morphism
nek
is the upper bound of M,,.

Let I be a directed set, (M;,uj;) and (N;,vj;) be two inductive systems,
indexed by I, of morphisms of C (I € ). A morphism from the first to
the second is, by definition, a family of morphisms from the source M;,
to the target IN; such that we have f, ouj; = vj 0 f; if j > 4. Thus is
defined the category of inductive systems indexed by I, and this category is
abelian. Furthermore, the functor (M;, uj;) ~ h_n}MZ is right exact. If this

last functor is exact for any I € U, we say that C is a category with exact
inductive limits.

Proposition 6. If C is a category with generators and inductive limits, the
following assertions are equivalent:

e a.C is a category with exact inductive limits.
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o b.If (P;) is an increasing filtering family of sub-objects of P, the
canonical morphisms from lim P; to P is an isomorphism from lim P;
— —
to the upper bound sup P;.
el
o c.If (P;) is an increasing filtering family of sub-objects of P, and if
Q is a sub-object of P, we have the equality

(sup P;) N Q = sup(P; N Q)

The inductive systems of an abelian category with generators and exact
inductive limits C treat themselves in the same way as the inductive systems
of abelian groups. We will use a lot later in the theory of semi-simple objects
of such a category: an object S of C is called simple if it is not zero and if it
does not contain any sub-object distinct from S and from O. An object is
called semi-simple if it is isomorphic to a direct sum of simple objects. The
theory is analogous in every respect to the theory of semi-simple modules
[4]. We recall only a few results:

If § is a full sub-category of C whose objects are the semi-simple objects
of C; let ¥ be the set of isomorphism classes of simple objects. If M is an
object of § and if A belongs to €; we denote by M) the isotypic component
of type A of M: this is the sum of simple sub-objects of M belonging to
A. We denote also by Sy the full sub-category of S whose objects are the
objects M such that we have M = M). In these conditions we have the
following results:

e If f: M — N is a morphism of S, f(M)) is contained in N).
e The functor M ~» (M))xe¢ defines an equivalence between S and
the product category [[ Sy (see the paragraph 8 for the definition of
A

the equivalences).

e If S is a simple object of Sy, the functor M ~~ Hom(S, M) defines
an equivalence between Sy and the category of vector spaces [over
the division ring Hom(S, S)| whose underlying set belongs to 4l.

Note, to finish, that the theorem of Krull-Remak-Schmidt is valid in an
abelian category with generators and exact inductive limits. Precisely, we
say that an object M is indecomposable if it is not zero and if any direct
factor of M is equal to O or M. We then show the following theorem:

Theorem 1. Let C be an abelian category with generators and exact inductive
limits. Let (M;)ier and (Nj)jes be two families of indecomposable objects
whose ring of endomorphisms is local (I € A, J € ). If the direct sums

Z Ml and Z Nj
i€l jeJ

are isomorphic, there is a bijection h from I to J such that M; is isomorphic
to Nh(z)
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Recall that a ring A, commutative or not, is called local if it has a non-zero
unit element and if the quotient of A by its Jacobson radical is a division
ring.

AZUMAYA has proved this theorem ’in the case modules’ [2]. The reader
is suggested to resume this demonstration using the proposition to avoid the
arguments in which AZUMAYA talks about elements of a module.

7. ADJOINT FUNCTORS

The reader will find in [20] the proof of these results that is here:

Let A and B be two categories, and let 7' : A — Band S : B —» A
be functors. We denote by Hompg(7T., .) and Hom4(. , S.) the following
functors:

Hompg(T., .): (A,B)~ Homp(TA, B)
Homyu(., S.): (A,B) ~> Homu(A, SB)
These functors are defined in the product category A°[[B and they take
their values in the category Ens of sets. A functorial morphism
¥ : Homp(T., .) = Homyu(., S.)
defines, for every couple (A, B) of objects of A and of B, a map
Y(A,B): Hompg(TA,B) — Homy(A, SB)

In particular, if B is equal to T'A, the image of the identity morphism of T'A
under the map (A, T A) is a morphism V(A): A — STA.

Lemma 5. The morphisms W(A) define a functorial morphism U from the
identity functor 14 of A to the functor S oT. The map 1) ~ VU is bijective.

We recall only how we can rebuild ) knowing W: the functor S defines for
every couple (A, B) a map
S(TA, B): Homp(TA,B) — Homu(STA,SB)
The map (A, B) is the composite of S(T'A,B) and the map from
Hom4(ST A, SB) to Hom4(A, SB) which is induced by W(A).
In an analogous way, a morphism ¢ : Homy(. , S.) — Homg(T., .)
defines, for every object B of B, a morphism ®(B): T'SB — B.

Lemma 6. The morphisms ®(B) define a functorial morphism ® from the
functor T o S to the identity functor Ig of B. The map ¢ ~~ @ is bijective.

With these previous notations, suppose we are given functorial morphisms
1 and ¢ and let ¥ and ® be the morphisms associated to ¥ and ¢ by the
previous lemmas:

Proposition 7. For the functorial composed morphism ¢ o ¢ to be the
identity of the functor Homy(. , S.), it is necessary and sufficient that the
composed morphism

s 25, o5 5 g

is the identity morphism of the functor S.
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Proposition 8. For the functorial composed morphism ¢ o v to be the
identity of the functor Homp(T., .), it is necessary and sufficient that the
composed morphism

T I psr 2,1

is the identity morphism of the functor T.

If there are two functorial morphisms ¢ and ¢ such that ¥ o ¢ and ¢ o 1
are the identity morphisms, we sat that the functor S is (right) adjoint to
T. In this terminology, S can be adjoint to T" without T" being adjoint to S.
If S and S’ are two functors adjoint to T, there is a functorial isomorphism
between Hom 4(. , S.) and Hom4(. , S’.). This isomorphism defines for any
object B of B an isomorphism from the functor Hom 4(. , SB) to the functor
Homy(. , S'B). The corollary of the proposition 1 implies the following
proposition:

Proposition 9. If S and S’ are two functors adjoint to T, there is a
functorial isomorphism between S and S’. Likewise, if S is a functor adjoint
to two functors T and T', there is a functorial isomorphism between T and
T

Proposition 10. IfT is a functor from A to B, the following assertions are
equivalent:

a. There is a functor adjoint to T'.
b. For every object B of B, the functor A ~» Hompg(T' A, B) is repre-
sentable.

It is clear that (a) implies (b). Conversely, choose for every object B of
B a representative SB of the functor A ~» Homp(T'A, B) and a functorial
isomorphism ¢(B) : Homyu(., SB) — Homg(T., B). If f : B — B’ is a
morphism of B, there is one and only one morphism Sf : SB — SB’ such
that the following diagram is commutative

Homu(., SB) ﬂHomB(T., B)
lHomA(. , Sf) lHomB(T. , )
,\ e(B') ,
Hom4(. , SB’) —— Homg(T., B')
We see without difficulty that the map B ~» SB and f ~~ S f define a functor
adjoint to T

When A and B are two additive categories, we suppose, in accordance
with our conventions, that S and T are additive functors. What precedes
then remains valuable if we want to consider that the functors Hompg(7T. , .)
and Hom4(. , S.) take their values in the category Ab of abelian groups.
This implies that the maps ¥(A, B) and ¢(A, B) are linear. Furthermore,
we have the following proposition:
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Proposition 11. Let A and B be two abelian categories, let T be a (additive)
functor from A to B, and let S be a functor adjoint to T. Then S is left
exact and T is right exact.

Indeed let
0B L B4 B >0
be an exact sequence in B. We have the following commutative diagram (A
is an arbitrary object of A):

0 —— Hom (A, SB’) —— Hom4(A, SB) —— Homy (A, SB")
lso(A,B/) J/so(A,B) isﬂ(A,B”)
0 — Homp(T' A, B') —— Homp(T A, B) — Hompg(T A, B")

The second row is exact and the vertical arrows are bijections. It follows
that the first row is exact and that S is left exact. We show in an analogous
way that T is right exact.

8. EQUIVALENCE OF CATEGORIES

Let A and B be two categories. An equivalence between A to B consists of
the data of two functors, T : A — Band S : B — A, and of two isomorphisms
of functors, ¥ : [4 — SoT and @ : Iz — T o S. Furthermore we suppose
that the isomorphisms TW : T — T'ST and ®'T : T — T'ST coincide.

It results from the conditions imposed on 7', S, ¥ and ®’ that the functo-
rial morphisms S®' : S — ST'S and ¥S : S — ST'S also coincide. If ¥ and
® are the inverse functorial isomorphisms of ¥ and ®’, we see consequently
that ¥ and ® make S a functor adjoint to 7. In particular, the data of
T determines S up to an isomorphism of functors. Similarly, the functorial
morphisms ¥ and ®’ make T a functor adjoint to S.

Let v, ¢, p and ¢’ be the functorial morphisms associated respectively to
U, ¥/, ® and ®’ as has been explained in the previous paragraph. The data
of ¥ determines ¥ and hence ¢ which is the inverse functorial morphism of
1. We can deduce that if S and T are given, the data of ¥ determines @’;
and conversely....

Lemma 7. Let (T,S,V,®') be an equivalence between A and B:
a. For any couple (M,N) of objects of A, the map T(M,N) from
Homy (M, N) to Homg(T M, TN) is bijective.
b. Any object P of B is isomorphic to an object of the form T M.

Proposition 12. IfT is a functor from A to B, the following assertions are
equivalent:

a. There exist a functor S : B — A and isomorphisms ¥ : [4 — SoT
and @' : Ig — T o S such that (T, S, ¥, d") is an equivalence between
A and B.

b. The functor T satisfies the conditions (a) and (b) of the above lemma.



ABELIAN CATEGORIES 19

c. There is a functor S : B — A such that S o T is isomorphic to the
functor 14 and that T o S is isomorphic to the functor Ig.

We will say from now on that two categories A and B are equivalent if
there is a functor T satisfying the assertions of the previous proposition. In
this case we say also that T' defines an equivalence from A to B. We finally
note that the assertion (c) fits conveniently into the following formalism:

If B is a universe of which the universe 4 is an element, we can build a
new category &: the objects of £ are the categories whose set of morphisms
belong to B (we identify the objects with the identity morphisms); if 4
and B are two objects of £, Hom(A, B) is the set of isomorphism classes of
functors from A to B, the composition being done in an obvious way. We
remark that £ is not a {{—category. The assertion (c) affirms that the class
of functors isomorphic to 7" is an isomorphism of the category £.

Finally, we offer the reader some easy exercises, so we will freely use
the results: let (7,5, ¥,®') be an equivalence between A and B. If f is a
monomorphism (resp. an epimorphism), T'f is a monomorphism (resp. an
epimorphism). If M is a generator of Am (resp. a projective object of A),
TM is a generator of B (resp. a projective object of B). If P is the fibre
product of the diagram (1), T'P is the fibre product of (2); we also say that T’
commutes with fibre products. The functor 7' 'commutes’ also the the fibre
sums, the inductive limits.... Generally speaking, the homological properties
of two equivalent categories are the ’same’.

M TM
N :
(1) L (2) \TL
A S
N TN

The previous exercises and the proposition 3 have the following consequence:

Proposition 13. Let T be a functor defining an equivalence between two
additive categories A and B. Then T is an additive functor. If A and B are
two abelian categories, T is also an exact functor.

The last assertion results from the proposition 11.

9. ABELIAN CATEGORIES WITH ENOUGH INJECTIVES

This paragraph is devoted to some results on the injective objects of
an abelian category B. These results are related to the notion of derived
category which is due to CARTIER and of which we present here a 'piece’:

Let Z be an additive category and let M be the category of morphisms of
Z: an object of M is amorphism of I;ifd : M — N and d’' : M" — N’ are two
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objects of M, Hom,(d, d’) is the set of couples («, 8), a € Homz (M, M’),
B € Homz(N, N'), such that the following diagram is commutative:

M4 N

o)

Ml L_ N/
It is well known that by defining in the obvious way the composition of the
morphisms, we make M an additive category.

With the above notations, we say that («, ) is homotopic to zero if there
is an element h of Homz (N, M) such that we have & = hod. The morphisms
homotopic to zero form a sub-group of Homa,(d,d’) and we denote by
Homy (d,d’) the quotient of Homa,(d, d") by this sub-group. It is then clear
that the bilinear maps

Hom x4 (d, d/) x Hom g (d/, dl/) — Hom (d, d//)
defines by passing to the quotient of the bilinear maps
Homy(d, d") x Homy(d',d") — Homy(d, d")

So we can define a new additive category KZ: the objects of KZ coincides
with the morphisms of Z (hence with the objects of M); if d and d’ are
two such morphisms, Homyz(d,d') is chosen equal to K(d,d’); the law of
composition, finally, is defined by passing to the law of composition of M.

In the case which interests us, Z is a full sub-category of B whose objects
are the injectives of B. We denote by Ker the functor d ~» Ker d from M to
B. If d and d" are two objects of M, it is clear that the map Ker(d, d’) from
Hom(d, d") to Homp(Ker d, Ker d’) defines, by passing to the quotient, the
maps from Homy(d, d") to Homg(Ker d, Ker d’). These maps define in fact
a functor (still denoted by Ker!) from KZ to B.

Proposition 14. Let B be an abelian category, and let T be a full sub-
category of B whose objects are the injectives of B. Suppose the following
conditions are satisfied: for any object M of B, there is a monomorphism
from M to an object of Z. The functor Ker defines then an equivalence from
KZ to B.

Let’s quickly say how to construct a functor S adjoint to Ker.
For any object M of B, we choose an exact sequence

0— M L5 foM 25 1M

where I1 M and IgM are objects belonging to Z. For any morphism v : M —
N, we choose the morphisms ug and u; which make the following diagram
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commutative:
0 M o P
N
0 N NN

We can easily see that the image of (ug, u1) in Homgz (g, gar) depends only
on u. If this image is denoted by Su and if SM denotes the morphism gy,
the maps M — SM and v — Su define a functor adjoint to Ker.

Corollary 3. Suppose the hypothesis of the previous proposition is satisfied.
If the category T is equivalent to the product of a family (Z,)nep of additive
categories, the category B is equivalent to the product of a family (KI)nep.

Now let C be another abelian category. Any additive functor F' from Z to C
extends in an obvious way to a functor ICF' from KZ to KC. By composition,
we obtain a left exact functor F’ from B to C:

B % KT K5 ke X ¢
Conversely, if G is a functor from B to C, we denote by G’ the composite of
the canonical functor from Z to B and G.

Corollary 4. Suppose the hypothesis of the previous proposition is satisfied.
A functor G from B to C is left exact if and only if it is isomorphic to (G')".
Any functor F from T to C is isomorphic to (F') .

This corollary shows that the study of left exact functors from B to C is
equivalent to the study of all the additive functors from Z to C. We will use
this fact in the next corollary and at the beginning of part II.

Corollary 5. Let B (resp. C) be an abelian category, let T (resp. J) be a
full sub-category of B (resp. of C) satisfying the conditions of the previous
proposition 14. A functor G from B to C defines an equivalence between
the two categories if and only if the following are satisfied: G is left exact;
GI is an object of J for any object I of I, the functor I ~~ GI defines an
equivalence between T and [J .

We will say from now on that B has enough injectives if the full sub-
category of B which is formed of the injective objects satisfying the condition
of the proposition 14. When this happens, the proposition 14 shows that the
data of this category defines B up to an equivalence. The proposition 14 is
so useful whenever we know injective objects of B (cf. part IV).

Let’s go back to the hypothesis of corollary 4. With the useful notations
in the proof of the proposition 14, we see that (G’)" is none other than the
functor M ~» Ker (Ggps). It follows that (G)’ is the zeroth derived functor
of G |6]. Furthermore, the morphisms G fy; define a functorial morphism
p: G — (G")Y = R°G and the couple (R°G, p) satisfy the conditions of the
proposition 15:
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Proposition 15. Let B be an abelian category with enough injective objects.
For any functor G : B — C from B to an abelian category C, there is a functor
RYG and a morphism p : G — R°G which satisfy the following conditions:

The functor RVG is left exact; in addition, if o : G — H is a morphism
from G to a left exact functor H, there is one morphism 7 : ROG — H and
only one such that we have o = 7o p.

Let p' : G — R'G be a functorial morphism satisfying the same universal
property as p : G — RG; it is clear that there is then one isomorphism u
from R'G to R°G an only one such that we have p = wo p’. The proposition
15 hence determines R°G up to a functorial isomorphism. We will try to
extend these results when we do not have enough injective objects.
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Part 2. Left exact functors and injective envelopes

According to a result of GROTHENDIECK [10], any abelian category with
generators and exact inductive limits have enough injective objects. We
begin here the study of these injective objects. We also show that how we
can reduce the study of certain categories to the study of a category with
generators and exact inductive limits.

10. CATEGORIES OF FUNCTORS

Let C and D be two additive categories; we suppose that the set of objects
and the set of morphisms of C are the elements of the universe 1. Under these
conditions, we denote by Fun(C, D), and we call the category of functors from
C to D the full sub-category of Hom(C, D) whose objects are the additive
functors from C to D (cf. part I, § 3).

Proposition 1. With the hypothesis that we made above, Fun(C,D) is an
additive category. If D is an abelian category, it’s the same for Fun(C, D). If
D is a category with inductive limits (resp. exact inductive limits, resp. with
projective limits), Fun(C, D) is a category with inductive limits (resp. exact
inductive limits, resp. with projective limits).

If £ and F are two objects of Fun(C,D), Hom(E, F) is obviously a sub-

set of the product [] Hom(EM,FM). This shows that Fun(C,D) is a
MeOC
$l—category. The rest is almost clear.

The remainder of this paragraph is devoted to the study of Fun(C, Ab)
when C is an additive category whose set of objects and the set of morphisms
belong to 1. We denote by Z[C] the ring that follows and that does not have
a unit element in general:

e The underlying abelian group of Z[C] is the direct sum of groups
Home (M, N) where M and N go through the objects of C.

e Let f € Home(M, N) and g € Home (P, Q) be two elements of Z[C|.
The product f.g is the composite morphism f o g when @ coincides
with M. Otherwise f.g is equal to zero.

For any object X of C, the identity morphism 1x is an idempotent of Z[C].
If X and Y are two distinct objects of C, the idempotents 1x and 1y are
orthogonal: 1x.1y = ly.1x = 0. It follows that, for any left Z[C]—module
M, the element 1x defines a projection from M to a direct factor 1x (M).
Furthermore, the sum of abelian sub-groups 1x (M) is direct and it is equal
to Z[C].M.

Lemma 1. If N is a sub-module of M (resp. Q a quotient of M), and if
Z[C].M is equal to M, then Z|C].N is equal to N (resp. Z[C].Q is equal to
Q).
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Indeed, an element m of M belongs to Z[C].M if and only if there is a
finite number of objects of C, say X, Y, ..., Z such that we have

m=1x.m+1ly.m+---+1z.m

When this condition is satisfied for any element of M, it is the same for N
and Q.
The previous lemma allows us to define a new abelian category A:

e The objects of A are the left modules over Z[C| such that Z[C].M is
equal to M, and whose underlying set belongs to Ll.

e If M and N are two objects of A, Homy(M,N) is the set of
Z[C]—linear maps from M to N; the composition of morphisms is
done in the usual way.

In particular, the underling left module of Z[C] and the left ideal of Z[C].1x
are the objects of A. A morphism ¢ from Z[C].1x to an object M of A
is determined by the data of the element ¢(1x) of 1x(M). The abelian
group Homy(Z[C].1x), M) is hence identified with 1x (M), and Z[C].1x is
a projective object of A. It is the same for Z[C] which is the direct sum of
Z|C].1x. Hence:

Lemma 2. The underlying left module Z|C] is a projective generator of A.
Proposition 2. The categories A and Fun(C, Ab) are equivalent.

We will construct the functors
T:A— Fun(C,Ab) and S:Fun(C,Ab) — A

such that SoT and T oS are isomorphic respectively to the identity functors
of A and of Fun(C, Ab).

For this let M be an object of A. For any object X of C, we denote by
(TM)X the abelian group 1x(M). For any morphism f : X — Y, we denote
by (T'M)(f) the Z—linear map from 1x (M) to 1y (M) which is induced by f.
We have thus defined a functor T'M from C to Ab. Moreover, if ¢ : M — N
is a Z[C]—linear map, ¢ maps 1x (M) to 1x(N). We denote by (T'¢)X the
map from 1x (M) to 1x(N) thus defined. When X runs through the objects
of C, the maps (T'¢)X obviously define a functorial morphism from 7'M to
TN. The verification of the following lemma is left to the reader:

Lemma 3. The maps M — TM, ¢ — T define a functor from A to
Fun(C, Ab).

Conversely, let F' be an object of Fun(C, Ab). If f : X — Y is a morphism

of C and m = (my) is an element of >  FX, we define a product f.m with
Xeoc
the help of the formula

0 if Z4Y

projection from f.m to FZ = {(Ff)(mx) 7y
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The direct sum > FX is thus equipped with a structure of left module
XeocC
over the ring Z[C]. We denote this module by SF which is obviously an

object of A. Similarly, if ¢ : F — G is a functorial morphism, we denote by

S the linear map:
D (X): > FX =Y GX
X X X

Lemma 4. The maps F — SF , ¢ — Sy define a functor S from
Fun(C, Ab) to A.

It is clear that T and S satisfies the required conditions. This ends
the proof of the proposition 2. The lemma 2 thus implies the following
proposition.

Proposition 3. The category Fun(C, Ab) has a projective generator.

Indeed, Z[C] is a projective generator of A. It follows that TZ[C| is a
projective generator of Fun(C, Ab). This functor is none other than the

functor Y ~» > Hom¢(X,Y).
Xeoc

11. LEFT EXACT FUNCTORS WITH VALUES IN AN ABELIAN CATEGORY

We suppose now that C is an abelian category whose set of morphisms
and the set of objects belong to 4. If D is an abelian category, we want to
study here the full sub-category of Fun(C, D) whose objects are the left exact
functors from C to D. This full sub-category will be denoted by Sex(C, D)
(S means sinister, ex means exact).

Proposition 4. Let C be an abelian — category whose set of morphisms and
the set of objects belong to . Let D be an abelian — category with generators
and exact inductive limits. For any functor from C to D there exists a functor
ROF and a morphism p : F — ROF which satisfy the following conditions:

The functor ROF is left exact; furthermore, if o : F — G is a morphism
from F to a left exact functor G, there exists a morphism

7:R'F = G
and only one such that we have o = 7 o p.

We have already proven the proposition 4 when C has enough injective
objects (cf. part I, proposition 15). It is well-known that on the other
hand we can define the derived functors of F' under the assumptions of the
proposition 4. In this study, we are interested only in zeroth derived functor
of F'; we use a method that BUCHSBAUM uses in the construction of the
satellite functors.

Some lemmas will precede the proof of the proposition 4: for any object
A of C, we consider the set S4 of the exact sequences of the form

S0 ALSMILIN=O
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If

S=0—=ASMSN-0) and ' =(0— A% M2 N —0)
are two elements of Sy, we will write S < S if there is a diagram of the type
0 A—>M-—">N 0
(%) \LIA \Lm ln

0 AL M L~ N 0

Lemma 5. The relation S < S’ is a filtering (right) preorder relation, that is,
a binary relation which is reflexive and transitive with the addition property
that every pair of elements has an upper bound.

It is clear that we are dealing with a preorder relation. So let

v

S=(0=ASMSN-0) and = (0= A% M 2 N —0)

be two elements of S4. We consider the commutative diagram

A—"
u v
MM, M

According to the end of the paragraph 7 (part I), jas and j},, are monomor-
phisms. We can deduce that the sequence

S = (O%Aﬂ MY AM'" — Coker (jar ou) — 0)

belongs to S4 and that we have S > S, 8" > §'.

If F is a functor from C to D, and if S < S, the diagram (%) implies the
equality (Fn)o(Fv) = (Fv')o(Fm). It follows that F'm induces a morphism
f from Ker (Fv) to Ker (Fv').

Lemma 6. The morphism f does not depend on the choice of m and of n.

Indeed let m’ : M — M’ be another morphism such that we have v’ =
m/ owu; let n : N — N’ be the unique morphism such that n’ o v is equal to
v'om’. Then we have (m’—m)ou = 0; whence the existence of aw : N — M’
such that m’ —m = wow. It follows that F'm’ is equal to Fm+ (Fw)o (Fv).
The lemma results from that (Fw) o (Fv) vanishes on Ker (Fv).

From now on we denote by F'S the object Ker Fv and by F(S’,S) the
morphism f from Ker Fv to Ker Fo'. If S < S and S’ > S, the previous
lemma shows that F(S’,S) is an isomorphism whose inverse is F(S,5’).
Hence it is allowable to lay down the definition

(RF)A = lig FS.
SESA
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Suppose we are in addition given a morphism g : A — A’. For any sequence
S=0—-A% M5 N-=0)

we have the commutative and exact diagram which follows (end of § 6, part
I):
0 A—>M—"—=N 0

lf ijﬁw llN
3

00— A —3 A M —N—0

Let fS be the sequence of the second row. The morphism Fj}, induces
obviously a morphism from F'S to F/(fS). We denote by F(f,S) the composite
of this morphism and the canonical morphism from F(fS) to (RF)A’. The
reader verifies the relations F(f,S) = F(f,S") o F(5',S) if S > S. By
passing to the limit, the morphisms F(f,S) thus define a morphism (RF) f
from (RF)A to (RF)A’.

Lemma 7. a. The maps A — (RF)A and f — (RF)f define a functor

RF from C to D.

b. RF vanishes if and only if the following conditions are satisfied: for
any object A of C, FA is the sup of Ker (Fi) when i runs through
the monomorphisms of source A.

c. The functor F ~~ RF is left exact.

d. If ¢ :+ F — G is a functorial morphism and if R(Cokery) is zero,
then R(CokerRyp) is zero.

e. The functor F' ~~ RF commutes with the inductive limits.

We leave to the reader the verification of (a), (b), (e). Prove (¢): for this

let 0 — F' 2 F % F" 5 0 be an exact sequence of functors from C to D.
For any object A of C and any element S of Sy,

S=0—-A5% M35 N —0),

we have the diagram

M M
0— s P ey Y py
e e e
N N
0 N 2N oy YNy 0

The morphisms ¢(M) and (M) thus induce an exact sequence
0—F'S—FS—F'S

(4], lemma III, p. 32). The assertion (c) results from this exact sequence
by passing to the inductive limit.

For the sake of clarity, we prove the assertion (d) only when D is the
category Ab of abelian groups; the condition R(Cokerp) = 0 can then
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be stated as follows: for any object A of C and any a € GA, there is a
monomorphism ¢ : A — B and a b :€ F'B such that we have

(Gi)(a) = ¢(B)(b)

We will see that this property is still true when we replace F' by RF, G by
RG and ¢ by Rep:
Indeed let a be an element of (RG)A. There is an exact sequence

S=0—-A5 ML N-=0)

and an element o’ of GS whose image under the canonical map from GS to
(RG)A is a. So there is also a monomorphism j : M — B and an element
b' of FB such that we have (Gj)(a’) = ¢(B)(b). If b is the image of b’ in
(RF)B and if i = j o u, we find the sought equality

(RG)i)(a) = ((Re)(B))(b)
Lemma 8. If g: A — A is a monomorphism, so is (RF)g.

Indeed associate with any sequence S = (0 - A % M % N — 0) the
diagram

0 A—>M—"=N 0
QT I8Y; T T
, uog pl\l\/;[/ ,
0 A M N 0

where N’ is the cokernel of uog. If g~1S denotes the sequence of the second
row, it is clear that the sequences ¢g~'S constitute a cofinal sub-set of Sy.
We conclude that (RF)A’ is equal to ligls(g_lS) and that (RF)g is the
inductive limit of the canonical monomorphisms of F(g~1S) in FS. This
proves the lemma.

Lemma 9. We suppose that for any monomorphism g of C, Fg is a
monomorphism. Then:
a. The morphisms F(S',S) are monomorphisms.

b. The functor RF is left exact.

To prove (a) we use the notations of lemma 1. If §" > S, the exact
sequence

S = (0—>AM>MZAM’—>Coker jmou—0)

’"dominates’ both S and S’ (i.e. S > S, §” > S§'); in addition F(S”,S) is
induced by the morphism Fjj;. We conclude that F(S”,S) = F(S”,5") o
F(S',S) and F(S',S) are monomorphisms.

Prove (b): let 0 — A’ Iy A% A" =5 0 be an exact sequence of C and let
S=(0—=A% ML N = 0)be an element of S4. We have the following
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commutative and exact diagram:

0 0
r 9 7
0 A A A 0
llA/ U
0—= A 0 I s, A7 0
N—2X N
0 0
With the notations already used, we conclude from the exact diagram
0—— F(f719) FS F(gS)
0——=F(f719) FM F(MX4A")

By passing to the limit, it results the following exact sequence:

0— (RF)A" — (RF)A — lim F(g5)
S

29

Furthermore, the assertion (a) shows that the canonical morphism from

lim  F (¢9S) to (RF)A” is a monomorphism; this completes the proof.

We are now able to prove the proposition 4: let A be an object of C and
o be a functorial morphism from F' to a left exact functor G. For any exact

sequence
S=0—-A5 ML N-=0)
we have the commutative diagram

Fv

Y A o
\LU(M) ia(N)
0 GA - oM G GN

Let pr(A, S) be the morphism from F'A to F'S which is induced by F,,. There
is one morphism 7r(A,S) and only one whose composite with pr(A4,S) is
equal to o(A). By passing to the inductive limit we see that there is one
morphism 77(A) and only one from (RF)A to GA whose composite with
pr(A) = lim pp(A4,S) is equal to o(A). If the functor RF is left exact, the
proposition is proved. Otherwise, we repeat the operation. The lemmas 4
and 5 show that the functor R(RF) is left exact. In any case we can choose

RYF equal to R(RF), p being equal to prr o pr.
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Proposition 5. Suppose the hypothesis of the proposition 4 are satisfied.
The category Sex(C,D) of left exact functors from C to D is an abelian
category with exact inductive limits. If D is a category with projective limits,

so0 is Sex(C, D).

It is clear that Sex(C,D) is an additive category. If ¢ : FF — G is
a morphism of left exact functors, Ker ¢ is the left exact functor M ~~
Ker ¢(M). Similarly, if H is the functor M ~ Coker p(M), the left exact
functor Coker ¢ is none other than RYH. This shows that the axiom C Ab 1
is verified.

Show that the axiom C Ab 2 is verified: for this, we denote by K and
L the functors M ~» Coim ¢(M) and M ~» Im ¢(M) respectively. The
canonical morphisms ¥(M) from Coim ¢(M) to Im ¢(M) define a functorial
isomorphism ¥ from K to L. Furthermore, we have the exact sequences of
functors:

0—-Kerpy-F—->K—-0, 0-L—-G—H-—=O0.
Since R = Ro R is a left exact functor, we have the exact sequences:
0—Keryp—F—RK-—=0, 0—-RL—-G—RH—DO0.

The second exact sequence shows that RCL is none other than Im; in
addition, RVK is equal to Coim ¢ and R’ is the canonical morphism from
Coim ¢ to Im ¢: it’s an isomorphism.

The rest of the proposition is clear.

Corollary 1. The functor F ~ R°F is an exact functor from Fun(C,D) to
Sex(C, D).

We already know that F' ~» RYF is a left exact functor. So it suffices
to prove that R%v is an epimorphism of Sex(C,D) if v is an epimorphism
of Fun(C,D). But the equality Coker v = 0 [in the category Fun(C,D)|
implies, according to the lemma 3(d), the equality R(Coker Rv) = 0 and
R(Coker R(Rv)) = R(Coker R%) = 0.

When C has enough injective objects, the proposition 5 results also from
the proposition 1: indeed, if Z denotes the full sub-category of C formed of the
injective objects of C, the categories Sex(C, D) and Fun(Z, D) are equivalent
(cf. part I, corollary 4).

12. LEFT EXACT FUNCTORS WITH VALUES IN THE CATEGORY OF
ABELIAN GROUPS

In this paragraph, C is always a category whose set of morphisms and the
set of objects belongs to Y. We will complete the study of the preceding
paragraph when D is the category Ab of abelian groups.

If X is an object of C, Hom¢ (X, .) is a left exact functor from C to Ab
which we denote also by X. With these notations, the functor X ~» X from
C° to Fun(C, Ab) is itself left exact.
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Proposition 6. The functor X ~~ X is an exact functor from C° to
Sex(C, Ab). The functors X form a family of generators of Sex(C, Ab).

We already know that X ~» X is a left exact functor from C° to
Fun(C, Ab). It remains to prove that any monomorphism u : X — X’
induces an epimorphism @ : X’ — X. This means that R°(Coker ) or
R(Coker %) is zero, which can thus be stated as: for any object A of C and
any a € X A, there is a monomorphism i : A — B and a b : X’B such that
we have

(Xi)(a) = a(B)(b)

This last assertion is almost clear. Finally, the second part of the propo-
sition offers no difficulty, because X already form a family of generators of
Fun(C, Ab).

Corollary 2. Any injective object F' of Sex(C, Ab) is an exact functor from
C to Ab.

Indeed, if F' is an injective object, the functor X ~» FX is the composite
of two exact functors X ~» X and G ~» Hom(G, F)).

Corollary 3. In the category Sex(C, Ab) any sub-object of a representable
functor is an upper bound of representable functors.

Indeed let Y be an object of C, and let i : F — Y be a non zero
monomorphism of Sex(C, Ab). According to the proposition 6, there is a
non zero morphism ¢ : X — F; in addition Im ¢ = Im 40 ¢ is representable,
which proves that F' contains non zero representable sub-objects. I claim
that the upper bound G of these sub-objects is F': otherwise we can choose
© in such way that Im ¢ is not a sub-object of G: this is absurd.

13. NOETHERIAN CATEGORIES

Let C be an abelian category. An object M of C is said to be noetherian
(resp. artinian) if any ascending sequence (resp. descending) of sub-objects
of M is stationary. The following lemma is easy to prove:

Lemma 10. Let M be an object of C and let N be a sub-object of M. Then
M is noetherian (resp. artinian) if and only if N and M /N are noetherian
(resp. artinian).

Lemma 11. Let C be a category with generators and exact inductive limits,
let M be a noetherian object of C and let (P;)ier be an ascending filtering
family of sub-objects of an object P (I € $1). Then the map

¢ sup Hom(M, P;) — Hom(M, sup ;)

is bijective.
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It suffices to show that ¢, is surjective. So let u be a morphism from
M to sup P;. The equality v~ (sup P;) = supu~!(P;) shows that u=1(P;) is

7 (2 (2
equal to M for some i large enough. This proves the lemma.
We prove in the same way the dual statement:

Lemma 12. LetC be a category with cogenerators and exact projective limits,
let M be an artinian object of C and let (P;)ier be an decreasing filtering
family of sub-objects of an object P (I € $1). Then the map

w2 sup Hom(P/P;, M) — Hom(P/ inf P;, M)
i i

We will now say that an abelian category C is noetherian (resp. artinian)
if the following conditions are satisfied:

e Any object of C is noetherian (resp. artinian).
e There is a family (M;);cr of objects of C such that I is an element of
i and that any object of C is isormorphic to an object of this family.

The second condition simply ensures that the universe il was chosen large
enough. It implies that any noetherian category (resp. artinian) is equivalent
to a noetherian category (resp. artinian) whose set of objects belong to 4.
An abelian category which is at the same time noetherian and artinian is
called finite: all the objects of such a category are of finite length.
We say that an abelian category C is locally noetherian if the following
conditions are satisfied:

e (C is a category with exact inductive limits.
e There is a family (M;);er of noetherian generators of C whose set of
indices [ is an element of L[

The second condition means that the noetherian objects of C form a noether-
ian category, and that any object M is the upper bound of the noetherian
sub-objects. If there is a family (M;);cr of generators of finite length, we say
that C is locally finite.

Now let C be an artinian category and suppose, for simplicity, that the set
OC of objects of C is an element of [. If X is an object of C, any increasing
filtering family of representable sub-objects of X contains a maximal element.
The corollary 3 implies that any sub-object of X belonging to Sex(C, Ab) is
representable. Then any quotient of a representable functor is representable,
any representable functor is noetherian, any functor is an upper bound of
representable functors, any noetherian functor is representable.

Proposition 7. IfC is an artinian category, Sex(C, Ab) is a locally noether-
1an category.

We have already established the proposition when the set OC belongs
to Y. In the general case C is equivalent to an artinian category C’ such
that OC’ belongs to il. Moreover the category Sex(C, Ab) is equivalent to
Sex(C’, Ab). The proposition results
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Theorem 1 (cf. [11], [19]). Let C be a noetherian category. There is a locally
noetherian category D such that C is equivalent to the category of noetherian
objects of D. Furthermore, this condition determines D up to an equivalence.

Indeed, the dual category C° is artinian. It results from the preced-
ing remark that Sex(C?, Ab) is a locally noetherian and that the functor
X ~» Homge(., X) defines an equivalence from C to the category formed of
noetherian objects of Sex(C?, Ab).

It remains to show the uniqueness of D by showing that D is necessarily
equivalent to the category Sex(C° Ab). We suppose for simplicity that C is
the category of noetherian objects of D. We then associate to each object
X of D the left exact functor Y ~» Homp(Y, X) from C° to Ab; this defines
a functor T': X ~» Homp(., X) from D to Sex(C° Ab). We finish the proof
by showing that T" defines an equivalence:

e For this, we show first that any object F of Sex(C°, Ab) is isomorphic
to a functor of type T'X = Homp(., X): this is obviously true when
F'is noetherian; in the general case, the set of noetherian sub-objects
can be indexed by a set belonging to 4[. It then results in the existence
of an inductive system of noetherian objects of D, let (X;,wj;)jics
be such that J is an element of 4, that the u;; are monomorphisms,
and that F' is isomorphic to the inductive limit of the functors T'Xj.
If X is the inductive limit of the X;, the equality

T(sup X;) =supTX; (lemma 11)
i i

shows that F' is isomorphic to T'X.

e We then show the equality Homp (X, Z) = Hom(TX,TZ): if X and
Z are noetherian, this results from the corollary of the proposition
1 (part I). We go from there to the case where X is noetherian and
Z is arbitrary: if Z’ is a noetherian sub-object of Z, we have the
diagram

Hom(X,ig,)
Homp (X, Z") Homp(X, Z)

T(X’Z/)i Hom(T X, TiZ,) lT(X’Z)

Hom(TX,TZ") Hom(TX,TZ)

The map T(X, Z’) is an isomorphism. By passing to the inductive
limit of the noetherian sub-objects of Z, we see that T(X,Z) is
bijective (lemma 11). The general case is then proved by a similar
argument [if X and Z are arbitrary, consider the projective system
formed of Hom(X’, Z) where X’ runs through the noetherian sub-
objects of X].

Lemma 13. A functor F' of Sex(C°, Ab) is exact if and only if F is an injec-
tive object of Sex(C°, Ab). (We always suppose the category C is noetherian. )
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The corollary 2 proves half of this lemma. Conversely, suppose that F' is
exact. We have seen that X forms a family of generators and that any sub-
object of X is representable (C is a noetherian category). Any monomor-
phism i : G — X thus induces a surjection from FX = Hom(X,F) to
Hom(G, F'). The assertion results therefore from a lemma of GROTHENDIECK
([10], lemma 1 of the theorem 1.10.1).

In the equivalence between D and Sex(C°, Ab), the injective objects of D
correspond to the exact functors and the inductive limits of D correspond to
the inductive limit of functors. We then deduce the following corollary.

Corollary 4. Any inductive limit of injective objects of D is an injective
object. If (Xi, uji)ijer is an inductive system of D and if Y is a noetherian
object, we have the equality

HomD(Y, hﬂ Xz) = @HOHID(Y, Xz)

Corollary 5. Any locally noetherian category is a category with projective
limits.

Because it is so for the category Sex(C°, Ab).
We leave it to the reader to formulate the dual statements of the preceding
statements.

14. INJECTIVE ENVELOPES IN ABELIAN CATEGORIES

Let C be an abelian category and let M be an object of C. An essential
extension of M is a monomorphism ¢ : M — P which satisfies the following
condition: if f is a morphism of source P and if f o is a monomorphism,
then f is a monomorphism.

It’s the same to say that a sub-object @ of P is zero if Q N (M) is zero.
If M is a sub-object of P, and if 7 is the canonical monomorphism from M
to P, we say that P is an essential extension of M.

Lemma 14. Let i and j be two monomorphisms, 1 : M — P, j: P — Q.
Then j o is an essential extension if and only if j is an essential extension
of P and i is an essential extension of M.

Indeed, suppose that joi is an essential extension of M: if f is a morphism
of source Q and if foj is a monomorphism, then fojoi is a monomorphism;
we can say that f is a monomorphism and that j is an essential extension
of P.

Now let R be a sub-object of P such that RN i(M) = 0; let f be the
canonical morphism from @ to @/j(R). Under these conditions, f o joi is
a monomorphism and R is zero. This shows that ¢ is an essential extension
of M.

The converse is clear.

Lemma 15. Leti: M — P, j: N — Q be two essential extensions. The
morphism i ®j: M & N — P ®Q is an essential extension of M & N.
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We may suppose, for simplicity, that M and N are two sub-objects of P
and Q, with ¢ = iﬁ, j= z% Let R be a non zero sub-object of P& Q. Then
one of the objects gp(R) or qg(R) is not zero. If gp(R) is not zero, so are

gp(R)NM and Ry = ¢p' (M) N R. If R is contained in qgl(N), we showed
that RN (M @ N) is non zero. Otherwise, g, (1) is not zero and "intersects’

with N; the sub-object Ry = qgl(N) N Ry cannot be zero. In all the cases,
a non zero sub-object of P @ Q ’intersects’ with M & N, which was needed
to prove.

A sub-object N of M is said to be irreducible in M if N is different from
M and if, for any couple (P, Q) of sub-objects of M contained in N, the
relation PN @Q = N implies P = N or Q = N. It’s the same to say that
M /N is an essential extension of any non zero sub-object. If O is irreducible
in M, we also say that M is coirreducible.

Consider an object M of C and r sub-objects Ny, Na, ---, N,. Let p;
be the canonical epimorphism from M to M/N; and let ¢; be the canonical
projection from M/Ny & M /Ny @ --- @ M/N, to the [ — th factor M/Nj.
There is one morphism u from M to M /Ny @ ---@ M/N, and only one such
that ¢; o u is equal to p; for any .

Lemma 16. If the sub-objects N; are irrducible in M, if O is the intersection
of the N; and is not the intersection of less than v of the Ny, then u is an
essential extension of M.

Indeed let P, be the intersection of N,, for m # . The morphisms ¢, o u
cancel Py if m # [ and ¢; o u induces a monomorphism wu; from P, to M/Nj.
The canonical monomorphisms from P, to M induce a morphism v from the
direct sum ;P to M; moreover, it is clear that u o v is none other than
the morphism @;u; from @®;P; to @;M/N;. Since u; is an essential extension
of P, for any [, the previous lemma shows that ®;u;, v and v are essential
extensions.

If I is an injective object of C, any monomorphism v : I — P induces an
isomorphism from I to a direct factor of P. If @ is a complement of u([l),
the intersection @ Nwu(I) is zero. It follows that w can only be an essential
extension of [ if u is an isomorphism. We will now say that a monomorphism
1 : M — I is an injective envelope of M if i is an essential extension of M
and if I is an injective object of C.

Proposition 8. Let i : M — I be an injective envelope of M and let
j: M — J be a monomorphism. The following conditions are equivalent:

a. The morphism j is an injective envelope of M

b. The morphism j is an essential extension of M and any essential
extension of J is an isomorphism.

c. The object J is injective; moreover, for any monomorphism h from
M to an injective H and for any morphism l from H to J such that
loh=j, 1 is an epimorphism.
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If these conditions are satisfied, there is an isomorphism u from J to I such
that wo j =1.

The implication (a) = (b) is clear. Prove that (b) implies (a): since I is
injective, there is a morphism w from J to I such that w o j = ¢; since j is
an essential extension, w is a monomorphism, hence an essential extension
according to the lemma 14; it follows that v is an isomorphism.

Prove that (a) implies (¢): since H is injective, there is a morphism v from
I to H such that v o4 = h. The morphism [ o v is a monomorphism from
I to J, hence an essential extension of I, hence an isomorphism. It follows
that [ is an epimorphism.

The last assertion has been proved along the way.

If ¢ : M — I is an injective envelope of M, the previous proposition shows
that the object I is determined up to an isomorphism. Although in general
this isomorphism is not unique, we will sometimes say improperly that I is
the injective envelope of M. If j : N — J is another injective envelope, we
say that M and N have the same envelope if I is isomorphic to J.

Proposition 9. Let My, ---, M, be r objects of C; for any integer i between
1 and r, let u; : M; — I; be an injective envelope of M;. Then the morphism
Diu; from ©;M; to B;1; is an injective envelope of ®; M.

Indeed, any direct product of injective objects is an injective object: this
shows that @;I; is an injective object. Moreover, the lemma 15 shows that
@®;u; 1s an essential extension.

In the following corollary we use the notations of the lemma 16.

Corollary 6. Suppose the hypothesis of the lemma 16 is satisfied and for
any i let u; be an injective envelope of M/N;. Then (®;u;) ou is an injective
envelope of M.

The previous corollary discovers the connection between the notion of in-
jective envelope and the decomposition of O as an intersection of irreducible
sub-modules in M.

We will now say that C is a category with injective envelopes if, for any
object M, there is an injective envelope of M.

Proposition 10. The following two assertions are equivalent:

a. C is a category with injective envelopes.

b. For any object M of C, there is a monomorphism from M to an
injective object; furthermore, if M is a sub-object of an object N,
there is a sub-object Q of N, such that M N Q is zero, and which is
mazimal among the sub-objects of N satisfying this condition.

(a) = (b): Because if M is a sub-object of N and if ¢ : M — [ is
an injective envelope of M, there is a morphism ¢ from N to I such that
i = p ol It suffices then to put Q = Ker ¢.

(b) = (a): Indeed let j be a monomorphism from M to an injective J;
let @ be a sub-object of J which is maximal for the equality @ Nj(M) = O.
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Similarly, let I be a sub-object of J, containing M and maximal for the
equality 7NQ = O (to see that a such I exist, consider the quotient J/M). If
p is the canonical epimorphism from J to J/Q, poj is an essential extension of
M and p induces an isomorphism from I to p(I); the isomorphism conversely
extends to a monomorphism h from J/Q to J; then h(J/Q) is an essential
extension of I. Thus [ is equal to h(J/Q); we have I +Q =J, INQ = O
and the monomorphism from M to I which is induced by j is an injective
envelope of M.

Proposition 11 ([17]). Let C be an abelian category with injective envelopes,
let M be a non zero object of C and let i : M — I be an injective envelope of
M. The following assertions are equivalent:

a. M is coirreducible.

b. I is indecomposable.

c. I is the injective envelope of any non zero sub-object of I.
d. The ring of endomorphisms of I is a local ring.

The equivalence of the assertions (a), (b), (¢) is clear. We simply prove
that (b) and (c¢) implies (d); indeed, if w : I — I is a monomorphism,
u(I) is a direct factor of I; the assertion (b) thus implies that u is an
automorphism. Therefore it suffices to show that Ker u # O and Ker v # O
implies Ker (u + v) # O: but according to (c¢), Ker uNKer v # O and
Ker (u + v) contains this intersection.

Corollary 7. Let M and N be two irreducible objects of a category with
injective envelopes. Then M and N have the same injective envelope if and
only if M contains a sub-object M', non zero and isomorphic to a sub-object

N’ of N.

If N is a sub-object of M, we sometimes call complement of N in M any
sub-object @ of M which is maximal for the equality M N@Q = O. If such a
Q) exist, the complements of () which contains N are the elements maximal
of the set of sub-objects of M which are essential extensions of N. This
situation is often exploited. In particular the reader verifies that the direct
factors of an injective object I coincide with the sub-objects of I 'which are
complement of one of their complements’.

Proposition 12. Let C be an abelian category with injective envelopes, let
M be an object of C and let N be a sub-object of M. Two complements of
N in M have the same injective envelope. If Q is a complement of N in M,
the injective envelope of M is isomorphic to the direct sum of the injective
envelope of N and the injective envelope of Q.

Indeed let @ and Q' be two complements of N in M, and let P be a
maximal element of the set of sub-objects of M which are essential extensions
of N. Then P is a complement to both Q and @Q’. It follows that ) and Q'
have the same injective envelope as M /P, which proves the first assertion.
On the other hand, N + @ is isomorphic to the direct sum of N & @ and M
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is an essential extension of V + ). It follows that M has the same injective
envelope as N @ @Q; hence the proof thanks to proposition 9.

We leave it to the reader the research of the dual of the preceding state-
ments. Let’s just say that an essential covering of M is an epimorphism
p : P — M which satisfies the following condition: if f is a morphism of
target P, and if po f is an epimorphism, then f is an epimorphism. It’s the
same to say that a sub-object Q' of P is equal to P providing that Q' +Ker p
is equal to P.

The dual notion of that of injective envelope is the notion of projective
cover. Similarly, if M is the quotient of P by a sub-object M’ a complement
of M is a quotient P/Q’ such that Q" 4+ M’ is equal to P and that Q' is
minimal among the sub-objects of P satisfying this condition.

15. CATEGORIES WITH GENERATORS AND EXACT INDUCTIVE LIMITS

In this paragraph, we suppose that C is an abelian category with generators
and exact inductive limits; the letter U denotes a generator of C.

Lemma 17. Any sub-object M of an object N has a complement Q in N.

Indeed, let E be the set of sub-objects P of N such that M N P = O.
It suffices to show that E is an inductive ordered set: for this, let F' be a
totally ordered sub-set of E. Since there is a set belonging to 4 and having
the same cardinal as F', the upper bound S of the elements P of F' is defined.
Furthermore we have the formulas

SNAM=(sup)NM =sup(PNM)=0
PEF PEF

This proves the lemma.

Theorem 2. Any abelian category with generators and exact inductive limits
s a category with injective envelopes.

For any object M of C there is indeed a monomorphism from M to an
injective object: this fact is proved in [10], theorem 1.10.1. It remains valid
under our assumptions. Thus the theorem results from the proposition 10
and from the lemma 17.

Proposition 13. Let I be an ordered set belonging to U. Suppose we are

given two increasing maps o — My, a — N, from I to the set of sub-objects

of an object P; suppose that M, is a sub-object of N for each «, and that

N, is an essential extension of M. Then sup N, is an essential extension
[e%

of sup M.
«
Indeed let @@ be a non zero sub-object of sup N,. The formula
(0%

Q = Q Nsup N, = sup(Q N Ny)
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shows that Q N N, is non zero for at least one a. It follows that
QN M, = (QNN,)N M,
is not zero. Thus the sub-object @ intersects sup M, with a non zero sub-
(0%

object.

Corollary 8. If J is a set belonging to A, and if (u;)ics is a family of
essential extensions, then Y;u; is an essential extension.

The corollary has already been proved when J is finite. We go from there
to the general case thanks to the proposition 13.

We end this paragraph with an application of the previous theorem, or
rather the theorem 1.10.1 of [10]. The statement and the proof are due to
students of KEILENBERG.

Theorem 3. Let C be an abelian category whose set of objects is an element
of U. There is an exact and faithful functor from C to the category Ab of
abelian groups.

Recall that an exact functor is said to be faithful if F'f is non zero for any
non zero morphism f. It is the same to say that F.X is not zero if X is a
non zero object.

We have seen that Sex(C, Ab) is an abelian category with exact inductive
limits. Furthermore, the functor

Y~ ) Hom(X,Y)
Xeoc

is a projective generator U of Sex(C, Ab). If i : U — F' is a monomorphism
from U to an injective F, the corollary 2 shows that F' is an exact functor.
In addition i(Y) is, for any object Y of C, a n injective map from U(Y) to
F(Y); since UY is not zero, neither is F'Y. This proves that F is faithful.

The theorem 3 is frequently used to extend to the abelian categories of
the results proved for abelian groups; we give an example: consider in C the
exact and commutative diagram (¥).

A——-B——C
* R
0— A > p Yo

The morphisms u and v induce morphisms u” : Ker a — Ker b and v” :
Ker b — Ker c¢. We claim that the sequence (J¥) is exact:

(k) Kera 2 Ker b s Ker c.

Since F' is an exact and faithful functor, it suffices to verify the exactness of

the sequence (J¥ ¥ ):
(kk*k) FKera 2% FKer b 2% FKer c.
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However, the sequence (k% %) can be constructed from (J v % %) just like
(Y% ) has been constructed from (¥ ); thus it suffices to prove our assertion
when (%) is a diagram of abelian groups, which is easy to do.

FA- . pp I, pC
(****) lFa Fb ch

0—=FA Y ppr V. per
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Part 3. Localization of abelian categories

Let E be a topological space, U be an open subset of F, A the category
of sheaves of abelian groups over E and let B be the category of sheaves of
abelian groups over U. Let T': A — B be the functor M ~» M|U, where
M|U denotes the restriction of M to U; finally let S be the direct image
functor from A to B. It is well known that T is exact, that S is adjoint to T'
and that T' o0 S is isomorphic to the identity functor of B. We study here the
functors T': A — B and S : B — A which have the properties that we have
just stated, A and B being replaced by any abelian categories. The results
of this part will be used at part IV.

The categories we consider in this part are not necessarily {l—categories.
However, we will use the results of the part I by replacing, if needed, the
universe 4 with a larger universe.

16. QUOTIENT CATEGORIES

Recall that a full sub-category C of an abelian category A is called épaisse
if the following condition is satisfied [10]: for any exact sequence of A of the
form (J), M is an object of C if and only if M’ and M" are objects of C:

u

(k) 0=-MEH5MS M -0
The data of A and of C allows to construct a new abelian category that we
denote by A/C which we call the quotient category of A by C [10]:

e The objects of A/C coincide with the objects of A.

e If M and N are two objects of A, M’ and N’ two sub-objects of M
and IV, the canonical morphisms from M’ to M and from N’ to N
define a linear map

Hom 4 (i57, pi /) - Homa(M, N) = Hom4(M', N/N').

When M’ and N’ go through the sub-objects of M and NN such that
M /M’ and N’ are objects of C, the abelian groups Hom4(M', N/N")
clearly define an inductive system. We will put by definition:
Hom 4,c(M, N) = lim Hom4(M', N/N').
M/’ ,N'
The set Hom 4,c(M, N) is hence provided with a structure of abelian
group.
e It remains to define the law of bilinear composition:
HomA/C(M, N) X HOIIlA/c(N, P) — HomA/C(M, P)

For this, let f be an element of Hom 4/c(M, N) and let g be an

element of Hom 4 /¢ (N, P). The element f is the image of a morphism
f: M — N/N' where M/M' and N’ are objects of C. Similarly, g
is the image of a morphism f : N” — P/P’ where N/N" and P’ are
objects of C. If M" denotes the inverse image f~*((N” + N')/N’), it
is easy to see that M /M" belongs to C; we denote by f’ the morphism
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from M" to N”+ N'/N’ which is induced by f. Similarly, g(N”"NN")
is an object of C; if P” denotes the sum P’ + g(N” N N'), it is easy
to see that P” belongs to C; we denote by ¢’ the morphism from
N"/N" N N’ to P/P" which is induced by g.

Let h be the composite of f/, the canonical isomorphism from N”+
N'/N"to N"/N"N N’ and of ¢’. The image h of h in Hom 4,c(M, P)
depends only on f and g and not of f and g. It is thus lawful to
define the law of composition of .A/C by the equality go f = h. This
law of composition is bilinear; they make A/C a category.

In the following, the letter T' denotes the functor (called canonical) from A
to A/C which is defined in the following way: T'M = M for any object M of
A; if f: M — N is a morphism of A, T'f is the image of f in the inductive
limit hngomA(M’, N/N').

Lemma 1. A/C is an additive category and T is an additive functor from

A to AJC.
This lemma is a direct consequence of the propositions 2 and 3 of part I.

Lemma 2. Let v : M — N be a morphism of A. The morphism Tu is zero
(resp. a monomorphism, resp. an epimorphism) if and only if Im u belongs
to C (resp. Ker u belongs to C, resp. Coker u belongs to C).

If Im u belongs to C, the image of u in Hom 4(M, N/Im u) is indeed zero.
The same goes, a fortiori, for the image of u in the inductive limit of groups
Hom 4(M’', N/N"). Conversely, if Tu is zero, we can choose the sub-objects
M’ and N’ in such a way that the morphism from M’ to N/N’ which is
induced by w, is zero. This means that u(M’) is contained in N’ and belongs
to C. Since we have on the other hand an exact sequence of the form

0— u(M') —Imu— M/(M +XKeru) =0

it follows that Im u belongs to C.

Now suppose that T'u is a monomorphism; let ¢ be the canonical morphism
from Ker u to M. Since u ot is zero, the same goes for Tu o T%. We can
say that T7% is zero, hence that Ker u = Im ¢ € C. Conversely, suppose that
Ker u belongs to C. Let f : TP — TM be a non zero morphism of A/C: this
morphism is the image of a morphism f : P’ — M /M’ where P/P" and M’
belong to C. Replacing M’ by M’ + Ker u, we can assume in addition that
M’ contains Ker u. In this case, u induces a monomorphism u’ from M /M’
to N/u(M'). Since f is non zero, Im f and Im (u’ o f) do not belong to C.
This shows that (Tu) o f is non zero and that T is a monomorphism.

We prove in an analogous way the last assertion of the lemma 2.

Lemma 3. Let u: M — N be a morphism of A, i : K — M be the kernel
of u and let p: N — C be the cokernel of u. The morphism Tu has a kernel

(resp. a cokernel); furthermore, Tt (resp. Tp) induces an isomorphism from
TK to the kernel of Tu (resp. from the cokernel of Tu to TC').
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We already know that 7' is a monomorphism. Thus let f be a morphism
from TX to TM such that Tw o f is zero: we must prove the existence of a
morphism g : TX — TK such that we have Tiog = f.

However, f is the image of an element f of Hom 4(X’, M/M’) where X/X'
and M belong to C. We thus have the following commutative diagram:

0 L LK u M N

Pk

0—= K/K N M -~ M/M' —% Nju(M')

where p, ¢ and 7 are the canonical morphisms. Since Two f is zero, the image

of X’ under u’ o f belongs to C. If X” denotes the inverse image f~!(Im i),

it follows that X’/ X" and X/X"” belong to C. In addition, the restriction of

f to X" is the composite of a morphism g : X” — K/K N M’ and . If g is

the image of g in Hom 4,¢ (X, K'), we have the required equality T o g = f.
The second part of the lemma is proved in the ’dual’ way.

Lemma 4. Letu : M — N be a morphism of A. Then T is an isomorphism
if and only if Ker u and Coker u belong to C.

If Tw is an isomorphism, Tu is both a monomorphism and an epimor-
phism. According to the lemma 2, it follows that Ker u and Coker u are
objects of C. Conversely, suppose the latter condition is satisfied; let ¢ be
the canonical epimorphism from M to Coim wu, j be the canonical morphism
from Im » to N and let ¥ be the canonical isomorphism from Coim u to
Im wu.

The identity morphism of Coim w is an element of Hom 4(Coim u, M /i(K))
(the notations are those of lemma 3). This element has an image ¢ in
Hom 4 /¢(Coim u, M) and it is clear that g is an inverse morphism of Tg.
This shows that T'q is an isomorphism. In the same way, Tj is an isomor-
phism. It follows that Tu = T'j o T o T'q is an isomorphism.

Proposition 1. If C is an épaisse sub-category of A, the category A/C is
abelian. Furthermore, the canonical functor from A to A/C is exact.

Indeed let f : TM — TN be a morphism of A/C. We show that f has
kernel, cokernel, coimage, image and that the canonical morphism from the
coimage to the image is an isomorphism.

Since f is the image of an element f of Hom_4(M’, N/N'), where M /M’
and N’ are objects of C. We deduce from the commutative diagram

M TN
Ti%’ T iqu/ N/

™ —LT(N/N)
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where Ti%, and Tq% N e isomorphisms. This diagram shows that f has a
kernel, cokernel, ..., if and only if so is T'f. In other words, it is permissable
to assume that f is of the form T'f.

In this case the lemma 3 shows that f has kernel, cokernel, coimage, image.
We denote by ¢, 7 and 9 respectively the canonical morphisms from M to
Coim f, from Im f to N and from Coim f to Im f. The lemma 3 shows
that T'¢ induces an isomorphism ¢; from Coim 7'f to T(Coim f); similarly,
T'j induces an isomorphism from 7'(Im f) to Im T'f. Finally, it is easy to
verify that the canonical morphism from Coim T f to Im T'f is the composite
j1 0T o g;. This morphism is thus an isomorphism.

The last assertion of the proposition 5 results directly from the lemma 3.

Corollary 1. Let C be an épaisse sub-category of A and let

0-MLNS P S0
be an exact sequence of AJ/C. Then there is a diagram of the form (1),
commutative, exact, and satisfying the following conditions: u, v and w are

isomorphisms of A/C; in addition, 0 — M, f—1> N1 25 Py — 0 is an ezact
sequence of A.

0 M—t N9 . p 0
(1) iu l lw
0 T N, 2 TP 0

The morphism f is indeed the image of an element f' € Hom 4(M', N/N’)
where M /M’ and N’ belong to C. Since T'f’ is a monomorphism, Ker f’
belong to C. If ¢ denotes the canonical morphism from M’ to Coim f’, it
is thus possible to make the following choices: M; = Coim f’; Ny = N/N’;
f1 = morphism induced by f; P; = Coker fi; g1 = canonical morphism,;
u=(Tq)o (Ti}t) v = Tq%/N,; w = morphism induced by (T'g1) o v.

Corollary 2. Let C be an épaisse sub-category of A and let G be an ezxact
functor from A to an abelian category D. If GM is zero for any object M
in C, there is one and only one functor H from A/C to D such that we have
G=HoT.

Indeed let M and N be two objects of A, M’ and N’ be sub-objects of M
and N such that M /M’ and N’ belong to C. Consider the following commuta-
tive diagram, where ¢ and ¥ denote respectively the maps Hom A(i%,, p% / )

and Homp(Gi%,, Gp%/N,):

G(M,N)

Hom 4 (M, N) Homp(GM,GN)

% (
i G(M',N/N") l
Homy(M', N/N') ~ Homp(GM',G(N/N'))
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It is clear that v is a bijection map; the maps 1yt o G(M’, N/N") thus define
a map H (M, N) from
ligHomA(M’,N/N’)
to Homp(GM,GN). When M and N go through the objects of A (or
of A/C), the maps H(M, N) determine a functor H from A/C to D; this
functor associate with any object M of A/C the object GM of D; it satisfies
the equality G =H o T.
The proof of the uniqueness of H is left to the reader.

Corollary 3. Let C be an épaisse sub-category of A and H a functor from
A/C to an abelian category D. The functor H is exact if and only if the
functor H o T is exact.

It is clear that H o7 is exact if H is exact. Conversely, suppose that HoT'

is exact. If 0 > M i> N % P — 0 is an exact sequence of A/C, we consider

a diagram of the form (1). Since the sequence

0 — HTM, 2225 grny 255 grp - o
is exact, so is the sequence

0= HM 2 g 2% gp 0

17. PROPERTIES OF THE SECTION FUNCTOR

Let A be an abelian category, C be an épaisse sub-category of A, B be the
quotient category A/C and let T be the canonical functor from A to B.

The arguments of the previous paragraph is self-dual: it also applies both
to the category A and to the dual category A°. We will assume at the
beginning of this paragraph that there is a functor S adjoint to T. This
condition is not self-dual; we leave it to the reader the task of formulating
the dual of the statements which will follow.

A functor adjoint to T is defined up to an isomorphism. We choose once
and for all such a functor S and we call it section functor. We use also
the notations of part I, § 6; in particular, the letters ¢, 9, ®, ¥ will have
the following meanings: ¢ is a functorial isomorphism from Hom 4(., S.) to
Homy(T.,.) and 1) is the inverse isomorphism of ¢; the letter ® (resp. the
letter W) denotes the functorial morphism from 7o S to 1p (resp. from 14
to S o T') which is associated to ¢ (resp. to ).

Proposition 2. The section functor is left exact.

The assertion is indeed verified for any (right) adjoint functor (proposition
11, part I).
Lemma 5. If M is an object of A, the following assertions are equivalent:

a. For any morphism u : P — @ such that Ker u and Coker w belong to
C, Hom 4(u, M) is a bijection from Hom4(Q, M) to Hom4 (P, M).
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b. Any sub-object M of M belong to C is zero; furthermore, any ezxact

sequence 0 — M i) N % P — 0 such that P belongs to C, splits
(i.e. f induces an isomorphism from M to a direct factor of N ).

c. For any object P of A, T(P, M) is a bijection from Hom (P, M) to
Homp(TP,TM).

(a) = (b): indeed let L be a sub-object of M belong to C. The identity
morphism 1,/ is the image of an element v of Hom4(M/L, M) under the
map Hom A(p% /L,M ). In other words, we have an equality of the type
lyy=v op%/L; thus p%/L is a monomorphism and L is zero.

Similarly, there is an element g of Hom 4(N, M) such that we have 1;; =
go f. This proves that f is an isomorphism from M to a direct factor of V.

(b) = (c): Since any sub-object of M belonging to C is zero, Homg(T'P, T M)
is indeed the inductive limit of the abelian groups Hom 4(P’, M), when P’
runs through the sub-objects of P such that P/P’ belong to C. In particular,
any element of Homg(T' P, TM) is the image of a morphism f : P’ — M.

Denote by M )/ P the fiber sum of the diagram defined by the mor-
phisms f and illz/. The canonical morphism j,; is a monomorphism and
Coker jjs is a isomorphic to P/P’ (part I, end of § 5). According to the
assertion (b), there is a morphism p from M )", P to M such that we have
pojm = ly; we deduce that f is equal to (po jp) o ig,. This proves that
T(P, M) is surjective.

Now let g be a non zero morphism from P to M. The image of g is non
zero and does not belong to C. It follows that T'g is non zero (lemma 2, § 1).
This proves that T'(P, M) is injective.

(¢) = (a): indeed we have the following commutative diagram:

Hom 4(P, M) ~ Y Homg(TP, TM)
Hom(u,M) T Hom(Tu,TM) T

Hom 4(Q, M) — 2 Hom(TQ, TM)

The maps T'(P, M) and T'(Q, M) are bijective. If Ker u and Coker u belong
to C, Tw is an isomorphism (lemma 4, § 1). Thus the same is true for
Hom(u, M).

We will say from now on that the object M is C — closed if it satisfies the
equivalent conditions of the previous lemma. Our purpose is to prove that
M is C — closed if and only if the morphism W(M) from M to STM is an
isomorphism. For this, we will need the

Lemma 6. For any object N of A/C, SN is C — closed.
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Indeed let’s check the assertion (a) of the lemma 5; we have the following
commutative diagram:

Hom4(P, SN) Ay Homp(TP,N)
Hom(u,SN) T Hom(T'u,N) T
@(Q,M)

Hom(Q, SN) ™=~ Homs(TQ, N)

The maps ¢(P, N) and ¢(Q, N) are bijective. It follows that Hom(u, SN) is
a bijection if T'u is an isomorphism.

Proposition 3. a. The functorial morphism ® is an isomorphism from
TolS tolg.
b. For any object M of A, Ker W(M) and Coker W(M) belong to C.

o(M,N)

Hom4 (M, SN) Homp(TM, N)

Hom (T M,®(N
m /

Homg(TM, TSN)

Prove (a): indeed let M be an object of A and let N be an object of A/C.
We have the above commutative diagram.

The map ¢(M, N) is a bijection as well as T'(M,SN) (lemma 5 and 6).
It follows that Hom (7'M, ®(M)) is a bijection for any M. The assertion (a)
results from that any object of A/C is of the form T'M (corollary 2 of the
proposition 1, part I).

Now let’s prove (b) showing that TW(M) is an isomorphism for any M.
However the composite of TW (M) and ®(T'M) are the identity morphism of
TM (proposition 8, part I). Since ® is a functorial isomorphism, the result
is demonstrated.

Corollary 4. An object M of A is C — closed if and only if UV(M) is an
isomorphism from M to STM.

We already know that ST M is C—closed. So suppose that M is C—closed:
since any object of M belonging to C is zero, Ker W(M) is zero; this proves
that W(M) is a monomorphism. The assertion (b) of the lemma 5 then shows
that Coker W(M) is isomorphic to a direct factor of ST M. Since any sub-
object of STM belonging to C is zero, Coker W(M) is zero; this proves the
corollary.

We will say from now on that an épaisse sub-category C of A is a localizing
sub-category of A if there is a functor S adjoint to T'. In this case, the left
exact functor S o T is called localizing functor. This localizing functor is
exact if and only if S is exact (corollary 3 of the proposition 1).

Proposition 4. IfC is an épaisse sub-category of A, the following assertions
are equivalent:
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a. C is a localizing sub-category of A.

b. Any object M of A contains a sub-object which is mazimal among
the sub-objects of M belonging to C; furthermore, if any sub-object
of M belonging to C is zero, there is a monomorphism from M to a
C — closed object.

(a) = (b):With the usual notations it is indeed clear that Ker ¥ (M) is
maximal among the sub-objects of M belonging to C. If Ker W(M) is zero,
W (M) is a monomorphism from M to a C — closed object. (b) = (a):Let
u : M — N be a morphism of A. We say that u is a C—envelope of M if
N is C — closed and if Ker v and Coker u are the objects of C. We will first
show that any object M has a C — envelope:

Indeed let M’ be the largest sub-object of M belonging to C and let ¢ be a
monomorphism from M /M’ to a C — closed object R. On the other hand let
N be the inverse image in R of the largest sub-object of Coker i belonging
to C. The condition (a) of the lemma 5 shows that N is C — closed. If j is
the morphism from M/M’ to N which is induced by i, then j o p IS @
C — envelope of M.

Now we are able to construct a functor adjoint to T: any object N of A/C
can be considered as an object of A; we choose a C — envelope of this object
and u(N) : N — SN. Any object M of A then gives rise to the following
maps:

om(TM,Tu(N))

Hompg(TM,N) = Homp(T' M, TN Homp(TM,TSN)

T(M,SN)

Hom (M, SN)

These maps are bijective and define a functorial isomorphism from Homp(7'., N)
to Homy(., SN). In other words, Homp(T'., N) is a representable functor and
the proposition results from the proposition 10 (part I).

Now suppose that C is a localizing sub-category of A and consider a
morphism u : M — N of A. Let M’ (resp. N’) be the largest sub-object of
M (resp. of N) belonging to C. Since u(M’) is contained in N’, u induces
a morphism u' from M/M' to N/N'. We then have the following assertion
which will be very useful in the paragraph 3.

Lemma 7. With the above notations and hypothesis, Tu is an essential
extension of TM if and only if v’ is an essential extension of M /M’.

Since Tp% M and T’ p% /N are isomorphisms, Tu is an essential extension
if and only if so is Tw/. In other words, if suffices to establish the proof
when M’ and N’ are zero. We make this hypothesis in the following, and

we choose the sub-objects of TN (resp. of TM) among the T'P, where P is
a sub-object of N (resp. of M).
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Suppose that u is an essential extension of M, and let T'P be a sub-object
of N. If TP is non zero, it is the same for P and for w~1(P). This last
object does not belong to C. Since (Tu)~!(TP) is isomorphic to T'(u=!(P)),
it follows that (Tw)~!(TP) is non zero and that Tu is an essential extension
of TM.

Conversely, suppose that Tu is an essential extension and let P be a non
zero sub-object of N. Since any sub-object of N belonging to C is zero, T'P
can not be zero. It follows that v ~!(P) is non zero.

Lemma 8. Let C be a localizing sub-category of A and let (U;)icr be a family
of generators of A. Then (TU;)ier is a family of generators of A/C.

Indeed let w : M — N be a monomorphism of .4/C, which is not an isomor-
phism. We must prove that the map [[ Hom(7T'U;, u) from [[ Hom(TU;, M)
' i

(2
to [[Hom(TU;, N) is not surjective. However Su is not an isomorphism

7
(prop. 3 (a)). It then follows that the map [ [ Hom(U;, Su) from [ [ Hom(U;, SM)
i i
to [[Hom(U;, SN) is not surjective. The lemma is a consequence of this fact
i
and of the properties of the adjoint functors.

Lemma 9. LetC be a localizing sub-category of a 41— category with generators
A. Then A/C is a $4—category with generators.

Indeed let M and N be two objects of A. According to the proposition 5
(part I), the set of sub-objects M’ of M such that M /M’ belong to C, can be
indexed by a set belongs to {l. It is the same for the set of sub-objects N” of N
which belong to C. It follows that the inductive limit lim Hom, A(M',N/N')
is an object of the category {Ab. This proves that A/C is a U—category.

The existence of generators follow from the lemma 8.

In practice there are a lot of localizing sub-categories. The proposition
which follows can sometimes detect them: let A and B be two abelian
categories, 17 be a functor from A to B and let S; be a functor adjoint
to T1. We keep the letters @1, ¥y, o1, ¥ their usual meaning (cf. part I,

§ 7).

Proposition 5. Suppose, with the above notations, that Ty is an exact
functor and that ®1 is an isomorphism from 110857 to 1g. Then Ker T} is a

localizing sub-category of A and Ty induces an equivalence between A/Ker T}
and B.

Indeed let T' be the canonical functor from A to A/Ker T7; (Ker T} denotes
the épaisse sub-category of .4 whose objects are vanished under 77); let R be
the unique functor from A/Ker T to B such that we have T} = RoT. If fisa
morphism of A, T} f is an isomorphism if and only if T Ker f and T;Coker f
are zero, that is to say if and only if T'f is an isomorphism. We apply this
remark to the particular case where f is the morphism ¥ (M) from M to
(S10Ty)M. Indeed we know that the composite of 77V (M) and ®1(T1 M)
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is the identity morphism of Ty M. Since ®1(71M) is an isomorphism, it
follows that T7%; (M), hence TW (M), are isomorphisms. On the other
hand, since the objects M of A coincide with the objects TM of A/Ker T1,
the morphisms T'W; (M) define an isomorphism from the identity functor of
A/Ker T; to the functor (7'S1)R. We conclude that (7°S1)R and R(T'S}) are
isomorphisms from the identity functors to A/Ker T} and to B. This means
that R and T'S; define an equivalence between .4/Ker T and B.

We leave it to the reader to prove that Sy o R is a functor adjoint to T,
which shows that Ker T} is a localizing sub-category of A.

18. CATEGORIES WITH INJECTIVE ENVELOPES

We use the notations of the previous paragraph.

Proposition 6. Let C be an épaisse sub-category of an abelian category A.
Leti: M — I be an injective envelope of an object M of A which does not
contain any non zero sub-object in C. Then I is C — closed and the morphism
T is an injective envelope of T M .

Indeed let N be a sub-object of I belonging to C; then i (V) belongs to
C and is thus zero; since 7 is an essential extension, it follows that N is zero.
This proves that I is C — closed |[lemma 5(b)].

An argument already used in the proof of lemma 7 shows that T is an
essential extension. It thus remains to show that T'I is injective: for this
suppose we are given a monomorphism f’ : T'I — TM; this monomorphism
is the image of a morphism f : I’ — M/M’, where I’ and M’ are the sub-
objects of I and of M such that I/I’ and M’ belong to C. Since T'f is a
monomorphism, Ker f belongs to C and is thus zero. In other words, f is a
monomorphism and the canonical morphism 4 from I’ to I is the composite of
f and a morphism g : M/M’ — I. This leads to the following commutative
diagram:

Tr — v/

. Ty M
Ti T Tp]w/]\/jl

N A V'

Since Tt and Tp]\]\j[[ /v Are isomorphisms, f’ is an isomorphism from 7'I to a
direct factor of T M.

Corollary 5. If C is an épaisse sub-category of a category A with injective
envelopes, the following assertions are equivalent:

a. C is a localizing sub-category of A.
b. Any object M of A contains a sub-object which is mazximal among
the sub-objects of M belonging to C.

The corollary results from the propositions 6 and 4.
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Corollary 6. Let C be a localizing sub-category of a category A with injec-
tive envelopes. Then A/C is a category with injective envelopesl any injective
object of A/C is isomorphic to an object T1 where I is an injective object
of A not containing any non zero sub-object of C. Conversely, any injec-
tive object J of A is isomorphic to a direct sum Jy @ SJo where Jy is the
injective envelope of an object of C and Jy is an injective envelope of A/C.
Furthermore, these conditions determine J1 and Jo up to isomorphisms.

According to the corollary 5, any object of A/C is indeed isomorphic to
an object T'M, where M does not contain any non zero sub-object of C. The
first two assertions thus result directly from the proposition 6. To prove the
rest, we choose for J; the injective envelope of the largest sub-object of J
belonging to C.

Corollary 7. The hypothesis are those of corollary 6. We suppose in addi-
tion that the injective envelope (in A) of an object of C belongs to C. Then
TJ is an injective object of A/C if J is an injective object of A.

With the notations of the corollary 6, T'J is actually reduced to T'SJs.

The corollary 7 is often used in the following way: let F': A/C — D be a
functor from A/C to an abelian category D with C satisfying the conditions
of the corollary 7. Since the functor T is exact and transforms injectives to
injectives, we know [10] that the derived functors R™(F o T') are identified
with the functors (R™F) o T. This is true in particular if F' is the functor
N ~~ Hom 4/c(TM, N). We deduce the corollary 8 and 9:

Corollary 8. The hypothesis are those of the corollary 7. The functor
N ~~ Extz/C(TM, TN) is isomorphic to the n—th derived functor of hte

functor N ~ Homy (M, STN).

Corollary 9. The hypothesis are those of the corollary 7. The homological
dimension of A/C is smaller than or equal to the homological dimension of

A.

We recall that the homological dimension of a category A is the smallest
integer n such that Ext" (M, N) is zero for any couple (M, N) of objects of
A.

The calculus of groups Ext"y (M, N) can be done in another way when the
section functor is exact: indeed, S transforms the injective objects of A/C
to injective objects of A. Therefore, if G is a functor from A to an abelian
category D, the functors (R"G) oS and R™"(G o .S) are still isomorphic. This
is true in particular if G is the functor X ~» Hom4 (M, X).

Corollary 10. The hypothesis are those of the corollary 6. We suppose in
addition that the section functor is exact. The functors N ~~ Extz/c (TM,N)

and N ~» Exty (M, SN) are then isomorphic.

The following proposition examines the case when the section functor is
exact:
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Proposition 7. Let C be a localizing sub-category of a category A with
injective envelopes. The following assertions are equivalent:

a. The localization functor (or the section functor) is exact.
b. If N is a sub-object of M and if N and M are C — closed, then M/N
is C — closed.
c. If I is an injective object not containing any non zero sub-object of
C, and if N is a C — closed sub-object of I, then I/N is C — closed.
(a) = (b) = (c): clear.
(¢c) = (a): If L is the localization functor S o T', we will show that the
first derived functor R'L of L is zero.
First suppose that M is an object of C; let ¢ : M — I be an injective
envelope of M and p : I — N be the cokernel of 7. Since Lp is an

isomorphism, the exact sequence 0 — 0 = LM N4 2) LN — R'LM —
0 shows that R'LM is zero.
Now suppose that M does not contain any non zero sub-object of C and
keep the previous notations. Since Lp is an epimorphism, R'LM is zero.
In the general case, let M’ be the largest sub-object of M belonging to
C and let M"” = M/M’. The exact sequence R*LM' — R'LM — R'LM"
proves the nullity of R'LM.

Corollary 11. Let C be a localizing sub-category of a category A with injec-
tive envelopes. If the homological dimension of A is 0 or 1, the localization
functor is exact.

19. CATEGORIES WITH GENERATORS AND EXACT INDUCTIVE LIMITS

We always use the notations of the previous paragraphs.

Proposition 8. If C is an épaisse sub-category of an abelian U— category
A with generators and exact inductive limits, the following assertions are
equivalent:

a. C is a localizing sub-category of A.
b. The inductive limit (in A) of an inductive system of objects of C
belongs to C.

(a) = (b): Indeed let (M;,j;) be an inductive system of objects of C
with the indexing set belonging to the universe 4. Let M be the inductive
limit of this system and let ¢; be the canonical morphism from M; to M.
According the corollary 5, M contains a sub-object M’ which belongs to C
and which contains all of the sub-objects of M belonging to C; in particular,
M’ contains Im ¢; for any ¢ and is thus equal to M.

(b) = (a): Indeed let M be an object of A. If P and N are two sub-
objects of M belonging to C, P + N is isomorphic to a quotient of P & N.
It follows that P + N belongs to C and the sub-objects of M belonging to
C form an increasing filtering set of sub-objects of M. According to (b), the
upper bound of these sub-objects belong to C and it is the largest sub-object
of M belonging to C; hence the result, thanks to the corollary 5.
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Corollary 12. Let A be an abelian 41— category with generators and exact
inductive limits and let (I;) be a family of injective objects of A. The objects
M of A such that Hom(M, I;) is zero for any j are the objects of a localizing
sub-category of A. Conversely, any localizing sub-category of A can be defined
in this way.

Indeed let C be the sub-category of A whose objects M are such that

Hom(M, I;) is zero for any j. If 0 — M’ Jo M & M” = 0is an exact
sequence of A, we have also the exact sequences

0 — Hom(M",I;) = Hom(M, I;) — Hom(M', I;) — 0

These exact sequences show that M belong to C if and only if M’ and M”
belong to C. In other words, C is an épaisse sub-category of A. On the other
hand, any inductive system (M;, pp;) of A gives rise to the ’equalities’

HomA(hAl M;, I;) = @HomA(Mi, I;).
i i

It follows that hgl M; belongs to C if the M; belong to C.

Conversely, if C is a localizing sub-category of A, A/C is a category
with injective envelopes; thus an object M of A belongs to C if and only
if Homy4 (M, I) is zero for any C — closed injective I.

Proposition 9. Let C be a localizing sub-category of an abelian U— category
A with generators and exact inductive limits. The categories C and A/C are
—categories with generators and exact inductive limits. In addition, the
canonical functor T from A to AJC commutes with the inductive limits.

Let (Ux)aea be a family of generators of A. The quotients, belonging
to C, of the objects Uy form a family of generators of C. Furthermore, any
inductive system of objects of C has an inductive limit in A. The proposition
8 shows that this inductive limit even belongs to C. It follows that C is a
$l—category with generators and exact inductive limits.

The lemma 9 proves that A/C is a {U—category with generators. Now
consider an inductive system of objects of A (M;, vji)ijer- Let ¢; be the
canonical morphisms from M; to the inductive limit thl We then have
the ’equalities’

HOIHA/C(T@MZ',N) = HOIHA(II_H}MZ,SN)
= @HomA(Mi, SN) = @HomA/C(TMi, N)
These equalities show that (7' hg M;, Tp;) is an inductive limit of the induc-
tive system (T'M;, Tpj;). Thus the functor 7" commutes with the inductive
limits.

Now let (N, %5i)i jer be an inductive system of objects of A/C and v; be

the canonical morphism from SN; to @SNZ-. The above proves that

(Tl SN;, (Teps) 0 D(N;) ™)
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is an inductive limit of (N;, ¢j;). We will write briefly
The last "formula’ shows that in particular that an inductive limit of monomor-
phisms is a monomorphism; this completes the proof.

Corollary 13. Let C be a localizing sub-category of a locally noetherian
U—category A. Then C and A/C are locally noetherian U— categories. Fur-
thermore, the section functor commutes with the inductive limits.

It remains to prove that S commutes with the inductive limits. If (IV;, ;)
is an inductive system of objects of A/C, ligNi is equal to Tliﬂ SN;. Thus
it suffices to prove that the functorial morphism ¥ defines an isomorphism
from ligSNi to STH&SN; that is to say that ligSNi is C — closed.

This last assertion results from the lemma 5 (a): with the notations of this
lemma, it indeed suffices to verify the condition (a) when P and @ are noe-
therian objects. The groups Hom 4 (P, hngNi) and Hom 4 (A, thNi) then
are identified respectively with ligHomA(P, SN;) and HomA(Q,ligSNi)
(corollary 4, part II); the proof follows directly from these facts (lemma 6).

Corollary 14. Let C  be a localizing sub-category of a locally finite
U—category A. Then A/C and C are locally finite $1— categories.

Now suppose that A is a locally noetherian {—category. Let A’ be the
full sub-category of A which is defined by the noetherian objects of A. If C
is a localizing sub-category of A, we denote by C’ the full sub-category of A
which is defined by the noetherian objects of C. We leave it to the reader to
show what follows:

Proposition 10. The map C — C' is a bijective map from the set of localizing
sub-categories of A to the set of épaisse sub-categories of A’.

In particular, if A is a locally finite {{—category, any localizing sub-
category C is characterized by the simple objects that it contains. We can
say that A/C is obtained from A by neglecting a number of simple objects.

20. SOME EXAMPLES OF LOCALIZING SUBCATEGORIES

20.1. Sheaves of modules

Let E be a topological space, A be a sheaf of rings over E and let A be the
category of sheaves of A—modules (or of A—modules). If F'is a closed subset
of E, U the open complement of F' in E, we use the following notations:

If M is an A—module, M|U denotes the restriction to U.

T denotes the functor M ~» M|U.

B denotes the category of A|U—modules.

S7 denotes the direct image functor: if N is an A|U—module, S1 N
is the direct image of N in F.
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It is clear that T} is an exact functor and that Ker T} is formed of A—modules
whose restriction to U is zero. Since S7 is a functor adjoint to 77 and that
Ty 0 Sy is isomorphic to 1, the proposition 5 shows that the categories B
and A/Ker T} are equivalent.

20.2. Left exact functors

The hypothesis and the notations are that of the proposition 4 (part II).
Let A be the category Fun(C, D), B be the category Sex(C,D), T1 be the
functor R and S; be the canonical functor from Sex(C,D) to Fun(C, D).
The proposition 4 (part II) says that S; is adjoint to 71, thus any injective
object of Sex(C, D) is injective in Fun(C, D).

20.3. Satellite Functors [6].

Let C and D be two abelian categories. We suppose, for simplicity, that
the category C ’has enough projective objects’. Then let A be the following
category:

e an object of A is a 'connected sequence of functors’ (F),) from C to
D, n = 0;

o if (F),) and G,, are two objects of A, a morphism from the first to
the second is a sequence of functorial morphisms f,, : F,, — Gp;
we suppose in addition that the morphisms f,, commute with the
connecting homomorphisms;

e the composition of morphisms is defined in the obvious way.

The objects (F),) whose first component Fj is zero form an épaisse sub-
category B of the abelian category A. Furthermore, the reader verifies
easily that the functor () ~» Fy defines an equivalence between .4/B and
Fun(C, D).

Conversely, let F' be a functor from C to D and denote by S, F' the n—th
satellite functor of F: the functor F' ~~ (S, F) is then adjoint to the functor

The reader will find an analogous interpretation of the right satellite
functors S™F when he states the dual proposition of the propositions of
this part.

20.4. Localization in relation to the center

If A is an additive category, we call center of A the set of functorial mor-
phisms from the identity functor 14 of A to itself. The addition and the
composition of functorial morphisms define on this set a structure of ring.
This ring will be denoted by Z(.A); the reader verifies that Z(.A) is a com-
mutative ring.

Now we suppose that A is a {—category with generators and exact in-
ductive limits. If ¥ is a multiplicative subset of Z(.A), we denote by Ay, the
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full sub-category of A which follows: an object M belongs to Ay, if M is the
upper bound of the sub-objects N such that s(IV) is zero for at least one
element s of 3. It is clear that Ay is an épaisse sub-category and closed in \A.
For any object M of A we can thus choose an Ay, —envelope jys : M — M.

Proposition 11. With the above hypothesis, the following assertions are
equivalent:

a. M is an As — closed object.
b. For any element s of ¥, s(M) is an automorphism of M.

(a) = (b): Indeed it is clear that s(M) is a monomorphism from M to M.
It follows that Im s(M) is Ay, — closed. According to the lemma 5, Im s(M)
is thus a direct factor of M and any complement of Im s(M) belongs to As.
This is possible only if Im s(M) = M.

(b) = (a): Indeed it is clear that M does not contain any non zero sub-
object belonging to Asx;. We suppose, for simplicity, that M is a sub-object
of My, and that j,; is the canonical morphism from M to Myx. Then let N
be a sub-object of My, containing M and such that Im s(NV) is contained in
M for at least one element s of X. If i denotes the canonical morphism from
M to N, we have the equality 15, = s(M)~! o s(N)oi. This equality shows
that M is a direct factor of N; it follows that M is equal to N, thus to M.

Corollary 15. The localization functor M ~» My, is exact.
This results from the proposition 11 and 7 (b).

Proposition 12. The hypothesis and the notations are that of the proposi-
tion 11. We suppose in addition that A is a locally noetherian category. The
injective envelope of an object of As; belongs to Ay.

Indeed suppose that N is an essential extension of a sub-object M be-
longing to Asx. We want to show that N belongs to Ayx; for this it suffices
to prove that any noetherian sub-object N of N belongs to As; since N’ is
essential extension of M N N, we can thus bring us back to the case where
N is noetherian.

In this case, there is an element sof ¥ such that s(M) is zero. Since N is
noetherian, Ker (s(IV))" is equal to Ker (s(N))"*! for n large enough. We
conclude from the equality Ker (s(N))"NIm (s(N))™ = 0. Since Ker (s(N))"
contains M and that N is an essential extension of M, Im (s(N))" is zero.
In other words, s™(N) is zero and N belongs to As.
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Part 4. Locally noetherian categories

Unless explicitly stated otherwise, all categories considered in this chapter
are abelian {{—categories with generators and exact inductive limits.

This chapter is dedicated to the study of injective objects in a locally
noetherian {{—category. We derive from this study the following philosophy:
a locally noetherian category is an ’extension’ of a locally finite category; a
locally finite category compares itself to a category of modules.

21. THE KRULL DIMENSION OF AN ABELIAN CATEGORY

Let A be a category(abelian...). We will associate with any ordinal « a
localizing subcategory A, of A. The ordinal having no element is denoted
by —1 for historical reasons; for the same reason, the ordinal having a finite
number of n elements will be denoted by n — 1. If @ and § are two ordinals,
the symbol a T 8 will denote the ordinal obtained by ’first taking «, then
B’. If a and B are two finite ordinals, we have for example the formula
aTpf =a+ B+ 1. Denote by T, the canonical functor from A to A/ A,.

The construction of subcategories A, is done by transfinite induction:

e A_; is the localizing subcategoy of A whose objects are the zero
objects of A. The functor T_; is then the identity functor of A.

e If the ordinal « has a predecessor 5, A, is the smallest localizing
sub-category containing all objects M such that TgM is of finite
length.

e If v is a limit ordinal, A, is the smallest localizing sub-category
containing all the sub-categories Ag for § < a.

We denote by A, the smallest localizing sub-category containing all the sub-
categories A,; the quotient category A/A,, does not have any simple object.
When M is an object of A, the Krull dimension of M is the smallest ordinal
a such that M belongs to A, (notation: Kdim M = «). If A, coincides
with A, the smallest ordinal « such that A, is equal to A is called the Krull
dimension of A (notation: Kdim A = «)). The following proposition results
from the definitions.

Proposition 1. Let C be a localizing sub-category of A. Then A, coincides
with A if and only if Co, and (A/C), is A/C. In this case we have the

inequalities
sup(Kdim C,Kdim 4/C) < Kdim A < (Kdim C) 1 (Kdim A/C)

We assume in the rest of the paragraph that the Krull dimension of A is
defined, which means A,, coincide with A. For any ordinal o < Kdim A, the
category Aaq70/Aq is then of zero dimension.

If M is an object of A, the type of this object will be the set of objects of
A isomorphic to M. We denote by Sp(A) (spectrum of A) the set of types
of indecomposable injective objects of A. For any ordinal o« < Kdim A, we
denote by Sp,(A) the set of types which are formed of objects which are
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A, — closed indecomposable injective and containing non-zero sub-objects
of Aaq0. It is clear that the sets Sp,(.A) are pairwise disjoint and that their
union is equal to Sp(A).

If I is an indecomposable injective object whose type belongs to Sp,(A),
T, I contains a sub-object of finite length of A/ A,. It results that the socle
of T, I is not zero and is a simple object of Anq0/Aa. We denote by s(1)
the smallest nonzero A, — closed sub-object of I. The canonical morphism
from s(I) to I then induces an isomorphism from T,,s([) to the socle of Ty 1.
By abuse of language, we say that s(I) is the socle of I. We will treat s(I)
indifferently as an object of A or as an object of A/ A,.

Proposition 2. Let A be a category whose Krull dimension is defined. For
any ordinal o < Kdim A, the map I — s(I) induces a bijection between
Sp.(A) and the set of types of simple objects of A/ As.

Let I and J be two indecomposable injectives whose types belong to
Spy,A. The corollary of the proposition 11 (part.Il), implies that I and
J are isomorphic if and only if s(I) and s(J) are isomorphic. On the other
hand let M be a simple object of Anq0/Aq and let pp: M — EM be an
injective envelope of M in A/A,. If S, is a right adjoint functor of Ty,
SoEM is an indecomposable injective whose socle is isomorphic to M ( as
an object of A/A,. This completes the proof.

If we compare the proposition 2 and the proposition 11 (part.II) we see
how the notions of spectrum, of simple object and of coirreducible object are
related.

Now let C be a localizing sub-category of A, let T' be the canonical
functor from A to A/C and let S be a right adjoint functor of 7. If I is
an indecomposable injective of C and if ET is injective envelope of I in A,
it is immediate that ET is again indecomposable. The map I — ET induces
an injection from Sp(C) to Sp(A); we always identify Sp(C) with the image
of this injection. Likewise, if J is an indecomposable injective of A/C, SJ
is an indecomposable injective of A. The map J — SJ induces an injection
from Sp(C/.A) to Sp(.A); we always identify Sp(.A/C) with the image of this
injection. The corollary 2 of the proposition 6 (part. III), then shows that
Sp(A/C) is the complement of Sp(C) in Sp(.A). In addition the proposition
2 implies the

Corollary 1. Let C be a localizing sub-category of a category A whose
Krull dimension is defined. An object A of A belongs to C if and only if
Hom (M, I) is zero for any indecomposable injective of A whose type belongs
to Sp(A/C).

Let D be a localizing sub-category of A whose objects M are such that
Hom (M, I) is zero for any indecomposable injective whose type belongs to
Sp(A/C) (corollary of the proposition 8, part.III). It is clear that D contains
C.If D does not coincide with C, there is an object M of D which is not zero
and which does not contain any non zero sub-object in C. Therefore let 3
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be the smallest ordinal such that M contains a non zero sub-object in Ag.
It is clear that 8 has a predecessor. Thus there is a sub-object N of M such
that T, N is simple. If I is the injective envelope of IV, the type of I belongs
to Sp(A/C) and Hom4 (M, I) is not zero: a contradiction.

Corollary 2. Let C and D be two sub-categories of a category A whose Krull
dimension is defined. Then C coincides with D if and only if Sp(C) coincides
with Sp(D).

This results from corollary 1.

If I is an indecomposable injective of A, we remark that the ring of
endomorphisms of s(I) (in A or in A/A,) is a division ring. If A is the
local ring of endomorphisms of I, this division ring is the quotien of A by
its Jacobson radical: let f be an endomorphism of I (in A or in A/A,);
the image of s(I) under f is zero or is a simple object (in A/ A,); thus the
morphism f induces an endomorphism f’ of s(I); since I is injective, any
endomorphism of s(I) extends reciprocally to an endomorphism of 7. This
shows that the map f ~» f’ is surjective. On the other hand f’ is non zero
if and only if f is an automorphism. We have thus proved the

Proposition 3. Let A be a category whose Krull dimension is defined,
and let I be an indecomposable injective object of A. The division ring of
endomorphisms of the socle s(I) is the quotient of the ring of endomorphisms
of I by its Jacobson radical.

The following proposition will give us some information on the injective
envelopes in the category A:

Proposition 4. Let M be an object of a category A whose Krull dimension
is defined. There is a family (fo) of morphisms of A, which is indexed by
the ordinals o < Kdim A and which satisfies the conditions (a), (b), (¢) and
(d):

a. fo 18 @ morphism from an object N, to M.

b. Any sub-object of N, belongs to Ay is zero.

c. ToyN, is a semi-simple object of A/ As.

d. The morphism f from XN, to M which is defined by the family

(fa) is an essential extension of ¥, N,

For any family (fa) satisfying (a), (b), (¢) and (d), Tofa is an isomorphism
from T, Ny to the socle of T, M.

Indeed denote by M, the largest sub-object of M belonging to A, (a <

Kdim — A). Let Q4 be a complement of M, in My (part 11, § 5); let i, be
the canonical monomorphism from @, to M.

Lemma 1. The morphism j from ) Qq to M which is defined by the family
(ia) is an essential extension of Y Qa.

This is clear if Kdim A is equal to —1; thus we suppose that the property
is demonstrated for all the categories B such that Kdim B < Kdim 4; then
we prove that the property is true for A. Indeed two cases are possible:
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e The ordinal Kdim A has a predecessor 8: we know that then the
morphism h from Mg @ Qg to M which is defined by the canonical
morphism from Mg and Qg to M, is an essential extension. On
the other hand, j is the composite of a morphism 7 from ) Qn to
Mg ® Qp and h; since 7 is an essential extension according to the
hypothesis of the induction and the lemma 15 (part II), it follows
that j is an essential extension (lemma 14, part II).

e Kdim A is a limit ordinal: then M is the upper bound of the Mg, for
B < Kdim A. Let jg be the morphism from 27<6 Q~ to Mg which
is defined by the morphisms 7,. Since jg is an essential extension
according to the hypothesis of the induction, the assertion results
from the proposition 13 (part II).

The lemma being shown, the construction of a family (f,) is simple: indeed
let N, be a sub-object of ), and let g, be the canonical morphism from N,
to Qq; we suppose that T, g, is an isomorphism from 7T, N, to the socle of
T,Qu. If P is anon zero sub-object of Qn, T, P contains a simple sub-object
and T,PNT,N, is non zero. It follows that PN N, is non zero. This proves
that g, is an essential extension. If we put f, = i, © go, the conditions (a),
(b), (¢) and (d) are verified.

Conversely, let (f,) be a family of morphisms satisfying the conditions (a),
(b), (¢) and (d). It is clear that Im T, f, is the largest sub-object of Im Ty, f
which belongs to Aqqo. If S is a simple sub-object of T,M, SNIm T, f is a
non zero sub-object of T;, M and belongs to Aqqo. It follows that SNIm T, f
is contained in Im T, f; thus any simple sub-object of T, M ’intersects’ with
Im T, f,, which proves the last assertion.

Theorem 1. Let I be an injective object of a category A whose Krull dimen-
sion is defined. There is a family (I;);er of indecomposable injectives of A,
such that I is isomorphic to the injective envelope of the direct sum ;.

If (Jn)nen is a second family of indecomposable injectives, and if Y, I
and ), Jn have the same injective envelope, there is a bijection h from L to
N such that I; is isomorphic to Jy(.

First we prove the existence of a family (I;);cr: we use the previous
proposition by choosing M equal to I. If EN, is 'the’ injective envelope
of N, it is clear that I is isomorphic to the injective envelope of the direct
sum ), EN,. It is thus sufficient to prove that EN, is the injective envelope
of a direct sum of indecomposable injectives. However N, does not contain
any non zero sub-object belonging to A,; in addition, T, N, is a semi-simple
object of A/ A,. We deduce the existence of a family (N7 )aes of sub-objects
of N,, which satisfies the following conditions: T, NJ is a simple object;
the sum of N/ and N7 is direct; the canonical monomorphism from N/ to
N, induces an isomorphism from T,N/! to ToN,. If ENZ is the injective
envelope of N7, it follows that N, and ) ENJ have the same injective
envelope. Since EN(J is indecomposable, it first part of the theorem is proved.
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Prove the second assertion: denote by L, (resp. by N, ) the set of I (resp.
of n) such that the socle of I; (resp. of J,) 'belongs’ to Sp,(A). With the
notations of the previous proposition, it is then clear that N, ZleLa I; and
ZnENa Jn, have the same injective envelope. If we consider these objects as
the objects of A/ A,, it follows that N, ZZGLQ I; and ZneNa J, have the
same socle; in other words, the direct sums » oy s(f;) and ), . 5(Jn)
are isomorphic in A/A,. The properties of semi-simple objects imply the
existence of a bijection h, from L, to N, such that s(I;) is isomorphic to
8(Jho(y)- Then I is isomorphic to Jj, ().

Proposition 5 (exchange theorem). Suppose the hypothesis of theorem 1
are satisfied. Let (I})ier be a family of indecomposable injectives and u :
Y oier i = I be an injective envelope. If J is a direct factor of I, there is a
sub-set N of L which satisfies the following condition: any mazximal essential
extension of u(d ,cn 1) in I is a complement of J.

Indeed let N be the maximal element of the set of sub-sets M of L which
satisfies the following condition: J and u(} ;cpg 1) have zero intersection.
We will prove that I is an essential extension of the sum J + u(};cn 1)
indeed let L be a maximal essential extension of this sum in I. Since N is
maximal, L ’intersects’ all u(1;); in other words, u(I;) is an essential extension
of LNwu(l;) for any [ € L. It follows that I is an essential extension of L.
Whence the equality L = I. This completes the proof.

22. THE STRUCTURE OF INJECTIVE OBJECTS IN A LOCALLY NOETHERIAN
CATEGORY

The statements of the previous paragraphs can be simplified when A is a
locally noetherian category. Indeed the corollary 4 (part IT) has the following
consequence:

Proposition 6. Let A be a locally noetherian category and (I})c, be a family
of injective objects of A. The direct sum ), Iy is then an injective object
of A.

Proposition 7. For any locally noetherian category A, the localizing sub-
category Ay coincides with A; furthermore, the categories Aaqo0/Aq are
locally finite.

Indeed we know that A/A,, does not have any simple object. Since A is a
locally noetherian category, it is the same for A/ A,. If A, does not coincide
with A, the category A/A, thus contains a non zero noetherian object M.
For any maximal proper sub-object N of M, the quotient M /N is simple, a
contradiction.

The last assertion comes from the fact that any locally noetherian category
whose Krull dimension is zero, is locally finite.

Modulo the propositions 6 and 7, the theorem 1 and the proposition 5 are
stated in the following way:
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Theorem 2 (MAtLIS [17]). Let A be a locally noetherian category. Any
injective I is isomorphic to the direct sum ), .p Iy of a family (Ij)cr of
indecomposable injective objects.

If (Jn)nen is a second family of indecomposable objects, and if the direct
sums Y ycp Iy and Y o Jn are isomorphic, there is a bijection h from L to
N such that 1; is isomorphic to Jy).

The second assertion of the theorem 2 results also from theorem 1 (part

I).
Proposition 8 (exchange theorem). Let A be a locally noetherian category
and (I)ier be a family of indecomposable injectives of A. If J is a direct
factor of 7,1 I, there is a sub-set N of L such that ;. 5 I; is a complement
of Jin Y e Ih.

We suppose in the following of the this paragraph that A is a locally
noetherian category. We say that the category A is comnected if it is not
equivalent to the product of two non null categories (note by translator: here
a null category should be the category with one object and one morphism).

Corollary 3. Any locally noetherian category A is equivalent to the product
of a family (AN)ner of connected categories.

Indeed let Z be the full sub-category of A whose objects are the injective
objects of A. According to the corollary 3 (part I), it suffices to show
that Z is the product of a family (Z,,)nep of additive categories such that
KZ, is a connected category for each n. For this we agree to say that
two indecomposable injectives I and J are equivalent if there is a finite
sequence (I;), 1 <1 < k, of indecomposable injectives satisfying the following
conditions: Iy = I, Iy = J; if 1 <1< k—1, the abelian groups Hom(1j, I; 1)
and Hom(1;41, I;) are not both zero. We denote by E the set of equivalence
classes thus obtained (BRAUER call such a class a block ; to be precise
let’s say that BRAUER consider the indecomposable projective modules over
an artinian ring A; he says that two indecomposable projectives P and @)
belong to the same block if there is a sequence P = P, P», -+, P, = @
formed of indecomposable projectives such that the groups Hom 4 (P}, P11)
and Homy (P41, P;) are never both zero; we will see in paragraph 3 that the
theory of BRAUER is a particular case of the one we are developing here). If
n is such a class, let Z,, be the full sub-category of Z which is defined by the
direct sums of indecomposable injectives of n. It is clear that the category
7 is equivalent to the product of the categories Z,,; furthermore, Z,, is not
equivalent to the product of two non null additive categories; whence the
assertion.

Let A, be the localizing sub-category of A which is defined by the objects
M such that Hom(M, I) is zero for any indecomposable injectives not be-
longing to n. It is clear that the categories A, and KZ are equivalent. The
category A is thus equivalent to the product of the connected categories A,,.
We say that A, is a connected component of A.



ABELIAN CATEGORIES 63

We end this paragraph with a generalization of the primary decomposition
of Lasker-Noether. For any element s of the spectrum of A, we choose an
indecomposable injective I of type s. If M is an object of A, we say that
s s associated with M if the injective envelope of M contains a sub-object
isomorphic to I5. The set of elements s of Sp(A) which are associated with
M is denoted by ass(M). We say that M is isotypic of type s if ass(M) has
s as the only element.

Proposition 9. Let M be a noetherian object of a locally noetherian category
A. There is a map s ~ Ny from a finite subset L of Sp(A) to the set of
sub-objects of M which fulfills the following conditions: M /Ny is isotypic of
type s; the intersection of N is zero; if P is a subset of L which is distinct

from L, the intersection (| Ny is not zero. If these conditions are fulfilled,
seP
L is equal to ass(M).

Indeed let 7 : M — I be an injective envelope of M. We suppose for
simplicity that M is a sub-object of I and that ¢ is the canonical morphism
from M to I. We suppose also that [ is the direct sum of a family (I;);er, of
indecomposable injectives. The sub-objects M N I; of M are then different
from O for any [ and their sum is direct. Since M is noetherian, the set
L is finite. If s is an element of ass(M), denote by Js the direct sum of I
isomorphic to I,. In these conditions, it suffices to choose L equal to ass(M)

and Ny equal to M N (> Jp).
t#s
Conversely, suppose we are given L and the map s ~» Ng. The canonical

morphisms g5 : M — M /N, defines a monomorphism ¢ from M to the direct
sum of N and M/N,. We conclude the formula ass(M) C ass(N) = L. On
the other hand let My be the intersection of Ny for t different from s. The
morphism ¢ induces a monomorphism from M; to M/N,. Since ass(Ms)
is not zero and that ass(M/Ng) = {s}, we have the following formulas:
s € ass(M;s) C ass(M). This proves that L is contained in ass(M ), which
remained to be demonstrated.

We leave it to the reader to write in the language of this article the many
propositions of the primary decompositions. We also leave him the task of
formulating the dual of the preceding statements.

23. PSEUDO-COMPACT MODULES

We saw in the previous paragraphs the locally finite categories are intro-
duced to the study of locally noetherian categories. The end of this part will
be devoted to a more in-depth study of locally finite categories. We start by
giving an example:

Call left pseudo-compact ring a ring A with unit element, topological,
separated, complete, whose underlying set belong to il and which satisfies
the axiom APC:
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APC: The ring A has a base of neighbourhood of O formed of left ideals I
of finite colength [i.e. long(A/l) < +o0].

Unless explicitly stated otherwise, we consider in the following of this part
that the left unitary A—modules whose underlying set belong to . If M
is such an A—module, the discrete topology makes M a topological module
over the topological ring A if and only if the annihilator of any element m
of M is an open left ideal (thus of finite colength). The discrete topological
A—modules form a locally finite category that we denote it by dis(A4) (for
the definition of topological modules, c¢f. BOURBAKI, Topologie, 111, §6, no.6,
3rd.Edition).

The objects of finite length of dis(A) are the discrete topological modules
of finite length. These modules define a finite abelian category 7 (A) and
the theorem 1 (part II) shows that the data of 7(A) determine dis(A4) up
to an equivalence. Since the dual category T (A)° is also a finite abelian
category, the same theorem proves the existence of a locally finite category
D such that T(A)° is equivalent to the categories of objects of finite length
of D. We will show that the dual category D? is equivalent to a category of
A—modules:

Call pseudo-compact A—module any left A—module, topological, separate,
complete M which satisfies the axiom MPC:

MPC: The module M has a base of neighbourhood of O formed of sub-
modules N such that M/N is of finite length.

If M and N are two pseudo-compact A—modules, a morphism from M to
N will be a continuous A—linear map from M to N; the composition of
morphisms is the usual composition of maps. We have thus defined a new
category that we denote by PC(A). It is clear PC(A) is an additive category.
We will see that PC(A) is also an abelian category. The proof of this fact
relies on a well-known algebraic lemma (BOURBAKI, Topologie, I Appendice,
3rd.Edition):

Lemma 2. Let B be a ring, I be a directed set, (M;, f;;) and (Nj, gji) be
two projective systems, indexed by I and formed of left B—modules. Let (h;)
be a morphism from the first to the second, and suppose h; is surjective and
has artinian kernel for each i. Then @hi 1 a surjective map from lim M;

to mNz

This lemma results in the following two propositions:

Proposition 10. Let M be a pseudo-compact A—module, (M;) be a decreas-

ing filtering family of closed sub-modules of M. The canonical map from M

to the projective limit l&nM/Z\JZ is surjective and has inf M; as the kernel.
(2
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Indeed let (N;) be the decreasing filtering family of open sub-modules of
M. In the following diagram, all the arrows represent the ’obvious’ maps:

0 M = lim M/N;
J

q \Ls
0 —— Lim(M; + Nj) /M; — lim M/M; —= lim M/(M; + N;)
i, i i,

Since M is complete, p is an isomorphism; according to lemma 2, s is
surjective. It follows that r is surjective. On the other hand we have the
equality:

Wm(M; + N;)/M; = Jim lim(M; + Nj) /M; = lim M; /M; = 0,

ij i g i
because M; is closed and is the intersection of M; 4+ N;. It follows that r
is an isomorphism and that ¢ is surjective. Finally, the kernel of ¢ is the
projective limit of M;, that is to say inf M;.

(2

Proposition 11. Let M be a pseudo-compact A—module, N be a closed sub-
module of M and M; a decreasing filtering family of closed sub-modules of
M. Then the sub-modules N + inf; M; and inf(N + M;) coincide.

Indeed we have the following exact and commutative diagram (the arrows
represent the 'obvious’ arrows):

0 N M M/N

T

0 ——lim N/(N 1 M;) — lim M/M; — lim M/(M; + N)

N is obviously a pseudo-compact module for the topology induced by M.

The previous proposition thus shows that [ and j are surjections. It follows

that the kernel of h is the image of the kernel of j ([6], lemma III, 3.3). Since

Ker h is equal to inf(M; + N)/N and that Ker j is equal to inf M;, we have
7 7

'the equality’
inf(M; + N)/N = ((inf M;) + N)/N.

Theorem 3. The pseudo-compact modules over the pseudo-compact ring A
form an abelian category with cogenerators and exact projective limits. The
dual category is locally finite.

Indeed let M be a pseudo-compact module and let Hom pc(4) (M, .) be the
functor N~ Hompg(a)(M, N) from T(A) to Ab. We can verify directly
that the functor M ~» Hompg(a)(M, .) defines an equivalence between
PC(A) and the category Sex(7(A), Ab) (cf. part II). However we prefer
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a demonstration that explains the construction of the kernels and of the
cokernels.

If f: M — N is a morphism of pseudo-compact modules, the underlying
module of Ker f is formed of elements m of M such that f(m) is zero. This
sub-module is closed and it is equipped with the topology induced by M.

The coimage of f is the quotient module M /Ker f which is equipped with
the quotient topology. Show that M /Ker f is a pseudo-compact module: the
verification of axiom MPC is immediate; it remains to be seen that M /Ker f
is complete, or that the canonical map from M/Ker f to Jim M /(Ker f+Nj)
is an isomorphism where NN; runs through the projective system of open sub-
modules of M. This results from the proposition 10.

Let N/ be the set-theoretic image of M under the map f and let us confuse
N’ with M/Ker f for the convenience of reasoning. The topology induced
from N in N’ is separated, linear (i.e. define by the sub-modules) and it
is coarser than the quotient topology. Let (N]’) be a decreasing filtering
family towards O of open sub-modules of N’ for the induced topology. If P
is a sub-module of N’ which is open for the quotient topology, the family
(P + Nj) is decreasing filtering. Since N'/P is artinian, this family has a
smallest elelment. Since finally irj;f (P + Nj) is equal to P + ir}f Nj according

to the proposition 11, we see that this smallest element is equal to P. In
other words, P contains N j’ when NV J’ is small enough: the induced topology
coincides with the quotient topology.

In particular, N’ is complete for the topology induced from N; so N’
is closed in N. It follows that Im f and Coim f are isomorphic and that
Coker f is the quotient N/N’ equipped with the quotient topology. This
proves that PC(A) is an abelian category.

If (M;, fj:) is a projective system of pseudo-compact modules, the pro-
jective limit of this system is defined in the following way: the underlying
module of lim M; is the projective limit of the underlying modules; the topol-
ogy of @ ; is the topology of the projective. The exactness of projective
limits equals one or the other of propositions 10 and 11 (dual of the propo-
sition 6, part I).

Finally, when n runs through the positive integers and M runs through the
pseudo-compact sub-modules of finite colength of A™, the quotients A™/M
define a family of cogenerators of PC(A). This completes the proof of the
theorem.

Corollary 4. The pseudo-compact ring A is the topological direct product
of indecomposable and closed left ideals. Any projective pseudo-compact
module is the topological direct product of indecomposable projective pseudo-
compact modules. Any indecomposable projective pseudo-compact module is
isomorphic to a left ideal A.e, where e is a primitive idempotent of A.

Recall that an idempotent e is said to be primitive if e is not the sum of
two idempotents ¢’ and €” such that e¢’.¢” = e".¢/ = 0.
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Any morphism from A to a pseudo-compact module M is indeed of the
form a — a.m, where m € M. It follows that A is a projective pseudo-
compact module. The first two assertions of the corollary thus results by
duality from theorem 2. On the other hand, any indecomposable projective
P is 'the’ projective envelope of a simple pseudo-compact module S. Since
S is isomorphic to a quotient of A, P is isomorphic to a direct factor of A.

Corollary 5. Let A be a pseudo-compact ring, (e;)icr be a summable family
of pairwise orthogonal idempotents. If e is the sum of this family, the canon-
ical injections from A.e; to A.e extends to an isomorphism from the direct
product [[ A.e; to A.e.

(2

Recall that two idempotents e and f are said to be orthogonal if e.f =
fe=0.

Indeed it is clear that e is an idempotent of A. Denote by f; the map
a.e — a.e; from A.e to A.e;. These maps define a morphism f from A.e to
the direct product [ A.e;. If J is a finite sub-set of I, f induces a surjection

i€l
from A.e to J] A.e;. It follows that f is a surjection (exactness of projective
ieJ
limits)and that the kernel Ker f is a direct factor of A.e. Suppose Ker f
is non zero and let [ be the left ideal of A, open and not containing Ker f.
For any finite sub-set J of I, A.e is the direct product of A.e;, i € J, Ker f
and a third factor. Thus we have a decomposition of e into a finite sum of
pairwise orthogonal idempotents, let

e:ZeiqLe'Jre”
ieJ
where €’ gives rise to Ker f.
For J large enough, let e — > e; must belong to [; thus ¢ + ¢’ and
ieJ
¢ = ¢ .(¢/ +¢€") belong to I: this is absurd. In other words, Ker f is zero
and the corollary is proved.

Corollary 6. Let A be a pseudo-compact ring, a be a closed two-sided ideal
of A and (e;)ier be a summable family of pairwise orthogonal idempotents of
A/a. There is a summable family (f;)ier of pairwise orthogonal idempotents
of A such that e; is the image of f; by the canonical map from A to A/a.

The ring A/a is indeed pseudo-compact for the quotient topology. It
follows that the map f : a — (a.e;) from A/a to the product []A.e;

K3
is surjective (corollary 5). Let p be the canonical map from A to A/a,
u; : P; — A.e; be a projective cover of A.e; and u be the product [] u;.

(2
Since A is projective, there is a morphism ¢ from A to [[ P; such that uog

(2
is equal to f o p. Since w is a projective cover and that u o g is surjective,
there is a morphism A from [] P; to A such that ho g is the identity map of
i
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[] ;. Then it suffices to choose for f; the image of 1 in the projection from
i
A to h(P;) which annihilate Ker gand the modules h(P;), j # i.

A—L s AJa
-

Remark 1. The demonstrations of this paragraph remain valid when we
replace APC and MPC' by the weaker conditions here:

APC’: The ring A has a base of neighborhoods of O formed of left ideals |
such that A/l are artinian.

MPC’: The module M has a base of neighborhoods of O formed of sub-
modules N such that M /N are artinian.

The only modifications to be made in the preceding statements are the follow-
ing: the left A—modules satisfying MPC’ form an abelian category whose dual
category is locally noetherian. Furthermore, the last assertion of corollary 4
s mo longer true.

The topological rings satisfying the condition APC’ have been studied by
H. LEPTIN using different methods (|13], [14]). We will only need the pseudo-
compact rings.

24. THE DUALITY BETWEEN LOCALLY FINITE CATEGORIES AND
PSEUDO-COMPACT MODULES

We propose to show that any locally finite category is equivalent to the
dual category of a category of pseudo-compact modules; we start by some
definitions:

A full sub-category of a category A is called closed if the following condi-
tions are satisfied: any sub-object and any quotient of an object of C belong
to C; the direct sum (in A) of two objects of C belong to C; the inductive
limit (in A) of an inductive system of objects of C belongs to C.

If M is an object of A, M contains a sub-object CM which belongs to
C and which contains all the other sub-objects of M belonging to C. If
f: M — N is a morphism of A, f(CM) is contained in CN; furthermore,
the functor M ~» CM is adjoint to the canonical functor from C to A; in
particular, the functor M ~~ CM is left exact (proposition 11, part I). For
example, the semi-simple objects of A are the objects of a closed subcategory
S. If M is an object of A, the sub-object SM is called the socle of M.

If C and D are two closed sub-categories of A, we denote by C.D the
following closed sub-category: an object M of A belongs to C.D if M /DM
is an object of C. The product (C,D) ~» C.D is obviously associative. Thus
we can say the power C™ of a closed sub-category C of A.
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Now let A be a locally finite category and S be the closed sub-category
of A which is formed of the semi-simple objects of A. If M is an object
of A, we denote by M, the largest sub-object of M which belongs to the
closed sub-category S"*! (for example, My denotes the socle of M). Since
A is a locally finite category, it is clear that M is the upper bound of the
sub-objects M,. We will examine the case where M is an injective object of

A.

Proposition 12. Let I be an injective object of a locally finite category A,
A be the ring of endomorphisms of I and v be the set of endomorphisms of 1
whose kernel contain the socle Iy. Then t is the Jacobson radical of A; the
intersection of the powers t" is zero; the quotient ring A/t is isomorphic to
the product of rings of endomorphisms of a family of vector spaces.

Indeed let ¢ be the two-sided ideal formed of the endomorphisms of T
whose kernel contain I,,_1. If f is an element of t(™ it is clear that f(I,1m)
is contained in I,,. It follows that (™ (™ is contained in ("™  In
particular ©” is contained in t(™.

On the other hand, the canonical morphisms from I, to I and from I to
1/1,, give rise to the exact sequences

0 — Hom(I/I,, I) 2 Hom(I,T) 2% Hom(I,,I) — 0

The ideal ¢(*1 is nothing else than the image of i,. The map thus p,
defines an isomorphism from A/t(*t1) to Hom(I,, I). The formulas

A = Hom(I, I) = Hom(lim I,, T) = lim Hom(1,,, I) = lim A /c(**!

then show that A is separated and complete for the filtration defined by the
ideals t(. The formula (1 —z)~! = 14z + 22+ - -- shows furthermore that
the inverse of 1 — z exists if « belongs to t; in other words, t is contained in
the Jacobson radical of A.

Finally remark that for any morphism f from Iy to I, f(Iy) is contained
in Iy. The quotient A/t is thus equal to Hom([lo, Ip): this is the ring of
endomorphisms of a semi-simple object. The last assertion of the proposition
results from there (cf. part I, § 6). It follows also that v is an intersection of
maximal ideals and contains the Jacobson radical; this completes the proof.

When M runs through the sub-objects of finite length of I, the canonical
morphism from I to I/M defines an injection from Hom(I/M,I) to A. The
image of this map is a left ideal which we denote by [(M). If M and N are
two sub-objects of finite length, the exactness of the functor X ~~ Hom(X,I)
implies the equality (M + N) = [(M) N [(N). This equality shows that the
left ideals (M) form a base of neighbourhoods of O for the topology which
makes A a topological group. We always equip A with this topology that we
will call natural.

Proposition 13. a. Let A be a locally finite category, I be an injective
object of A and let A be the ring of endomorphisms of I. FEquipped
with the natural topology, A is a pseudo-compact ring.
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b. Conversely, any pseudo-compact ring A is isomorphic to the ring
of endomorphisms of an injective of a locally finite category. In
particular, the Jacobson radical v of A is the intersection of the
mazximal open left ideals; the intersection of t™ is zero and A/t is
isomorphic to the product of rings of endomorphisms of a family of
vector spaces.

a. Show first that A is a topological ring. Since there is a base of
neighbourhoods of O formed of left ideals, it suffices to prove the
following thing: for any sub-object M of finite length of I and for
any element a of A, there is a sub-object N of finite length such that
[(N).a is contained in [(M). It suffices to choose N equal to a(M).

On the other hand we have the ’equalities’

A = Hom(I, I) = Hom(lim M, I) = lim Hom(M, I) = lim A/I(M).

These equalities show both that A is separated and that A is com-
plete. IT remains to prove that the A—modules A/[(M) are of finite
length: for this, we study first the A—module Hom(S, ) when S is a
simple object of A; we denote by Ig the isotypic component of type
S of Iy and by B the ring of endomorphisms of Ig.

For any endomorphism f of I, f(Ig) is contained in Ig; it follows
that f induces an endomorphism g of Ig and that the map p :
f ~ g from A to B is an epimorphism of rings. This epimorphism
is compatible with the canonical bijection between the A—module
Hom(S, I) and the B—module Hom(S, Is). It follows that Hom(S, I)
is zero or is a simple A—module following that Ig is zero or non zero.

Now let M be a sub-object of finite length of I and let

ocMicCcMyc---CcM,CM

be a Jordan-Holder composition series of M. The A—module A/((M)
is isomorphic to Hom (M, I') and the modules Hom(M /M;, I) define
a composition series of Hom(M, I). The quotient of Hom(M /M;, I)
by Hom(M /M;1,1I) is isomorphic to Hom(M;11/M;, I). It follows
that the length of A/I(M) is lower or equal to the length of M. This
proves (a).
b. Let A be the dual category of PC(A). The underlying left A—module
A is projective; thus it is an injective object of A. The assertion (b)
results from the fact that A is the ring of endomorphisms of this
injective object.
The proposition 13 being proved, let us take our interest on the functor
M ~» Hom(M, I): the abelian group Hom(M, I) is equipped with a structure
of left module over the ring A of endomorphisms of I. On the other hand,
when N runs through the sub-objects of finite length of M, the canonical
epimorphisms from M to M /N define an injection from Hom(M/N,I) to
Hom(M, I). The image of this map is a sub-module that we denote by [(N).
In a general way, the arguments we used when M was equal to I remain
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valid here and they have the following consequences: the sub-modules [(N)
of Hom (M, I') form a base of neighbourhoods of O for a topology which makes
Hom(M, I) a pseudo-compact A—module. We always equip Hom(M, I') with
this topology that we will call natural.

If f: M — M’ is a morphism of A, Hom(f,I) is a continuous map
from Hom(M',I) to Hom(M, I): since Hom(f,I) is a linear map, it indeed
suffices to prove that, for any sub-object N of finite length of M, there is a
sub-object N’ of finite length of M’ such that Hom(f, I) maps [(N’) to [(N).
Now it suffices to choose N’ equal to f(N). This shows that Hom(f, ) is a
morphism of pseudo-compact modules. We thus have defined a functor from
A to the dual category of PC(A).

Theorem 4. Let I be an injective object of a locally finite category A, A be
the ring of endomorphisms of I and let F be the functor M ~» Hom(M,I).
The functor F defines by passing to the quotient an equivalence between
A/Ker F and the dual category of the category PC(A) of pseudo-compact
modules over A.

The sub-category Ker F' is formed of M such that Hom(M,I) = 0 and it
is localizing (corollary 3, part III). According to the proposition 10 (part III),
Ker F' is the smallest localizing sub-category containing the simple objects
S such that Hom(S,I) is zero. We can also say that the localizing sub-
category Ker F' is generated by the simple objects which ’do not involve’ in
the decomposition of the socle of I into isotypic components.

Let T be the canonical functor from A to A/Ker F. Then T is an
injective object of A/Ker F' and the socle of T'I contains the simple objects
of A/Ker F of all types. Furthermore, since I is Ker F' — closed, the map
T(M,I) from Hom(M,I) to Hom(TM,TI) is a bijection. We thus can
replace A by the locally finite category A/Ker F' and replace I by T'I. In
other words, we can go back to the case where the category Ker F' is zero:
That’s what we suppose in the following of this proof.

Lemma 3. For any object M of A, the map F(M,I) from Hom (M, I) to
Hompca)(F', FM) is a bijection.

Indeed let f be a morphism from M to I. The image of f by the map
F(M,I) is nothing else than Hom4(f,I): this last map associates with
any element a of Homy (I, I) the element a o f of Hom4(M,I). Now the
morphisms from A = FI to FM are of the form a ~» a o f. This proves the
lemma.

Lemma 4. Let M be an object of A, (I1;) ek be a family of objects isomorphic
to I and let J be the direct sum of the family (I;)jeg. The map F(M,J)
from Homy (M, J) to Hompe(ay(F'J, F'M) is bijective.

We consider first the case where the object M is of finite length. We know
that then the canonical map u from the direct sum of groups Hom 4(M, I;)
to Hom (M, J) is a bijection (corollary 4, part II); it is the same for
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the canonical morphism v from the direct sum of Hompc () (FI;, FM) to
Hompg(a)(FJ, FM). In addition, F(M,I;) is a bijection for any j. The
assertion thus results from the equality

vo (D> F(M,I;)) =F(M,.J)ou

In the general case, Hom 4 (M, J) is the projective limit of groups Hom 4 (N, J)
when N runs through the sub-objects of finite length of M. Similarly,
Hom pea)(F'J, F'M) is the projective limit of groups Hompe(a)(FJ, FN).
We furthermore have the following commutative diagram:

F(M,J)

Hom (M, J) Howm p () (F.J, FM)

()
i lim F(N,J) J/

lim Hom (M, .J) = lim Hom ) (FJ, FN)

Since F'(N,J) is an isomorphism for any N, it is the same for F'(M,J),
which demonstrates the lemma 4.

If the category Ker F' is zero, denote by Z the full sub-category of A whose
objects are isomorphic to the direct sum of a family of objects equal to I.
Similarly, let £ the full sub-category of PC(A) whose objects are isomorphic
to the direct product of a family of pseudo-compact modules equal to A.
The lemma 4 shows that the functor F' induces an equivalence between 7
and the category L£° of L. The corollary 3 (part I) shows that F' defines an
equivalence between A and the category PC(A)°.

Corollary 7. The hypothesis and the notations are those of theorem 4. If I
contains an indecomposable injective of each type, the functor F defines an
equivalence between A and the dual category of PC(A).

We suppose from now on that I contains an indecomposable injective of
each type. If M is any sub-object of I, we denote by [(M) the left ideal of
A formed of endomorphisms of I whose kernel contains M.

Corollary 8. The hypothesis and the notations are those of corollary 7. The
map M ~ (M) is a bijection from the set of sub-objects of I to the set of
closed left ideals of A. The ideal [(M) is two-sided if and only if the sub-object

M of I is characteristicfi.e. f(M) is contained in M for any endomorphism
fofI].

The demonstration of corollary 8 is left to the reader. We associate with
any closed sub-category C of A the largest sub-object CI of I which belongs
to C. If f is an endomorphism of I, f(CI) is contained in CI. In other words,
CI is a characteristic sub-object of I.

Conversely, let J be a characteristic sub-object of I. The objects M for
which the canonical map from Hom(M, J) to Hom(M, I) is bijective, form a
closed sub-category JA to A. Furthermore, if I contains an indecomposable
injective of each type, the maps C — CI and J — JA define a one to one



ABELIAN CATEGORIES 73

correspondence between the set of closed sub-categories from A to the set
of characteristic sub-objects of I. In other words, the map C — [(CI) is a
bijection from the set of closed sub-categories of A to the set of closed two-
sided ideals of A. In the corollary which follows, we denote by [(C) instead
of I(CI).

Corollary 9. The hypothesis and the notations are those of corollary 7. If
C and D are two closed sub-categories of A, the two-sided ideal [(C.D) is the
closure of the product 1(C).[(D).

The proof of the corollary 9 is left to the reader. It follows that with the
notations of the proposition 12, t(® is the closure of the product .

If the injective I contains one and only one indecomposable injective of
each type, the socle Iy of I contains one and only one simple object of
each type. We then say that the ring A of endomorphisms of I is the the
pseudo-compact ring associated with A. This ring is determined up to an
isomorphism by the data of the category A. Two equivalent locally finite
categories have the associated pseudo-compact rings which are isomorphic.

We will say that a pseudo-compact ring A is sober if the quotient of
A by the Jacobson radical is a product of division rings. We will say
that two pseudo-compact rings A and B are equivalent if the categories
PC(A) and PC(B) are equivalent. We then have the following results:
the pseudo-compact ring associated with a locally finite category is sober.
Any pseudo-compact ring is equivalent to a sober pseudo-compact ring. Two
sober pseudo-compact rings are equivalent if and only if they are isomorphic.

If A is a pseudo-compact ring, the theorem 4 applies in particular to the
category dis(A) of the discrete topological A—modules. If A* is the pseudo-
compact ring associated to dis(A), the categories dis(A) and PC(A*) are
dual [i.e. the categories dis(A) and PC(A*)° are equivalent|. It follows that
the categories T(A) and T (A*), formed of discrete modules of finite length
over A and A*, are dual. According to the theorem 1 (part II) finally, any
duality between 7 (A) and T (A*) extends to a duality between PC(A) and
dis(A*). If A is sober, A is thus isomorphic to (A*)* and we can say that A*
is the dual pseudo-compact ring of A.

The corollary 7 has the following consequence:

Corollary 10. If A is a locally finite category and if A is the pseudo-compact
ring associated with A, then A is equivalent to the category of discrete
topological modules over the dual ring A* of A.

Corollary 11. Let I be an injective object of a locally finite category A and
let A be the ring of endomorphisms of I. If I contains an indecomposable
injective of each type, the center Z[A] of the category A (part III, §5) is
isomorphic to the center of the ring A.

An element z of Z[A] is indeed a morphism from the identity functor I4
to itself. In particular, z defines an endomorphism z(I) : I — I. Since z(I)
commutes with all the endomorphisms of I, z(I) belongs to the center of A.
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We leave it to the reader to verify that the map z — z([I) is a bijection from
Z|A] to the center of A.

Corollary 12. Any commutative pseudo-compact ring A is isomorphic to its
dual A*. In particular, the category T (A) of discrete topological A—modules
of finite length is equivalent to the dual category T (A)°.

Since A is a sober pseudo-compact ring, it indeed suffices to show that
the pseudo-compact rings A and A* are equivalent, that is to say that the
categories 7 (A) and T (A)? are equivalent. We will exhibit a contravariant
functor from 7 (A) to T (A)° which defines an equivalence between 7 (A) and
T(A)°.

When m runs through the maximal open ideals of A, the quotients A/m
run through the simple objects of each type of the category dis(A). We
denote by E an injective envelope [in dis(A)] of the direct sum of these
quotients.

For any A—module M, the abelian group Hom 4 (M, E) is then equipped
with a structure of A—module: if ¢ is an element of Hom4 (M, E) and if a
is an element of A, a.¢ is the map z — a.p(x) = p(a.x) from M to E. In
particular, the annihilator of Hom (M, E) contains the annihilator of M.
It follows that Hom 4 (M, F) is a discrete topological A—module if M is an
object of T(A). Furthermore, Hom (M, E) is isomorphic to A/m if M is
isomorphic to A/m. The exactness of the functor M ~» Homu (M, F) thus
implies that Hom (M, E) is a discrete topological A—module of the same
length as M when M runs through the objects of 7(A). We denote by D
the contravariant functor from 7(A) to 7(A) which we have just defined:
DM = Homyu (M, E).

It suffices to show that the functor D o D is isomorphic to the identity
functor of 7(A) (part I, proposition 12): if M is a discrete topological
A—module of finite length and if m is an element of M, we denote by m’
the A—linear map from Homy (M, F) to E which is defined by the formula
m'(f) = f(m). When M varies, the maps m — m’ define a morphism from
the identity functor of T(A) to D o D. In addition, the map m — m’ is
bijective when M is of the form A/m. The exactness of the functor D o D
implies that it is still bijective when M is of finite length. This completes
the proof.
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Part 5. Applications to the study of modules

Here we pick up some properties of commutative rings. We try to gener-
alize to not necessarily commutative rings.

Unless explicitly stated otherwise, all the rings considered in this part
admit a unit element. All the modules considered are right unitary modules.
We suppose in addition that the underlying set of a ring or of a module is
an element of the universe 4.

25. CATEGORIES OF MODULES

Let A be aring. We call category of (right) modules over A and we denote
by modA the following category:

e an object of modA is a module over A;

e if M and N are two modules over A, a morphism from M to N is
an A—linear map from M to N;

e the composition of morphisms coincide with the composition of maps.

It is clear that modA is an abelian Y—category with exact inductive limits.
Furthermore, the underlying right A—module A, of the ring A is a projective
generator of modA. The category modA is locally noetherian if and only if
the ring A is right noetherian.

We define in an analogous way the category of left modules over A.

Now consider an object U of an abelian category B and let x : A —
Hompg(U,U) be a homomorphism of rings with unit element. When M runs
through the objects of B, the composition of morphisms define a bilinear map
from Homp(U, M) x A to Homp(U, M) : (f,a) — fox(a). This map makes
Homp(U, M) an A—module. This functor will be denote by Homp(, U, .),
or Hom(U, .) when no confusion is caused.

Proposition 1. Let A be a ring, B be an abelian $1— category and let S be a
functor from B to modA. The following assertions are equivalent:

a. S is adjoint to a functor T : modA — B.

b. There is a homomorphism x from A to the ring of endomorphisms
of an object U of B which satisfies the following conditions: S is
isomorphic to the functor Homp(, U, .); furthermore, any family of
objects isomorphic to U has a direct sum.

(a) = (b): Indeed let ¥ be a functorial isomorphism from Hompg(T., .)
to Homyg(.,S.). Identify A with the ring of endomorphisms of Ay and put
U=TAy x =T(Ag4,Ay). For any object N of B, ¢(Ag4, N) is a bijective
map from Homp(T A4, N) to Homa(Ag, SN). It is easy to see that this
map is A—linear. Since Homy(Ay4, SN) is isomorphic to SN, it results in a
functorial isomorphism from Homp(U, .) to S.

On the other hand, let (U;);er be a family formed of objects isomorphic
to U and indexed by a set belonging to 4. Let u; be an isomorphism from
U; to U and put A; = Ay for any 4. If v; is the canonical map from A; to the



76 P.GABRIEL

direct sum ) A;, the following equalities show that the morphisms (T'v;) ou;
make T'(> A;) a direct sum of the family (U;)ier:

HomB(T(Z Aj),N) = HomA(Z A;, SN)

= [ [ Homa(A;, SN) = [ [ Homp(TA;, N)
(b) = (a): Indeed choose for any A—module M an exact sequence
D ADHI ABH M0
where (A;)icr and (A4;)jesare two families of modules equal to Ag. Put

U; = U for any j and U; = U for any i. Any isomorphism from Homp(, U, .)
to S induces functorial isomorphisms:

Yo : HomB(Z Ui, .) — HomA(Z Ai, S.),

iel el
Py Homg(z Uj, .) — HomA(Z A;,S).
jeJ jeJ

Furthermore, there is a morphism ¢’ from )" U; to > U; such that we have
j i

Homy(q, .).40 = 11 o Homg(q', ).
If we put TM = Coker ¢’ , 1 induces an isomorphism (M, .) from
Homp(TM, .) to Hom4 (M, S.). This shows that the functor

N ~» Homyu (M, SN)

is representable for any M the sought implication thus results from the dual
proposition of the proposition 10 (part I).

When B is the category of modules over a ring B, the homomorphism
x makes U an A — B—bimodule (left A—module, right B—module). In
this case, we can choose for T' the functor M ~» M ®4 U. The functorial
isomorphism from Homp (7., .) to Hom4(., S.) which is described in [6] will
be said to be canonical.

Proposition 1 (repeated). Let A be a ring, B be an abelian category and
let T be a functor from modA to B. The following assertions are equivalent:

a. There is a functor S adjoint to T'.
b. The functor T is right exact and it commutes with direct sums.

(a) = (b): The proposition 11 (part I) shows that T is right exact.
An argument analogous to the one which has been used for proving the
implication (a) = (b) of the proposition 1, shows that 7' commutes with the
direct sums.

(b) = (a): Indeed put TA; = U and x = T(Ag, Ag). We are going to
define a functorial morphism from Homp(T", .) to Homa(., S.), where S is
the functor Homp(, U, .); for this, let M be an A—module, N be an object
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of B and let f be a morphism from T'M to N. If m is an element of M, we
denote by g, the map a ~ m.a from A to M. We easily verify that the map
m ~» foT gy, is an A—linear map f’ from M to SN. When M and N vary, the
maps f ~ f' define a functorial morphism v : Homg(7T., .) — Homyu(., S.).

It remains to demonstrate that the maps (M, N) : f ~ f' are bijective.
This is obvious true when M is equal to Ay, N being arbitrary. Since the
contravariant functors Homg(7., N) and Hom4(., SN) transform the direct
sums to direct products, ¥)(M, N) is again bijective when M is free. In the
general case, we choose an exact sequence

i S Lo M—o0

where Lo and L; are free modules. The contravariant functors Homp(7., N)
and Homy (., SN) are left exact and the maps (L1, N) and (Lo, N) are
bijective. It follows from a classical argument that (M, N) is bijective.

Corollary 1. Let S be a functor from an abelian category B to modA. The
following assertions are equivalent:

a. S defines an equivalence between B and modA.

b. There is an isomorphism x from A to the ring of endomorphisms
of an object U of B, which satisfies the following conditions: S is
isomorphic to the functor Homg(, U, .); the object U is a projective
generator of B; any family (U;)ier of objects isomorphic to U has a

direct sum; furthermore, the canonical map from > Hompg(U,U;) to
el
Homg (U, > U;) is bijective.
el

(a) = (b): Indeed, S is adjoint to a functor 7" : modA — B. If we put
U=TA; and x = T(Ag4, Agq), we saw that S is isomorphic to the functor
Hompg(, U, .). Since T defines an equivalence, T'(A4, Ag) is a bijective map.
Since Ay is a projective generator of modA, T' A, is a projective generator
of B. Finally, since S defines an equivalence, S commutes with the direct
sums. The same is true for the functor Homp(, U, .) which proves the last
assertion of (b).

(b) = (a): We indeed show that the functor S’ = Homp(, U, .) defines
an equivalence between B and modA: since U is projective, S’ is an exact
functor. Since x is an isomorphism, S'U is identified with Ag. If (U;);er is
a family of objects equal to U, the last assertion of (b) shows that S"(>_ U;)

el
is a free A—module. If (Uj) ey is another family of objects equal to U, the
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same condition provides the following ’equalities’:

Homp ZU”ZU
= HZHomB Ui, Uj) HZHOIHA S'U;, S'U;)

:HomA O s'ui, > Sy :HomA(S’ZUZ-,S’ZUj).
i J i J

Denote by P (resp. Q) the full sub-categories of modA (resp. of B) formed
of the free A—modules (resp. of the objects isomorphic to the direct sum
of a family of objects equal to U). What precedes proves that S’ induces
an equivalent between Q and P [proposition 12(b), part I]. The implication
thus results from the dual of the proposition 14, corollary 5, (part I).

We remark that we can replace the last two conditions of the assertion (b)
by the stronger conditions here: B is a category with generators and exact
inductive limits and U is an object of finite type of B (i.e. any increasing
filtering family of sub-objects of U whose upper bound is equal to U, is
stationary).

Corollary 2. Let A and B be two rings and S be a functor from modB to
modA. The following conditions are equivalent:

a. S defines an equivalence between modB and modA.

b. There is an isomorphism x from A to the ring of endomorphisms
of a B—module U, which satisfies the following conditions: S is
isomorphic to the functor Homp(, U, .); U is a projective B—module
of finite type; furthermore, U s a projective generator of modB.

It is obviously the same to give a homomorphism x from A to the ring
of endomorphisms of an B—module U and to give U a structure of A —
B—bimodule (left A—module, right B—module). In the corollary 3, U is such
a bimodule; we denote by AU (resp. by Up) the underlying left A—module
(resp. the underlying right B—module) of U. If a is an element of A (resp.
b an element of B), ay (resp. by) denotes the endomorphism x ~~ a.x (resp.
x ~» x.b) of the underling abelian group of U.

Corollary 3 (MORITA[18]). Let A and B be two rings and U be an A —
B—bimodule (left A—module, right B—module). The following assertions
are equivalent:

a. The functor M ~~ M ®4U defines an equivalence between modA and
modB.

b. The functor N ~» Homp(U, N) defines an equivalence between mod A
and modB.

c. Up (resp. AU ) is a projective B—module (resp. a projective left
A—module) of finite type; The map a ~> ay (resp. b ~ by) is an
isomorphism from A (resp. from the opposite ring of B) to the ring
of endomorphisms of Up (resp. of oAU ).
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The equivalence of (a) and (b) results from the fact that the functor
S : N ~»Homp(U,N)

is adjoint to the functor T': M ~~ M ®4 U.

(a) = (c¢): Indeed we have T'A; = U and the map a ~» ay coincides with
T(Ag4, Ag). It follows from the demonstration of the corollary 1 that Up is a
B—module of finite type and that a ~» ay is a bijection from A to the ring
of endomorphisms of Ug.

According to the corollary 2, there is a B — A—bimodule V such that T is
isomorphic to the functor M ~~ Hom 4 (V, M). Furthermore, V4 is projective,
of finite type and the map b ~~ by is an isomorphism from B to the ring of
endomorphisms of V4.

The ring B operates on the right on the abelian group Homy4(V, A); the
ring of endomorphisms of A, operates on the left on Hom 4(V, Ay); this group
is thus equipped with a structure of A — B—bimodule. Since U is identified
with T'Ag4, the A — B—bimodule U and Homy(V, A;) are isomorphic. The
properties of V4 and the following lemma thus imply that 4U is projective,
of finite type and that the map b ~~» by is an isomorphism from the ring B,
opposite to B, to the ring of endomorphisms of 4U.

Lemma 1. If M is a left projective A—module and of finite type, the left
A—module Hom 4 (M, Ag) is projective and of finite type. The functor M ~
Homu (M, Ag) defines a duality between the left A—modules, projective and
of finite type, and the left A—modules, projective and of finite type.

The structure of left A—module of Hom 4 (M, Ag) is obviously defined in
the following way: if a belongs to A and f belongs to Hom (M, Ay), a.f is
such that we have (a.f)(x) = a.f(x) if z € M. The lemma 1 is well known
and we will ignore the demonstration.

(¢) = (b): According to the corollary 2, if suffices to prove that Up is a
generator of the category modB. For this we will show that By is a direct
factor of the product Ug:

Consider first two left A—modules P and @ and let ;A be the underlying
left A—module of the ring A. The abelian group Homyu(P,5 A) is equipped
in a natural way a structure of a right A—module, so that it is legal to talk
about the tensor product Homy(P,s A) ®4 Q. If ¢ is an element of @ and f
an element of Hom 4 (P,; A), we denote by v, s the A—linear map p ~» f(p).q.
When ¢ and f vary, the function (g, f) ~» vy s defines a linear map v(P, Q)
from Homy(P,s A) ®4 @ to Hom4 (P, Q). When P and @ vary, the maps
v(P, Q) define a morphism from the functor (P, Q) ~» Hom4(P,s A) ®4 Q to
the functor (P, Q) ~ Homy4 (P, Q). It follows in particular that v(P,Q) is a
morphism of left modules over the ring C of endomorphisms of Q.

When P is equal to sA, v(P,Q) is a bijection. We deduce easily that
v(P,Q) is a bijection whenever P is a left projective A—module of finite
type. If this is true, the left C'—module Hom 4 (P, Q) is isomorphic to the



80 P.GABRIEL

left C'—module Homy(P,s A) ® 4 @ which is a direct factor of the product
Q.

We obtain the required result by choosing P and () equal to 4U. The ring
C is then identified with the opposite ring of B.

Corollary 4. Let A and B be two rings and U be an A — B—bimodule (left
A—module, right B—module). The following assertions are equivalent:

a. Up s a projective B—module of finite type; it is a generator of the
category modB; furthermore, the map a ~ ay s an isomorphism
from A to the ring of endomorphisms of Up.

b. U satisfies the assertion (b) of the corollary 3.

c. aU is a left projective A—module and of finite type; it is a generator
of the category of left A—modules; furthermore, the map b — by is
an isomorphism from the opposite Ting of B to the ring of endomor-
phisms of AU.

The equivalence between (a) and (b) results from the corollaries 2 and 3.
It is the same for the equivalence of (b) and (¢) provided we replace A and
B respectively by B¢ and A°.

Now we give some applications of what precedes:

a. First of all let U be a universe such that 4 € 2, 4 being the universe
that we have chosen once and for all at the beginning of this work. On
the other hand let £ be the category whose objects are the categories
C such that MC € Y and OC € ¥, the morphisms of £ being the
isomorphism classes of functors (cf. part I, § 8). If A is a ring whose
underlying set belongs to 4, the category modA is an object of &;
what precedes allow to determine the group of automorphisms of this
object:

According to the corollaries 2 and 3, a functor 7' : modA — modA
defines an equivalence if it is isomorphic to a functor M ~~» M Q@4 U,
where U is an A — A—bimodule satisfying the assertion (c¢) of the
corollary 3. We can thus identify the elements of G(A) with the types
of A — A—bimodules satisfying the assertion (c¢) of the corollary 3.
Modulo this identification, the law of G(A) is defined by the map
(U, V)~V ®4 U. In addition, if U satisfies the assertion (c) of the
corollary 3, it is the same for the A — A—bimodule Hom 4 (U, Ay);
the types of U and Hom 4 (U, A;) are then the inverse elements of the
other.

b. Let B be a ring and U be a free B—module B}. The ring of
endomorphisms of B} is the ring M, (B) formed of n x n matrices
with coefficients in B. The corollary 2 shows that the functor N ~-
Homp(B], M) defines an equivalence between B and M,(B).

In particular, if M is a B—sub-module of B}, Hompg(B}, M) is
identified with the right ideal v(M) of M,,(B) which is formed of the
endomorphisms f of B)} whose image is contained in M. We find that
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the map M ~» v(M) is a bijection from the set of B—sub-modules
of BY} to the set of right ideals of M, (B).

c. The example which follows is due to AZUMAYA [3]: let R be a
commutative ring and A be a finite R—algebra (i.e. the underlying
R—module of A is of finite type) which is faithful (i.e. the map
r ~ r.ly is an injection from R to A). We denote by A° the
opposite algebra of A and by A€ the algebra A ®p A° [6]. The
map (z,a®b) ~ b.x.a defines on A a structure of right A°—module;
the map (r,z) ~» r.x defines a structure of left R—module on A: the
algebra A is thus equipped with a structure of R— A°—bimodule (left
R, right A°). It is this structure that we consider in the following of
this paragraph.

Lemma 2. Let R be a commutative ring, A be an R—algebra, S be a
commutative R—algebra, B be the S—algebra deduced from A by extension
of scalars and B¢ be the tensor product B ®g B°. We suppose that A e is a
projective A°—module; Bpge is then a projective B¢—module.

Indeed let u(A|R) be the map a ® b ~» b.a from A°¢ to A. The A° module
A e is projective if and only if p(A|R) induces an isomorphism from a direct
factor of A¢ to A. In this case u(A|R) ®pg S induces an isomorphism from a
direct factor of A°®@pS to A®RS. The lemma results from that u(A|R)®g.S,
A°®pr S and A®p S are 'identified’ respectively with p(B|S), B¢ and B.

Lemma 3. The hypothesis are those of the lemma 2; for any prime ideal p
of R, (A/pA)y is then a semi-simple separable algebra over (R/pR)y.

We apply the lemma 2 by choosing for S the algebra (R/pR),. In this
case, B coincides with (A/pA),. Since S is a division ring, we know on

the other hand that Bpge is a projective B*—module if and only if B is a
separable S—algebra (cf. [6], chap. VI).

Lemma 4. The hypothesis are those of the lemma 2. If i is the canonical
map from the center Z(A) of A to A, then i ®g S is an isomorphism from
Z(A) ®R S to the center of A® —RS.

The centers of A and of B are indeed identified with Home(A, A) and
Hompe(B, B). The lemma results from this and from the fact that the
canonical map from Homge(M,N) ®r S to Hompe (M ®r S, N ®g S) is a
bijection when M is a projective A°—module of finite type.

Lemma 5. If R is a commutative ring and M s a projective R—module of
finite type, the following assertions are equivalent:

a. M 1is a generator of modR.
b. M is a faithful R—module (i.e. the annihilator of M is zero).

The implication (a) = (b) is clear. Prove the converse: it suffices to show
that Hompg (M, N) is non zero if N is non zero; so let m be a maximal ideal of
R such that Ny, is non zero. It is clear that M, is a projective R,—module
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(thus free) and that the annihilator of My is zero. Since M is of finite
presentation, (Hompg(M, N))n is identified with Hompg  (Mm, Nm) [5]. Since
this last module is non zero, it is the same for (Homp(M, N))n, thus for
Hompg(M, N).

Proposition 2. Let R be a commutative ring and A be a finite and faithful
R—algebra. The following assertions are equivalent:

a. The functor N ~ N ®g A defines an equivalence between modR and
modA°.

b. The functor M ~» Homge(A, M) defines an equivalence between
modA°€ and modR.

c. The right A°—module Aae is projective; furthermore, the map r ~-
r.14 is an isomorphism from R to the center of A.

d. The left R—module rA is projective; furthermore, the map b ~
ba is an isomorphism from the opposite ring of A to the ring of
endomorphisms of rA.

e. The left R—module is projective; for any maximal ideal m of R,
A/mA is in addition a simple and central algebra over A.

The equivalence between (a) and (b) results from the corollary 3. The
equivalence between (a) and (d) results from the lemma 5 and the corollaries
2 and 4. The implication (b) = (c) results from the corollary 3 and from the
fact that Homye(A, A) is the center of A.

(¢) = (b): According to the corollary 3, it suffices to prove that A4e is
a generator of modA®€. It is equivalent to say that, for any maximal right
ideal m of A€, there is a A°—linear map f : A — A® such that Im f is not
contained in m. Now m N R is a prime ideal p of R and A°/m is a simple
module over the ring B¢ = B®g B°, where S = (R/pR), and B = (A/pA).
Since B is a simple and central algebra over S according to the lemma 3 and
4, B¢ is a simple ring and the abelian group Hompge (B, A¢/m) is non zero.
Since Hompe (B, A°/m) is identified with (Homae (A, A¢/m)),, we conclude
that Hom4e (A¢/m) is non zero. Finally, since A is projective, any non zero
morphism from A to A¢/m factors through A® by a morphism f: A — A€
such that Im f ¢ m.

(¢), (d) = (e): Results from the lemmas 3 and 4.

() = (d): Indeed put Lr(A) = Hompg(A, A). On the other hand let
©(A|R) be the map b ~» by from the ring A° ®p A, the opposite ring of A°,
to Lr(A).

Since gA is projective, Lr(A) and A° @ A are projective R—modules
of finite type. To show that ¢(A|R) is a bijection, it thus suffices to prove
that p(A|R) ®g R/m is a bijection for any maximal ideal m of R. Now
(A° ®r A) ®r R/m, Lr(A) ®r R/m and ¢(A|R) ®r R/m are identified
respectively with B°®g B, Ls(B) and ¢(B|S), where we have put B = A/m
and S = R/m. Since B is a simple and central algebra over R/m, ¢(B|S) is
a bijection for any m; the assertion (c) then follows.
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Corollary 5. Suppose the equivalent conditions of the proposition 2 are
satisfied. The map a — a.A is a bijection from the set of ideals of R to
the set of two-sided ideals of A.

Indeed the canonical injection from a to R defines an injection a ® A to
R®pr A = A. The image of this injection is nothing else than a.A and we
confuse a ® g A with this image. Since the functor N ~~ N ®r A defines an
equivalence between modR and nidA®, the map a — a ®p A is a bijection
from the set of R—sub-modules of R to the set of A°—sub-modules of A;
these coincide with the two-sided ideals of A. We refer the reader to [1] for
the other applications of the proposition 2.

26. THE LOCALIZATION

Let A be a ring. A topology on A is said to be (right) linear if it makes
A a topological ring and if there is a base of neighbourhoods of O formed of
right ideals. In this case, the set F' of open right ideals satisfies the following
conditions:

a. If m is a right ideal containing an element [ of F', then m belongs to
F.

b. f me Fandifl€ F, thenmnNI[e F.

c. lf le F and if a € A, then ([: a) = {z|a.x € [} belongs to F.

We say that a set F', formed of right ideals of A, is topologizing if the
conditions (a), (b) and (c) are satisfied. We say also that an A—module
M is F—negligible if the annihilator of any element of M is a right ideal
belonging to F'. If F is the full sub-category of modA whose objects are the
F —negligible A—modules, F is a closed sub-category (cf. part IV, § 4).

Lemma 6. The map F — F is a bijection from the set of topologizing sets
of right ideals to the set of closed sub-categories of modA.

If we know F, we can indeed find F: a right ideal [ belongs to F' if and
only if A/l is an object of F.

If F and G are two topologizing sets of right ideals, F.G denotes the
topologizing set associated to the product F.G (part IV, § 4). It is the
same to say that an ideal m belongs to F.G if for any a € A, there is an
element [ of F' such that (a.l+ m)/m is G—negligible. In particular, if p is
an element of F' and q is an element of G, then p.q belongs to F.G. With
these conventions, the closed sub-category F is localizing if and only if F.F
is equal to F. The localizing sub-categories of modA therefore correspond
bijectively to the idempotent topologizing sets of right ideals.

Now let F' be an idempotent topologizing set of right ideals. For any
A—module M, we choose an F—envelope that we denote by uy; : M — Mp
(cf. part III). Since Mp is an A—module, any element m from Mp defines
an A—linear map from Ay to Mg : a ~ m.a. This map extends in one and
only one way to an A—linear map from Ar = (Ay)r to Mp; we thus define
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a bilinear map:

M F X A F— M F.
We leave it to the reader to verify that, if M is equal to Ag, this bilinear map
makes Ap a ring. If M is arbitrary, this map makes Mpr an Ap—module. In
particular, if [ is a right ideal of A, we can suppose that we chose for [r a
right ideal of Ap.

In the following, we always equip Ar and Mp with the structures that
we have just made explicit. We also use the following notations: T is the
canonical functor from modA to modA/F; S’ is the functor from modA/F
to modAr which is induced by the localizing functor; p is the functor
which associates with any Ap—module N the underlying A—module (for
the structure of A—module induced by u4). With these notations, p o S’ is
a functor adjoint to T

Lemma 7. Let M be an A—module, N be an Ap—module. The map
p(N, Mp) from Homa, (N, Mp) to Homa(pN, pMFp) is bijective.

Indeed it is clear that p(N, Mp) is an injection. So let f be an A—linear
map from N to Mp. If n is an element of N, we want to show that we
have f(n.a) = f(n).a for any a of Ap. Now the maps g : a ~ f(n.a) and
h:a~ f(n).a are A—linear, and we have the equality gouq = houy. We
conclude the equality of g and h (definition of F—closed objects, lemma 5,
§ 2, part III).

Let F’ be the set of right ideals [ of Ap such that p(Ag/l) is F—negligible.
It is clear that F” is idempotent topologizing, and that an Ap—module N is
F'—negligible if and only if ,N is F'—negligible. We can thus talk about the
canonical functor 7" from modAp to the quotient category modAp/F'.

Proposition 3. Let A be a ring and F be an idempotent topologizing set of
right ideals. With the above notations, the functor T o p defines by passing
to the quotient an equivalence between modAp/F' and modA/F.

Indeed let B be the quotient category modA/F; show that the functor
S’ is adjoint to T o p: if M is an object of B, N an object of modAp, the
abelian group Homp(TpN, M) is identified with Hom(pN, pS’ M), because
po S is adjoint to T. According to the lemma 7, Homu(pN, pS'M) ’is
identified” with Homy, (N, S’M). This proves that S’ is adjoint to T o p.
The proposition thus follows from the proposition 5 (part III).

Corollary 6. An Ap—module N is F'—closed (resp. F'—closed and injec-
tive) if and only if pN is F—closed (resp. F—-closed and injective).

This corollary results from the previous proposition and from the corollary
4 (part III).

If M is an A—module, we denote by FM the largest F'—negligible sub-
module of M . The underlying abelian group of Mp is identified with
Hom 4 (Ag, MF); this last group is itself isomorphic to Homy,aq4/7(Ag, M),
that is to say, the inductive limit lignHomA([, M/FM).

leF
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It is comfortable to equip this inductive limit with a structure of A—module
such that the previous result from Mp to lim Hom4 ([, M/F M) is an isomor-
phism of A—modules. This results in the following proposition:

Proposition 4. Let A be a ring and F be an idempotent topologizing set
of right ideals. The localization functor defined by F is isomorphic to the
functor M ~~ li%mHomA([, M/FM).
leF
Corollary 7. The hypothesis are those of the proposition. We suppose in
addition that the injective envelope of an object of F belongs to F. The
localization functor defined by F is then isomorphic to the functor M ~~
ligHomA([, M).
leF
Indeed consider the following exact sequence:
0 — limg Hom 4 (L, FM) = ling Hom 4 (1, M) £ limg Hom a (L, M/F M)
5 lim Bxty (I, FM)
We check immediately that Homyu (I, N) is zero if N is F—negligible. It
results that p is an injection. On the other hand, the functor N ~ Exth (I, N)
is the satellite of the functor NV ~» Homu([, N). If N is F'—negligible, there
is an exact sequence
0—+N=SI53N -0
where [ is an injective F'—negligible A—module. We conclude that Extjlél([, N)
is zero if N is F'—negligible. In particular, the map d is surjective.

Corollary 8. Let A be a ring and let F be an idempotent topologizing set
of right ideals. Supppose that there is a sub-set G of F, cofinal and formed
of right ideals of finite type. If the localization functor defined by F is exact,
this functor is isomorphic to the functor M ~ M ® 4 Ap; furthermore, the
categories modA/F and modAp are then equivalent.

Show first that the functor M ~- lim Hom A(l, M) commutes with direct
leG
sums. This is obviously true for the functors M ~» FM and M ~» M/FM;

if N is an A—module of finite type, the functor Homy (N, .) commutes with
direct sums. It follows that the functor M — Homu([, M) commutes with
direct sums if [ is an element of G. The first assertion of the corollary then
results [see the proposition 1 (repeated) and the remark that precedes it|.

On the other hand let B be the quotient category modA/F, let T' be the
canonical functor from modA to B and let S be a functor adjoint to T. The
functor Homp(Ap, .) is isomorphic to the functor Hom4 (A, S.); since S is
exact, Ap is a projective object of B; since S commutes with direct sums,
it is the same for Homp(Ap, .). The last assertion thus results from the
corollary 1.

Here is an application of the corollary 6: let .S be a multiplicative subset

of A (sub-set of A such that a.b € S if a € S and b € S). The data of
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S admit to define an idempotent and topologizing set Fg of right ideals: a
right ideal [ belongs to Fyg if, for any a € A, there is an s € S such that a.s
belongs to [. It is the same to say that an A—module M is Fg—negligible if
any element m of M is annihilated by an element s of S.

Any ideal belonging to Fg obviously meet S; the converse is true if we
have Vs € S, Va € A, 3t € S, b € A such that we have a.t = s.b. We will
find this condition again; for this, we denote by Mg instead of Mpg:

Definition 1. Let ¢ : A — B be a homomorphism of rings with unit element
and S be a multiplicative sub-set of A. We say that (B, ) is a ring of right
fractions of A for S if we have:

a. Ker ¢ is Fg—negligible; in other words, if p(a) is zero, there is s € S
such that we have a.s = 0.

b. The image under ¢ of any element of S is invertible (left and right).

c. Any element b of B is of the form b= (pa).p(s)™t, a € A, s € S.

Proposition 5. Let A be a ring and S be a multiplicative sub-set of A. The
following assertions are equivalent:

a. There is a ring of right fractions of A for S.
b. S satisfies the following conditions:

(k) VseS, VacA, FteS, Tbe A, such that we have a.t = s.b.
(%) if a€ Ajif s€S and if s.a=0,
there is t € S such that a.t =0

c. The image of an element of S under the map uag : A — Ag is
wnvertible.

If these conditions are fulfilled and if (B, ¢) is a ring of right fractions of
A for S, there is one and only one isomorphism ¢ from B to Ar such that
we have 1 o o = u4. The functor M ~~ Mg is then exact if it is isomorphic
to the functor M ~~ M ®4 Ag.

(a) = (b): The assertion (%) is clear because ¢(a) is zero if a is zero.
On the other hand, ¢(s)1.(a) is an element of B, and is thus of the form

-1 1

pla)=p(c).e(r)™, res, ceA.
We conclude the equality p(a).o(r) = ¢(s).¢(c). In other words, a.r — s.c
belongs to Ker ¢; consequently there is a u € S such that we have a.r.u —
s.cu=0. We put t =r.u and b= c.u.

(b) = (c¢): We show first that the conditions (%) and (J% ) imply the

exactness of the functor M ~» Mg. Suppose we are given a diagram

©(s)
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where [ belongs to Fg and where M and Ker p are Fg—closed. It suffices to
show that [ contains an ideal m € Fg such that the restriction of v to m is
of the form p o v, where v : m — M [proposition 7(b), part III|.

If s belongs to [N.S, u(s) is of the form p(m), where m € M; furthermore,
m.a is zero if s.a is zero. Thus we put m = s.A and v(s.a) = m.a.

The exactness of the functor M ~» Mg implies that uy4(s) is right in-
vertible for any s € S (indeed let g5 be the map a ~ s.a; since Coker g
is Fg—negligible, gs induces an epimorphism from Ag to Ag). It follows
that wa(s).(s".ua(s) — 1) is zero if s’ is such that we have ux(s).s’ = 1.
Since u4(s)is a left and right regular element |[condition ()|, we have
slug(s) =1

(¢) = (a): This is clear, similar to the uniqueness of the ring of fractions.

The last assertion results from the corollary 8.

Remark 1. The conditions (%) and (k%) are always satisfied when S is
contained in the center of A. We then find the localization in relation to the
center (part 111, § 5).

Remark 2. If the conditions (%) and (k%) of the proposition 5 are satis-
fied, we can exhibit a construction of Mg closer to the established traditions:
for this, we should say that two elements (m, s) and (n,t) of M xS are equiv-
alent if there are two elements u and v of A such that we have s.u =t.v € S
and m.u = n.v. The underlying set of Mg is then chosen equal to the quo-
tient of M x S by the equivalence relation that we have just defined. The
definition of laws of addition and multiplication is easy.

Remark 3. We leave it to the reader to prove that, if A is commutative, Ap
is commutative for any idempotent topologizing set F' of ideals; furthermore,
the map p ~ pr is a bijection from the set of prime ideals of A not belonging
to F to the set of prime ideals of Ar not belonging to F'.

27. THE THEOREM OF GOLDIE

This paragraph is devoted a theorem of GOLDIE that we will prove by
our methods. Let A be a ring and let F' the set of right ideals of A whose
canonical morphism to A, is an essential extension. For a right ideal [ belongs
to F', it is necessary and sufficient that the following condition is satisfied:
for any non zero element a of A, there is b € A such that a.b is non zero
and belongs to . It follows easily from this condition that the set F' is
topologizing. We can thus talk about the largest F'—negligible right ideal;
this ideal is a characteristic sub-module of Ay, that is to say, a two-sided
ideal of A. In this paragraph, we suppose that this two-sided ideal is zero;
in other words, we suppose that the following assertion is true:

(%) If A is an essential extension of the right ideal [and if z.[is zero,z € A,

then x is zero.
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Lemma 8. If the condition (%) is satisfied, then the set F of right ideals
whose canonical morphism to Ay is an essential extension, is idempotent
topologizing.

Show that F' is idempotent: Let m be an element of F.F and let a be a
non zero element of A; there is an element [ of F' such that (a.l 4+ m)/m is
F—negligible (cf. § 2). According to (%), the product a.l is non zero. Thus
there is a [ € [ such that a.l is non zero and such that a.l.n is contained in
m for at least one n € F. This shows that m belongs to F.

The set F' thus defines a localization. The condition (%) implies that the
canonical map from A to Ap is injective. Furthermore, we have the lemma:

Lemma 9. Ap is an injective A—module.

Indeed let f: [ — Ap be an A—linear map from a right ideal of A to Ap.
If [ is an element of F', f extends obviously to A (part III, § 2). If [ is an
arbitrary right ideal, let m be a complement of [ in Ay (part II, § 5); then
[ + m is isomorphic to the direct sum [ & m and f extends to an A—linear
map g : [+m — Ap. Since A is an essential extension of [+m, [4+m belongs
to I and g extends to A.

Lemma 10. Any F'—closed A—module M contained in A is a direct factor
Of AF

Identify A with its image in Ar and let NV be a complement of M NA in A.
The module Ay is then an essential extension of M N A+ N, and the quotient
Ap/(M + N) is F—negligible. It follows that the canonical injection from
M + N to Ap is an F'—envelope. The lemma thus results from the formula

Ap=(M®N)p =Mp®Np =M Np.

Lemma 11. The ring Ar is reqular in the sense of Von NEUMANN ([4], § 6,
exercise 15) (we also say ‘absolutely flat’ instead of regular, [5], chap. I, § 2,
exercises).

We want to show that any cyclic ideal a. A is given by an idempotent. For
this, we denote by f, the endomorphism b ~» a.b of Ap. The map a ~ f,
is an isomorphism from the ring Ar to the ring of endomorphisms of the
A—module Ap. Since Ap is F—closed, Ker f, is F'—closed and is a direct
factor of Ar (lemma 10). If M is a complement of Ker f,, M is injective
(lemma 9) and f, induces an isomorphism from M to a direct factor of Ap.
The lemma 11 thus results from the lemma 12:

Lemma 12. Let A be a ring, M be an A—module, B be the ring of en-
domorphisms of M. If b is an element of B, the following assertions are
equivalent.

a. The right ideal b.B is a direct factor of By.
b. The left ideal B.b is a direct factor of sB.
c. Ker b and Im b are direct factors of M.
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The proof of this lemma is obvious and is left to the reader.

The corollary of the proposition 3 shows that Ag is also an injective
Ap—module. We also remark that with the notations of paragraph 2, F’
is none other than the set of right ideals of Ar whose canonical morphism
to Ap is an essential extension. Furthermore, the ring Ap also satisfies the
condition (¥).

We summarize the previous lemmas in the

Theorem 1. If the ring A satisfies the condition (%), the set of right ideals
whose canonical morphism to Aq is an essential extension, is topologizing and
idempotent. The ring Ar is reqular and the underlying right Ap—module of
Ap is injective. As an A—module, A is the injective envelope of Aq.

Let’s mention two applications of the theorem 1.

a. Let A be a ring that any non zero right ideal contains a non zero
idempotent. It is the same to say that for any non zero element a of
A, there is a non zero element x € A such that we have z.a.x = x
(this happens if A is a regular ring in the sense of Von NEUMANN).
If [ is a right ideal of A and if x.[ is zero, [ annihilates any left ideal
of the form A.e, where e runs through the idempotents contained in
A.x. If x is non zero, we can choose e different from O. Then [ is
contained in (1 —e).A and A, cannot be an essential extension of [.
This proves the condition ().

b. Any integral ring and any quasi simple ring (there is no two-sided
non zero proper ideal) can be embedded into a regular ring. We
will see that, under the noetherian conditions, this regular ring is a
simple ring.

Lemma 13. If the ring A satisfies the condition (%), the following asser-
tions are equivalent:
a. The ring Ap is semi-simple.
b. There does not exist an infinite family formed of right ideals of A
whose sum is direct.

(a) = (b): Indeed let n be the length of the underlying Ap—module of Ap.
Let (I;);cr be a family of right ideals of A whose sum is direct. The formula

O r=> (L)F
i€l el
shows that the number of elements of I is smaller than n.

(b) = (a): If the assertion (b) is true, a classical argument proves the
existence of a finite family ([;);cr, formed of right ideals of A satisfying the
following conditions: the sum of [; is direct and Ay is an essential extension
of this direct sum; furthermore, [; is a coirreducible A—module (cf. part II,
§ 5; in a general way, it is equivalent to say that the injective envelope of an
A—module M is the direct sum of a finite family of indecomposable injectives
or to say that there does not exist an infinite family of sub-modules of M
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whose sum is direct). It follows that the right ideals (I;) p are indecomposable
and that their sum is direct and equal to Ap; the regular ring Ap is thus
the direct sum of a finite family of indecomposable rings. This proves (a).

Lemma 14. Let A be a ring satisfying the following conditions:

a. Any nilpotent ideal is zero.
b. The right ideals of the form (0 : a) = {z|x € A,a.x = 0} satisfies the
ascending chain condition.
The ring A then satisfies the condition (¥).

Let a be a non zero element of A and we prove that Ay is not an essential
extension of (0 : a). For this, we choose an element ¢ € a.A such that
(0 : ¢) is maximal among the ideals of the form (0 : z), where x € a.A and
x # 0. Since c¢.A is not nilpotent, there is an element d € A such that a.d.c
is different from 0. It then follows from the inclusions:

(0:¢)Cc(0:d.c) C (0:a.d.c)

and from the maximality of (0 : ¢) that (0 : d.c) is equal to (o : a.d.c). In
other words, the equality a.d.c.x = 0 implies the equality d.c.x = 0. This
shows that the intersection d.c.A N (0 : a) is zero and that Ay is non an
essential extension of (0 : a).

Theorem 2 (GOLDIE). Let A be a ring satisfying the following conditions:

a. Any nilpotent ideal is zero.

b. The right ideals of the form (0 : a) = {z|x € A,a.x = 0} satisfies the
ascending chain condition.

c. There does not exist an infinite family formed of right ideals of A
whose sum is direct.

The ring A satisfies the condition (%) and the localized Ap of A is a semi-
simple ring. If S is the multiplicative sub-set formed of the regular elements
of A, the couple (Ap,u4) is a ring of right fractions of A for S.

It remains to show the last assertion: if s € A is left regular (i.e. s.x =0
implies z = 0), the morphism = ~» s.z defines injective endomorphisms of A
and of Ap. This morphism is thus an automorphism of Ar and s is invertible
in Ap; in particular, s is right regular in A. The multiplicative sub-set S is
thus formed of left regular elements of A. To complete the demonstration,
it suffices to show that with the notations of the paragraph 2, F' is equal to
Fg |proposition 5, (¢)]. For this, we prove that a right ideal [ belongs to F'
if and only if [ contains an s € S.

If s is a regular element of A, the ideal s.Ap is equal to Ap. It results in
that s.A belongs to F.

Conversely, let [ be an element of F. We will construct two sequences
(e1,+-- ,en) and (ay,--- ,ay,), formed of elements of Ar and satisfying the
following conditions: for any 4, e; is a primitive idempotent of Ap; Ap is the
direct sum of indecomposable ideals e;.Ap; for any i, e;.a; is non zero and
belongs to [; if f; denotes the morphism z ~~ e;.a;.z, we have the equality
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Ker fin---NKer f, =0. If we put s =ej.a1 + - - + en.ay, it follows from
these conditions that the image of Ap under the morphism x ~» s.x meets
any of the ideals e;.Ap (because s.x belongs to e;.Ap if z belongs to the
intersection of Ker f; for j # i); this image being F'—closed, it coincides
with Ap and the morphism is bijective. The element s is thus regular and
belongs to [.

Take for e an arbitrary primitive idempotent of Ap. Let m; be an element
of I such that e;.my is contained in [. Since e.m; is not nilpotent, there is
a1 € my such that e;.a;.eq is non zero. We conclude from there the formula

Ap =e1. Ar ® Ker f1.

Take for eg a primitive idempotent belonging to Ker fi. Let mg be an element
of F' such that eo.ms is contained in [. Since es.ms is not nilpotent, there is
as € my such that es.as.e9 is non zero. We conclude from there the formula

Ap =e1.Ar ® e Ap @ Ker f1 NKer fo.

Take for es a primitive idempotent belonging to Ker f; N Ker fs, .... The
construction stops when n is equal to the length of the underlying right
Arp—module of Ar. We then have the formulas

Ap =e1 Ap+--+epAp and Ker fiN---NKer f, =0.

Corollary 9. Let A be a ring satisfying the conditions (b) and (¢) of the
theorem 2 and whose O is a prime two-sided ideal (i.e. if a and b are two non
zero two-sided ideals, the product a.b is non zero). If S is the multiplicative
sub-set formed of regular elements of A, there is a ring of right fractions of
A for S. This ring of fractions is simple.

The condition (a) of the theorem 2 is indeed satisfied. If Ap was not
simple, Ar would contain non zero two-sided ideals a and b whose product
would be zero. The intersections a N A and b N A would then be two-sided
ideals of A and the product of these ideals would be zero. This is absurd.

Corollary 10. Let A be an right noetherian integral ring. If S is the
multiplicative sub-set formed of non zero elements of A, there is a ring of
right fractions of A for S. This ring is a division ring.

The existence of the ring of fractions Ag results from the theorem 2. If
Ag is not a division ring, Ag contains an idempotent e distinct from 1. Thus
there is an s € S such that e.s belongs to A. Since e.s is not invertible in
Ag, the x € Ag such that e.s.x is zero form a right ideal [. It follows that
A Nis non zero and is annihilated by e.s: this is absurd.

28. INDECOMPOSABLE INJECTIVES AND TWO-SIDED IDEALS

Let A be a right noetherian ring. If M is an A—module, Ann M denotes
the two-sided ideal formed of a such that we have M.a = 0. Similarly, if m
is an element of M, Ann m denotes the right ideal formed of a such that we
have m.a = 0.
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Let I be an indecomposable injective A—module. If M and N are two
non zero sub-modules of I, M N N is non zero and we have

Ann (M NN)D Ann M + Ann N.

The annihilators of non zero sub-modules of I thus form an increasing
filtering family of two-sided ideals of A. This family has a maximal element
which we denote by A([).

We first see that A([) is a prime two-sided ideal; in other words, A(I) is
not equal to A and we have a.A.b C A(I) = a € A(I) or b € A(I). This
results from the following lemma whose proof is left to the reader.

Lemma 15. If a is a two-sided ideal of a ring A, the following assertions
are equivalent:

a. a is a prime two-sided ideal.
b. There is a non zero A—module M such that we have Ann N = a for
any non zero sub-module N of M.

I also claim that any prime two-sided ideal p is of the type A(I), where [ is
an indecomposable injective A—module: indeed, let &I be a decomposition
of the injective envelope of A/p into indecomposable injectives; let My be
a sub-module of [ whose annihilator is A(l;). Then M N A/p is different
from O and has both p and A(Iy) as annihilators; whence p = A(Iy) for any
k, and the result.

It is easy to see that A/p is in fact an isotypic A—module (part IV, § 2),
that is to say that the injectives I} are all isomorphic. Indeed, the corollary
9 applies to the ring A/p. This ring is thus contained in a simple ring B
which is the injective envelope of A/p as right (A/p)—module. The injective
envelope I of A/p considered as A—module contains B, and B coincides
with the set of elements of I which are annihilated by p. The assertion thus
results from the fact that B is the direct sum of right simple ideals which
are isomorphic coirreducible A—modules.

Now let M be an arbitrary A—module, let I be the injective envelope of M

and let I = )" Ij be a decomposition of I into a direct sum of indecomposable
k
injective modules. We say that the prime two-sided ideal p of A is associated

with M if there is a k such that we have p = A(I}). We can then group in

packets J, = ) Ij the indecomposable injectives associated with the
A(Ix)=p

same prime two-sided ideal. We thus obtain a decomposition of I, unique

up to an automorphism, of the type I = 3, where p runs through the prime
p
two-sided ideals associated with M.

In particular, if M, is equal to the intersection M N (> Jy), we have the
ap
equality 0 = (| M}, where p runs through the prime ideals associated with
p

M. In addition, the decomposition is irredundant and M /M, has p as the
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only associated prime two-sided ideal. The following proposition results from
the lemma 15:

Proposition 6. The prime two-sided ideal p is associated with M if and
only if M has a sub-module N such that p is the annihilator of N and of any
non zero sub-modules of N.

We thus find by a different process the results of LESIEUR-CROISOT on
the ’tertiary’ decomposition [16].

We now propose to see under which conditions the theory obtained is
not finer than the theory of LESIEUR-CROISOT, that is to say when the
established correspondence between indecomposable injectives and prime
two-sided ideals is bijective. For this, we suppose the hypothesis (H) is
satisfied:

(H) If mathfrakl is a right ideal of A and if p is the annihilator of A/I,

there is a finite number of elements x1,--- ,x, of A/l such that we have
p= ﬂ Ann z;
1<i<r

If the condition (H) is satisfied, we claim that, for any indecomposable
injective I, the injective envelope of A/A(I) is the direct sum of a finite
number of modules isomorphic to I: Indeed let M be a sub-module of I
whose annihilator is A(I). We clearly have

Al = m Ann z.

z#0
zeM

But it results from (H) that A(I) is the intersection of a finite number of

Ann z, say Ann x1,--- , Ann x,; so there is a monomorphism from A/A(I)
=7

to the finite direct sum € x;.A. The injective envelop of this sum is isotypic;
i=1

whence the result.

Lemma 16. If the condition (H) is satisfied, the correspondence I ~~ A(I)
between types of indecomposable injectives and prime two-sided ideals is bi-
jective.

It remains to give examples where the condition (H) is verified:

a. All the right ideals of A are two-sided.

b. The ring A is right artinian. The radical t(A) of A is then nilpotent
and any prime two-sided ideal contains t(A). The prime two-sided
ideals of A thus correspond bijectively to those of semi-simple ring
A/t(A), that is to say, to the irreducible representations of A.

c. The center Z(A) of A is a noetherian ring and A is a Z(A)—module
of finite type: Let M be an A—module of finite type,  and y be two
elements of M. If 2/ and 3’ denote the sets formed of the elements
of M which are annihilated by Ann x and Ann y, we see that 2’ and
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y" are modules of finite type over Z(A). Furthermore, we have the
equality
Ann (2 +¢') = Ann 2 N Ann y.
Since M is a noetherian Z(A)—module, there is a finite number of
elements z1,- -+ ,z, of M such that we have z} + --- + 2. = M.
The condition (H) is thus verified.
d. A counter-example: Let k be a field of characteristic 0 and k(X)
be the field of rational fractions of an indeterminate X over k. Let
d be the k—derivation P(X) — P'(X) of k(X) and let A be the
ring of operators given by d and the homotheties of k(X)(note by
the translator: homothety means the multiplication map by a given
element). The ring A is integral, any right ideal is cyclic and there
is no prime two-sided ideal distinct from O or A (|4], § 5, exerc. 13).
In particular, the prime two-sided ideals associated with a simple
A—module and with A, are zero. Since these modules do not have
the same injective envelope, we see that the correspondence I ~ A(I)
is not bijective.
The set of prime two-sided ideals of A will be called from now on the prime
spectrum of A |notation: Spec (A)]. We know that it is possible to associate
with any prime two-sided ideal p an indecomposable injective A—module I,
which satisfies the following conditions: the injective envelope of A/p is the
finite direct sum of modules isomorphic to I,. The map p ~ I, defines an
injection from Spec (A) to the spectrum of the category modA. We always
identify Spec (A) with the image of this injection.

Proposition 7. Let A be a right noetherian ring and C be the localizing
sub-category of modA. A prime two-sided ideal p belongs to Sp(C) (part IV,
§ 1) if and only if A/p is an object of C.

It is clear that p belongs to Sp(C) if A/p is an object of C. Conversely
suppose that p belongs to Sp(C). This means that I, contains a non zero sub-
module belonging to C. It follows that A/p contains a non zero sub-module
N belonging to C. We denote by S the multiplicative subset formed of the
regular elements of A/p (cf. § 3). If P is a sub-group of N, the right ideal
Ann P of A/p which is formed of a such that P.a is zero, is the intersection
of A/p with a right ideal of the simple ring (A/p)g. It follows that the right
ideals of A of the form Ann P satisfy the descending chain condition. In

particular, there is a finite number of elements x1, -+, x, of N such that we
have ‘
i=r
0= ﬂ Ann z;.
i=1

Thus there is an A—linear map from A/p to the direct sum of the modules
x;. A. It follows that A/p belongs to C.

If s is an element of Sp(modA), and if I is an indecomposable injective
A—module of type s, the two-sided ideal A(;) belongs to Spec (A). We will
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say that the map s ~» A(Is) is the canonical projection from Sp(modA) to
Spec (A). This projection is identifies with Spec (A); it is thus surjective.
When it is bijective, we will say that the ring A has enough two-sided ideals.

Let A be a ring, right noetherian and having enough two-sided ideals. If
F' is an idempotent topologizing set of right ideals, we saw that the product
[.m of two right ideals [ and m belongs to F' provided that [ and m belong
to F. The multiplicative law of A thus equip the set F' with a structure
of monoid. We claim that the sub-monoid of F' which is generated by the
prime two-sided ideals belonging to F, is cofinal: the sub-category F is
indeed generated by the modules A/p, where p runs through the prime two-
sided ideals belonging to F' (proposition 7 and corollary 2, part IV). Any
noetherian module M belonging to F consequently has a composition series

OZMOCM1C"‘CM7»CMT+1:M,

whose quotients M;1/M; are annihilated by a prime two-sided ideal p; € F.
We conclude from there that the product p,.p,—1...pg annihilates M. If M is
the quotient of A by an element [ of F, it follows that [ contains the product
Pr.pr—1...p0. The proposition 7 thus implies the

Corollary 11. Let A be a right noetherian ring with enough two-sided ideals
and let E be a set of prime two-sided ideals of A. The set F' of the right ideals
which contains a product of the form pe.pe_1...po where p; € E, is topologizing
and idempotent. Conversely, any idempotent topologizing set of right ideals
is of this form.

If the ring A has enough two-sided ideals, the prime spectrum of A
coincides with the spectrum of the category modA. The latter is therefore
equipped with a structure of noetherian ordered set. Furthermore, for any
localizing sub-category C of modA, Sp(C) coincides with the set of prime
two-sided ideals p such that A/p belongs to C. If a is an ordinal, we denote
in particular by E, the set of prime ideals such that we have Kdim A/p < «
(see part IV, § 1). We then have the

Corollary 12. Let A be a right noetherian ring with enough two-sided ideals.
With the above notations, the sets E, can be defined in the following way:

o [/ | is empty.

e [f the ordinal o has a predecessor B, E, is formed of the prime two-
sided ideals p such that any prime two-sided ideal containing p and
distinct from p belongs to Eg.

o If a is a limit ordinal, E, 1s the union of the Eg for B < a.

It is clear that F/_; is empty. So let v be any ordinal and suppose that the
statements of the corollary 12 are satisfied for any ordinal o < ~. If v is a
limit ordinal, these statements obviously remain satisfied when « is equal to
7. Examine the case where 7 has a predecessor § and let T3 be the canonical
functor from modA = A to A/Ap (the notations are those of the part IV).
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Let p be a prime two-sided ideal such that we have Kdim A/p = ~. On
the other hand, let q be a prime two-sided ideal containing p and distinct
from p. It is clear that Kdim A/q is smaller or equal to Kdim A/p; if the
equality holds, the quotients of Jordan-Holder of Tj(A/p) would not be all
isomorphic. It would result in the existence of a non zero sub-module N
of A/p which would not generate the same localizing sub-category of mod A
as A/p. Since there is an A—linera injection from A/p to a direct sum
of modules isomorphic to N (cf. the proof of the proposition 7), that is
impossible. We thus have the inequality Kdim A/q < Kdim A/p.

Conversely, suppose that A/q belongs to Ag for any prime ideal q con-
taining p and distinct from p. Let [ be a right ideal of A/p which is maximal
among the right ideals m such that A/m does not belong to Ag. Then
T3(A/1) is a simple object; it follows that there is a prime two-sided ideal
associated with A/[. This prime ideal contains p, and the hypothesis that
we made shows that it coincides with p. Since A/[ belongs to A, Sp(A,)
contains p. It follows that A/p belongs to A, (proposition 7).

Corollary 13. Let A be a right noetherian ring with enough two-sided ideals,
p be a prime two-sided ideal of A and n be a finite ordinal. The following
assertions are equivalent:
a. Kdim A/p <.
b. Any chain of prime two-sided ideals containing p has at most n + 1
elements.

The corollary 13 results directly from the corollary 12. If A is a noetherian
commutative ring, it shows that the notion of Krull dimension that we have
introduced for modA coincided with the classical notion.

To complete this paragraph, we recall the examples that we have given:

Proposition 8. A right noetherian ring A has enough two-sided ideals if
one of the following conditions is satisfied:

a. A is right artinian.
b. Any right ideal is two-sided.
c. The center Z(A) of A is a noetherian ring and A is a Z(A)—module

of finite type.
29. STABILITY OF INJECTIVE ENVELOPES

Let A be a ring and C be a full sub-category of modA satisfying the
following conditions:

(%) If M is an A—module belonging to C, any sub-module of M belongs
to C.

(%) If M and N are two A—modules belonging to C, the direct sum
M @ N belongs to C.

Now we will denote by M an arbitrary A—module. If M’ and M” are
two sub-modules of M such that M/M’' and M/M" belong to C, then
M /M’ N M" belongs to C; this module is indeed isomorphic to a sub-module
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of M/M" & M/M". The sub-modules M’ of M such that M/M’ belongs
to C, thus form a base of neighbourhoods for O for a topology 7¢M which
makes M a topological group. The reader verifies that the topology T Ay
makes A a topological ring. If we equip A with this topology, the topology
TeM makes M a topological A—module. Furthermore, any A—linear map
f: M — N is continuous when we equip M and N with topologies Te M and
TeN. We can summarize the situation by saying that the data of C defines
on the one hand a structure of topological ring on A; it defines on the other
hand a functor from modA to the category of topological A—modules.

Proposition 9. Let A be a ring and C be a full sub-category of modA satis-
fying the conditions (%) and (¥ ). The following assertions are equivalent:

a. For any A—module M and for any sub-module N of M, the topology
TeN coincides with the restriction to N of the topology of Te M.

b. For any A—module M belongs to C, the injective envelope of M
belongs to C.

(a) = (b): Indeed it is the same to say that M belongs to C or to say
that the topology TeM is discrete. If M belongs to C and is contained in
an A—module I, the assertion (a) implies that there is a sub-module @ of
I such that I/Q belongs to C and that we have Q " M = O. If I is the
injective envelope of M, @ is necessarily zero. Whence the assertion (b).

(b) = (a): Indeed let N’ be a sub-module of N such that N/N’ belongs
to C. We must show that there is a sub-module M’ of M such that M /M’
belongs to C and that N N M’ is contained in N’. We will choose for M’
a sub-module of M which is maximal for the equality N N M’ = N’. Then
M/M' is an essential extension of N/N’ and (a) results from (b).

Corollary 14. Let A be a ring and C be a full sub-category of modA satis-
fying the conditions (%), (k%) and the conditions (a) and (b) of the propo-
sition 9. Let M be an A—module and let N be the intersection of the sub-
modules M' of M such that M /M’ belongs to C. Then there is no sub-module
N’ of N, distinct from N and such that N/N' belongs to C.

Indeed the topology T¢IV coincides with the induced topology induced by
TeM. The latter topology is coarse.

We will assume from now on that A is right noetherian. The proposition
9 and the corollary 14 are then often used in the following way: let i be a
two-sided ideal of A and let C be a localizing sub-category of modA whose
noetherian objects are the A—modules annihilated by a power of i. If C is
stable under injective envelopes [that is to say if C satisfies the assertion (b) of
the proposition 9|; the proposition 11 and the corollary 14 can be formulated
as follows: if N is a sub-module of a noetherian A—module M, the i—adic
topology of N (i.e. T¢N) is the restriction to N of the i—adic topology of
M in addition, if R is the intersection of the sub-modules M.i" of M, R.i is
equal to R. These propositions evoke the well-known results of ARTIN-REES
and of KRULL.
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In the paragraph 6, we will use the proposition 9 in a little different way:
if A is a right noetherian ring, we take for C the localizing sub-category
(modA)p whose objects are the A—modules of Krull dimension < 0. If M
is an A—module, then we will denote by M the completion of M for the
topology TeM; this completion M is the projective limit of the modules
M/M’, where M’ runs through the sub-modules of M such that we have
Kdim M/M' < 0. If M is noetherian, the quotients M/M' are of finite
length. In particular, Aisa right pseudo-compact ring; if M is noetherian,
Mis a right pseudo-compact module over A.

It is clear that (modA)y is identified with the category of discrete topo-
logical right A—modules. Furthermore, we have the

Corollary 15. Let A be a right noetherian ring. The functor that associates
ﬂth any noetherian right A—module M the right pseudo-compact A—module
M, is right exact. This functor is exact if the injective envelope of an
A—module of zero Krull dimension has zero Krull dimension.

This corollary results easily from the proposition 11 and of the lemma 2,
part IV.

Proposition 10. If A is a commutative noetherian ring, any localizing sub-
category of modA is stable under injective envelopes.

Indeed let C be such a localizing sub-category and let M be an A—module
belonging to C. If the prime ideal p is associated with M, the module A/p
belongs to C (proposition 7). We will show that, for any prime ideal p, the
injective envelope of A/p belongs to the localizing sub-category generated
by A/p; if M is an A—module and if a is an element of A, we denote by aps
the homothety x — z.a of M. We will say that ays is almost-nilpotent if any
noetherian sub-module of M is annihilated by a power of aj;.

Lemma 17. Let p be a prime ideal of a noetherian commutative ring A and
let M be an A—module. The following assertions are equivalent:

a. M belongs to the localizing sub-category of modA which is generated

by A/p.
b. For any element a of p, ayr is almost-nilpotent.

If [ is an ideal of A, the quotient A/l indeed belongs to the localizing sub-
category generated by A/p if and only if [ contains a power of p (corollary
11). It follows that M belongs to the localizing sub-category generated by
A/p if and only if any element of M is annihilated by a power of p.

Lemma 18. Let A be a noetherian commutative ring and I be an indecom-
posable injective A—module. For any element a of A, the homothety ay is
either bijective or almost-nilpotent.

Indeed let M be a non zero noetherian sub-module of I. Since M is
noetherian, the following equality is true for n large enough:

Ker afyy N Imay; = 0.
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Since the intersection of two non zero sub-modules of [ is non zero, we have
either afy; = 0 or Ker a’j; = 0. In the latter case, ajs is a monomorphism
from I to I, thus an automorphism, because I does not contain any injective
distinct from I or from O. In the first case, any noetherian sub-module of I
is annihilated by a power of a.

We are now able to prove the proposition: if I is the injective envelope
of A/p, Ker ay is different from O for any element a of p. It follows that
a; is almost-nilpotent (lemma 18) and that I belongs to the localizing sub-
category of modA which is generated by A/p (lemma 17).

The corollary 15 thus applies to any commutative noetherian ring. The
same is true of remarks following the corollary 14 (lemmas of ARTIN-REES
and of KRULL).

30. FINITE EXTENSION OF A NOETHERIAN COMMUTATIVE RING

In this paragraph, R is a commutative noetherian ring. We denote by A a
unitary R—algebra, finite and faithful (cf. § 1). Such an algebra has enough
two-sided ideals. We will be interested on the one hand in the relations
between the prime spectrum of A and the spectrum of R; we will study on
the other hand the structure of indecomposable injective A—modules. The
results which we end up are those which everyone expects; the methods used
are those which everyone uses.

It is permissible to suppose that R is contained in the center Z(A) of A.
We will then say that A is a finite extension of R. For any prime two-sided
ideal B of A, RN P is then a prime ideal of R.

Proposition 11. Let A be a finite extension of a ring R, commutative and
noetherian. The following assertions are true:
a. The map P ~ PN R is a surjection from Spec(A) to Spec(R).
b. IfB and Q are two prime two-sided ideals of A, the conditions P O Q
and P £ Q imply PNRAQNR
c. If p is a prime ideal of R and if the R—module A can be generated
by n elements, the inverse image of {p} in Spec(A) contains at most
n elements.

The proposition results from the following lemmas:

Lemma 19. Let A be a ring, S be a multiplicative subset contained in the
center Z(A) of A and let ¢ be the canonical map from A to Ag. The maps
P ~ Pg and Q ~ ¢ 1(Q) define a bijective correspondence between the
prime two-sided ideals of A which does not meet S and the prime two-sided
ideals of Ag.

The proof of the lemma 19 is left to the reader.

Lemma 20. The hypothesis and the notations are those of the proposition
11. For any prime ideal p of R, Ay/p.Ap is a non zero finite algebra over the
filed Ry /p.Ry. Furthermore, the map B ~ By /p. P, defines a bijection from
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the set of prime two-sided ideals P of A satisfying BN R = p, to the set of
prime two-sided ideals of Ay/p.A,.

It is clear that A,/p.A, is a finite algebra over R,/p.R,. Since p.R, is
the Jacobson radical of R, and that A, is an Ry,—module of finite type, the
quotient A,/p.A, is non zero (Nakayama’s lemma).

On the other hand, the prime two-sided ideals of A, /p.A, are in bijective
correspondence with the the prime two-sided ideals of A, which contains
p.Ap, the lemma 19 shows that the latter bijectively corresponds to the
prime two-sided ideals 3 such that we have 8 N R = p. This proves the
lemma 20.

The assertion (a) of the proposition results from the fact that A,/p.A,
is a non zero artinian ring; the prime two-sided ideals of this ring are
the maximal two-sided ideals. The assertion (b) of the proposition re-
sults from the fact that A,/p.A, does not contain nested and distinct
prime two-sided ideals. Finally let xq,---,x, be generators of the under-
lying R—module of A; the images of these generators in Ap/p.A, gener-
ate the underlying (R, /p.Ry)—module of A,/p.Ay; it results in the formula
[Ap/p.Ap © Ry/p.Ry] < n; this proves (c).

Corollary 16. The notations and the hypothesis are those of the proposition
11. Letpy C p1 C - -+ C py, be a chain of prime ideals of R and By C --- C P;
be a chain of prime two-sided ideals of A such that we have B; N R = p;,
0<j<i<mn. Thereis a chain P; C Pir1 C --- C Py, formed of prime
two-sided ideals of A such that we have P N R = pi, fori < k < n.

Indeed it results from the equality ; N R = p; that A/; contains R/p;
and is a finite extension. According to the assertion (a) of the proposition
11, there is thus a prime two-sided ideal Q;+1 of A/%B; such that we have

Qi1 N (R/p:) = piv1/pi-

The inverse image ;11 of Q;+1 in A is a prime two-sided ideal of A and
satisfies the equality P11 N Pit1.

We construct P2 from PB; 11 as we built ;41 from P;; the construction
continues by recurrence.

Corollary 17. The notations and the hypothesis are those of the proposition
11. If M is an A—module, we denote by ,M the underlying R—module of
M. The Krull dimension of M is finite if and only if the Krull dimension
of )M 1is finite. In the latter case, these two dimensions are equal.

Indeed let C (resp. D) be the localizing sub-category of modA (resp. of
modR) which is generated by M (resp. by ,M). We know that C can be
generated by the modules A/, where B is a prime two-sided ideal of A.
Similarly, D can be generated by the modules ,(A/B), where P runs through
the prime two-sided ideals of A such that we have A/ € C. We conclude
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the following formulas:

Kdim M = sup Kdim A/, Kdim ,M = sup Kdim ,(A/%).
A/ReC A/peC

In other words, it suffices to prove the corollary 17 when M is of the form
A/, where B is a prime two-sided ideal of A. In this case, the annihilator
of the noetherian R—module ,(A/9) is p =P N R. We know that it results
in the equality Kdim ,(A/B) = Kdim R/p.

According to the corollary 13, it thus remains to prove the equivalence of
the following assertions:

e Any chain of prime two-sided ideals of A containing 8 has at most
n + 1 elements.

e Any chain of prime ideals of R containing p has at most n + 1
elements.

The equivalence of these assertions results from the corollary 16 and from
the assertion (b) of the proposition 11.

We will now say that the map P ~» P N R is the canonical map from
Spec(A) = Sp(modA) to Spec(R) = Sp(modR). If D is a localizing sub-
category of modR, we denote by p~1(D) the localizing sub-category of modA
which follows: an A—module M belongs to p~!(D) if and only if oM belongs
to D. The spectrum of the category p~!(D) is obviously the inverse image of
Sp(D) under the canonical map from Sp(modA) to Sp(modR). The reader
verifies the converse: a localizing sub-category C of modA is of the form
p~Y(D) if and only if Sp(C) is the inverse image of a subset of Sp(modR).

Proposition 12. Let A be a finite extension of a ring R, commutative and
noetherian. Let D be a localizing sub-category of modR and p be the functor
which associates with any A—module M the underlying R—module of M. The
localizing sub-category p~*(D) of modA is stable under injective envelopes.

The proof is analogous to that of the proposition 10; we will only give
a sketch: if P is a prime two-sided ideal of A, we show that the injective
envelope of A/ belongs to the localizing sub-category generated by the
modules A/, where Q runs through the prime two-sided ideals such that
we have QN R =P N R. An A—module M belongs to this sub-category if
and only if aps is almost-nilpotent for any element a of 8 N R. Finally we
show that if I is an indecomposable injective and a an element of R, the
homothety ay is either bijective or almost nilpotent (cf. lemma 18).

Corollary 18. Let A be a ring satisfying the hypothesis of the proposition
12. If the Krull dimension of an A—module M is zero, the Krull dimension
of the injective envelope is zero.

The corollary 15 thus applies to the ring A. Let’s take a lool/<\at the
notations of this corollary. For example, if p is a prime ideal of R, R, is the
completion of R, for the p.Ry,—adic topology.

In the following proposition, 2R denotes the set of maximal ideals of R.
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Proposition 13. Let A be a finite extension of a ring R, commutative and
noetheman When M runs through the noetherian A— modules the functor
M ~» M is isomorphic to the functor M ~ [[ M ®p Ru.
meQR

Indeed let M’ be a sub-module of M such that M /M’ is of finite length.
Then p(M/M’) is a noetherian R—module whose Krull dimension is zero.
It follows that p(M/M’) is of finite length. On the other hand let a be an
ideal of R such that R/a is of finite length. then M /M.a is an A—module of
finite length.

It results from these remarks that the A—sub-modules of M of finite
colength define the same topology as the R—sub-modules of finite colength.
Thus it suffices to prove that the completion of M for the latter topology is

the product [[ M® Rﬁm. This is a well-known proposition in commutative
meQR
algebra.

Corollary 19. The notations and the hypotheszs are those of the proposition
13. If Z(A) is the center of A, the center of A is the ring Z(A)

The ring Z(A) is mdeed an R—module of finite type. According to the
previous proposition, Z (A) is thus equal to the product [[ Z(4) ®r R
mGQR
It remains to show that Z(A) ®p Rm is the center of A ®p Rm

Lemma 21. Let u: R — S be a homomorphism of commutative rings with
unit elements. If S is R—flat |15], Z(A) ®g S is the center of A®R S.

Indeed let aq, - - - , a, be generators of the R—algebra A; let v; : A — A be
the map defined by the formula v;(a) = a;.a — a.a;, 1 < i < r. The center
Z(A) of A is the intersection of the kernel Ker v;. Since S is R—flat, it
follows that Z(A)®p S is the intersection of the kernels of the maps v; g S.
The formulas (v; ®g S)(x) = (a; ®r 1).x — x.(a; ®r 1) show that the latter
intersection is the center of A ®pg S.

Now let p be a prime ideal of Z(A). We denote by (modA), the localizing
sub-category of modA which is defined in the following way: an A—module
M belongs to (modA), if and only if aps is almost-nilpotent for any element
a of p. Similarly, we denote by (modA)y the localizing sub-category formed
of the A—modules whose Krull dimension is zero.

Corollary 20. The notations and the hypothesis are those of the proposition
13. The map m ~~ (modA)y is a bijection from the set of mazximal ideals
of Z(A) to the set of connected components of the locally finite category
OnodA)U

Indeed let Z be the center of the category A = (modA)y. Suppose the
ring Z is isomorphic to the product of a family of rings (Z;);c;. We then
identify Z with this product. If e; is the unit element of Z;, we denote by A;
the localizing sub-category of A whose objects are the A—modules M € O.A
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such that we have e;(M) = 0 for j # 4. It is clear that the category A is
equivalent to the product of the categories A;. In other words, there is a
bijective correspondence between the decompositions of Z into products of
rings and the decompositions of A into products of categories.

Now we saw at the previous paragraph that the category (modA)q is
identified with the category of discrete topological right modules over the
topological ring A If M is an A—moduel of zero dimension, we define
in particular a bilinear map M x A — M which extends the bilinear map
defining the structure of A—module of M ; we denote by m.a again the i image
of (m.a) € M x A under this map. If a is an element of the center of A, we
denote by aps the A—linear map m ~» m.a from M to M. When M varies,

the maps M ~~ aps defines an isomorphism from the center Z(A) of Ato Z.
The corollary 20 results from there and the previous remarks.

Corollary 21. The notations and the hypothesis are those of the proposition
13. The following assertions are equivalent:
a. The map P ~ PN Z(A) from Spec(A) to Spec(Z(A)) is bijective.
b. Any localizing sub-category of modA is stable under injective en-
velopes.

(a) = (b): This results from the proposition 12.

(b) = (a): If any localizing sub-category of modA is stable under injective
envelopes, it is the same, a fortiori, for any quotient category of modA. In
particular, if p is a prime ideal of Z(A), any localizing sub-category of modA,
is stable under injective envelopes.

Thus let P be a prime two-sided ideal of A such that we have PNZ(A) = p;
let C be the localizing sub-category of mod A, which is generated by A, /B. Ap;
let D be the localizing sub-category of modA, which is generated by the
simple A,—modules not annihilated by B. Since C and D are stable under
injective envelopes, the category (modAp)o is equivalent to the product
CIID (cf. the demonstration of the corollary of the theorem 2, part IV).
According to the lemma 21, (Z(A)), is the center of A,. It follows that the
category D is zero (corollary 20); this completes the proof.

The assertion (a) of the corollary 21 is for example satisfied if the
Z(A)—algebra A satisfies the equivalent conditions of the proposition 2. It
is also satisfied for the maximal orders of arithmetic.

We end this paragraph by the study of the pseudo-compact ring associated
with the locally finite category (modA)g. If m is a maximal ideal of the com-
mutative ring R, we denote by FEi, the injective envelope of the R—module
R/m. We denote by E the direct sum of the R—modules E, when m runs
through the maximal ideals of R.

Let M be a right A—module of finite length, a be an element of A and let
f be an R—linear map from M to E. We denote by a.f the R—linear map
from M to E which is defined by the following formula:

(a.£)(m) = f(m.a).
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The map (a, f) ~ a.f defines a structure of left A—module of the abelian
group Homp (M, E). In the following, Homp (M, E) will always be equipped
with this structure:

Proposition 14. Let A be a finite extension of a ring R, commutative
and noetherian. Let E be the direct sum of the injective envelopes of the
R—modules R/m, where m runs through the mazimal ideals of R. The functor
M ~ Hompg(M, E) defines a duality between the right A—modules of finite
length and the left A—modules of finite length.

Let A be the category of right A—modules of finite length, B be the
category of left A—modules of finite length. We see as in the demonstration
of the corollary 12 (part IV) that Hompg(M, E) is an R—module of finite
length, a fortiori thus an A—module of finite length. This shows that
M ~» Homp(M, F) is a contravariant functor from A to B; this functor
will be denoted by T in the following of this proof.

Now consider a left A—module N of finite length. We then equip the
abelian group Homp(N, E) with the structure of right A—module: if a is
an element of A and g is an element of Hompg(N, E), g.a is defined by the
formula (g.a)(n) = g(a.n), we show as before that Hompg(N, E) is a right
A—module of finite length; the functor N ~» HomgN, FE from B to A will
be denoted by S.

According to the proposition 12 (part I), it suffices to prove that the
functors S oT and T o S are isomorphic respectively to the functors I 4 and
Ip: if M is an object of A and if m is an element of M, we denote by m/
the A—linear map from Hompg (M, F) to E which is induced by the formula

m/(f) = f(m).

When M varies, the maps m ~» m’ define a morphism from the identity
functor 14 to SoT. We see as in the demonstration of the corollary 12 (part
IV), that the map m ~» m/ is an isomorphism of R—modules; since this map
is A—linear, it is also an isomorphism of A—modules. It follows that I 4 is
isomorphic to S oT. We prove in the same way that Ig is isomorphic to
ToS. R

It follows from the proposition 13 that the topology of A can be defined by
the two-sided ideals a of finite colength (i.e. the underlying right A—module
and left A—module of A\/a are of finite length). The topological ring A is
thus both left and right pseudo-compact. Furthermore, it is clear that the
duality that we have exhibited between A and B extends to a duality between
(modA)p and PC (2) formed of left pseudo-compact A—modules. Whence
the

Corollary 22. The notations and the hypothesis are those of the proposition
14. The pseudo-compact ring associated with the category of right A—modules
of zero Krull dimension, is equivalent to the ring A. The dual ring ofg s
thus equivalent to the opposite ring of A.
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Corollary 23. The notations and the hypothesis are those of the proposition
14. Let I be an indecomposable injective right A—module, B be the two-sided
ideal associated to I and let p be the intersection PNR. Then I is an artinian
right module over A,.

Indeed let C be the localizing sub-category of modA whose noetherian
obejcts are the right A—modules annihilated by an element of R —p. Since [
is C—closed, the structure of A—module of I extends in one and only one way
to a structure of right A,—module. Since the quotient category modA/C is
identified with modA,, I is an indecomposable injective A,—module (corol-
lary of the proposition 3). The prime two-sided ideal associated with this
injective Ay—module is PB. It follows that I is the injective envelope of a
simple A,—module; the corollary of the proposition 12 thus shows that I is
an Ap—module whose Krull dimension is zero. Now the category (modAy)o
is dual to the category of pseudo-compact left Ep—modules (corollary 22).
Since /Tp is a noetherian ring, the injective envelope of a simple object of
PC (Ep) is noetherian. The corollary 23 is then deduced by duality.

We leave it to the reader to continue this investigation. It may in par-
ticular search for the pseudo-compact rings associated with the categories
(modA)p4+1/(modA),. It may thus look for the connected components.

31. THE KRULL DIMENSION OF SOME RINGS

If A is a right noetherian ring, we will call right Krull dimension of A the
Krull dimension of the category modA. If G is a graded ring, we will say
that G is a right noetherian graded ring if any ascending sequence of right
homogeneous ideals is stationary; we will call right Krull dimension of the
graded ring G the Krull dimension of the abelian category of graded modules
of the graded ring G:

e An object of this category is a graded G—module whose underlying
set belongs to 4.

o If M and N are two objects of the category, a morphism from M to
N is a G—linear map, homogeneous, of degree 0 from M to N.

e The composition of morphisms coincides with the usual composition
of maps.

Proposition 15. Let A be a ring filtered by a decreasing sequence of abelian
sub-groups An(n 2 0) such that we have Ay, Ay, C Apgrn. We suppose that A
is the union of the A, and that A is separated and complete for the topology
defined by this A,,.

a. If the associated graded ring
GA) = DA 1/A 2D A /A1 DA /A) D ---

is right noetherian, the ring A is right noetherian. If any right
homogeneous ideal of G(A) is generated by less than r homogeneous
elements, any right ideal of A is generated by less than r elements.
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b. If the graded ring G(A) is right noetherian and has a right Krull
dimension smaller than n, then A is right noetherian and has a right
Krull dimension smaller than n.

To demonstrate (a) and (b), we rely on the following lemmas which are
well-known:

Lemma 22. Let M and N be two abelian groups filtered by the decreasing
sequences of sub-groups M, and N, (n = 0). We suppose that the union
of My, (resp. Ny) is equal to M (resp. to N ), that the intersection of M,
(resp. of Ny ) is zero and that M, is complete for the topology defined by the
M,. Let f: M — N be a homomorphism of filtered groups. If f induces a
surjection of the associated graded groups, then f is a surjection and N is
complete for the topology defined by the Ny. If f induces an injection of the
associated graded groups, then f is an injection.

Lemma 23. Suppose the hypothesis of the proposition 15 are satisfied. Let
M be an A—module equipped with a filtration by the abelian sub-groups M,
(n = 0), such that we have M,,. A, C Mpyn. We suppose that the union
of the M, is equal to M, that their intersection is zero and that G(M) is
a graded G(A)—module generated by r homogeneous elements. Then M is
generated by the representatives of the homogeneous generators of G(M) and
M is complete.

Now we show (a): if [ is a right ideal of A, we will equip [ with the filtration
defined by the [N A,. Then G(I) is a homogeneous right ideal of G(A) and
it suffices to apply the previous lemmas. We also see that [ is complete for
the filtration induced by that of A.

To show (b), it suffices to prove that we have Kdim M < n when M is
a right A—module of the form A/I, where [ is a right ideal. It is therefore
clearly suffices to demonstrate the following lemma:

Lemma 24. Let M be a filtered right A—module satisfying the conditions of
the lemma 23. We then have Kdim M < Kdim G(M).

We proceed by induction on  Kdim G(M) : the assertion is true if
Kdim G(M) = —1. Suppose the assertion is true if Kdim G(M) < m and
we show it is true if Kdim G(M) = m.

If not, there is an infinite sequence of sub-modules M > M! > M2 > ...
such that we have Kdim (M?/M*') > m. Equipping the M® with the
induced filtration by that of M and M?/M**t! with the quotient filtration
of that of M? we deduce that the Krull dimension of G(M!/Mi*!) =
G(M?)/G(M*1) is greater or equal to m. The graded module G(M) thus
would have an infinite sequence of graded sub-modules whose successive
quotients have Krull dimension greater or equal to m; this is contrary to the
hypothesis of the induction and to the noetherian property of G(M).

Now let A be a ring, o be an automorphism of A and A,[T] be the ring of
Hilbert polynomials in T relatively to o: this ring is formed of polynomials
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ao+T.a1 +T%.as+---+T).a,, having coefficients in A, with usual addition;
on the other hand we impose the relations a.7' = T.o(a) if a € A.

Corollary 24. Let o be an automorphism of a ring A. If A is right noe-
therian ring, then Ay[T) is right noetherian. If A is right noetherian and has
a finite right Krull dimension equal to n, then the right Krull dimension of
Ay[T) is equal to n + 1.

We will equip the ring B = A,[T] with the following filtration: B, is zero
if n > 0; if n is a positive integer, B_,, is formed of the Hilbert polynomials
of degree < m. In this case, the underlying ring of the graded ring G(B) can
be identified with B, G_,(B) being identified with the set of monomials of
degree n (n > 0). Modulo this identification, the right homogeneous ideals
a of G(B) are of the form

ap®T.a; P T2.a2 D T3.03 - D Ti.ai,
where a; is a right ideal of A such that we have
Do Ha) D Do Hay) D ag

If A is right noetherian, it follows that o~%(a;) is equal to o ~*~!(a;;1) for i
large enough. Thus there is an integer n such that we have o(a;) = o(a;41)
for ¢ > n; it follows that a is generated by a finite number of homogeneous
elements of degree smaller or equal to n. Consequently, the graded ring G(B)
is right noetherian and B is right noetherian.

Now suppose that we have Kdim A = n. If M is an A—module, we equip
the G(B)—module M ® 4 G(B) the obvious grading: the elements of degree
r of M ®4 G(B) are of the form m ®4 T", m € M. We first prove the

Lemma 25. Let M be a non zero A—module of finite Krull dimension n.
The Krull dimension of the graded G(B)—module M ® 4 G(B) is then equal
ton+ 1.

We will demonstrate this lemma by induction on n. Since A is supposed to
be right noetherian, it suffices to establish the proof when M is noetherian.
We denote by A the category of graded G(B)—modules and we will use the
notations of the part IV (§ 1):

If M is simple and if x is a non zero element of M, the only graded sub-
modules of M ® 4 G(B) are generated by the z @4 T", r > 0. It follows that
the image of M ® 4 G(B) in the quotient category A/ Ay is a simple object. If
M is of finite length, let 0 = My C My C --- C Mg = M be a Jordan-Holder
sequence of M. The graded modules M; ® 4 G(B) then define a composition
series of M ® 4 G(B) whose quotients have 1 as Krull dimension. It follows
that M ®4 G(B) has 1 as Krull dimension.

Now suppose the lemma is demonstrated when we have n < m and we
prove the lemma when n is equal to m: for this, we will consider M ® 4 G(B)
as an object of the quotient object A/A,,—1. If M is a simple object of the
quotient category modA/(modA),,—1, the only sub-objects of M ®4 G(B)
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in A/A,,—1 are the graded sub-modules which are generated by M ®4 T",
r > 0. It follows that the image of M ® 4 G(B) in A/ A,, is simple. Finally, if
M is a noetherian A—module such that we have Kdim M = n, the image of
M in modA/(modA),_1 is of finite length. By using the composition series
of M, we show as above that the Krull dimension of M ® 4 G(B) is n + 1.

The lemma 25 shows in particular that the Krull dimension of the graded
ring G(B) is n + 1. It follows that the Krull dimension of B is smaller
or equal to n + 1 (proposition 15). Since the descending sequence of the
right ideals 7" B is infinite and that the Krull dimension of T".B/T"*!.B is
obviously equal to n, we also have the inequality Kdim B > n + 1. Whence
the corollary.

Corollary 25. Let k be a filed and g be a k— Lie-algebra of finite dimension:
[g: k] < 4+00. The enveloping algebra of g is a noetherian ring (both right
and left ) whose Krull dimension (both right and left) is smaller or equal to
[o: K.

Indeed let U be the enveloping algebra and let U_, be the vector sub-
space of U generated by 1 and the products of the form ¢;.92....9m, 0 < n,
m < n, g; €g. We know that the graded ring associated with U is a ring
of polynomial in [g : k] indeterminates. The corollary results from this fact
and of the proposition 15.

Part 6. Applications to the study of quasi coherent sheaves

We want to study here the injective quasi coherent sheaves over a noe-
therian scheme [12|. Every time that we talk about a scheme (X,Ox), it
will be implied that the underlying set of X and the étalé space associated
to Ox are the elements of the universe . Every time that we talk about
an Ox—module M, it will be implied that M is quasi coherent and that the
étalé space associated to M is an element of {. We denote by Fx the cat-
egory of Ox—modules; with our conventions, Fx is an abelian ${—category
with exact inductive limits.

We show in the first paragraph that Fx can be obtained by 'recollement’ of
categories of modules. The following is devoted to the properties of categories
of modules which are preserved by ’'recollement’.

32. RECOLLEMENT OF ABELIAN CATEGORIES

Consider the diagram
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where C,D and B are abelian categories and where F' and G are exact
functors. We call recollement of C and D along B and denote it by C[[ D
B

the following category:

e An object of C[[D is a triple (C, D, o) such that C is an object of
B

C, D is an object of D and ¢ an isomorphism from FC to GD. We
sometimes say that (C, D, o) is a datum of recollement.

o If (C',D',0") and (C,D,c) are two objects, a morphism from the
first to the second is a couple (u,v) such that u is a morphism from
C’ to C, v a morphism from D’ to D; we also impose the equality

o(Fu) = (Gv)oo’
e The composition of the morphisms is defined by the formula
(', v") o (u,v) = (u' ou,v ow)

The hypothesis that we have made cause that C [[ D is an abelian category
B

and that the functors (C, D,o) ~ C and (C, D, o) ~» D are exact. We say

that these functors are the canonical projections from C[[D to C and D.
B
The notation C [[ D is justified by the following statement:
B

Proposition 1. Let A be a category and let S : A — C and T : A — D

be two functors such that F o S is isomorphic to G oT. There is then a

functor R : A — C[][D, unique up to an isomorphism, such that S and
B

T are isomorphic to the composite of R and the canonical projections from

CIID toC and D.
B

Let 7 be a functorial isomorphism from F'o.S to GoT. We leave it to the
reader to verify that the proposition 1 is satisfied if we take for R the functor
A~ (FA,GA,7(A)). If we consider C, D, B and C[][D as the objects of

B
the category & of part I (§ 8),and if we replace F' and G by the isomorphism
classes of these functors, the proposition 1 implies that C[[D is the fibre
B

product of the diagram (¥ ). This shows in particular that the proposition
1 determines the category C [[ D up to an equivalence.
B

Now consider a scheme (X,Ox) and let U and V be two open subsets
covering X. If M (resp. N) is an (Ox|U)—module [resp. an (Ox|V)-
|module, then FIU NV (resp. GIUNYV) is an (Ox|U N V)—module; we
denote by py (resp. by py) the restriction functor M ~» M|U NV (resp.
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N ~~ N|UNYV). Hence we have the diagram (s ¥%)

(Fe ) Funv

If P is an Ox—module, the sheaf (P|U)|UNV, P[UNV and (P|V)[UNV
obviously coincide; if op is the identity morphism of P|U NV, the triple
(P|U, P|V,op) is hence a datum of recollement.

Proposition 2. Let U and V' be two open subsets of a scheme X such that
we have UUV = X. The functor P ~» (P|U, P|V,op) defines an equivalence
between Fx and the recollement of Fy and Fy along Fyny .

The proposition 2 results directly from the proposition 12 (part I) (cf. also
[12], prop. 0.3.3).

Proposition 3. Let (X,Ox) be a scheme and let U be an open subset of X
such that the canonical injection j : U — X is a quast compact morphism.
Let T be the functor which associates to any Ox—module M the restriction
M|U of M over the scheme (U, Ox|U). The functor T defines by passing to
the quotient an equivalence between the categories Fx /Ker T and Fy.

We denote by i,(N) the direct image in X of the (Ox|U)— module
N. According to the proposition 9.4.2 of [12], j.(N) is a quasi coherent
Ox—module; it follows that S : G ~ j.«(G) is a functor adjoint to T'. Hence
the assertion results from the proposition 5 (part IIT).

The proposition 2 and 3 will be used in the following way: if X is
a noetherian scheme, X is the union of a finite sequence of affine open
subsets Xj, Xo, ---, X,,. The category Fx,ux, is then equivalent to the
recollement of Fx, and Fy, along the same quotient category Fx,nx,-
That is to say, Fx,ux, (note by the translator: the author uses 'Fx,nx,’) is
equivalent to the recollement of two categories of modules along the common
quotient category. Similarly, Fx,ux,ux; is equivalent to the recollement
of Fx,ux, and the category of modules Fy, along the common quotient
category JF(x,ux,)nx,- e continue so on until we get Fx; this category is
hence obtained by ’successive recollements’ of categories of modules.

33. PROPERTIES OF A RECOLLEMENT OF ABELIAN CATEGORIES
We keep the notations of paragraph 1.

Lemma 1. Let T be the functor (C,D,c) ~~ D. We suppose that Ker F is
a localizing sub-category of C and that F' defines by passing to the quotient
an equivalence between C/Ker F and B. The functor M ~» (M,0,0) is then
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an isomorphism from C[[D and T defines by passing to the quotient an
B
equivalence between C[[ D/Ker T and D.
B

Indeed let H be a functor adjoint to F', let x be an isomorphism from
Home(., H.) to Homp(F., .) and let X be a morphism from F o H to Ip
which is associated to x (cf. part I, § 7); we know that X is a functorial
isomorphism. If S denotes the functor D ~ (HGD, D, X(GD)), ToS is the
identity functor of D. Hence the identity morphisms 1p define a functorial
isomorphism ® from T o S to Ip. This isomorphism ® makes S a functor
adjoint to T" and the lemma results from the proposition 5 (part III).

Lemma 2. We suppose that Ker F' (resp. Ker G) is a localizing sub-category
of C (resp. of D) and that F (resp. G) defines by passing to the quotient an
equivalence between C/Ker F and B (resp. between D/Ker G and B). If the
categories C and D are locally noetherian , it is the same for C[[D.

B

Indeed it is clear that C[[ D is a U—category with exact inductive limits.
B

If (C',D’,0’) is a proper sub-object of (C, D, o), we show that there is a
noetherian sub-object of (C, D, o) which is not contained in (C’, D, ¢’). For
this we can suppose C’ is different from C. Then there is a noetherian sub-
object C" of C' which is not contained in C’. It thus remains to 'raise’ F'C’
to a noetherian sub-object of D.

It remains to prove that there is a set belonging to 4 and having the same
cardinal as the set of types of noetherian objects of C [[ D; this results from

B

the properties corresponding to C and D; we leave the proof to the reader.
We always assume that the hypothesis of the lemma 2 are verified and
use the notations introduced in the proof of the lemma 1. If I is an inde-
composable injective object of D, ST is an indecomposable injective object
of C[]D. The map I ~ ST induces an injection from Sp(D) to Sp(C[ D).
B B

In accordance with the conventions of the part IV, we identify Sp(D) with

the image of this injection. Similarly we identify Sp(B) and Sp(C) with the

subsets of Sp(C][D). The lemma 1 and the remarks of part IV (§ 1) show
B

that Sp(C [[ D) is the union of the disjoint subsets Sp(D) and Sp(Ker T).
B

Since Sp(Ker T') coincides with Sp(Ker F') and is contained in Sp(C), we see
that Sp(C[[D) is the union of Sp(C) and Sp(D). Since Sp(D) is the union
B

of Sp(Ker G) and Sp(B), we see that Sp(B) is the intersection of Sp(C) and
Sp(D); thus we have the formulas

(% H)Sp(C [ [ P) = Sp(C) USP(P), Sp(B) = Sp(C) N Sp(D).
B

Theorem 1. Let (X,Ox) be a noetherian scheme. We have the following
assertions:
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a. The category Fx is locally noetherian.

b. The support Supp (I) of an indecomposable injective Ox—module is
a irreducible closed sub-set of X. Any non zero Ox—sub-module of
I have the same support as I.

c. The map I ~» Supp (I) induces a bijection from the spectrum of the
category Fx to the set of irreducible closed subsets of X.

When X is the affine scheme associated to a noetherian ring, the theorem
results from the proposition 8 and from the second corollary of the proposi-
tion 14 of part V. According to what was said at the end of the paragraph 1,
it thus suffices to prove that the theorem is true for X if it is verified for two
open sub-sets U and V' of X such that X = U U V. In this case we identify
Fx, Fu, Fv, Funv, pu and py respectively with C[[D, C, D, B, F and G

B

(cf. proposition 2). The assertion (a) is then an immediate consequence of
the lemma 2.

Prove assertion (b): If I is an indecomposable injective O x —module, three
cases are possible:

e [ belongs to Sp(Ker T'); in other words, I contains a non zero
Ox —sub-module whose support is contained in V! = X — V. It
follows that I belongs to Sp(C), in other words, is isomorphic to
the direct image of an indecomposable injective (Ox|U)—module J.
Since U satisfies the theorem, the support of J is an irreducible closed
subset contained in V’. The support of I therefore coincides with the
support of J; the assertion (b) follows.

e [ contains a non zero O x —sub-module whose support is contained in
U’ = X —U. An argument analogous to the previous argument then
shows that the support of I is an irreducible closed sub-set contained
in U’

e [ belongs to Sp(B); in other words, the support of any non zero
Ox —sub-module of I meets U N V. If j is the canonical injection
from UNV to X, I is then isomorphic to the direct image j.(K) of an
indecomposable injective (Ox|U N V)—module K. Since the direct
image of K in V coincides with j.(K)|V and is an indecomposable
injective (Ox|V)—module, the support of IV is an irreducible closed
sub-set of V; furthermore, any non zero sub-module of 7|V has the
same support as I|V. For the same reason, the support of I|U is
closed and irreducible and any non zero sub-module of I|U has the
same support as I|U. The assertion (b) follows.

The assertion (c) finally results from the classification that we have just done
and from the fact that any irreducible closed sub-set of X is the closure of
an irreducible closed sub-set of U or of V.

Now let us return to the diagram (%), and let R and T be the canonical
projections from C[[D to C and D. We suppose that the categories C and

B
D are locally noetherian, that the hypothesis of the lemma 2 are verified and
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that the localizing sub-categories Ker F' and Ker G are stable under injective
envelopes. It follows that the sub-categories Ker R and Ker R of C[[ D are

B
stable under injective envelopes and that a datum of recollement (I, .J, o)

is an injective object of C[[D if and only if I and J are injective objects
B
of C and D. We intend to seek the localizing sub-categories of C [[ D; if C’
B

(resp. D') is a localizing sub-category of C (resp. of D), we denote for this
by FC' (resp. GD') the smallest localizing sub-category of B which contains
the objects F'C' (resp. GD), when C (resp. D) runs through the objects of
C' (resp. of D).

Lemma 3. Let C' and D' be localizing sub-categories of C and D such that
FC' = GD'. With the above hypothesis, C' [[ D’ is a localizing sub-category
B

of CI[ D and any localizing sub-category is of this type. If C' and D' are
B

stable under injective envelopes, it is the same for C' [ D'.
B

It is clear that the category C[[D is 'contained’ in C[[D. We will just
B B
show that any localizing sub-category A of C [[ D is of the form C'[[D'.: for
B B

this, let K = (I, J,7) be an injective not containing any non zero sub-object
of A;let E = (C, D, o) be an arbitrary object of C[[D. We will first show
B

that the canonical map from Hom(E, K) to Hom(C, I) is surjective: indeed
let J’ be the largest sub-object of J annihilated by G since Ker G is stable
under injective envelopes, J is the direct sum of J’' and of an injective object
J" such that GJ" = GJ; it follows that, for any f : C — I, To Ffoo™!
lifts to a morphism from D to J”, thus also to a morphism ¢ from D to J;
in other words, f is the image of a morphism (f,g) : £ — K.

Thus let ¢’ and D’ be the localizing sub-categories of C and D formed
of objects C' and D such that Hom¢(C,I) = 0 and Homp(D, J) = 0 when
(I, J,7) runs through the injective objects not containing any non zero sub-
object of A. What precedes implies that Hom(F, K) is zero if and only if
Home(C, I) and Homp(D, J) are zero.

In other words, (C, D, o) belongs to A if and only if C' and D belong to
C' and D', i.e. if and only if (C, D, o) belongs to C'[[D’. This completes

B

the proof of the lemma.

Let (X,Ox) again be a noetherian scheme. If R is the union of a family
of closed sub-sets of X, we denote by Cat R the full sub-category of Fx
formed of Ox—modules whose support is contained in R.

Proposition 4. a. Any localizing sub-category of Fx is stable under
injective envelopes.
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b. The map R ~» Cat R is a bijection from the set of sub-sets of X which
is the union of closed sub-sets to the set of localizing sub-categories

of Fx.

When X is the affine scheme associated with a noetherian ring, the propo-
sition follows from the proposition 10 and form the first corollary of the
proposition 7 of part V. According to what we have said at the end of para-
graph 1, it thus suffices to prove that the proposition is true for X if it is
verified for two opens U and V such that UUV = X. This last point results
from the lemma 3.

Let us return to the diagram (%) for the last time, and suppose the
hypothesis of the lemma 2 are verified. If ¢ is an element of the center Z[C|
of C, it is clear that there is one and only one element F'¢ of Z[B] such that
we have (Fp)(FC) = F(p(C)) for any object C' of C. The map ¢ ~ Fp is
a homomorphism of rings from Z[C] to Z[B]. We define in an analogous way
a homomorphism ¢ ~» Gv from Z[D] to Z|[B].

If ¢ and 9 are elements of Z|C|] and Z[D] such that Fp = G, the
morphisms (¢(C), (D)) : (C,D,o) — (C, D, o) define obviously an element
@ [[ ¢ of the center of C [[D. Furthermore it is clear that the map (¢, ) ~»

B
¢ [] ¢ is a bijection from the fiber product Z[C] [[ Z[D] to Z[C[]D].
Z[B| B
What precedes and the fact that the center of a ring A is identified with

the center of the category modA imply ’by recollement’ the following result:
let (X,0x) be a noetherian scheme, z be a section of Ox on X, M an
Ox—module and zj; the endomorphism of M defined by z; the maps z ~~ zs
then define an isomorphism from I'(X, Ox) to the center of the category Fx.

34. SCHEMES AND ABELIAN CATEGORIES

Let (X, Ox) be a noetherian scheme. We will see that the data, up to an
equivalence, of the category Fx allows us to reconstruct the scheme (X, Ox);
for this, we will say that a localizing sub-category A of Fx is finite if there
is a noetherian object M such that A is the smallest localizing sub-category
containing M it is the same to say that A is of the form Cat R, where R is
a closed sub-set of X.

The theorem 1 establish a bijective correspondence between X and the
spectrum Sp(Fyx) of Fx. In this correspondence, the open sub-sets cor-
respond to the spectrums Sp(Fx/A), where A runs through the finite lo-
calizing sub-categories of Fx. More precisely, the open sub-set U corre-
sponds to Sp(Fx /A(U)) if A(U) denotes the closed sub-category formed of
Ox —modules whose support does not meet U.

The sets Sp(Fx/.A) define a structure of topological space on Sp(Fx), it
remains to equip this topological space with a sheaf of rings O: according
to the end of paragraph 2, we can take Z[Fx/A| as rings of sections of O
on Sp(Fx/A). If Ais contained in B, the canonical functor Fx /A to Fx /B
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induces a homomorphism from Z[Fx/A| to Z[Fx/B] (cf. § 2); this is the
homomorphism which is chosen as the restriction homomorphism.

1
2]
3]
(4]

[5]
[6]

7]
18]

(9]
[10]

[11]

[12]

[13]
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