A survey on "quantization commutes with reduction"

Xiaonan Ma

Université Paris 7 Institut de Mathématiques de Jussieu

ICM, Hyderabad, August 26, 2010

Pre-quantum line bundle

• (M, ω) a compact symplectic manifold.

- (M, ω) a compact symplectic manifold.
- (L, h^L) a Hermitian line bundle over M carrying a Hermitian connection ∇^L such that

$$\frac{\sqrt{-1}}{2\pi} \left(\nabla^L \right)^2 = \omega.$$

L the pre-quantum line bundle on (M, ω) .

 \blacktriangleright J an almost complex structure on TM such that $g^{TM}(v,w) = \omega(v,Jw)$

defines a J-invariant Riemannian metric on TM.

► J an almost complex structure on TM such that $q^{TM}(v, w) = \omega(v, Jw)$

defines a *J*-invariant Riemannian metric on *TM*. • $\Omega^{0,\bullet}(M,L) := \mathscr{C}^{\infty}(M, \Lambda(T^{*(0,1)}M) \otimes L).$ For $u \in T^{(1,0)}M$, set $c(u) = \sqrt{2}\overline{u}^* \wedge, c(\overline{u}) = -\sqrt{2}i_{\overline{u}}.$ spin^c Dirac operator

$$D^{L} = \sum_{j} c(e_{j}) \nabla_{e_{j}}^{\mathrm{Cl}} : \Omega^{0, \frac{\mathrm{even}}{\mathrm{odd}}}(M, L) \to \Omega^{0, \frac{\mathrm{odd}}{\mathrm{even}}}(M, L)$$

Self-adjoint 1-order elliptic op. $D^L_{\pm} := D^L|_{\Omega^{0, \frac{\text{even}}{\text{odd}}(M,L)}}$.

► J an almost complex structure on TM such that $q^{TM}(v, w) = \omega(v, Jw)$

defines a *J*-invariant Riemannian metric on *TM*. • $\Omega^{0,\bullet}(M,L) := \mathscr{C}^{\infty}(M, \Lambda(T^{*(0,1)}M) \otimes L).$ For $u \in T^{(1,0)}M$, set $c(u) = \sqrt{2}\overline{u}^* \wedge, c(\overline{u}) = -\sqrt{2}i_{\overline{u}}.$ spin^c Dirac operator

$$D^{L} = \sum_{j} c(e_{j}) \nabla_{e_{j}}^{\mathrm{Cl}} : \Omega^{0, \frac{\mathrm{even}}{\mathrm{odd}}}(M, L) \to \Omega^{0, \frac{\mathrm{odd}}{\mathrm{even}}}(M, L)$$

Self-adjoint 1-order elliptic op. $D_{\pm}^{L} := D^{L}|_{\Omega^{0, \frac{\text{even}}{\text{odd}}(M,L)}}$.

• When (M, ω, J) is Kähler, and L holomorphic

$$D^{L} = \sqrt{2} \left(\overline{\partial}^{L} + \left(\overline{\partial}^{L} \right)^{*} \right).$$

• Ker (D_+^L) , Ker (D_-^L) are finite dimensional.

- Ker (D_+^L) , Ker (D_-^L) are finite dimensional.
- Quantization space of L is the formal difference

$$Q(L) := \operatorname{Ind}(D^L) = \operatorname{Ker}\left(D^L_+\right) - \operatorname{Ker}\left(D^L_-\right).$$

It does not depend on the choice of J and the metric and connection on L.

- Ker (D_+^L) , Ker (D_-^L) are finite dimensional.
- Quantization space of L is the formal difference

$$Q(L) := \operatorname{Ind}(D^L) = \operatorname{Ker}\left(D^L_+\right) - \operatorname{Ker}\left(D^L_-\right).$$

It does not depend on the choice of J and the metric and connection on L.

• When (M, ω, J) is Kähler and L is holomorphic, then

$$Q(L) = H^{0,\text{even}}(M,L) - H^{0,\text{odd}}(M,L).$$

- Ker (D_+^L) , Ker (D_-^L) are finite dimensional.
- Quantization space of L is the formal difference

$$Q(L) := \operatorname{Ind}(D^L) = \operatorname{Ker}\left(D^L_+\right) - \operatorname{Ker}\left(D^L_-\right).$$

It does not depend on the choice of J and the metric and connection on L.

▶ When (M, ω, J) is Kähler and L is holomorphic, then

$$Q(L) = H^{0,\text{even}}(M,L) - H^{0,\text{odd}}(M,L).$$

• Atiyah-Singer (1963) : $Q(L) = \int_M \text{Td}(T^{(1,0)}M) \operatorname{ch}(L)$

$$= \int_{M} \det\left(\frac{e^{\sqrt{-1}R^{T^{(1,0)}}M/2\pi}}{1 - e^{-\sqrt{-1}R^{T^{(1,0)}}M/2\pi}}\right) e^{\omega}.$$

 \blacktriangleright G compact connected Lie group with Lie algebra $\mathfrak{g}.$

- ▶ G compact connected Lie group with Lie algebra \mathfrak{g} .
- G acts on M, and its action lifts on L, and commutes with J, h^L , ∇^L .

- ▶ G compact connected Lie group with Lie algebra \mathfrak{g} .
- G acts on M, and its action lifts on L, and commutes with J, h^L, ∇^L .
- Ker (D_{\pm}^{L}) are finite dimensional *G*-representations.

$$Q(L) = \operatorname{Ker}\left(D_{+}^{L}\right) - \operatorname{Ker}\left(D_{-}^{L}\right) \quad \in R(G).$$

- ▶ G compact connected Lie group with Lie algebra \mathfrak{g} .
- ► G acts on M, and its action lifts on L, and commutes with J, h^L, ∇^L.
- Ker (D_{\pm}^L) are finite dimensional *G*-representations.

$$Q(L) = \operatorname{Ker} \left(D_{+}^{L} \right) - \operatorname{Ker} \left(D_{-}^{L} \right) \quad \in R(G).$$

Λ^{*}₊ ⊂ g^{*} the set of dominant weights, V^G_γ the irreducible representation of G with highest weight γ ∈ Λ^{*}₊. Then

$$Q(L) = \bigoplus_{\gamma \in \Lambda_+^*} Q(L)^{\gamma} \cdot V_{\gamma}^G \quad \in R(G).$$

- G compact connected Lie group with Lie algebra \mathfrak{g} .
- G acts on M, and its action lifts on L, and commutes with J, h^L, ∇^L.
- Ker (D_{\pm}^L) are finite dimensional *G*-representations.

$$Q(L) = \operatorname{Ker} \left(D_{+}^{L} \right) - \operatorname{Ker} \left(D_{-}^{L} \right) \quad \in R(G).$$

Λ^{*}₊ ⊂ g^{*} the set of dominant weights, V^G_γ the irreducible representation of G with highest weight γ ∈ Λ^{*}₊. Then

$$Q(L) = \bigoplus_{\gamma \in \Lambda_+^*} Q(L)^{\gamma} \cdot V_{\gamma}^G \quad \in R(G).$$

• $Q(L)^{\gamma}$ the multiplicity of V_{γ}^{G} in Q(L). How to compute $Q(L)^{\gamma}$?

Symplectic reduction

• Moment map $\mu: M \to \mathfrak{g}^*$ is defined by

$$2\sqrt{-1}\pi\mu(K) = \nabla^L_{K^M} - L_K, \quad K \in \mathfrak{g}.$$

 K^M the vector field on M generated by $K \in \mathfrak{g}$.

Symplectic reduction

• Moment map $\mu: M \to \mathfrak{g}^*$ is defined by

$$2\sqrt{-1}\pi\mu(K) = \nabla^L_{K^M} - L_K, \quad K \in \mathfrak{g}.$$

 K^M the vector field on M generated by $K \in \mathfrak{g}$. \triangleright One has

$$i_{K^M}\omega = d\,\mu(K),$$

Symplectic reduction

• Moment map $\mu: M \to \mathfrak{g}^*$ is defined by

$$2\sqrt{-1}\pi\mu(K) = \nabla^L_{K^M} - L_K, \quad K \in \mathfrak{g}.$$

 K^M the vector field on M generated by $K \in \mathfrak{g}$. \blacktriangleright One has

$$i_{K^M}\omega = d\,\mu(K),$$

▶ For a regular value $\nu \in \mathfrak{g}^*$ of μ , symplectic reduction :

$$M_{\nu} = \mu^{-1} (G \cdot \nu) / G$$

 M_{ν} is a compact symplectic orbifold. $J, \, \omega, \, L \Longrightarrow J_{\nu}, \omega_{\nu}, L_{\nu} \text{ on } M_{\nu}.$

• For $\gamma \in \Lambda_+^*$, $\mathcal{O}_{\gamma} = G \cdot \gamma$ the orbit of the co-adjoint action of G on \mathfrak{g}^* , and $\rho_{\gamma} : T \to \mathbb{C}$ the representation of the maximal torus T with weight γ .

- For $\gamma \in \Lambda_+^*$, $\mathcal{O}_{\gamma} = G \cdot \gamma$ the orbit of the co-adjoint action of G on \mathfrak{g}^* , and $\rho_{\gamma} : T \to \mathbb{C}$ the representation of the maximal torus T with weight γ .
- $\mathcal{O}_{\gamma} \simeq G/T$ is a Kähler manifold, $F = G \times_{\rho_{\gamma}} \mathbb{C}$ is a holomorphic line bundle on \mathcal{O}_{γ} , moment map of *G*-action is the inclusion $\mathcal{O}_{\gamma} \hookrightarrow \mathfrak{g}^*$.

- For $\gamma \in \Lambda_+^*$, $\mathcal{O}_{\gamma} = G \cdot \gamma$ the orbit of the co-adjoint action of G on \mathfrak{g}^* , and $\rho_{\gamma} : T \to \mathbb{C}$ the representation of the maximal torus T with weight γ .
- $\mathcal{O}_{\gamma} \simeq G/T$ is a Kähler manifold, $F = G \times_{\rho_{\gamma}} \mathbb{C}$ is a holomorphic line bundle on \mathcal{O}_{γ} , moment map of *G*-action is the inclusion $\mathcal{O}_{\gamma} \hookrightarrow \mathfrak{g}^*$.

- ▶ For $\gamma \in \Lambda_+^*$, $\mathcal{O}_{\gamma} = G \cdot \gamma$ the orbit of the co-adjoint action of G on \mathfrak{g}^* , and $\rho_{\gamma} : T \to \mathbb{C}$ the representation of the maximal torus T with weight γ .
- $\mathcal{O}_{\gamma} \simeq G/T$ is a Kähler manifold, $F = G \times_{\rho_{\gamma}} \mathbb{C}$ is a holomorphic line bundle on \mathcal{O}_{γ} , moment map of *G*-action is the inclusion $\mathcal{O}_{\gamma} \hookrightarrow \mathfrak{g}^*$.

•
$$M_{\gamma} = \mathcal{O}_{\gamma}/G \simeq \mathrm{pt},$$

$$H^{0,0}(\mathcal{O}_{\gamma},F) = V_{\gamma}^G, \quad H^{0,j}(\mathcal{O}_{\gamma},F) = 0 \quad \text{for } j > 0.$$

Guillemin-Sternberg conjecture I

Guillemin-Sternberg conjecture I

• The quantization of L_{ν} is defined by

$$Q(L_{\nu}) = \operatorname{Ker}\left(D_{+}^{L_{\nu}}\right) - \operatorname{Ker}\left(D_{-}^{L_{\nu}}\right).$$

Guillemin-Sternberg conjecture I

• The quantization of L_{ν} is defined by

$$Q(L_{\nu}) = \operatorname{Ker}\left(D_{+}^{L_{\nu}}\right) - \operatorname{Ker}\left(D_{-}^{L_{\nu}}\right).$$

• Guillemin-Sternberg conjecture (1982) : For any $\gamma \in \Lambda_+^*$,

$$Q(L)^{\gamma} = Q(L_{\gamma}).$$

Equivalently,

$$Q(L) := \operatorname{Ind}(D^L) = \bigoplus_{\gamma \in \Lambda_+^*} Q(L_\gamma) \cdot V_\gamma^G.$$

Guillemin-Sternberg conjecture II

▶ When G is abelian, Meinrenken (JAMS 1996) and Vergne (DMJ 1996).

Guillemin-Sternberg conjecture II

- ▶ When G is abelian, Meinrenken (JAMS 1996) and Vergne (DMJ 1996).
- General G, Meinrenken, Meinrenken-Sjamaar, technique of symplectic cut of Lerman, 1998
 Youliang Tian - Weiping Zhang, Pure analytic approach, 1998, work for a general vector bundle E verifying certain positivity condition. For manifolds with boundary, etc.

Guillemin-Sternberg conjecture II

- ▶ When G is abelian, Meinrenken (JAMS 1996) and Vergne (DMJ 1996).
- General G, Meinrenken, Meinrenken-Sjamaar, technique of symplectic cut of Lerman, 1998
 Youliang Tian - Weiping Zhang, Pure analytic approach, 1998, work for a general vector bundle E verifying certain positivity condition. For manifolds with boundary, etc.
- Other proofs : Duistermaart-Guillemin-Meinrenken-Wu (for circle actions) and Jeffrey-Kirwan (for non-abelian group actions with certain extra conditions)
 Paradan, using the transversal index theory, 2001.
 Etc ...

Guillemin-Sternberg conjecture III

► Assume (M, ω, J) is Kähler, L holomorphic \implies $(M_{\nu}, \omega_{\nu}, J_{\nu})$ is Kähler, L_{ν} is holomorphic over M_{ν} .

Guillemin-Sternberg conjecture III

- Assume (M, ω, J) is Kähler, L holomorphic \Longrightarrow $(M_{\nu}, \omega_{\nu}, J_{\nu})$ is Kähler, L_{ν} is holomorphic over M_{ν} .
- ► Guillemin-Sternberg, 1982 :

 $H^{0,0}(M,L)^G \simeq H^{0,0}(M_0,L_0).$

Guillemin-Sternberg conjecture III

- Assume (M, ω, J) is Kähler, L holomorphic \Longrightarrow $(M_{\nu}, \omega_{\nu}, J_{\nu})$ is Kähler, L_{ν} is holomorphic over M_{ν} .
- ► Guillemin-Sternberg, 1982 :

$$H^{0,0}(M,L)^G \simeq H^{0,0}(M_0,L_0).$$

▶ Teleman, Braverman, Weiping Zhang, 2000: for any j,

$$H^{0,j}(M,L)^G \simeq H^{0,j}(M_0,L_0).$$

► From now on, assume *M* is non-compact. Natural question : What is the quantization formula?

► From now on, assume *M* is non-compact. Natural question : What is the quantization formula?

$$\operatorname{Ind}(D^L) = \bigoplus_{\gamma \in \Lambda_+^*} Q(L_\gamma) \cdot V_\gamma^G ?$$

 $\operatorname{Ind}(D^L)$ does not well defined, but the right hand side is well defined if the moment map $\mu: M \to \mathfrak{g}^*$ is proper. ► From now on, assume *M* is non-compact. Natural question : What is the quantization formula?

$$\operatorname{Ind}(D^{L}) = \bigoplus_{\gamma \in \Lambda_{+}^{*}} Q(L_{\gamma}) \cdot V_{\gamma}^{G} ?$$

 $\operatorname{Ind}(D^L)$ does not well defined, but the right hand side is well defined if the moment map $\mu: M \to \mathfrak{g}^*$ is proper.

• Suppose $\mu: M \to \mathfrak{g}^*$ is proper.
▶ G real connected semi-simple Lie group with finite center. *K* max. compact subgroup of G, *T* max. torus in *K*. Assume *T* is a Cartan subgroup of *G*.

- ▶ G real connected semi-simple Lie group with finite center. *K* max. compact subgroup of G, *T* max. torus in *K*. Assume *T* is a Cartan subgroup of *G*.
- ▶ Harish-Chandra (1965) : \mathbb{G} has discrete series iff *T* is a Cartan subgroup of \mathbb{G} . The discrete series parametrized by a discrete set $\widehat{\mathbb{G}}_d$ of the Weyl chamber \mathfrak{t}_+^* .

- ▶ G real connected semi-simple Lie group with finite center. *K* max. compact subgroup of G, *T* max. torus in *K*. Assume *T* is a Cartan subgroup of *G*.
- ▶ Harish-Chandra (1965) : G has discrete series iff T is a Cartan subgroup of G. The discrete series parametrized by a discrete set $\widehat{\mathbb{G}}_d$ of the Weyl chamber \mathfrak{t}_+^* .

► For $\gamma \in \widehat{\mathbb{G}}_d$, $\mathcal{O}_{\gamma} = \mathbb{G} \cdot \gamma \simeq \mathbb{G}/T$ is a Kähler manifold, $F = G \times_{\rho_{\gamma}} \mathbb{C}$ is a holomorphic line bundle on \mathcal{O}_{γ} . moment map μ of K-action : $\mathcal{O}_{\gamma} \hookrightarrow \mathfrak{g}^* \to \mathfrak{k}^*$, here $\mathfrak{g}^* \to \mathfrak{k}^*$ projection. Paradan : μ is proper!

- ▶ G real connected semi-simple Lie group with finite center. *K* max. compact subgroup of G, *T* max. torus in *K*. Assume *T* is a Cartan subgroup of *G*.
- ▶ Harish-Chandra (1965) : \mathbb{G} has discrete series iff T is a Cartan subgroup of \mathbb{G} . The discrete series parametrized by a discrete set $\widehat{\mathbb{G}}_d$ of the Weyl chamber \mathfrak{t}_+^* .
- ► For $\gamma \in \widehat{\mathbb{G}}_d$, $\mathcal{O}_{\gamma} = \mathbb{G} \cdot \gamma \simeq \mathbb{G}/T$ is a Kähler manifold, $F = G \times_{\rho_{\gamma}} \mathbb{C}$ is a holomorphic line bundle on \mathcal{O}_{γ} . moment map μ of K-action : $\mathcal{O}_{\gamma} \hookrightarrow \mathfrak{g}^* \to \mathfrak{k}^*$, here $\mathfrak{g}^* \to \mathfrak{k}^*$ projection. Paradan : μ is proper!
- Schmid (1975) : $H^{0,k}_{(2)}(\mathcal{O}_{\gamma}, F) = \mathcal{H}_{\gamma}$ if $k = \dim(G/K)/2$; 0 other case.

• We identify \mathfrak{g} to \mathfrak{g}^* by using Ad_G -invariant metric on \mathfrak{g} . $\mu^M(x) := (\mu(x))^M(x)$ the (Kirwan) vector field induced by $\mu : M \to \mathfrak{g}$.

- We identify \mathfrak{g} to \mathfrak{g}^* by using Ad_G -invariant metric on \mathfrak{g} . $\mu^M(x) := (\mu(x))^M(x)$ the (Kirwan) vector field induced by $\mu : M \to \mathfrak{g}$.
- Suppose temporary : $\{x \in M : \mu^M(x) = 0\}$ is compact.

- We identify \mathfrak{g} to \mathfrak{g}^* by using Ad_G -invariant metric on \mathfrak{g} . $\mu^M(x) := (\mu(x))^M(x)$ the (Kirwan) vector field induced by $\mu : M \to \mathfrak{g}$.
- Suppose temporary : $\{x \in M : \mu^M(x) = 0\}$ is compact.
- For $x \in M$, $v \in T_x M$,

$$\sigma_{L,\mu}^{M}(x,v) = \pi^* \left(\sqrt{-1}c(v+\mu^M) \otimes \mathrm{Id}_L \right) \big|_{(x,v)}$$

: $\pi^*(\Lambda^{\mathrm{even}}(T^{*(0,1)}M) \otimes L) \to \pi^*(\Lambda^{\mathrm{odd}}(T^{*(0,1)}M) \otimes L))$

where $c(\cdot)$ is the Clifford action on $\Lambda(T^{*(0,1)}M)$. Then $\sigma_{L,\mu}^M$ is a transversally elliptic symbol in the sense of Atiyah (1974), as $\{(x,v) \in T_GM; \sigma_{L,\mu}^M(x,v) = 0\} =$ $\{(x,0) \in T_GM; \mu^M(x) = 0\}$ is compact.

• $\sigma_{L,\mu}^M$ has an index :

Ind
$$(\sigma_{L,\mu}^{M}) = \bigoplus_{\gamma \in \Lambda_{+}^{*}} \operatorname{Ind}_{\gamma} (\sigma_{L,\mu}^{M}) \cdot V_{\gamma}^{G} \in R[G].$$

• $\sigma_{L,\mu}^M$ has an index :

$$\operatorname{Ind}\left(\sigma_{L,\mu}^{M}\right) = \bigoplus_{\gamma \in \Lambda_{+}^{*}} \operatorname{Ind}_{\gamma}\left(\sigma_{L,\mu}^{M}\right) \cdot V_{\gamma}^{G} \in R[G].$$

• Ind $(\sigma_{L,\mu}^{M})$ does not depend on $g^{TM}, h^{L}, \nabla^{L}$, it depends on the homotopy classes of J, μ^{M} . The set $\{\gamma \in \Lambda_{+}^{*} : \operatorname{Ind}_{\gamma}(\sigma_{L,\mu}^{M}) \neq 0\}$ can be infinite.

• $\sigma_{L,\mu}^M$ has an index :

$$\operatorname{Ind}\left(\sigma_{L,\mu}^{M}\right) = \bigoplus_{\gamma \in \Lambda_{+}^{*}} \operatorname{Ind}_{\gamma}\left(\sigma_{L,\mu}^{M}\right) \cdot V_{\gamma}^{G} \in R[G].$$

- Ind $(\sigma_{L,\mu}^{M})$ does not depend on $g^{TM}, h^{L}, \nabla^{L}$, it depends on the homotopy classes of J, μ^{M} . The set $\{\gamma \in \Lambda_{+}^{*} : \operatorname{Ind}_{\gamma}(\sigma_{L,\mu}^{M}) \neq 0\}$ can be infinite.
- In many cases,

$$\operatorname{Ind}\left(\sigma_{L,\mu}^{M}\right) = \operatorname{Ker}_{L^{2}}(D_{+}^{L}) - \operatorname{Ker}_{L^{2}}(D_{-}^{L}) \in R[G].$$

Recall : Symplectic reduction

▶ Vergne's conjecture (ICM 2006 plenary lecture) : If $\mu : M \to \mathfrak{g}^*$ is proper and if $\{x \in M : \mu^M(x) = 0\}$ is compact, then

Ind_{$$\gamma$$} $\left(\sigma_{L,\mu}^{M}\right) = Q\left(L_{\gamma}\right),$
i.e. Ind $\left(\sigma_{L,\mu}^{M}\right) = \bigoplus_{\gamma \in \Lambda_{+}^{*}} Q\left(L_{\gamma}\right) \cdot V_{\gamma}^{G}.$

▶ Vergne's conjecture (ICM 2006 plenary lecture) : If $\mu : M \to \mathfrak{g}^*$ is proper and if $\{x \in M : \mu^M(x) = 0\}$ is compact, then

Ind_{$$\gamma$$} $\left(\sigma_{L,\mu}^{M}\right) = Q\left(L_{\gamma}\right),$
i.e. Ind $\left(\sigma_{L,\mu}^{M}\right) = \bigoplus_{\gamma \in \Lambda_{+}^{*}} Q\left(L_{\gamma}\right) \cdot V_{\gamma}^{G}.$

 Paradan 2003-2008 : Some special cases, related to the discrete series of semi-simple Lie groups.

▶ Vergne's conjecture (ICM 2006 plenary lecture) : If $\mu : M \to \mathfrak{g}^*$ is proper and if $\{x \in M : \mu^M(x) = 0\}$ is compact, then

Ind_{$$\gamma$$} $\left(\sigma_{L,\mu}^{M}\right) = Q\left(L_{\gamma}\right),$
i.e. Ind $\left(\sigma_{L,\mu}^{M}\right) = \bigoplus_{\gamma \in \Lambda_{+}^{*}} Q\left(L_{\gamma}\right) \cdot V_{\gamma}^{G}.$

- Paradan 2003-2008 : Some special cases, related to the discrete series of semi-simple Lie groups.
- ► Ma-Zhang 2008 : Vergne's conjecture holds even when $\{x \in M : \mu^M(x) = 0\}$ is non-compact.

▶ Vergne's conjecture (ICM 2006 plenary lecture) : If $\mu : M \to \mathfrak{g}^*$ is proper and if $\{x \in M : \mu^M(x) = 0\}$ is compact, then

Ind_{$$\gamma$$} $\left(\sigma_{L,\mu}^{M}\right) = Q\left(L_{\gamma}\right),$
i.e. Ind $\left(\sigma_{L,\mu}^{M}\right) = \bigoplus_{\gamma \in \Lambda_{+}^{*}} Q\left(L_{\gamma}\right) \cdot V_{\gamma}^{G}.$

- Paradan 2003-2008 : Some special cases, related to the discrete series of semi-simple Lie groups.
- ► Ma-Zhang 2008 : Vergne's conjecture holds even when $\{x \in M : \mu^M(x) = 0\}$ is non-compact.
- Paradan 2009 : New proof of Ma-Zhang's theorem : symplectic cuts and the wonderful compactifications of Concini-Procesi.

• Assume $\mu: M \to \mathfrak{g}^*$ is proper.

• Assume
$$\mu: M \to \mathfrak{g}^*$$
 is proper.

• Set $\mathcal{H} = |\mu|^2$. For a > 0, set $M_a = \{x \in M, \mathcal{H} \leq a\}$.

- Assume $\mu: M \to \mathfrak{g}^*$ is proper.
- Set $\mathcal{H} = |\mu|^2$. For a > 0, set $M_a = \{x \in M, \mathcal{H} \leq a\}$.
- If a is a regular value of \mathcal{H} , then M_a is a compact manifold with boundary ∂M_a , and μ^M is nowhere zero on ∂M_a .

- Assume $\mu: M \to \mathfrak{g}^*$ is proper.
- Set $\mathcal{H} = |\mu|^2$. For a > 0, set $M_a = \{x \in M, \mathcal{H} \leq a\}$.
- If a is a regular value of \mathcal{H} , then M_a is a compact manifold with boundary ∂M_a , and μ^M is nowhere zero on ∂M_a .

• For
$$x \in M_a$$
, $v \in T_x M_a$,

$$\sigma_{L,\mu}^{M_a}(x,v) = \pi^* \left(\sqrt{-1}c(v+\mu^M) \otimes \operatorname{Id}_L \right) \big|_{(x,v)}$$

: $\pi^*(\Lambda^{\operatorname{even}}(T^{*(0,1)}M_a) \otimes L) \to \pi^*(\Lambda^{\operatorname{odd}}(T^{*(0,1)}M_a) \otimes L))$

where $c(\cdot)$ is the Clifford action on $\Lambda(T^{*(0,1)}M_a)$. Then $\sigma_{L,\mu}^{M_a}$ is a transversally elliptic symbol on M_a in the sense of Atiyah (1974).

•
$$\sigma_{L,\mu}^{M_a}$$
 has an index :

$$\operatorname{Ind}\left(\sigma_{L,\mu}^{M_{a}}\right) = \bigoplus_{\gamma \in \Lambda_{+}^{*}} \operatorname{Ind}_{\gamma}\left(\sigma_{L,\mu}^{M_{a}}\right) \cdot V_{\gamma}^{G}.$$

•
$$\sigma_{L,\mu}^{M_a}$$
 has an index :

$$\operatorname{Ind}\left(\sigma_{L,\mu}^{M_{a}}\right) = \bigoplus_{\gamma \in \Lambda_{+}^{*}} \operatorname{Ind}_{\gamma}\left(\sigma_{L,\mu}^{M_{a}}\right) \cdot V_{\gamma}^{G}$$

► Theorem (Ma-Zhang) : $\forall \gamma \in \Lambda_+^*$, $\exists a_{\gamma} > 0$ such that $\operatorname{Ind}_{\gamma}(\sigma_{L,\mu}^{M_a})$ does not depend on any regular value $a > a_{\gamma}$ of $\mathcal{H} = |\mu|^2$. We denote it by $Q(L)^{\gamma}$.

•
$$\sigma_{L,\mu}^{M_a}$$
 has an index :

$$\operatorname{Ind}\left(\sigma_{L,\mu}^{M_{a}}\right) = \bigoplus_{\gamma \in \Lambda_{+}^{*}} \operatorname{Ind}_{\gamma}\left(\sigma_{L,\mu}^{M_{a}}\right) \cdot V_{\gamma}^{G}$$

- ► Theorem (Ma-Zhang) : $\forall \gamma \in \Lambda_+^*$, $\exists a_{\gamma} > 0$ such that $\operatorname{Ind}_{\gamma}(\sigma_{L,\mu}^{M_a})$ does not depend on any regular value $a > a_{\gamma}$ of $\mathcal{H} = |\mu|^2$. We denote it by $Q(L)^{\gamma}$.
- Theorem (Ma-Zhang) : For any $\gamma \in \Lambda_+^*$,

$$Q(L)^{\gamma} = Q(L_{\gamma}).$$

•
$$\sigma_{L,\mu}^{M_a}$$
 has an index :

$$\operatorname{Ind}\left(\sigma_{L,\mu}^{M_{a}}\right) = \bigoplus_{\gamma \in \Lambda_{+}^{*}} \operatorname{Ind}_{\gamma}\left(\sigma_{L,\mu}^{M_{a}}\right) \cdot V_{\gamma}^{G}$$

- ► Theorem (Ma-Zhang) : $\forall \gamma \in \Lambda_+^*$, $\exists a_{\gamma} > 0$ such that $\operatorname{Ind}_{\gamma}(\sigma_{L,\mu}^{M_a})$ does not depend on any regular value $a > a_{\gamma}$ of $\mathcal{H} = |\mu|^2$. We denote it by $Q(L)^{\gamma}$.
- Theorem (Ma-Zhang) : For any $\gamma \in \Lambda_+^*$,

$$Q(L)^{\gamma} = Q(L_{\gamma}).$$

• If $\{x \in M : \mu^M(x) = 0\}$ is compact, then

$$Q(L)^{\gamma} = \operatorname{Ind}_{\gamma} \left(\sigma_{L,\mu}^{M} \right).$$

Thus the above result implies Vergne's conjecture.

Transversal index = APS index

Transversal index = APS index

• Assume that $\{x \in M : \mu^M(x) = 0\}$ is compact. For T > 0, let D_T^L be the deformed Dirac operator introduced by Tian-Zhang :

$$D_T^L = D^L + \sqrt{-1}T c\left(\mu^M\right) : \Omega^{0,\bullet}\left(M,L\right) \to \Omega^{0,\bullet}\left(M,L\right).$$

Transversal index = APS index

• Assume that $\{x \in M : \mu^M(x) = 0\}$ is compact. For T > 0, let D_T^L be the deformed Dirac operator introduced by Tian-Zhang :

$$D_T^L = D^L + \sqrt{-1}T c\left(\mu^M\right) : \Omega^{0,\bullet}\left(M,L\right) \to \Omega^{0,\bullet}\left(M,L\right).$$

► First step : For $\gamma \in \Lambda_+^*$, $\exists T_\gamma > 0$ s.t. $\forall T > T_\gamma$

$$\operatorname{Ind}_{\gamma}\left(\sigma_{L,\mu}^{M_{a}}\right) = \operatorname{Ind}_{\gamma}\left(D_{+,T,\operatorname{APS},M_{a}}^{L}\right).$$

The proof of Vergne's conjecture for $\gamma = 0$ is then easy.

Product formula

• (N, ω^N, J^N) compact symplectic manifold with a prequantum line bundle (F, h^F, ∇^F) . We suppose that G acts on N and the action lifts to F. For $\gamma \in \Lambda^*_+$, set

$$Q(F)^{-\gamma} = \dim \operatorname{Hom}_G((V^G_{\gamma})^*, Q(F)),$$

where Hom_G is the linear space of *G*-homomorphisms.

Product formula

• (N, ω^N, J^N) compact symplectic manifold with a prequantum line bundle (F, h^F, ∇^F) . We suppose that G acts on N and the action lifts to F. For $\gamma \in \Lambda_+^*$, set

$$Q(F)^{-\gamma} = \dim \operatorname{Hom}_G((V^G_{\gamma})^*, Q(F)),$$

where Hom_G is the linear space of G-homomorphisms.▶ Ma-Zhang

$$Q (L \otimes F)^{\gamma=0} = \sum_{\gamma \in \Lambda_+^*} Q(L)^{\gamma} \cdot Q(F)^{-\gamma}.$$

Product formula

• (N, ω^N, J^N) compact symplectic manifold with a prequantum line bundle (F, h^F, ∇^F) . We suppose that G acts on N and the action lifts to F. For $\gamma \in \Lambda_+^*$, set

$$Q(F)^{-\gamma} = \dim \operatorname{Hom}_G((V^G_{\gamma})^*, Q(F)),$$

where Hom_G is the linear space of G-homomorphisms. ► Ma-Zhang

$$Q (L \otimes F)^{\gamma=0} = \sum_{\gamma \in \Lambda_+^*} Q(L)^{\gamma} \cdot Q (F)^{-\gamma}.$$

► Take $N = \mathcal{O}_{\gamma}$, then $Q(L \otimes F^*)^{\nu=0} = Q(L_{\gamma})$, Borel-Weil-Bott theorem implies $Q(F^*)^{-\nu} = \delta_{\gamma,\nu}$, thus $Q(L_{\gamma}) = Q(L)^{\gamma}$. In particular, Vergne's conjecture holds.

Thank you!