
Chapter 1

Basic symplectic geometry

This chapter is an introduction on symplectic geometry. Symplectic geometry has its origin in
classical mechanics. Many important geometry problems can be naturally formulated in the
context of symplectic geometry, thus it is also a widely useful language in mathematic physics,
representation theory etc. Since 1970’s, after Kostant and Souriau introduced the geometric
quantization, symplectic geometry became an independent mathematic subject which is an ex-
tension of complex geometry. Complex geometry is a classical and still very active area, and
Kähler manifolds in complex geometry are naturally symplectic manifolds which belong to a
large class of manifolds: Poisson manifolds. These three classes of manifolds are basic objects of
this chapter.

We start in Section 1.1 the definition on the symplectic vector spaces and show the space
of its compatible complex structures is contractible. More precisely, we construct a smooth
surjective map from the space of metrics on the vector space to the space of its compatible
complex structures, this allows us to extend it easily to the symplectic vector bundles case.
In Section 1.2, after recall basic facts on differential manifolds, we explain the Moser’s trick
which is very useful to treat the problems on the existence of certain diffeomorphisms and as
applications, we establish the Darboux theorem which explain locally, any symplectic manifold
is same as a symplectic vector space, thus any possible symplectic invariant should be of a global
nature. In Section 1.3, we explain the Poisson structure on a symplectic manifold and give a brief
introduction on Poisson manifolds. In Section 1.4, we recall the definition of a Kähler manifold.
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1.1 Linear symplectic geometry

This section s a continuation of linear algebra. We explain basic facts on symplectic vector
spaces, compatible complex structures and symplectic groups.

1.1.1 Symplectic vector spaces

Let V be a real vector space of dimension m. We will denote by V ∗ its dual space, and for k ∈ N,
let ΛkV ∗ be the space of antisymmetric (i.e., alternating) multilinear mappings from V × · · · × V︸ ︷︷ ︸

k times
to R. Certainly, for k > m, we have

ΛkV ∗ = 0. (1.1.1)

We get easily that

Λ0V ∗ = R, Λ1V ∗ = V ∗, dim ΛmV ∗ = 1. (1.1.2)

A nonvanishing element of ΛmV ∗ defines an orientation of V . The antisymmetric multiplication
for α ∈ ΛkV ∗, β ∈ ΛrV ∗ is defined by: for v1, . . . , vk+r ∈ V ,

(α ∧ β)(v1, . . . , vk+r) :=
1

k!r!

∑
σ∈Sk+r

(−1)|σ|α(vσ(1), . . . , vσ(k))β(vσ(k+1), . . . , vσ(k+r)), (1.1.3)

and |σ| is the sign of σ ∈ Sk+r, the (k + r)-th permutation group. Then Λ•V ∗ = ⊕mk=0ΛkV ∗

becomes an algebra with its Z-grading induced by its degree, and Λ•V ∗ is called the exterior
algebra of V ∗. Any basis {ej}mj=1 of V ∗ induces a following basis of ΛkV ∗:

eI := ei1 ∧ · · · ∧ eik for I = {1 ≤ i1 < · · · < ik ≤ m}. (1.1.4)

We call a bilinear form θ : V ×V → R is nondegenerate, if for v ∈ V , θ(v, ·) = 0 ∈ V ∗ implies
v = 0.

We call a bilinear form g : V × V → R is a scalar product (or Euclidean metric) on V if g is
symmetric and positive, i.e., for any u, v ∈ V ,

symmetric : g(u, v) = g(v, u),

positive : g(u, u) > 0 if u 6= 0.
(1.1.5)

Definition 1.1.1. We say (V, ω) is a symplectic vector space if V is a finite dimensional real
vector space, and ω : V × V → R is a nondegenerate antisymmetric bilinear form. In this case,
we call ω a symplectic form on V .

Definition 1.1.2. Let (V1, ω1), (V2, ω2) be two symplectic vector spaces. A linear map φ : V1 →
V2 is called symplectic, if

ω1 = φ∗ω2 := ω2(φ·, φ·). (1.1.6)

If the linear map φ : V1 → V2 is symplectic, then as ω1 is nondegenerate, φ is injective. If φ
is also an isomorphism, we call that φ is a symplectic isomorphism.

Proposition 1.1.3. If (V, ω) is a symplectic vector space of dimension m, then m is even and
ωm/2 ∈ ΛmV ∗ is nonvanishing which defines an orientation of V . Moreover, the map

v ∈ V → ω(v, ·) ∈ V ∗ (1.1.7)

is an isomorphism.
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Proof. Let 〈·, ·〉 be a scalar product on V . Then there exists an antisymmetric invertible endo-
morphism A ∈ End(V ) such that

ω(·, ·) = 〈·, A·〉. (1.1.8)

As

detA = det(At) = (−1)m detA, (1.1.9)

thus m is even.
If 〈·, ·〉′ is another scalar product on V , and A′ is the corresponding antisymmetric invertible

endomorphism. Then there is P ∈ GL(V ) such that PAP t = A′. Thus detA and detA′ have
the same signature. This means V has a canonical orientation. In fact, this is equivalent to
ωm/2 ∈ ΛmV ∗ and ωm/2 6= 0.

As ω is nondegenerate, the map v ∈ V → ω(v, ·) ∈ V ∗ is injective. As dimR V = dimR V
∗,

(1.1.7) is an isomorphism. The proof of Proposition 1.1.3 is completed.

The basic example is the following. In fact, as we will see in Theorem 1.1.15, it is the only
symplectic vector space.

Example 1.1.4. Let L be a vector space. Then L ⊕ L∗ is a symplectic vector space with a
symplectic form ωL⊕L

∗
defined by: for (l1, l

∗
1), (l2, l

∗
2) ∈ L⊕ L∗,

ωL⊕L
∗
((l1, l

∗
1), (l2, l

∗
2)) = (l1, l

∗
2)− (l2, l

∗
1), (1.1.10)

here we denote by (l1, l
∗
2) := l∗2(l1). In particular, if we identify Rn with Rn∗ by the canonical

scalar product of Rn defined by: for x = (x1, . . . , xn)t, y = (y1, . . . , yn)t ∈ Rn,

〈x, y〉 =

n∑
i=1

xiyi. (1.1.11)

We call
(
R2n, ω0

)
:= (Rn ⊕ Rn∗, ωRn⊕Rn∗) the standard symplectic space. Sometimes, we also

denote by ωst the canonical symplectic form ω0.

From now on, let (V, ω) be a symplectic vector space. For W ⊂ V a linear subspace, let

W⊥ω = {v ∈ V : ω(v, w) = 0, for all w ∈W}, (1.1.12)

be the ω-orthogonal complement of W . We denote by v⊥ωu for u, v ∈ V if ω(u, v) = 0. In the
same way, u⊥ωW for W ⊂ V if ω(u, v) = 0 for any v ∈W .

Definition 1.1.5. For W a linear subspace of a symplectic vector space (V, ω), we call

1. W is symplectic if W ∩W⊥ω = 0;

2. W is isotropic if W ⊂W⊥ω ;

3. W is coisotropic if W⊥ω ⊂W ;

4. W is Lagrangian if W = W⊥ω .

Proposition 1.1.6. For W a linear subspace of (V, ω), we have

dimW + dimW⊥ω = dimV,
(
W⊥ω

)⊥ω
= W. (1.1.13)

If W is symplectic, then W⊥ω is also symplectic and we have the direct decomposition of sym-
plectic vector spaces

(V, ω) = (W,ω|W )⊕ (W⊥ω , ω|W⊥ω ). (1.1.14)
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Proof. Let 〈 , 〉 be a scalar product on V . Let A ∈ End(V ) as in (1.1.8). Then W⊥ω = (AW )⊥.
Hence,

dimW⊥ω = dim(AW )⊥ = dimV − dim(AW ). (1.1.15)

As A is invertible, by (1.1.15), we get the first equation of (1.1.13), in particular, we have

dimW = dim
(
W⊥ω

)⊥ω
. But by (1.1.12), we have W ⊂

(
W⊥ω

)⊥ω
. This means the second

equation of (1.1.13) holds.

If W is symplectic, then W⊥ω ∩
(
W⊥ω

)⊥ω
= W⊥ω ∩W = {0}, thus W⊥ω is symplectic. Now

we get (1.1.14) by the first equation of (1.1.13).
The proof of Proposition 1.1.6 is completed.

Proposition 1.1.7. If (V, ω) is a linear symplectic space of dimension 2n. Then there exists
e1, f1, . . . , en, fn a basis of V , such that, for 1 6 i, j 6 n,

ω(ei, fj) = δij , ω(ei, ej) = 0, ω(fi, fj) = 0. (1.1.16)

This basis will be called a symplectic basis of V .

Proof. We shall prove this proposition by induction on dimV/2. If dimV = 0, certainly it holds.
We suppose dimV > 2 and the proposition is true for the symplectic vector space of dimension
smaller than dimV − 2.

Let e1 ∈ V \{0}. As ω is nondegenerate, there is f1 ∈ V such that

ω(e1, f1) = 1. (1.1.17)

Set W = Re1 ⊕ Rf1. By Proposition 1.1.6, we have a ω-orthogonal decomposition

V = W ⊕W⊥ω . (1.1.18)

By the induction hypotheses, we have a symplectic basis e2, f2, . . . , en, fn on W⊥ω . Hence, {e1,
f1, . . . , en, fn} is a symplectic basis of V .

The proof of Proposition 1.1.7 is completed.

We give two applications of the symplectic basis.

Corollary 1.1.8. Let ω, ω′ be two symplectic forms on V . Then there exists A ∈ GL(V ) such
that

ω′(A·, A·) = ω(·, ·). (1.1.19)

Proof. Let {ei, fj} (resp. {e′i, f ′j}) be a symplectic basis of (V, ω) (resp. (V, ω′)). Let A ∈ End(V )
be defined by

Aei = e′i, Afj = f ′j . (1.1.20)

As (ei, fj), (e
′
i, f
′
j) are bases of V , A is invertible. Moreover,

ω′(Aei, Aej) = ω′(e′i, e
′
j) = 0, ω′(Afi, Afj) = ω′(f ′i , f

′
j) = 0, (1.1.21)

ω′(Aei, Afj) = ω′(e′i, f
′
j) = δij .

This means (1.1.19) holds. The proof of Corollary 1.1.8 is completed.
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Corollary 1.1.9. Let {ei, fi}ni=1 be a symplectic basis of (V, ω). Then

L = Re1 ⊕ · · · ⊕ Ren (1.1.22)

is a Lagrangian subspace of (V, ω). In particular, for any symplectic vector space, there always
exists a Lagrangian subspace.

Proof. By (1.1.16) and (1.1.22), we have

L ⊂ L⊥ω . (1.1.23)

By (1.1.13) and (1.1.22), we have

dimL⊥ω = dimV − dimL = dimL. (1.1.24)

By (1.1.23) and (1.1.24), we get L = L⊥ω , thus L is Lagrangian by Definition 1.1.5. The proof
of Corollary 1.1.9 is completed.

1.1.2 Compatible complex structures

Definition 1.1.10. Let V be a real vector space. If J ∈ End(V ) such that J2 = −IdV , we call
J a complex structure on V . Moreover, if ω is a symplectic form on V , such that

g(·, ·) = ω(·, J ·) (1.1.25)

defines a scalar product on V , we call J a compatible complex structure on (V, ω). We denote
by J (V, ω) the space of compatible complex structures on (V, ω).

Proposition 1.1.11. If J is a compatible complex structure on a symplectic vector space (V, ω),
then ω is J-invariant, i.e.,

ω(J ·, J ·) = ω(·, ·). (1.1.26)

Proof. By (1.1.25), we have

ω(·, ·) = g(·,−J ·),
ω(J ·, J ·) = g(J ·, ·) = g(·, J t·).

(1.1.27)

As ω is antisymmetric, J is antisymmetric with respect to g. Then

g(·, J t·) = −g(·, J ·) = −ω(·, J2·) = ω(·, ·). (1.1.28)

From (1.1.27) and (1.1.28), we get (1.1.26).

Example 1.1.12. a) Let {ei, fi}ni=1 be a symplectic basis of a symplectic vector space (V, ω). Set

Jei = fi, Jfj = −ej . (1.1.29)

Then J is a compatible complex structure. In particular, J (V, ω) is non-empty.

b) Let J0 ∈ End(R2n) be the standard complex structure of R2n defined by

J0 =

(
0 −I
I 0

)
. (1.1.30)
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For z =

(
x
y

)
, z′ =

(
x′

y′

)
∈ R2n, we have

ω0(z, J0z
′) =

n∑
i=1

(xix
′
i + yiy

′
i). (1.1.31)

Hence J0 is a compatible complex structure on the standard symplectic space (R2n, ω0)
and ω0(·, J0·) defines the canonical scalar product 〈 , 〉 on R2n.

Now we recall some results from linear algebra. Let

Pm ={A ∈Mm(R) : A is a symmetric positive definite matrix},
pm ={A ∈Mm(R) : A is a symmetric matrix}.

(1.1.32)

Then Pm is an open subset of the m(m+ 1)/2-dimensional vector space pm.
For A ∈ Pm, s ∈ R, we can define the s-th power As by

As =
1

2πi

∫
λ∈Γ

λs

λ−A
dλ, (1.1.33)

where Γ is the oriented contour indicated in the figure 1.1 such that SpecA ⊂]r1, r2[. From

r1 r2SpecA

Γ

0

Figure 1.1: The contour Γ.

(1.1.33), we know the s-th power from Pm to Pm is smooth, and for A ∈ Pm, C ∈Mm(R),

AsC = CAs if AC = CA. (1.1.34)

Let {λj} ⊂ R∗+ be the eigenvalues of A and Eλj be the eigenspace associated with λj , i.e.,

A|Eλj = λj IdEλj ,
⊕
j

Eλj = Rm, (1.1.35)

then by (1.1.33), As is defined by

As|Eλj = λsj IdEλj . (1.1.36)

We can also obtain As by first diagonalizing A. As A is a symmetric positive matrix, there exists
Q ∈ O(m) and λ1 > 0, . . . , λm > 0 such that,

A = Qdiag(λ1, . . . , λm)Q−1. (1.1.37)
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By (1.1.33), we have

As = Qdiag(λs1, . . . , λ
s
m)Q−1. (1.1.38)

Thus As is still a positive symmetric matrix.
Now for a real vector space V with a Euclidean metric 〈 , 〉, if A ∈ GL(V ) and A is symmetric

and positive with respect to 〈 , 〉, As ∈ GL(V ) is well-defined by (1.1.33), and As is symmetric
and positive.

Let (V, ω) be a symplectic vector space. Let M (V ) be the space of Euclidean metrics on V .
For g ∈M (V ), there is a unique Ag ∈ GL(V ) such that

ω(·, ·) = g(Ag·, ·). (1.1.39)

Moreover, as ω is antisymmetric, Ag is antisymmetric with respect to g, thus −A2
g is symmetric

and positive. Set

Jg = (−A2
g)
−1/2Ag. (1.1.40)

Then Jg is a compatible complex structure on (V, ω). In fact, for u 6= 0 ∈ V , we have

J2
g = (−A2

g)
−1/2Ag(−A2

g)
−1/2Ag = − IdV , (1.1.41)

ω(u, Jgu) = g(Agu, (−A2
g)
−1/2Agu) = g(u, (−A2

g)
1/2u) > 0.

Proposition 1.1.13. The injection

i : J ∈J (V, ω)→ gJ = ω(·, J ·) ∈M (V ) (1.1.42)

is a retract by deformation. In particular, J (V, ω) is not empty and contractible.

Proof. Let r : M (V )→J (V, ω) be a map defined by

r(g) = Jg. (1.1.43)

By (1.1.40) and (1.1.43), we get

AgJ = J, r ◦ i(J) = (−JJ)
−1/2

J = J. (1.1.44)

Thus r is a retract of i.
On the other hand, by (1.1.41),

i ◦ r : g ∈M (V )→ ω(·, Jg·) = g(·, (−A2
g)

1/2·) ∈M (V ). (1.1.45)

For s ∈ [0, 1], set

Hs : g ∈M (V )→ g(·, (−A2
g)
s/2·) ∈M (V ). (1.1.46)

Then H0 = Id, H1 = i ◦ r. This means i ◦ r is homotopy to the identity.
We have proved that J (V, ω) has the same homotopy type of M (V ). As M (V ) is convex,

thus contractible. Hence J (V, ω) is contractible. We can also prove it directly: Fix J0 ∈
J (V, ω), we define the continuous map Φ : [0, 1]×J (V, ω)→J (V, ω) by

Φ(t, J) = r(tgJ0
+ (1− t)gJ), (1.1.47)

then

Φ(0, J) = r(gJ) = J, Φ(1, J) = r(gJ0
) = J0. (1.1.48)

The proof of Proposition 1.1.13 is completed.
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We note that the maps i and r are all smooth.

Remark 1.1.14. Let J be a compatible complex structure on (V, ω). Then gJ = ω(·, J ·) is a
J-invariant scalar product on V and for any u, v ∈ V ,

ω(u, v) = gJ(Ju, v) =: 〈Ju, v〉J . (1.1.49)

If W is a Lagrangian subspace of (V, ω), then by (1.1.49), we have

W ∩ JW = {0}, and W⊥gJJW. (1.1.50)

We use the compatible complex structures to understand the symplectic basis now.

Theorem 1.1.15. (Linear normal form) If (V, ω) is a symplectic vector space of dimension 2n.
Then

1) there exists a symplectic base {ej , fj}j of (V, ω), i.e., for 1 6 i, j 6 n,

ω(ei, ej) = ω(fi, fj) = 0, ω(ei, fj) = δij . (1.1.51)

2) If W ⊂ V is a subspace, then there exists a symplectic base {ej , fj}j of (V, ω) such that

W = Span{e1, . . . , ek+l, f1, . . . , fk},
W⊥ω = Span{ek+1, . . . , en, fk+l+1, . . . , fn},
N = W ∩W⊥ω = Span{ek+1, . . . , ek+l}.

(1.1.52)

Thus we have a symplectic isomorphism of vector spaces

V 'W/N ⊕W⊥ω/N ⊕ (N ⊕N∗, ωst). (1.1.53)

Proof. 1) is Proposition 1.1.7, here we reprove it by using complex structures. We fix a J ∈
J (V, ω). Take e1 ∈ V such that 〈e1, e1〉J = 1, then W1 = Span{e1, Je1} is a symplectic

subspace of (V, ω). Consider W
⊥g
1 ⊂ V the orthogonal complement of W1 in (V, 〈 , 〉J), by the

recurrence on the dimension, we get an orthonormal basis {ej , fj = Jej}j of (V, 〈 , 〉J). Then by
(1.1.49), we get (1.1.51).

2) Now let W1 ⊂W , W2 ⊂W⊥ω be subspaces such that

W = W1 ⊕N, W⊥ω = W2 ⊕N. (1.1.54)

Then (W1, ω|W1
), (W2, ω|W2

) are symplectic vector spaces, and we have the orthogonal decom-
position of symplectic vector spaces,

(V, ω) = (W1, ω|W1)⊕ (W2, ω|W2)⊕ (W3, ω|W3) with W3 = (W1 ⊕W2)⊥ω . (1.1.55)

We claim that N is a Lagrangian subspace of (W3, ω|W3
). In fact, as N ⊂ W , we get N⊥ωW1,

N⊥ωW2, thus

N ⊂W3 = (W1 ⊕W2)⊥ω .

As N = W ∩W⊥ω , we get ω|N = 0, i.e., N ⊂ N
⊥ω|W3 . But if x ∈ N⊥ω|W3 as x⊥ωW1, x⊥ωW2,

from (1.1.54), we get

x ∈W⊥ω and x ∈ (W⊥ω )⊥ω = W, thus x ∈ N.
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Take a J3 ∈J (W3, ω|W3), then by (1.1.50), J3N is orthogonal with N in (W3, ω|W3(·, J3·))
and W3 = N ⊕ J3N . We define the map ψ : W3 → N ⊕N∗ by taking the identity on N and

ψ(v) = ω|W3(·, v) ∈ N∗ for v ∈ J3N. (1.1.56)

Then ψ is a symplectic isomorphism from (W3, ω|W3
) to (N ⊕N∗, ωst). Thus we get (1.1.53).

By taking a symplectic basis for (W1, ω|W1) and (W2, ω|W2), we get (1.1.52).
The proof of Theorem 1.1.15 is completed.

Remark 1.1.16. In the notation of Theorem 1.1.15, W is symplectic if and only if l = 0, W is
isotropic if and only if k = 0, W is coisotropic if and only if k + l = n, W is Lagrangian if and
only if k = 0, l = n.

1.1.3 Symplectic groups

We identify Cn with R2n by

ı : z = (x1 + iy1, . . . , xn + iyn)t ∈ Cn →
(
x
y

)
∈ R2n, (1.1.57)

with x = (x1, . . . , xn)t, y = (y1, . . . , yn)t ∈ Rn. For Z ∈Mn(C), we define ı(Z) ∈M2n(R) by: for
z ∈ Cn,

ı(Zz) = ı(Z)ı(z). (1.1.58)

Then ı induces naturally an injection of matrix groups

ı : Z = X + iY ∈Mn(C)→ ı(Z) =

(
X −Y
Y X

)
∈M2n(R). (1.1.59)

From (1.1.58), ı identifies GL(n,C) as a subgroup of GL(2n,R), and

ı(i) =

(
0 −I
I 0

)
= J0 (1.1.60)

is the canonical complex structure on R2n. Moreover, for A ∈ GL(n,C),

ı(A∗) = ı(A)t. (1.1.61)

Thus we get

ı(U(n)) ⊂ O(2n). (1.1.62)

We identify U(n) as a subgroup of O(2n).
Let (V, ω) be a symplectic vector space. Then the symplectic group Sp(V ) is defined as

Sp(V ) = {A ∈ GL(V ) : ω(A·, A·) = ω(·, ·)}. (1.1.63)

Clearly, Sp(V ) is a subgroup of GL(V ). We denote also Sp(V ) by Sp(V, ω).
Let {ej , fj}j be a symplectic basis of (V, ω). For x = (x1, . . . , xn)t, y = (y1, . . . , yn)t ∈ Rn,

set

φ :

n∑
i=1

xiei + yifi ∈ V →
(
x
y

)
∈ R2n. (1.1.64)

Then φ : (V, ω) → (R2n, ω0) is a symplectic isomorphism. We denote by Sp(2n) the symplectic
group of (R2n, ω0). Then by (1.1.31) and (1.1.63), we have

A ∈ Sp(2n) if and only if AtJ0A = J0. (1.1.65)



CHAPTER 1. BASIC SYMPLECTIC GEOMETRY 12

Proposition 1.1.17. We have

Sp(2n) ∩GL(n,C) = Sp(2n) ∩O(2n) = O(2n) ∩GL(n,C) = U(n). (1.1.66)

Proof. We check first

A ∈Mn(C)⇐⇒ A ∈M2n(R) and AJ0 = J0A. (1.1.67)

In fact, the ⇒ direction is trivial. For the ⇐ direction, if A =

(
X Y
Z W

)
, then

AJ0 =

(
Y −X
W −Z

)
, J0A =

(
−Z −W
X Y

)
. (1.1.68)

Hence, AJ0 = J0A is equivalent to

X = W, Y = −Z. (1.1.69)

By (1.1.59) and (1.1.69), (1.1.67) holds.
From (1.1.58) and (1.1.59), for X,Y ∈Mn(R),

det

(
X −Y
Y X

)
6= 0⇐⇒ det(X + iY ) 6= 0. (1.1.70)

By (1.1.67) and (1.1.70), we have

GL(n,C) = {A ∈ GL(2n,R) : J0A = AJ0}. (1.1.71)

By (1.1.65) and (1.1.71), a matrix A belongs to two of the three groups Sp(2n),GL(n,C) and
O(2n) will be in the other group. Thus we get the first two equations of (1.1.66).

It remains to show the last equation of (1.1.66). For A ∈ GL(n,C), by (1.1.61),

ı(A) ∈ O(2n)⇐⇒ ı(A)ı(A)t = I ⇐⇒ ı(AA∗) = I ⇐⇒ AA∗ = I. (1.1.72)

Thus O(2n)∩GL(n,C) ⊂ U(n). By (1.1.62), this means the last equation of (1.1.66) holds.

For A ∈ GL(V ), let At be the adjoint of A with respect to a scalar product 〈 , 〉 on V , set

|A| = (AAt)1/2, U = |A|−1A. (1.1.73)

Then |A| is symmetric positive. As

UU t = |A|−1AAt|A|−1 = |A|−1|A|2|A|−1 = IdV , (1.1.74)

we get U ∈ O(V ) the orthogonal group of (V, 〈 , 〉). The decomposition

A = |A|U (1.1.75)

will be called the polar decomposition. Moreover, the polar decomposition is unique, i.e., if
A = BU ′ where B is symmetric positive and U ′ ∈ O(V ), then B = |A|, U ′ = U .

By (1.1.33), (1.1.73), the map GL(V ) 3 A→ |A| and GL(V ) 3 A→ U are smooth.

Proposition 1.1.18. Let (V, ω) be a symplectic vector space. Let J be a compatible complex
structure on (V, ω). If A ∈ Sp(V ), then the transpose At ∈ Sp(V ). Moreover, if A is symmetric
positive, then for s ∈ R, As ∈ Sp(V ). In particular, for A ∈ Sp(V ), in the polar decomposition
(1.1.75), |A| ∈ Sp(V ) and U ∈ U(V ) the unitary group of (V, J, ω), i.e., the space of complex
automorphisms of (V, J) preserving the scalar product 〈·, ·〉 = ω(·, J ·).
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Proof. By (1.1.25) and (1.1.63), A ∈ Sp(V ) is equivalent to

J = AtJA. (1.1.76)

Thus,

J−1 = A−1J−1(At)−1. (1.1.77)

As J−1 = −J , we have (At)−1 ∈ Sp(V ). Thus At ∈ Sp(V ).
If A ∈ Sp(V ) is symmetric and positive, by (1.1.76), we have

A−1 = JAJ−1. (1.1.78)

This implies (λ−A−1)−1 = J(λ−A)−1J−1 for λ /∈ Spec(A). Combining with (1.1.33), we get

A−s = JAsJ−1 for s ∈ R, (1.1.79)

which is equivalent to As ∈ Sp(V ).
Thus in the decomposition (1.1.73), we have |A| ∈ Sp(V ) and this implies U ∈ Sp(V ). By

Proposition 1.1.17, we get U ∈ U(V ) = {A ∈ O(V ) : JA = AJ}.

Remark 1.1.19. From Proposition 1.1.18, we have

Sp(2n)/U(n) := {g U(n) : g ∈ Sp(2n)} ' {A ∈ Sp(2n) : A is symmetric and positive}. (1.1.80)

and the map

ψ : [0, 1]× Sp(2n)→ Sp(2n), ψ(s,A) = P sQ, (1.1.81)

here A = PQ is the polar decomposition of A, is a retract by deformation from Sp(2n) to U(n).
In fact ψ(1, ·) = IdSp(2n), ψ(0, ·) : Sp(2n)→ U(n) and ψ(0, ·)|U(n) = IdU(n).

In particular we conclude that Sp(2n) is connected, as U(n) is connected.

Proposition 1.1.20. Let (V, ω) be a symplectic vector space of dimension 2n. Then we have

J (V, ω) ' Sp(2n)/U(n). (1.1.82)

Hence, J (V, ω) is a noncompact symmetric space, and Sp(2n)/U(n) is contractible.

Proof. By (1.1.64), φ : (V, ω) → (R2n, ω0) is a symplectic isomorphism. Thus we can work
directly for (V, ω) = (R2n, ω0) and let {ej , J0ej}j be an orthonormal basis of (R2n, 〈·, ·〉 =
ω0(·, J0·)).

For (A, J) ∈ Sp(2n)×J (R2n, ω0), by (1.1.25), for u 6= 0 ∈ V ,(
AJA−1

)2
= −IdV , ω(u,AJA−1u) = ω(A−1u, JA−1u) > 0. (1.1.83)

Thus we can define the Sp(2n)-action on J (R2n, ω0) by

(A, J) ∈ Sp(V, ω)×J (V, ω)→ AJA−1 ∈J (V, ω). (1.1.84)

By Proposition 1.1.17, the stabilizer at J0 is U(n), thus the stabilizer at AJ0A
−1 is A · U(n).

It remains to show that this Sp(2n)-action is transitive. Let {e′j , Je′j}j be an orthonormal

basis of (R2n, g(·, ·) = ω0(·, J ·)). Let A ∈ GL(2n,R) be defined by

Aej = e′j , AJ0ej = Je′j . (1.1.85)
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As A sends one symplectic basis to another, A ∈ Sp(2n). Moreover, by (1.1.85), we have

AJ0A
−1e′j = AJ0ej = Je′j , AJ0A

−1Jej = −Aej = −e′j = J2e′j . (1.1.86)

Thus, AJ0A
−1 = J . This means Sp(2n) act transitively on J (R2n, ω0), thus (1.1.82) holds.

From Proposition 1.1.13 and (1.1.82), Sp(2n)/U(n) is contractible. The proof of Proposition
1.1.20 is completed.

Exercise 1.1.1. In (1.1.39), verify that if J is a compatible complex structure on (V, ω) such that
g is J-invariant (i.e., g(J ·, J ·) = g(·, ·)), then J is given by (1.1.40).

Exercise 1.1.2. If A ∈ Sp(2n), then

1. det(A) = 1.

2. If λ ∈ Spec(A), then λ−1, λ, λ
−1 ∈ Spec(A).

3. If λ, µ ∈ Spec(A), λµ 6= 1, then Eλ⊥ωEµ.

Exercise 1.1.3. Let {ej , J0ej}j be the canonical basis of (R2n, ω0). Set L0 = Span{e1, . . . , en}.

1. Verify that L0 is Lagrangian in (R2n, ω0).

2. If L ⊂ (R2n, ω0) is Lagrangian, J is a compatible complex structure of (R2n, ω0), verify
that L⊥JL in (R2n, ω0(·, J ·)).

3. If L ⊂ (R2n, ω0) is Lagrangian, A ∈ U(n), then AL := ı(A)L is also Lagrangian.

4. If L ⊂ (R2n, ω0) is Lagrangian, then there exists A ∈ U(n) such that AL0 = L.

5. Conclude that the set of Lagrangian subspaces in (R2n, ω0) is isomorphic to U(n)/O(n) :=
{AO(n) : A ∈ U(n)}, and we identify O(n) as a subgroup of U(n) by the natural injection.

Exercise 1.1.4. Show that Sp(2) = SL(2,R) and Sp(2)/U(1) = H, where

H = {x+ iy ∈ C : x ∈ R, y > 0}. (1.1.87)

is the Poincaré upper half-plane.

Exercise 1.1.5. The aim of this exercise is to show that Sp(2n)/U(n) can be identified as the
Siegel upper half-plane Hn:

Hn = {X + iY ∈ GL(n,C) : X,Y ∈ GL(n,R) both symmetric, and Y is positive}. (1.1.88)

1. Verify that g =

(
A B
C D

)
∈ Sp(2n) if and only if

AtC = CtA, BtD = DtB, AtD − CtB = I. (1.1.89)

2. For g =

(
A B
C D

)
∈ Sp(2n), Z = X + iY ∈ Hn, verify that

(CZ +D)t(AZ +B)− (AZ +B)t(CZ +D) = 2iY. (1.1.90)

Conclude that the matrix CZ +D is invertible and (AZ +B)(CZ +D)−1 ∈ Hn.
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3. Show that (g, Z) ∈ Sp(2n)×Hn → g ◦ Z = (AZ +B)(CZ +D)−1 ∈ Hn defines a Sp(2n)-
action on Hn.

4. Show this action is transitive: for Z = X + iY ∈ Hn, verify that

(
Y 1/2 XY −1/2

0 Y −1/2

)
∈

Sp(2n), and Z =

(
Y 1/2 XY −1/2

0 Y −1/2

)
◦ iI.

5. Verify that the stabilizer of iI is U(n). Conclude that Sp(2n)/U(n) ' Hn.
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1.2 Symplectic manifolds

In this section, we find the version on manifolds of many results on symplectic vector spaces,
usually with extra efforts.

1.2.1 Basic calculus on manifolds

In this section, we recall the Cartan’s formula and the Hodge decomposition theorem.
We say a manifold always means a C∞ manifold without boundary. Let M be a manifold of

dimension m. We denote by TM its tangent bundle, and by T ∗M its cotangent bundle. Then
the fiberwise exterior algebra of T ∗M forms a vector bundle Λ•(T ∗M) on M , and for k ∈ N, the
space of k-th differential forms Ωk(M) is the space of smooth sections of Λk(T ∗M) on M , i.e.,
Ωk(M) = C∞(M,Λk(T ∗M)), and Ω•(M) = ⊕mk=0Ωk(M). For α ∈ Ωk(M), we denote its degree
by degα, thus degα = k. Let Ω•c(M) be the space of elements of Ω•(M) with compact support.

Let φ : M → N be a smooth map between two manifolds. We denote by

dxφ : TxM → Tφ(x)N (1.2.1)

the differential of φ at x ∈M . The pull back of a differential form is defined by: for β ∈ Ωk(N)
and for X1, . . . , Xk ∈ TxM ,

(φ∗β)x(X1, . . . , Xk) = βφ(x) (dφx(X1), . . . , dφx(Xk)) . (1.2.2)

Then φ∗β is a differential form on M . If ψ : M ′ → M is another smooth map between two
manifolds, then by (1.2.2), we verify that

ψ∗(φ∗β) = (φ ◦ ψ)∗β for β ∈ Ω•(N). (1.2.3)

If φ is a diffeomorphism, the push forward of a vector field X ∈ C∞(M,TM) is defined by

(φ∗X)y = dφφ−1(y)(Xφ−1(y)) ∈ TyN. (1.2.4)

Thus φ∗X is a vector field on N .
If X· ∈ C∞(R ×M,TM) is a time dependent vector field on M , the flow φX·t : M → M

associated with X· is the solution of the ordinary differential equation on M ,

∂

∂t
φX·t (x) = Xt(φ

X·
t (x)), φX·0 (x) = x . (1.2.5)

If φX·t is defined, φX·t : M →M is a diffeomorphism. If X is time independent, then we will also
denote by

etX := φXt : M →M. (1.2.6)

Lemma 1.2.1. For t ∈ R, let φX·t , φY·t be the flows associated with the time dependent vector
fields X·, Y· on M . Then

a) φX·t ◦ φ
Y·
t = φ

X·+φ
X·
·∗ Y·

t .

b)
(
φX·t

)−1

= φ
−((φX·· )−1)∗X·
t .

c) For any φ ∈ Diff(M), we have φ ◦ φX·t ◦ φ−1 = φφ∗X·t .
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Proof. By (1.2.4) and (1.2.5), for any x ∈M , we have

∂

∂t
φX·t ◦ φ

Y·
t (x) = Xt

(
φX·t ◦ φ

Y·
t (x)

)
+ dφX·t

(
Yt(φ

Y·
t (x))

)
= Xt

(
φX·t ◦ φ

Y·
t (x)

)
+ φX·t∗ Yt

(
φX·t ◦ φ

Y·
t (x)

)
. (1.2.7)

By the uniqueness of the solution of ordinary differential equations, we know a) holds.

By applying a) for Yt = −
(

(φX·t )−1
)
∗
Xt, we get b).

By Definition, for any x ∈M , we have

∂

∂t
φ ◦ φX·t ◦ φ−1(x) = dφ

(
Xt

(
φX·t ◦ φ−1(x)

))
= (φ∗Xt)

(
φ ◦ φX·t ◦ φ−1(x)

)
. (1.2.8)

By the uniqueness of the solution of ordinary differential equations, this means c) holds. The
proof of Lemma 1.2.1 is completed.

For X,Y ∈ C∞(M,TM), α ∈ Ω•(M), the Lie derivation of Y and α in the direction X is
defined by

LXY =
∂

∂t

∣∣∣
t=0

(
φX−t
)
∗ Y, LXα =

∂

∂t

∣∣∣
t=0

(
φXt
)∗
α. (1.2.9)

For f ∈ C∞(M) = Ω0(M), by (1.2.9), we have LXf = Xf . We verify that

[X,Y ]f := XY f − Y Xf (1.2.10)

defines a vector field [X,Y ] on M which is called the Lie bracket of vector fields X and Y .
Classically, we have

LXY = [X,Y ]. (1.2.11)

Let d : Ω•(M) → Ω•+1(M) be the exterior differential on M . When we like to precise the
manifold M , we denote also d by dM . By Definition, for α ∈ Ωk(M), X0, . . . , Xk vector fields on
M , we have

dα(X0, . . . , Xk) =

k∑
i=0

(−1)iXiα(X0, . . . , X̂i, . . . , Xk)

+
∑

06i<j6k

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk), (1.2.12)

where ̂ means we omit the term.
If x = (x1, . . . , xm) is a local coordinate system on U ⊂M , if

α(x) =
∑

16i1<···<ik6m

αi1,...,ik(x)dxi1 ∧ · · · ∧ dxik , (1.2.13)

then, from (1.2.12), we get

dα(x) =
∑

16i1<···<ik6m,16j6m

∂αi1,...,ik
∂xj

(x)dxj ∧ dxi1 ∧ · · · ∧ dxik . (1.2.14)
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By (1.2.14), we verify directly

d2 = 0. (1.2.15)

For α ∈ Ω•(M), we say α is closed if dα = 0; and we say α is exact if there exists β such that
α = dβ.

By (1.2.15), Im(d|Ωi−1(M)) ⊂ ker(d|Ωi(M)). We define the i-th de Rham cohomology group of
M by

Hi(M,R) =
ker(d|Ωi(M))

Im(d|Ωi−1(M))
. (1.2.16)

For X ∈ C∞(M,TM), we denote by iX : Ω•(M) → Ω•−1(M) the contraction by X. On a
local coordinate U , if α is given by (1.2.13), if

X =
∑
i

Xi
∂

∂xi
, (1.2.17)

then,

iXα =
∑

16i1<···<ik6m,16j6k

(−1)j−1Xij αi1,...,ik dxi1 ∧ · · · ∧ d̂xij ∧ · · · ∧ dxik . (1.2.18)

By (1.2.14), (1.2.18), we get the following Leibniz rule: for α ∈ Ωk(M), β ∈ Ω•(M), X ∈
C∞(M,TM),

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ (dβ),

iX(α ∧ β) = (iXα) ∧ β + (−1)kα ∧ (iXβ).
(1.2.19)

The following relation on the contraction, Lie derivative and exterior differential is very useful.

Theorem 1.2.2 (Cartan’s formula). For α ∈ Ω•(M), X ∈ C∞(M,TM), we have

LXα = (diX + iXd)α. (1.2.20)

Proof. For LX = LX or diX + iXd, by (1.2.9) and (1.2.19), for any α, β ∈ Ω•(M), we get

LX(α ∧ β) = (LXα) ∧ β + α ∧ (LXβ). (1.2.21)

Thus we only need to verify (1.2.20) for any f ∈ C∞(M) and α ∈ Ω1(M). For Y ∈ C∞(M,TM),
we have

LXf = Xf = (df,X) = iXdf ;

(diXα+ iXdα)(Y ) = Y (α(X)) + dα(X,Y ) = X(α(Y ))− α([X,Y ])

= LX(α(Y ))− α(LXY ) = (LXα)(Y ).

(1.2.22)

Thus (1.2.20) holds.

The manifold M is orientable if there exists a nowhere vanishing m-form on M , in this case,
M is oriented means we fix a nowhere vanishing m-form on M . If M is oriented, then for any
β ∈ Ω•c(M), we can define

∫
M
β ∈ R, the integral of β on M . Note that

∫
M
β = 0 if deg β < m.

Moreover,
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Theorem 1.2.3 (Stokes theorem). Assume M is oriented, then for any α ∈ Ω•c(M), we have∫
M

dα = 0. (1.2.23)

Recall that any Euclidean metric on TM is called a Riemannian metric on M (or TM).
Let gTM be a Riemannian metric on TM . For x ∈ M,u, v ∈ TxM , we denote also 〈u, v〉 =

gTM (u, v)x and |v| =
√
〈v, v〉.

For a curve γ :]a, b[→ M (a, b ∈ R), the length of γ is |γ| =
∫ b
a
|γ̇(t)|dt, here γ̇(t) := ∂γ

∂t (t) ∈
Tγ(t)M . We say γ is a geodesic of (M, gTM ) if locally γ attends the minimal length, i.e., for any
c1 ≥ a, there exists ε > 0 such that for c1 < c2 < c1 + ε, the length of γ|[c1,c2] is minimal for
all curve from γ(c1) to γ(c2). For v ∈ TxM , [0, 1] 3 t → expx(tv) is defined to be the unique
geodesic with starting point x and its derivative at x is v, and we call TxM 3 v → expx(v) the
exponential maps of M .

The metric gTM induces a Euclidean metric 〈·, ·〉Λ·(T∗M) on Λ·(T ∗M). If {ej} is an orthonor-
mal basis of TM and {ej} its dual basis, then {ei1 ∧ · · · ∧ eik}1≤i1<···<ik≤m is an orthonormal
basis of Λ(T ∗M).

Let dvM be the Riemannian volume form of (M, gTM ). Then dvM is a m-form with values
in o(TM), the orientable bundle of M which is a real line bundle on M . When M is orientable,
dvM is just a m-form and

dvM = e1 ∧ · · · ∧ em (1.2.24)

for any oriented orthonormal frame {ej} of TM . On a local coordinate U , we can write

gTM (x) =
∑
i,j

gij(x)dxi ⊗ dxj ,

dvM =
√

det(gij)dx1 ∧ · · · ∧ dxm, if M is oriented,

(1.2.25)

where (gij(x)) is a symmetric positive matrix.
For s1, s2 ∈ Ω•c(M), we define

〈s1, s2〉 =

∫
M

〈s1, s2〉Λ·(T∗M)dvM . (1.2.26)

Then 〈 , 〉 is a scalar product on Ω•c(M). Let d∗ be the formal adjoint of d with respect to 〈 , 〉,
i.e., for s1, s2 ∈ Ω•c(M),

〈d∗s1, s2〉 := 〈s1, ds2〉. (1.2.27)

By (1.2.15), we know that

d∗ : Ω•(M)→ Ω•−1(M), and (d∗)2 = 0. (1.2.28)

Let ∆ be the Hodge Laplacian on Ω•(M) defined by

∆ = (d+ d∗)2 = dd∗ + d∗d : Ω•(M)→ Ω•(M). (1.2.29)

Clearly, ∆ preserves the Z-grading on Ω•(M) which is defined by its degree.
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Theorem 1.2.4 (Hodge). If M is compact, for any k ∈ N and 0 6 k 6 m, we have the
orthogonal decompositions,

Ωk(M) = ker(∆|Ωk(M))⊕ Im(∆|Ωk(M)), (1.2.30)

and

ker(∆|Ωk(M)) = ker(d|Ωk(M)) ∩ ker(d∗|Ωk(M)), (1.2.31)

Im(∆|Ωk(M)) = Im(d|Ωk−1(M))⊕ Im(d∗|Ωk+1(M)).

In particular,

H•(M,R) ' ker d ∩ ker d∗ = ker ∆. (1.2.32)

Note that ∆ is a second order elliptic differential operator, thus dim ker ∆ < +∞ if M is
compact. Combining this with (1.2.32), we get that if M is compact,

dimHj(M,R) < +∞ for any j ≥ 0. (1.2.33)

Let ∆−1 : Im(∆)→ Ω•(M) be the inverse of ∆: for any β ∈ Im(∆), by (1.2.30), there exists
a unique α ∈ Im(∆), such that β = ∆α, and we define ∆−1β = α.

Form the proof of the Hodge Theorem, Theorem 1.2.4, if αt ∈ Im(d|Ωk−1(M)) is a smooth
family on t ∈ R of differential forms on M , then

βt = d∗∆−1αt (1.2.34)

is a smooth family on t ∈ R of differential forms on M such that

dβt = αt. (1.2.35)

1.2.2 Symplectic vector bundles

Let M be a manifold, and K = R or C.

Definition 1.2.5. Let E be a C∞ manifold, π : E →M be a smooth map. We call that E is a
K-vector bundle on M of rank r if there exists an open covering {Ui} of M , diffeomorphisms

Φi : π−1(Ui)→ Ui ×Kr, Φi(v) = (π(v), ψi(v)), (1.2.36)

such that if Ui ∩ Uj 6= ∅, then

Φji := Φj ◦ Φ−1
i : Ui ∩ Uj ×Kr → Ui ∩ Uj ×Kr,Φji(x,w) = (x, ψji(x,w)),

ψji(x,w) is K-linear on w ∈ Kr, i.e., ψji(x,w) = ψji(x)w, and ψji(·) ∈ C∞(Ui ∩ Uj ,GL(r,K)).
We denote r =: rk(E). If r = 1, we call that E is a K-line bundle.

Let π : E →M be a K-vector bundle on M , we will denote E|U := π−1(U) the restriction of
E on a subset U ⊂ M . For x ∈ M , Ex := π−1(x) is the fiber of E at x, by the compatibility
condition, the K-vector space structure on Ex induced by (1.2.36) does not depend on the
trivialization (1.2.36).

If F is another K-vector bundle on M , then we define the dual of F : F ∗ = ∪x∈M{F ∗x}, the
direct sum of E and F : E ⊕ F = ∪x∈M{Ex ⊕ Fx}, the tensor product of E and F : E ⊗ F =
∪x∈M{Ex⊗Fx}. We verify directly they inherit naturally smooth structures, and they are vector
bundles on M . We denote also Hom(E,F ) = F ⊗ E∗.

A C∞-map ψ : E → F is a morphism of K-vector bundles if for any x ∈ M , ψ is a K-linear
map from Ex to Fx, i.e., ψ ∈ C∞(M,Hom(E,F )). If for any x ∈M , ψx is an isomorphism from
Ex to Fx, then we say that ψ is an isomorphism of K-vector bundles.

Let V be a real vector bundle on M .


