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Definition 1.2.6. A Euclidean metric g" on V is ¢V € €>°(M,V* ® V*) and for any € M,
gY is a Buclidean metric on V,. We will denote also g (u,v) by (u,v), for u,v € V.

Let {U;}ier be an open covering of M such that ®; : V|y, — U; x R” gives a trivialization of
V0w,. Let {¢;} be a partition of unity associated with {U,}, i.e., ; : U; — [0,1] is €>° function
with compact support, and for any compact set K of M, {i € I: p; # 0 on K} is finite, and
>pi=1lon M.

On U;, we define g/ the Euclidean metric induced by the canonical metric on R", by
gy (u,v)z = (i (u),¢;(v)). Then g(-,-) = >, (¢ig) )(,-) defines a Euclidean metric on V. Thus
there always exists a Fuclidean metric on V. Certainly, the space of Euclidean metrics on V' is
contractible.

Definition 1.2.7. We say (V,w) is a symplectic vector bundle on M if w € €°°(M, A2V*) and
for any x € M, (V,,w,) is a symplectic vector space.

Definition 1.2.8. Let (Vi,w1), (Va,ws) be symplectic vector bundles on M, ¢ € €°(M,
Hom(V1,V3)). If for any x € M, ¢y : (Vig,wie) = (Vau,wa2y) is a symplectic morphism,
then we call ¥ is a symplectic morphism of symplectic vector bundles. If moreover v, is an
isomorphism for any x € M, then we call ¢ is a symplectic isomorphism of symplectic vector
bundles.

Definition 1.2.9. If J € ¢°°(M,End(V)) such that for any x € M, J2 = —Idy,, we call J
a complex structure on V. Moreover, if (V,w) is a symplectic vector bundle on M, and for
any z € M, J, is a compatible complex structure on (V,,w,), we call J a compatible complex
structure on (V,w).

Let (V,w) be a symplectic vector bundle on M. For g"" a Euclidean metric on V', we define for
z €M Ay, € GL(V;) by (1.1.39), then as w, g" are €>°, we get A, € €>°(M,End(V)). By the
argument after (1.1.33) and (1.1.40), we know J, = (—Ag)_l/QAg is €°° on M and it defines a
compatible complex structure on (V,w). Thus there always exists a compatible complex structure
on any symplectic vector bundle (V,w). Moreover by the argument in Proposition 1.1.13, the set
of compatible complex structures on a symplectic vector bundle (V,w) is contractible.

Proposition 1.2.10. Let W be a subbundle of a symplectic vector bundle (V,w). We suppose
that N = WNWLe is of constant rank. Then we have the symplectic isomorphism of symplectic
vector bundles on M

(V,w) ~ (W/N,w) ® (Wt /N,w) ® (N ®& N*, wy). (1.2.37)

Proof. Let gV be a metric on V. Let Wy (resp. W) be the orthogonal complement of the vector
subbundle N in W (resp. W=«), then (Wy,w|w, ), (Wa,w|w,) are symplectic vector bundles on
M and Wy 1,Wy. Thus (W3 = (W1 @ Wa)* w|w,) is also a symplectic vector bundle on M.

Now by the argument after (1.1.55), for any z € M, N, is a Lagrangian subspace of
(W3,z,wlw, ). Let J3 € €°°(M,End(W3)) be a compatible complex structure on (Ws 4, wlw, ).
Now the map 1, in (1.1.56) is € on M, thus ¢ is a symplectic isomorphism from (W3, w|w,)
to (N @ N*,ws). In particular, we get a natural symplectic isomorphism of symplectic vector
bundles on M,

(V,w) =~ (Wi,wlw,) & (Wa,wlw,) ® (N & N* we). (1.2.38)

The proof of Proposition 1.2.10 is completed. O
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Proposition 1.2.11. Let (V,w) be a symplectic vector bundle over M. For x € M, there is a
open neighborhood Uy, of x, and {e;, f;}; a frame of V' over U, such that

w(ei, fj) = (51']'7 w(fi, fj) = 0, w(eh 6]') = 0 (1239)
Such a frame is called symplectic frame.

Proof. The proof is similar to the proof of Proposition 1.1.7. We shall prove it by induction on
rk(V)/2. If tk(V) = 0, nothing to prove. We suppose rk(V') > 0 and the proposition is true for
vector bundles whose rank is smaller than rk(V) — 2.

Let ey € €°°(U,,V) be a nonvanishing section over U,. As w, is nondegenerate, there is
f € €°° (U, V) such that w,(eq, f) # 0. By shrinking U,, we can suppose for y € U,, we have
wy(er, f) # 0. Then, on U, we have

_f
wy(elaf).

Let W be the subbundle on U, generated by e, fi. Then W is symplectic. Thus we have
Vg, = W@ Wte. As tk(Wte) = 1k(V) — 2, by the induction hypotheses, by shrinking U,,
there is a symplectic frame es, fo,..., ek, fr on U,. Then ey, f1,..., ek, fr is a symplectic frame
of V on U,. O]

w(el,fl) = 1, with .fl = (1240)

1.2.3 Symplectic manifolds

Definition 1.2.12. For a manifold M, if J € €°°(M,End(TM)) and for any z € M, J2 =
—Idr, pr, we call that J an almost complex structure on TM and (M, J) is an almost complex
manifold.

Definition 1.2.13. A 2-form w on a manifold M is called a symplectic form on M, if w is real
and closed, and if for any x € M, w, € A?(T} M) is nondegenerate. In this case, (M, w) is called
a symplectic manifold.

For a submanifold W of a symplectic manifold (M,w), we call W is a symplectic (resp.
isotropic, coisotropic, Lagrangian) submanifold if for any @ € W, T, W is a symplectic (resp.
isotropic, coisotropic, Lagrangian) subspace of (T, M, wy).

A diffeomorphism ¢ : M — N is called a symplectic diffeomorphism (or symplectomorphism)
for two symplectic manifolds (M,w), (N,wy), if v*wy = w.

Let J € €°°(M,End(TM)) be an almost complex structure on a symplectic manifold (M, w),
then we say J is a compatible almost complex structure if w(-, J-) defines a J-invariant Rieman-
nian metric on T'M.

Let (N,w) be a symplectic manifold. By Proposition 1.1.3, N is even dimension. Let dim N =
2n. Then w™ € Q2"(N) induces a canonical orientation of N.

By the argument after Definition 1.2.9, there always exists a compatible almost complex
structure on (N,w).

If N is compact, we have

/ w™ > 0. (1.2.41)
N

From (1.2.41), for any 0 < i < n, [w]’ € H?*(N,R) is non zero. In particular, H%(N,R) # 0.
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Ezxample 1.2.14. Let M be a manifold of dimension m, and 7 : T*M — M be the natural
projection. The Liouville form A € Q' (T*M) is defined by: forx € M,p € T:M, X € Tizp)T*M,

A X) (@) = (05 AT () X ) - (1.2.42)
Set
W™ = _d. (1.2.43)

Then w? M is a closed real 2-form on T*M.

Let  : UCM—=V CR™ q— (1 = ¢¥1(q),...,Tm = ¥m(q)) be a local coordinate, then
{ %} is a local frame of TM, and {dxz;} is a local frame of T*M which gives the trivialization
of TM,T*M on U. Thus

T"M — V x Rmv (%szw*(dﬂ%)) — (mla sy Ty Ply - 7pm)
i

is the induced local coordinate of T* M|y, and {%, %} is a local frame of T(T*M).
J J
For X =3, X520~ + P, 2=, we have

(AvX)(z,p) = ZpiXi = (Zpidxi7X)~ (1.2.44)
i=1 i=1
From (1.2.43) and (1.2.44), we get

m m
A= Zpidxi, WwI™™ — dei A dp;. (1.2.45)
i=1 i=1
Hence, w? M is nondegenerate, and (7*M,w” ) is a symplectic manifold.
Ezample 1.2.15.  a) For n > 1, since H?(S?*",R) = 0, we conclude that S?" is not symplectic.

b) Every orientable surface ¥ with its volume form is symplectic.

In differential geometry, there are many problems related to the existence of diffeomorphisms.
Moser proposed to transfer this problem as a problem on the existence of time dependent vector
fields which is much easier to attack. Moser’s trick has many applications and will be used
repeatedly in our lecture. The following problem is a typical example for Moser’s trick: Let M
be a manifold. For ag, ay € Q*(M), is there a diffeomorphism ¢ € Diff (M) such that ¢*a; = ag?

Moser proposed a solution by finding a family ¢, € Diff (M), ay € Q*(M) (¢t € R), such that
for t € R, we have

oo =1d, prop = . (1.2.46)

In this case, we can take ¢ = ¢;.
Let X; be the time dependent vector field on M defined by: for x € M,t € R,

Xt (¢e(x)) = %@(x)- (1.2.47)

Then by differential ¢joy on ¢, we get (cf. Exercise 1.2.3)

d * * .
7 0o =& (Lx, 0 4 ). (1.2.48)
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By (1.2.46), (1.2.48), we have
L, + cy = 0. (1.2.49)

Inversely, if we find a time dependent vector field X; such that (1.2.49) holds on [0, 1], and
if the flow associated with X. is defined for ¢ € [0, 1], we can take ¢; as the flow associated with
X.. Note that if the support of X; (¢ € [0,1]) is in a compact set which independent of ¢, the
associated flow is always defined for ¢ € [0, 1].

Theorem 1.2.16 (Moser’s stability theorem). Let M be a compact manifold. Let w (t € [0,1])
be a smooth family of symplectic forms on M such that the class [w;] € H?(M,R) is independent
of t. Then there exists ¢ € Diff (M) such that ¢*wi = wo.

Proof. By Moser’s trick, we need to find a time dependent vector field X; such that
Lx,wi 4w =0. (1.2.50)

As [wy] € H?(M,R) is independent of ¢, then w; — wg € Im(d).
Let g™ be a Riemannian metric on M. By the Hodge theorem (Theorem 1.2.4),

Y =d* A7 (wy — wo) (1.2.51)
is a smooth family on ¢ € [0, 1] of differential forms on M, such that
wy — wo = dyy. (1.2.52)
Thus
wy =dfy  with 8y = 4;. (1.2.53)
As wy is nondegenerate for ¢ € [0, 1], there exists X; € €°°(M,TM) smooth on ¢ such that
ix,wi + B = 0. (1.2.54)

By Cartan’s formula (1.2.20) and by the closedness of wy, this implies (1.2.50). As M is compact,
the flow ¢f( - associated with X. is defined for ¢ € [0, 1]. The proof of Theorem 1.2.16 is completed
by taking ¢ = @7 O
1.2.4 Darboux theorem

Proposition 1.2.17. (Darboux lemma) Let W be a compact submanifold of a manifold M. If
wo, w1 are two symplectic forms on M, such that wo|w = w1|w € €°°(W,A2(T*M)). Then there
is a diffeomorphism ¢ : Uy — Uy between two neighborhoods of W, such that

QS‘W = IdW, ¢*w1 = Wwo- (1255)

Proof. Set wy = (1 — t)wo + tw1. As wolw = wi|w, wy is a symplectic form on some compact
neighborhood of W. By Moser’s trick, we need to find X; a smooth family on ¢ € [0,1] of vector
fields on a neighborhood of W such that X is vanishing on W and

Lx,wi+wi —wp =0. (1.2.56)
If there is a form (8 such that

dﬁ = W1 — Wo, ﬁ'W = 07 (1257)
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as wy is nondegenerate on a neighborhood of W, for t € [0, 1], there exists X; such that
ix,wt+ B =0. (1.2.58)

By Cartan’s formula (1.2.20), (1.2.58) implies (1.2.56). As W is compact, the flow ¢;* associated
with X exists for ¢ € [0,1]. Take ¢ = ¢;. Thus the second equation of (1.2.55) follows. Since
Blw =0, by (1.2.58), X;|y = 0. Then the first equation of (1.2.55) follows.

For the existence of such form 3, we need the following Lemmas.

Lemma 1.2.18. Let M and N be two smooth manifolds and dim M = dim N, and let Y C N
be a compact submanifold. Let ¢ : N — M be a smooth map such that |y is injective and

dpy : TyN — Ty, M is bijective for any y € Y. Then ¢ is a diffeomorphism on a neighborhood
of Y.

Proof. As 'Y is compact and dy|y is bijective, there exist open sets Uy C Vi,..., Uy C V; such

that Y C U?=1 Uj, U; C Vj and |y, : V; — ¢(V;) is a diffeomorphism for any 1 < j < k. Then

we strink successively U; to keep U; N'Y and such that ¢| ;  is a diffeomorphism for each
i i=1Y4 L

1 < j < k. To get the step j from the step j — 1, as (U] U; \ Vi)Np(U;NY) = 0, there exists

U;NY C V/ C Vj open such that e(UIZIU \ V) N @(V]) = 0, then we replace U; by U; N V.

O

Lemma 1.2.19. (Poincaré Lemma) Let i : W < M be a compact submanifold of a manifold
M. If a € QF(M) such that i*a = 0 and da = 0, then there is a (k — 1)-form B defined on some
neighborhood of W such that

dp = «a, Blw =0 € €°° (W, A*~1(T*M)). (1.2.59)

If W ={pt}, k> 1, i*a = 0 always holds, and Lemma 1.2.19 reduces to the usual Poincaré
Lemma.

Proof. Let g™™ be a metric on TM. Let N = TM/TW be the norm bundle of W, and we
identify N with (TW)1 the orthogonal complement of TW in TM. By Lemma 1.2.18, for € > 0
small enough, the exponential map

exp U ={(y,Z) EN, :yeW,|Z| <} > (y,2) — expfy(Z) € M. (1.2.60)

defines a diffeomorphism of U. onto a neighborhood of W in M. Hence we identify U. as a
neighborhood of W in M via exponential map (1.2.60).
For s € [0,1], set

b5 (y,Z) €U = (y,82) € Ue, (1.2.61)
and let Y be the vector field on Us. defined by

Y, (6.(2)) = 5 s(a). (12.62)

S

Then Y is smooth on s € [0, 1]. Set

1
K(a) :/ Priy.ads € Q"1 UL). (1.2.63)
0
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Then by Cartan’s formula (1.2.20) and Exercise 1.2.3, and ¢ja = i*a = 0, we get

1 1 1
a = pia — gpa = / ¢iLly,ads = d/ Priy,ads —I—/ riy.dads = dK(«a). (1.2.64)
0 0 0
Moreover, as ¢slw = Idw, Ys = 0 on W, thus K(a)|lw = 0. The proof of Lemma 1.2.19 is
completed. O

Now we return to the proof of Proposition 1.2.17. By Lemma 1.2.19, there exists 8 which
satisfies (1.2.57). The proof of Proposition 1.2.17 is completed. O

Theorem 1.2.20. Leti: W — M be a compact submanifold of a manifold M. If wg,wy are
two symplectic forms on M, such that

a) i*wo =i*w; € Q2(W),
b) N =TW N (TW)teo is of constant rank on W.
¢) There is a symplectic morphism (TWwo /N, wo) ~ (TWLe1 /N, w,).
Then there is a diffeomorphism ¢ : Uy — Uy between two neighborhoods of W, such that

(b‘W = Idw, ¢*w1 = Wwo- (1265)
Proof. We note that, as i*wg = i*w1, we have
N =TW N (TW) e = TW N (TW)ter. (1.2.66)

By a), b), and Proposition 1.2.10, there exist symplectic subbundles (V,wo) = (V,w1), (Vo,wo)
and (Vi,w;y) of TM|w on W such that

TW =V &N, (TW)* =0 =V, @ N, (TW)+e =V, @ N, (1.2.67)
and the symplectic direct decompositions
(TM|w,wo) =VaVoa (Ve w, (TMyw)=VaVieVaeV)t. (1.2.68)

Moreover by the argument after (1.1.55), N is a Lagrangian subbundle in (V @& Vp)t«wo (resp.
(V@ Vy)*te1). Let Jy (resp. Ji) be a compatible complex structure on (V @& V)10 (resp.
(V@ Vy)ter). By (1.1.56),

(Ve Vy)t = N® Jy)N ~ N @ N*, (VGBVO)LW1 =N®J N~N@N*. (1.2.69)
This means that we have a symplectic isomorphism
d)l : ((V S5 Vo)LWO,wo) — ((V D %)lwl,wl) such that 1/11|N =Idy. (1270)

On the other hand, c) implies (Vj,wp) and (V1,wq) is symplectic isomorphic.
Hence, by (1.2.68), there is a symplectic bundle map

O (TM|w,wo) ~ (TM|w,w1) such that ®|rw = Idrw . (1.2.71)

Then ® induces an automorphism of the normal bundle of W in M. Let ¢ be a diffeomorphism
of two local coordinates U, and U, as in (1.2.60) of W defined by

v:(x,Z) el = (2, 2(Z)) € Uy (1.2.72)

Then
O lw = wolw € € (W,A2(T*M)) and |y = Idy . (1.2.73)
From Proposition 1.2.17, Theorem 1.2.20 follows. O
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Corollary 1.2.21 (Darboux theorem). Let (M,w) be a symplectic manifold of dimension 2n.
Then for any yo € M, there is a local coordinate (z;,p;) near yo such that,

w=>_dv; Adp;. (1.2.74)
=1

Such local coordinate is called Darboux’s coordinate. Corollary 1.2.21 means that locally,
any symplectic manifolds are symplectically diffeomorphic, thus a possible symplectic invariant
should be a global invariant of manifolds.

Proof. For yg € M, take W = {yo}. Let ¢ : Uy C M — Vi C R®" be a local chart such that
Yo € Uy, 0 € Vg and ¢(yo) = 0. Then (¢~ w)o € A2(R?™*) is a symplectic form on R?". Thus
by Corollary 1.1.8, there exists ¢; € GL(2n,R) such that

Prws = (¢~ w)o. (1.2.75)
Now wy := ¢*pjws is a symplectic form on Uy, and
Wiy, = wy, € A*(Ty M). (1.2.76)

By Proposition 1.2.17, there are Uy, Us C Uy neighborhoods of yy, and a diffeomorphism ¢ :
U; — Us such that

Psw1 = w, ¢2(Yo) = Yo. (1.2.77)

Take ¢ = ¢y 0o ¢y : Uy — ¢1 0 p(Usz) C R*™, then
Prwst = w. (1.2.78)
The proof of Corollary 1.2.21 is completed. O

Corollary 1.2.22. If L is a compact Lagrangian submanifold of a symplectic manifold (M,w),
then there exist a neighborhood U of L in M, a neighborhood V' of zero section of the symplectic
manifold (T*L,w™ L) and a diffeomorphism ¢ : U — V such that ¢*w” ¥ = w.

Proof. Take W = L. By Proposition 1.2.10 and (1.2.45), we have symplectic isomorphisms

(TM|p,w) ~ (TL & T*L,w™ T Ly ~ (TT*L|, T E). (1.2.79)
We identify T*L|;, with the normal bundle of L in M. Then wT"L induces a symplectic form in
the neighborhood of L in M. By Proposition 1.2.17 and by (1.2.79), Corollary 1.2.22 follows. [
1.2.5 Sympl(M,w) and Ham(M,w)

Let (M, w) be a symplectic manifold. For H € ¥°°([0, 1]x M, R), the time dependent Hamiltonian
vector field X g, , which is smooth on ¢ € [0, 1], is defined by

ixy,w = dH,. (1.2.80)
Let
ol = X (1.2.81)

be the flow associated with Xp,. In particular, if H € ¥ (M), we get a Hamiltonian vector
field Xy associated with H. We suppose always that gzbf{ " is defined for t € R. As we mentioned
before, this is the case if the support of H; is in a compact set which independent of .
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Definition 1.2.23. We define Sympl(M,w) and Ham(M,w) the symplectic diffeomorphism
group and the Hamiltonian diffeomorphism group by,

Sympl(M,w) = {¢ € Diff (M) : ¢*w = w}, (1.2.82)
Ham(M,w) = {¢ € Diff(M) : There exists H € €°°([0,1] x M) such that ¢ = ¢ 1.

Certainly, Sympl(M,w) is a group. We will see in Proposition 1.2.25 that Ham(M,w) is also
a group.
The following lemma is very useful.

Lemma 1.2.24. For any ¢ € Sympl(M,w), H € € (M), we have
Xoom = ¢ ' Xn. (1.2.83)

Proof. By (1.2.80) and (1.2.82), for y € M, we have

(ix,.qw)y = d(¢"H), = (p"dH)y = (¢"w(Xn, "))y
= Wy (y) (X, 0s7) = wy(p; ' Xp,-). (1.2.84)
Thus (1.2.83) holds. O
Proposition 1.2.25. The set Ham(M,w) is a connected normal subgroup of Sympl(M,w).
Proof. By Cartan formula (1.2.20), and by (1.2.94), for H. € €°°([0,1] x M), we have

d * * * 7 . *
%qbf[" w=¢] " Lx,w=¢] "dix,,w= ¢ ddH, =0. (1.2.85)

Thus, Ham(M,w) is a subset of Sympl(M,w).

For s € [0,1], ¢ is a continuous path in Ham(M,w) which connects Idy; and ¢, Thus
Ham(M,w) is connected.

Now, we start to prove that Ham(M, w) is a group. For F, H € €>(]0,1] x M,R), by Lemmas
1.2.1, 1.2.24 and (1.2.80), we have

XH. XH.\—1x

t

(o) = (o) = o ) )

Thus, Ham (M, w) is stable under composition and inverse. This means that it is a group.
It remains to show it is a normal subgroup of Sympl(M,w). For any ¢ € Sympl(M,w), by
Lemma 1.2.1 and by (1.2.83), we have

- - X X X p*
¢l odi o =0""og, T og =g T =g (1.2.87)
This means Ham(M, w) is normal. The proof of Proposition 1.2.25 is completed. O

Let sympl(M,w) and ham(M,w) be formal Lie algebras of the Lie groups Sympl(M,w) and
Ham(M,w), i.e., their tangent spaces at the identity element cf. §2.1.1. Then by (1.2.82),
sympl(M,w) ={X € €°°(M,TM) : Lxw = 0},

, _ (1.2.88)
ham(M,w) = {X € €°°(M,TM) : there is H € €°°(M) such that ixw = dH}.
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Ezercise 1.2.1. Let X € €°(M,TM). On a local chart = (x1,...,2,), for |t| small enough,
we write X = Y 1| Xi(x)a%i’ and the associated flow ¢X(x) = (¢1(t,x),...,¢n(t,x)). Verify
that (1.2.5) in this local coordinate is the ordinary differential equation : for j € {1,...,n},

%@(t, x) = X;(¢7 (2)),  ;(0,2) = @5. (1.2.89)

Ezercise 1.2.2. Let ¢ : M — N be a diffeomorphism. For a € Q*(N), X,Y,Z € € (M, TM),
we have:

a) For t € R, we have e!*X = ¢oe!X 0 ¢!, conclude that (1.2.11) holds.
b) [¢.X,.Y] = ¢.[X,Y].
c¢) By taking the differential of the above identity with ¢; = e*#, we deduce the Jacobi identity

(X, Y], 2] + [V, 2], X] + [[2, X], Y] = 0. (1.2.90)

d) For ¢ : M — N a smooth map of manifolds, we have d™ (y*a) = *(d¥ ).
Ezercise 1.2.3. For X. € €(R x M, TM), let ¢; : M — M be the flow associated with X..

a) For Y € €°°(M,TM), f € €°°(M), verify that ((¢;).Y)f(y) = (Y (f 0 ¢*;))(¢:y) for
any y € M, conclude that

_ 0 X.
Xo. Y] = 5| (¢_t)* Y. (1.2.91)
b) For a € Q*(M), we have
0 x\*
Ly, = ELO (¢t ) a. (1.2.92)

—1
c) We fix t € R. For s € R, set ¢, = qbfi's o (q[)f() . Prove that for x € M,

D a(2) = Xera (pu(0)). (1.2.93)

Thus, ¢, is the flow associated with the time dependent vector field Y, = X ;.
d) Verifies first (1.2.3). For o € Q*(M), prove that we have

% ((bf() “= (‘bix) Lx,o- (1.2.94)

Conclude that

0 N N *
5 (@571) a =Ly, (65)7) (1.2.95)
FEzercise 1.2.4. Verify directly from (1.2.88) that
a) ham(M,w) C sympl(M,w).
b) if X,Y € sympl(M,w) (resp. (ham(M,w)), then [X,Y] € sympl(M,w) (resp. (ham(M,w)).
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1.3 Poisson manifolds

We show every symplectic manifold has a natural Poisson structure, and many results on Hamil-
tonian vector fields still hold for Poisson manifolds.

1.3.1 Poisson structure on symplectic manifolds

Let (M,w) be a symplectic manifold of dimension 2n.

Definition 1.3.1. The Poisson bracket {,} : € (M) x € (M) — €°°(M) is defined by, for
fr9 € €=(M),

{f,9} = w(Xy, Xy). (1.3.1)
By (1.2.80) and (1.3.1), we have
{f:g}:w(Xf7Xg):_ng:ng~ (132)
In a Darboux coordinate (z1,...,Zn,p1,...,Pn), we have w = >, dx; A dp;, thus
"L 9f 0 of 0 " 9f dg Of g
Xy = ~ol 9 _y 90 . 13.
! ; Op; Ox;  Ox; Op;’ SR ; dx; Op;  Op; Ox; (1.3.3)

Proposition 1.3.2. The Poisson bracket is invariant under symplectic morphisms, i.e., for any
¢ € Sympl(M,w), f,g € € (M), we have

{¢"f.¢"g} = ¢"{f, 9} (1.3.4)
Proof. For any ¢ € Sympl(M,w), by (1.2.83) and (1.3.1), we have

{6°1,6" e = w(Xge . Xgmg)e = (07 Xy, 07 Xy)e = ((071) " @) (X, Xy )ote)
= w(Xs, Xg)g(x) = {f 9to@) = (6" {f,9}),- (1.3.5)
The proof of Proposition 1.3.2 is completed. O
Proposition 1.3.3. For any f,g,h € €(M), we have
a) {f,9} =—{g,/},
b) {fg,h} = f{g,h} + g{f.h},
c) (Jacobi identity) {{f,g},h} + {{g.n}, f} + {{h, f},q} = 0.

Proof. a), b) is evident from (1.3.1) or from (1.3.3). By Proposition 1.2.25, for h € €>(M),
¢ = etXn € Sympl(M,w), by (1.3.5), we get

G fogy = {6 67 ) (1.3.6)
By differential (1.3.6) at ¢ = 0, we have
Lx,{f.9} ={Lx, f.g} +{f Lx,9} (1.3.7)

which is equivalent to ¢). The proof of Proposition 1.3.3 is completed. O
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Proposition 1.3.4. For f,g € €>°(M), we have
Xirgy = —[X5, Xl (1.3.8)
Proof. For h € €°°(M), by Proposition 1.3.3 and (1.3.2), we have
X{f»g}h = _{{f7g}7 h} = {{gv h}v f} + {{h7 f}vg}
= XX h+ X, Xph = — [X;, X, b (1.3.9)

The proof of Proposition 1.3.4 is completed. O

1.3.2 Poisson manifolds
Let M be a manifold.

Definition 1.3.5. We say that (M, {,}) is a Poisson manifold, if {,} : €*°(M) x €>°(M) —
&> (M) is a R-bilinear map such that for any f,g,h € €>°(M), we have

a) {f,9} =—{g,f}

b) {fg.h} = f{g,h} +g{f. h},

c) (Jacobi identity) {{f,g},h} +{{g,h}, [} +{{h, [}, 9} =0.
The operator {, } is called a Poisson bracket on M.

By Proposition 1.3.3, every symplectic manifold is a Poisson manifold.
Let (M, {,}) be a Poisson manifold.

Lemma 1.3.6. For f,g € €*°(M), xg € M, we have

{17 f} =0,
{f,g}eo =0, if dfs, = 0.
Proof. By Definition 1.3.5, {1, f} = 1-{1, f}+1-{1, f}, thus we get the first equation of (1.3.10).
At first, if fly = 0 for a neighborhood U of xg, then {f,g}., = 0. In fact, let ¢ € €>(U),
% = 1 near wo, then (1= ¢)f = f, thus {f,glsy = {(L = ¢)f.0}ay = (1= @)(@0){f g}eo +

f(x()){l - @ag}zo =0.
Now on a local chart Uy near zg, ¥ € €°(U), ¥ = 1 near x, then near x,

(1.3.10)

' of

tz)dt, 1.3.11
; 3%_( ) ( )

f(x) = f(xo) + Z(¢$j)(hj¢) with h;(z) =

and Yz;, h;1 are €°° functions on M. Thus

. 0
{f.9}eo = {f(@0). Yo + {(2;¥)(hj9), g}o = h;(0){zjh, g}0  with h;(0) = 375(0)
J
The proof of Lemma 1.3.6 is completed. O
By (1.3.10), {-, g} defines a vector field X, on M for g € €°°(M) by
X,f ={f,g9} for fe €M) (1.3.12)

We call X, the Hamiltonian vector field of g.
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Definition 1.3.7. We define B € €>°(M, A*(TM)) by: for f,g € €>(M),

B (dfs,dge) = {f, 9}a- (1.3.13)

By (1.3.10), for z € M, {f, g}» only depends on df,, dg, € T, M, thus (1.3.13) is well-defined.
By (1.3.12) and (1.3.13), we have

Xj = —igB. (1.3.14)

In particular, B defines a linear map form T*M to T'M. But in general, B can be degenerate.
As we will see in Proposition 1.3.9, if B is nondegenerate, then M is a symplectic manifold.

Proposition 1.3.8. Let (M,{,}) be a Poisson manifold. Then for f € € (M),

a) Let H € €°(R x M,R) and d)tXH‘ be the flow associated with the Hamiltonian vector field
X, of H., then qbf(H' preserves the Poisson bracket {, }. We also have Lx, B = 0.

b) If ¢ € Diff (M) preserves {, }, then ¢; X5 = Xy ¢.
c) We have a morphism of Lie algebras
fe(@*(M),{,}) »—-X;e€(MTM), (1.3.15)
i.e., the map is linear and for f,g € € (M), we have

Xir.gy = —[X5, X (1.3.16)

Proof. By Definition 1.3.5 c), we know

LXHt{fag} = {LXHtf7g}+{f?LXHtg}' (1317)

By Lemma 1.2.1 b) or Exercise 1.2.3 d), we have
0
5 (@) ) = ~d(6 ) X () - f = (L, (60 ") 7" D) (13.18)
From (1.3.17) and (1.3.18), we get 2 ( fﬂ)*{ (@55 =1y £, (( f“i)*l)*g} — 0. Thus (1.3.4)
holds for ¢; ™, i.e., ¢ preserves the Poisson bracket {, }.
For any f,g,h € €°°(M), by (1.3.12) and (1.3.13), we have

Thus a) holds.
If ¢ preserves {, }, by (1.3.12), we get

(0" Xn) 9o = dg (¢ Xn) = d(go ¢ ) (Xn)g@) = {900~ ", h}o()
=1{9,0"h}s = (Xpng), . (1.3.20)

Thus b) holds. From the same argument of (1.3.9), we get c). O
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1.3.3 Symplectic foliation
Let (M, {,}) be a Poisson manifold of dimension m.

Proposition 1.3.9. If B is nondegenerate, then for any f,g € €°°(M),

w(Xy, Xg) :={f. g} (1.3.21)

defines a symplectic form on M.

Proof. As B is nondegenerate, by (1.3.14), we have
{Xp(2): he (M)} =T, M. (1.3.22)

Thus w is a well-defined 2-form on M. As B is nondegenerate, it implies w is nondegenerate. By
Exercise 1.3.1, Jacobi identity implies w is closed. Hence, w is a symplectic form on M. O

Recall that a distribution of T'M is a subset .# of TM such that for any z € M, # NT, M
is a vector space. The leaves of .% is defined as follows: Two points are on the same leaf if they
can be connected by a piecewise smooth path tangent to .%. A distribution .7 is integrable if for
any xg € M, there exist a submanifold L € M such that zg € L and for any z € L, %, =T, L.

For x € M, let

Fo =Span{Xy(x): f € € (M)}, (1.3.23)

then the subset F = U,cp Fo of TM defines a distribution on M. Note that the vector space F,
need not have constant rank. By Proposition 1.3.8 a), b), for any H € €°°(M), the flow gthH of
Xpg preserves %, thus

oy " (Fa) = Fyxu - (1.3.24)

Now for any xg € M, there exist hy,...,h; € €°°(M) such that Xp, (z¢),..., Xn, (z0) is a
basis of F,, and there exists an open neighbourhood W of 0 € R¥ such that the map

b'e X
WE(tl,...,tk)*)qf)tkhk... tlhl(l‘o)GM
is well-defined, and thus get an k-dimensional submanifold L of M through zg. As the tangent

spaces of x € L are given by the action of the flot rj)ihj on Fyu,, by (1.3.24), it must be F;.
Thus we verified that the distribution F is integrable. The distribution F is called a symplectic
foliation of (M, {, }).

If F is a subbundle of TM, and L is a leave of 7. Then by Proposition 1.3.9, L is a symplectic
manifold.

Theorem 1.3.10. If in some neighborhood Uy of mg € M, the symplectic foliation F is a
subbundle of TM, then there is a neighborhood % of mg and a coordinate (x;,p;,zk) on % such
that

{zi,pj} = dij, (1.3.25)
and zero for the other Poisson brackets.

Such a coordinate is called a Poisson-Darboux coordinate.
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Proof. Assume that F is a subbundle of TM near my € M. Note first that {-,-}|# is nondegen-
erate: if {h, f}, = 0 for any h € €>°(M), then by (1.3.12), X,(f). = 0, thus df|x, = 0 and
(1.3.21) defines w € €*°(Up, A2F*) and w is nondegenerate along F, and along the leaf, w is
closed.

We assume that rk F = 2I. By Frobenius’s theorem, these exist a neighborhood U (resp. U,
resp. V) of yo (resp. 0) in M (resp. R?, R™~2!) and a local coordinate

o:meld— (y,2) €U xV cR¥* x Rm=2, (1.3.26)

such that ¢(mg) = 0, and

}21 . (1.3.27)

i=1

0
f—Span{a :

Yi

As the function z; are constant along the leaf of F, thus for any h € € (U), as X € €U, F),

We identify ¢ with U x V. For z € V, let e;(2), f;(2) be a symplectic frame on F|{g}xv, and
let {e;, f;}; be the canonical symplectic basis in (R?,wy;). We define ¢ : U x V. — R x V,
which is linear on the first factor, by

l l
i=1 i=1

Then,
P wstlfoyxv = wlioyxv € A*(T*U). (1.3.30)
Now we repeat the proof of Darboux’s theorem. For t € [0,1], set
wr = (1 —tw+twy, with w) = P wg. (1.3.31)

By the construction, we have w,w; € €U, A*(T*U)) and dw = 0. We would like to find
X: € €U, TU) a smooth family of time dependent vector fields on U in the direction U, and
By € €U, T*U) such that

Wy = dY By, ix,wi + B =0, Xi|qoyxv =0, (1.3.32)

with dV the exterior differential along U.
For s € [0,1], let ¢5 : U x V= U x V be the smooth map defined by

bs(y, z) = (sy, 2), (1.3.33)

and Y be the smooth family of time dependent vector fields on U in the direction U defined by

Y(¢s(y, 2)) = %qbs(yyz). (1.3.34)

Let € €U, T*U) be defined by

1
B = / Priy, (w1 — w) ds. (1.3.35)
0
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Thus, by (1.3.30) and (1.3.31), as in (1.2.64), we get ¢*(w; — w) = 0 and
W =w —w=dYB, Bliorxv = 0. (1.3.36)

As wy is nondegenerate in the direction U near yo, there exists X; € €°°([0, 1] xU, T*U) such
that (1.3.32) holds. By shrinking U and V, the flow ¢;*" associated with X, is defined on [0, 1].
Take & = gbf('. By (1.3.32), we have

D" 0 P*wg = w. (1.3.37)
The proof of Theorem 1.3.10 is completed. O

Exercise 1.3.1. If w € Q?(M) is only nondegenerate on M, for f,g,h € €°°(M), we can still
define Xy € (M, TM) by (1.2.80), and {f, g} by (1.3.1). Verify that

1. dw(Xy, X4, Xp) = Z(f,g’h) Xrw(Xg, Xp) — w([ Xy, X4], X3), where Z(f}g’h) is the cyclic
sum on f, g, h.

2. Xjw(Xy, Xpn) = {{g,h}, f} = =X Xyh.
3. Xyw(Xg, Xp) — w([Xy, Xg], Xn) = —{{h, f}. g}

4. Conclude that

—dw(Xy, Xg, Xn) = {{f, 9}, b} + {g,n}, f} + {{h, [}, 9} (1.3.38)
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1.4 Kahler manifolds

Let X be a complex manifold with complex structure J. The almost complex structure J induces
a splitting TX @g C = THOX ¢ TOD X | where T X and TV X are the eigenbundles of J
corresponding to the eigenvalues v/—1 and —/—1, respectively. Then we verify that 79X =
{v—+/~1Jv:veTX}. Let T*10O X and T*®D X be the corresponding dual bundles. Let

Qm(X) 1= (X, A"(T* 0 X) @ ATV X))

be the spaces of smooth (7, ¢)-forms on X.
On local holomorphic coordinates (21, ..., z,) with z; = x; + v/—1y;, we denote

L2 o). i)

aizj T2 O dy; 9z; 2 37% aiyj (1.4.1)
dzj = dvj +V/—1dy;, dz; = dz; —/—1dy;.
Then on holomorphic coordinates (21, ..., 2,), the 8, d-operators on functions are defined by
afz;dzjaif, afzzj:dzjazjf for f € €>(X,C). (1.4.2)
They extend naturally to
0:0%(X) = Qb (X), 9:Q%%(X) — Q> T(X), (1.4.3)

which verify the Leibniz rule (1.2.19) for d, 9 and 9?> = 9% = 0. Thus we have the decomposition
d=0+0, 9*°=0%=00+00=0. (1.4.4)
The operator 0 is called the Dolbeault operator.

Definition 1.4.1. A J-invariant Riemannian metric ¢?X on TX is called a Kihler metric if
© = gTX(J-,-) is a closed form, i.e., d® = 0. In this case, the form © is called a Kéhler form on
X, and the complex manifold (X, J) is called a Kahler manifold.

Certainly any Kahler manifold is a symplectic manifold. Kdhler manifolds are an important
class of symplectic manifolds.

Ezample 1.4.2. (Projective space) For z,y € C"T1\{0}, we say = ~ y if there is A € C* such
that © = Ay. We verify that ~ is an equivalent relation. Then the complex projective space
CP" is the quotient space (C"T1\{0})/ ~. Let m : C"*1\{0} — CP" be the natural projection.
For z € C"T1\{0}, usually we note by [z] = [z : -+ : 2,] = 7(2) which called the homogenous
coordinate on CP". Let U; = {[z] € CP" : z; # 0}, then

’L/)ZU1—>(Cn, [Z]%(?,,;,,%) (145)

defines holomorphic local coordinates of CP", where ~ means we omit the term. Thus CP" is a

complex manifold.
Let Wpg be the real 2-form on C"*1\{0} defined by

N e . V=T -
WFs,: = ?331@‘% (I21) = ?331055 (lzof* + -+ - + |za[?)

V-1 (Z?—O dz; N\ dz; Z?:O Zjdz; N ZZ:O dezk> (1.4.6)

2w |22 - |2]*
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with [2]* = 377 |2

Let U C CP" be an open set and ¢ : U — C"*1\{0} a lifting of U, i.e., a holomorphic map
with 7 o ¢ = Idy. Then ¢*Wrs does not depend on the lifting . In fact, if ¢; : U — C*1\{0}
is another lifting, then for [z] € U, there exists a holomorphic function f : U — C* such that
01([2]) = f([2)e([2]). As 0,0 commute with o1, p, we get

¢iors = Y0010 (jp1 (D) = ¢ + Y00 108 (|17). (1.47)

But 9dlog (| f|?) = 8@_15?) = 0 as f is a holomorphic function. Thus ¢*Wrg defines a global
differential form wgrg on CP". As Wpg is closed, we know dwps = p*dwrs = 0, thus wpg is
closed.

To verify that wpg is positive, by symmetric on the coordinates, we only need to verify it on
Yo : Uo — C", o ([2]) = (w1, ..., wn) = w with w; = 2-. Now for the lifting ¢ : Uy — cnt1\{0},
o(w) = (1,w), we get for the coordinate 1y,

ﬁa(zj wjd@)

1
Wrs = ?aalog (1 + |w|2) =

27 1+ |w|?
B ﬂ/_l(zjdijd@j B Zj@jdwj/\zkwkdﬁk> (148)
~or 1+ |w|? (1+ |w]?)? I

Using the Cauchy-Schwarz inequality |w|?|ul? > |Z?:1 u;w; |, we know wpg is positive, i.e.,
wrs(u,@) > 0 for 0 #u € THOCP",

Thus (CP",wrg) is symplectic, and wrg is so-called Fubini-Study form on CP".

Let

i:[20:21) €ECP' = [29:2,:0:---:0] € CP" (1.4.9)
be an embedding of CP' to CP™. Then

) _ V=1 _
/ i"wps = 7/ d0log (|zo|* + |21]?) = 7/ ddlog (1+ [2]?)
CP! 2 CP! 2 C
V-1 dzdz 1 / dxdy
R (

o2 Je (14222 T re (1422 +42)

=1. (1.4.10)

Moreover, by (1.4.8),

v—1\" dwydw; . . . dw,,dw,
no_ ol - 1. 1.4.11
[ s =n ( ) L (L410)

Remark 1.4.3. By the result from algebraic topology, [wrs| is a generator of H?(CP",Z), the
2th cohomology group of CP" with Z-coefficient.

1.5 Bibliographic notes

For basic material concerning manifolds, vector bundles and Riemannian geometry we refer to
[23], [54] and [40]. The material of this chapter is very standard. We recommend also two sueful
references on symplectic geometry [18] and on Poisson manifolds [53].

A proof of the Hodge theory, Theorem 1.2.4 can be found in [6, Theorem 3.54], [43, Theorem
1.4.1], [54).

For equivalent conditions on Kéhler manifold in Section 1.4, cf. [43, Theorem 1.2.8], [6, §3.6].



