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Definition 1.2.6. A Euclidean metric gV on V is gV ∈ C∞(M,V ∗ ⊗ V ∗) and for any x ∈ M ,
gVx is a Euclidean metric on Vx. We will denote also gVx (u, v) by ⟨u, v⟩x for u, v ∈ Vx.

Let {Ui}i∈I be an open covering of M such that Φi : V |Ui
→ Ui ×Rr gives a trivialization of

V |Ui
. Let {φi} be a partition of unity associated with {Ui}, i.e., φi : Ui → [0, 1] is C∞ function

with compact support, and for any compact set K of M , {i ∈ I : φi ̸= 0 on K} is finite, and∑
i φi ≡ 1 on M .
On Ui, we define gVi the Euclidean metric induced by the canonical metric on Rr, by

gVi (u, v)x = ⟨ψi(u), ψi(v)⟩. Then g(·, ·) =
∑
i(φig

V
i )(·, ·) defines a Euclidean metric on V . Thus

there always exists a Euclidean metric on V . Certainly, the space of Euclidean metrics on V is
contractible.

Definition 1.2.7. We say (V, ω) is a symplectic vector bundle on M if ω ∈ C∞(M,Λ2V ∗) and
for any x ∈M , (Vx, ωx) is a symplectic vector space.

Definition 1.2.8. Let (V1, ω1), (V2, ω2) be symplectic vector bundles on M , ψ ∈ C∞(M,
Hom(V1, V2)). If for any x ∈ M , ψx : (V1,x, ω1,x) → (V2,x, ω2,x) is a symplectic morphism,
then we call ψ is a symplectic morphism of symplectic vector bundles. If moreover ψx is an
isomorphism for any x ∈ M , then we call ψ is a symplectic isomorphism of symplectic vector
bundles.

Definition 1.2.9. If J ∈ C∞(M,End(V )) such that for any x ∈ M , J2
x = − IdVx

, we call J
a complex structure on V . Moreover, if (V, ω) is a symplectic vector bundle on M , and for
any x ∈ M , Jx is a compatible complex structure on (Vx, ωx), we call J a compatible complex
structure on (V, ω).

Let (V, ω) be a symplectic vector bundle onM . For gV a Euclidean metric on V , we define for
x ∈M Ag,x ∈ GL(Vx) by (1.1.39), then as ω, gV are C∞, we get Ag ∈ C∞(M,End(V )). By the
argument after (1.1.33) and (1.1.40), we know Jg = (−A2

g)
−1/2Ag is C∞ on M and it defines a

compatible complex structure on (V, ω). Thus there always exists a compatible complex structure
on any symplectic vector bundle (V, ω). Moreover by the argument in Proposition 1.1.13, the set
of compatible complex structures on a symplectic vector bundle (V, ω) is contractible.

Proposition 1.2.10. Let W be a subbundle of a symplectic vector bundle (V, ω). We suppose
that N =W ∩W⊥ω is of constant rank. Then we have the symplectic isomorphism of symplectic
vector bundles on M

(V, ω) ≃ (W/N,ω)⊕ (W⊥ω/N, ω)⊕ (N ⊕N∗, ωst). (1.2.37)

Proof. Let gV be a metric on V . Let W1 (resp. W2) be the orthogonal complement of the vector
subbundle N in W (resp. W⊥ω ), then (W1, ω|W1

), (W2, ω|W2
) are symplectic vector bundles on

M and W1⊥ωW2. Thus (W3 = (W1 ⊕W2)
⊥ω , ω|W3

) is also a symplectic vector bundle on M .
Now by the argument after (1.1.55), for any x ∈ M , Nx is a Lagrangian subspace of

(W3,x, ω|W3,x). Let J3 ∈ C∞(M,End(W3)) be a compatible complex structure on (W3,x, ω|W3,x).
Now the map ψx in (1.1.56) is C∞ on M , thus ψ is a symplectic isomorphism from (W3, ω|W3)
to (N ⊕ N∗, ωst). In particular, we get a natural symplectic isomorphism of symplectic vector
bundles on M ,

(V, ω) ≃ (W1, ω|W1
)⊕ (W2, ω|W2

)⊕ (N ⊕N∗, ωst). (1.2.38)

The proof of Proposition 1.2.10 is completed.
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Proposition 1.2.11. Let (V, ω) be a symplectic vector bundle over M . For x ∈ M , there is a
open neighborhood Ux of x, and {ej , fj}j a frame of V over Ux such that

ω(ei, fj) = δij , ω(fi, fj) = 0, ω(ei, ej) = 0. (1.2.39)

Such a frame is called symplectic frame.

Proof. The proof is similar to the proof of Proposition 1.1.7. We shall prove it by induction on
rk(V )/2. If rk(V ) = 0, nothing to prove. We suppose rk(V ) > 0 and the proposition is true for
vector bundles whose rank is smaller than rk(V )− 2.

Let e1 ∈ C∞(Ux, V ) be a nonvanishing section over Ux. As ωx is nondegenerate, there is
f ∈ C∞(Ux, V ) such that ωx(e1, f) ̸= 0. By shrinking Ux, we can suppose for y ∈ Ux, we have
ωy(e1, f) ̸= 0. Then, on Ux, we have

ω(e1, f1) = 1, with f1 =
f

ωy(e1, f)
. (1.2.40)

Let W be the subbundle on Ux generated by e1, f1. Then W is symplectic. Thus we have
V |Ux

= W ⊕W⊥ω . As rk(W⊥ω ) = rk(V ) − 2, by the induction hypotheses, by shrinking Ux,
there is a symplectic frame e2, f2, . . . , ek, fk on Ux. Then e1, f1, . . . , ek, fk is a symplectic frame
of V on Ux.

1.2.3 Symplectic manifolds

Definition 1.2.12. For a manifold M , if J ∈ C∞(M,End(TM)) and for any x ∈ M , J2
x =

− IdTxM , we call that J an almost complex structure on TM and (M,J) is an almost complex
manifold.

Definition 1.2.13. A 2-form ω on a manifold M is called a symplectic form on M , if ω is real
and closed, and if for any x ∈M , ωx ∈ Λ2(T ∗

xM) is nondegenerate. In this case, (M,ω) is called
a symplectic manifold.

For a submanifold W of a symplectic manifold (M,ω), we call W is a symplectic (resp.
isotropic, coisotropic, Lagrangian) submanifold if for any x ∈ W , TxW is a symplectic (resp.
isotropic, coisotropic, Lagrangian) subspace of (TxM,ωx).

A diffeomorphism ψ :M → N is called a symplectic diffeomorphism (or symplectomorphism)
for two symplectic manifolds (M,ω), (N,ωN ), if ψ∗ωN = ω.

Let J ∈ C∞(M,End(TM)) be an almost complex structure on a symplectic manifold (M,ω),
then we say J is a compatible almost complex structure if ω(·, J ·) defines a J-invariant Rieman-
nian metric on TM .

Let (N,ω) be a symplectic manifold. By Proposition 1.1.3, N is even dimension. Let dimN =
2n. Then ωn ∈ Ω2n(N) induces a canonical orientation of N .

By the argument after Definition 1.2.9, there always exists a compatible almost complex
structure on (N,ω).

If N is compact, we have ∫
N

ωm > 0. (1.2.41)

From (1.2.41), for any 0 ⩽ i ⩽ n, [w]i ∈ H2i(N,R) is non zero. In particular, H2i(N,R) ̸= 0.
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Example 1.2.14. Let M be a manifold of dimension m, and π : T ∗M → M be the natural
projection. The Liouville form λ ∈ Ω1(T ∗M) is defined by: for x ∈M,p ∈ T ∗

xM , X ∈ T(x,p)T
∗M ,

(λ,X)(x,p) := (p, dπ(x,p)X)x. (1.2.42)

Set

ωT
∗M = −dλ. (1.2.43)

Then ωT
∗M is a closed real 2-form on T ∗M .

Let ψ : U ⊂ M → V ⊂ Rm, q → (x1 = ψ1(q), . . . , xm = ψm(q)) be a local coordinate, then
{ ∂
∂xj

} is a local frame of TM , and {dxj} is a local frame of T ∗M which gives the trivialization

of TM, T ∗M on U . Thus

T ∗M → V × Rm,
(
q,
∑
i

piψ
∗(dxi)

)
→ (x1, . . . , xm, p1, . . . , pm)

is the induced local coordinate of T ∗M |U , and { ∂
∂xj

, ∂
∂pj

} is a local frame of T (T ∗M).

For X =
∑
iXi

∂
∂xi

+ Pi
∂
∂pi

, we have

(λ,X)(x,p) =

m∑
i=1

piXi =
( m∑
i=1

pidxi, X
)
. (1.2.44)

From (1.2.43) and (1.2.44), we get

λ =

m∑
i=1

pidxi, ωT
∗M =

m∑
i=1

dxi ∧ dpi. (1.2.45)

Hence, ωT
∗M is nondegenerate, and

(
T ∗M,ωT

∗M
)
is a symplectic manifold.

Example 1.2.15. a) For n > 1, since H2(S2n,R) = 0, we conclude that S2n is not symplectic.

b) Every orientable surface Σ with its volume form is symplectic.

In differential geometry, there are many problems related to the existence of diffeomorphisms.
Moser proposed to transfer this problem as a problem on the existence of time dependent vector
fields which is much easier to attack. Moser’s trick has many applications and will be used
repeatedly in our lecture. The following problem is a typical example for Moser’s trick: Let M
be a manifold. For α0, α1 ∈ Ω•(M), is there a diffeomorphism ϕ ∈ Diff(M) such that ϕ∗α1 = α0?

Moser proposed a solution by finding a family ϕt ∈ Diff(M), αt ∈ Ω•(M) (t ∈ R), such that
for t ∈ R, we have

ϕ0 = Id, ϕ∗tαt = α. (1.2.46)

In this case, we can take ϕ = ϕ1.
Let Xt be the time dependent vector field on M defined by: for x ∈M, t ∈ R,

Xt (ϕt(x)) =
∂

∂t
ϕt(x). (1.2.47)

Then by differential ϕ∗tαt on t, we get (cf. Exercise 1.2.3)

d

dt
ϕ∗tαt = ϕ∗t (LXt

αt + α̇t) . (1.2.48)
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By (1.2.46), (1.2.48), we have

LXt
αt + α̇t = 0. (1.2.49)

Inversely, if we find a time dependent vector field Xt such that (1.2.49) holds on [0, 1], and
if the flow associated with X· is defined for t ∈ [0, 1], we can take ϕt as the flow associated with
X·. Note that if the support of Xt (t ∈ [0, 1]) is in a compact set which independent of t, the
associated flow is always defined for t ∈ [0, 1].

Theorem 1.2.16 (Moser’s stability theorem). Let M be a compact manifold. Let ωt (t ∈ [0, 1])
be a smooth family of symplectic forms on M such that the class [ωt] ∈ H2(M,R) is independent
of t. Then there exists ϕ ∈ Diff(M) such that ϕ∗ω1 = ω0.

Proof. By Moser’s trick, we need to find a time dependent vector field Xt such that

LXt
ωt + ω̇t = 0. (1.2.50)

As [ωt] ∈ H2(M,R) is independent of t, then ωt − ω0 ∈ Im(d).
Let gTM be a Riemannian metric on M . By the Hodge theorem (Theorem 1.2.4),

γt = d∗∆−1(ωt − ω0) (1.2.51)

is a smooth family on t ∈ [0, 1] of differential forms on M , such that

ωt − ω0 = dγt. (1.2.52)

Thus

ω̇t = dβt with βt = γ̇t. (1.2.53)

As ωt is nondegenerate for t ∈ [0, 1], there exists Xt ∈ C∞(M,TM) smooth on t such that

iXtωt + βt = 0. (1.2.54)

By Cartan’s formula (1.2.20) and by the closedness of ωt, this implies (1.2.50). AsM is compact,
the flow ϕX·

t associated with X· is defined for t ∈ [0, 1]. The proof of Theorem 1.2.16 is completed
by taking ϕ = ϕX·

1 .

1.2.4 Darboux theorem

Proposition 1.2.17. (Darboux lemma) Let W be a compact submanifold of a manifold M . If
ω0, ω1 are two symplectic forms on M , such that ω0|W = ω1|W ∈ C∞(W,Λ2(T ∗M)). Then there
is a diffeomorphism ϕ : U0 → U1 between two neighborhoods of W , such that

ϕ|W = IdW , ϕ∗ω1 = ω0. (1.2.55)

Proof. Set ωt = (1 − t)ω0 + tω1. As ω0|W = ω1|W , ωt is a symplectic form on some compact
neighborhood of W . By Moser’s trick, we need to find Xt a smooth family on t ∈ [0, 1] of vector
fields on a neighborhood of W , such that Xt is vanishing on W and

LXt
ωt + ω1 − ω0 = 0. (1.2.56)

If there is a form β such that

dβ = ω1 − ω0, β|W = 0, (1.2.57)
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as ωt is nondegenerate on a neighborhood of W , for t ∈ [0, 1], there exists Xt such that

iXt
ωt + β = 0. (1.2.58)

By Cartan’s formula (1.2.20), (1.2.58) implies (1.2.56). AsW is compact, the flow ϕX·
t associated

with X· exists for t ∈ [0, 1]. Take ϕ = ϕX·
1 . Thus the second equation of (1.2.55) follows. Since

β|W = 0, by (1.2.58), Xt|W = 0. Then the first equation of (1.2.55) follows.
For the existence of such form β, we need the following Lemmas.

Lemma 1.2.18. Let M and N be two smooth manifolds and dimM = dimN , and let Y ⊂ N
be a compact submanifold. Let φ : N → M be a smooth map such that φ|Y is injective and
dφy : TyN → Tφ(y)M is bijective for any y ∈ Y . Then φ is a diffeomorphism on a neighborhood
of Y .

Proof. As Y is compact and dφ|Y is bijective, there exist open sets U1 ⊂ V1, . . . , Uk ⊂ Vk such

that Y ⊂
⋃k
j=1 Uj , U j ⊂ Vj and φ|Vj

: Vj → φ(Vj) is a diffeomorphism for any 1 ≤ j ≤ k. Then
we strink successively Uj to keep Uj ∩ Y and such that φ|∪j

i=1Ui
is a diffeomorphism for each

1 ≤ j ≤ k. To get the step j from the step j− 1, as φ(∪j−1
i=1Ui \ Vj)∩φ(Uj ∩Y ) = ∅, there exists

Uj ∩ Y ⊂ V ′
j ⊂ Vj open such that φ(∪j−1

i=1Ui \ Vj) ∩ φ(V ′
j ) = ∅, then we replace Uj by Uj ∩ V ′

j .

Lemma 1.2.19. (Poincaré Lemma) Let i : W ↪→ M be a compact submanifold of a manifold
M . If α ∈ Ωk(M) such that i∗α = 0 and dα = 0, then there is a (k− 1)-form β defined on some
neighborhood of W such that

dβ = α, β|W = 0 ∈ C∞(W,Λk−1(T ∗M)). (1.2.59)

If W = {pt}, k ≥ 1, i∗α = 0 always holds, and Lemma 1.2.19 reduces to the usual Poincaré
Lemma.

Proof. Let gTM be a metric on TM . Let N = TM/TW be the norm bundle of W , and we
identify N with (TW )⊥ the orthogonal complement of TW in TM . By Lemma 1.2.18, for ε > 0
small enough, the exponential map

expM : Uε = {(y, Z) ∈ Ny : y ∈W, |Z| < ε} ∋ (y, Z) → expMy (Z) ∈M. (1.2.60)

defines a diffeomorphism of Uε onto a neighborhood of W in M . Hence we identify Uε as a
neighborhood of W in M via exponential map (1.2.60).

For s ∈ [0, 1], set

ϕs : (y, Z) ∈ Uε → (y, sZ) ∈ Uε, (1.2.61)

and let Ys be the vector field on Usε defined by

Ys (ϕs(x)) =
∂

∂s
ϕs(x). (1.2.62)

Then Ys is smooth on s ∈ [0, 1]. Set

K(α) =

∫ 1

0

ϕ∗siYs
αds ∈ Ωk−1(Uε). (1.2.63)
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Then by Cartan’s formula (1.2.20) and Exercise 1.2.3, and ϕ∗0α = i∗α = 0, we get

α = ϕ∗1α − ϕ∗0α =

∫ 1

0

ϕ∗sLYs
αds = d

∫ 1

0

ϕ∗siYs
αds +

∫ 1

0

ϕ∗siYs
dα ds = dK(α). (1.2.64)

Moreover, as ϕs|W = IdW , Ys = 0 on W , thus K(α)|W = 0. The proof of Lemma 1.2.19 is
completed.

Now we return to the proof of Proposition 1.2.17. By Lemma 1.2.19, there exists β which
satisfies (1.2.57). The proof of Proposition 1.2.17 is completed.

Theorem 1.2.20. Let i : W ↪→ M be a compact submanifold of a manifold M . If ω0, ω1 are
two symplectic forms on M , such that

a) i∗ω0 = i∗ω1 ∈ Ω2(W ),

b) N = TW ∩ (TW )⊥ω0 is of constant rank on W .

c) There is a symplectic morphism (TW⊥ω0 /N, ω0) ≃ (TW⊥ω1 /N, ω1).

Then there is a diffeomorphism ϕ : U0 → U1 between two neighborhoods of W , such that

ϕ|W = IdW , ϕ∗ω1 = ω0. (1.2.65)

Proof. We note that, as i∗ω0 = i∗ω1, we have

N = TW ∩ (TW )⊥ω0 = TW ∩ (TW )⊥ω1 . (1.2.66)

By a), b), and Proposition 1.2.10, there exist symplectic subbundles (V, ω0) = (V, ω1), (V0, ω0)
and (V1, ω1) of TM |W on W such that

TW = V ⊕N, (TW )⊥ω0 = V0 ⊕N, (TW )⊥ω1 = V1 ⊕N, (1.2.67)

and the symplectic direct decompositions

(TM |W , ω0) = V ⊕ V0 ⊕ (V ⊕ V0)
⊥ω0 , (TM |W , ω1) = V ⊕ V1 ⊕ (V ⊕ V1)

⊥ω1 . (1.2.68)

Moreover by the argument after (1.1.55), N is a Lagrangian subbundle in (V ⊕ V0)
⊥ω0 (resp.

(V ⊕ V1)
⊥ω1 ). Let J0 (resp. J1) be a compatible complex structure on (V ⊕ V0)

⊥ω0 (resp.
(V ⊕ V1)

⊥ω1 ). By (1.1.56),

(V ⊕ V0)
⊥ω0 = N ⊕ J0N ≃ N ⊕N∗, (V ⊕ V0)

⊥ω1 = N ⊕ J1N ≃ N ⊕N∗. (1.2.69)

This means that we have a symplectic isomorphism

ψ1 :
(
(V ⊕ V0)

⊥ω0 , ω0

)
→
(
(V ⊕ V1)

⊥ω1 , ω1

)
such that ψ1|N = IdN . (1.2.70)

On the other hand, c) implies (V0, ω0) and (V1, ω1) is symplectic isomorphic.
Hence, by (1.2.68), there is a symplectic bundle map

Φ : (TM |W , ω0) ≃ (TM |W , ω1) such that Φ|TW = IdTW . (1.2.71)

Then Φ induces an automorphism of the normal bundle of W in M . Let φ be a diffeomorphism
of two local coordinates Uε and Uε′ as in (1.2.60) of W defined by

φ : (x, Z) ∈ Uε → (x,Φ(Z)) ∈ Uε′ . (1.2.72)

Then

φ∗ω1|W = ω0|W ∈ C∞(W,Λ2(T ∗M)) and φ|W = IdW . (1.2.73)

From Proposition 1.2.17, Theorem 1.2.20 follows.



CHAPTER 1. BASIC SYMPLECTIC GEOMETRY 27

Corollary 1.2.21 (Darboux theorem). Let (M,ω) be a symplectic manifold of dimension 2n.
Then for any y0 ∈M , there is a local coordinate (xi, pj) near y0 such that,

ω =

n∑
i=1

dxi ∧ dpi. (1.2.74)

Such local coordinate is called Darboux’s coordinate. Corollary 1.2.21 means that locally,
any symplectic manifolds are symplectically diffeomorphic, thus a possible symplectic invariant
should be a global invariant of manifolds.

Proof. For y0 ∈ M , take W = {y0}. Let ϕ : U0 ⊂ M → V0 ⊂ R2n be a local chart such that
y0 ∈ U0, 0 ∈ V0 and ϕ(y0) = 0. Then (ϕ−1∗ω)0 ∈ Λ2(R2n∗) is a symplectic form on R2n. Thus
by Corollary 1.1.8, there exists ϕ1 ∈ GL(2n,R) such that

ϕ∗1ωst = (ϕ−1∗ω)0. (1.2.75)

Now ω1 := ϕ∗ϕ∗1ωst is a symplectic form on U0, and

ω1,y0 = ωy0 ∈ Λ2(T ∗
y0M). (1.2.76)

By Proposition 1.2.17, there are U1, U2 ⊂ U0 neighborhoods of y0, and a diffeomorphism ϕ2 :
U1 → U2 such that

ϕ∗2ω1 = ω, ϕ2(y0) = y0. (1.2.77)

Take φ = ϕ1 ◦ ϕ ◦ ϕ2 : U1 → ϕ1 ◦ ϕ(U2) ⊂ R2n, then

φ∗ωst = ω. (1.2.78)

The proof of Corollary 1.2.21 is completed.

Corollary 1.2.22. If L is a compact Lagrangian submanifold of a symplectic manifold (M,ω),
then there exist a neighborhood U of L in M , a neighborhood V of zero section of the symplectic
manifold (T ∗L, ωT

∗L) and a diffeomorphism ϕ : U → V such that ϕ∗ωT
∗L = ω.

Proof. Take W = L. By Proposition 1.2.10 and (1.2.45), we have symplectic isomorphisms

(TM |L, ω) ≃ (TL⊕ T ∗L, ωTL⊕T
∗L) ≃ (TT ∗L|L, ωT

∗L). (1.2.79)

We identify T ∗L|L with the normal bundle of L in M . Then ωT
∗L induces a symplectic form in

the neighborhood of L inM . By Proposition 1.2.17 and by (1.2.79), Corollary 1.2.22 follows.

1.2.5 Sympl(M,ω) and Ham(M,ω)

Let (M,ω) be a symplectic manifold. ForH ∈ C∞([0, 1]×M,R), the time dependent Hamiltonian
vector field XHt

, which is smooth on t ∈ [0, 1], is defined by

iXHt
ω = dHt. (1.2.80)

Let

ϕH·
t := ϕ

XH·
t (1.2.81)

be the flow associated with XHt
. In particular, if H ∈ C∞(M), we get a Hamiltonian vector

field XH associated with H. We suppose always that ϕH·
t is defined for t ∈ R. As we mentioned

before, this is the case if the support of Ht is in a compact set which independent of t.
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Definition 1.2.23. We define Sympl(M,ω) and Ham(M,ω) the symplectic diffeomorphism
group and the Hamiltonian diffeomorphism group by,

Sympl(M,ω) = {ϕ ∈ Diff(M) : ϕ∗ω = ω}, (1.2.82)

Ham(M,ω) = {ϕ ∈ Diff(M) : There exists H ∈ C∞([0, 1]×M) such that ϕ = ϕH·
1 }.

Certainly, Sympl(M,ω) is a group. We will see in Proposition 1.2.25 that Ham(M,ω) is also
a group.

The following lemma is very useful.

Lemma 1.2.24. For any φ ∈ Sympl(M,ω), H ∈ C∞(M), we have

Xφ∗H = φ−1
∗ XH . (1.2.83)

Proof. By (1.2.80) and (1.2.82), for y ∈M , we have

(iXφ∗H
ω)y = d (φ∗H)y = (φ∗dH)y = (φ∗ω(XH , ·))y

= ωφ(y)(XH , φ∗·)) = ωy(φ
−1
∗ XH , ·). (1.2.84)

Thus (1.2.83) holds.

Proposition 1.2.25. The set Ham(M,ω) is a connected normal subgroup of Sympl(M,ω).

Proof. By Cartan formula (1.2.20), and by (1.2.94), for H· ∈ C∞([0, 1]×M), we have

d

dt
ϕH·,∗
t ω = ϕH·,∗

t LXHt
ω = ϕH·,∗

t d iXHt
ω = ϕH,∗t d dHt = 0. (1.2.85)

Thus, Ham(M,ω) is a subset of Sympl(M,ω).
For s ∈ [0, 1], ϕsH·

1 is a continuous path in Ham(M,ω) which connects IdM and ϕH·
1 . Thus

Ham(M,ω) is connected.
Now, we start to prove that Ham(M,ω) is a group. For F,H ∈ C∞([0, 1]×M,R), by Lemmas

1.2.1, 1.2.24 and (1.2.80), we have

ϕH·
t ◦ ϕF·

t = ϕ
XH·
t ◦ ϕXF·

t = ϕ
XH·+ϕ

XH·
·∗ XF·

t = ϕ
H·+(ϕ

XH·
· )−1∗F·

t , (1.2.86)(
ϕH·
t

)−1

=
(
ϕ
XH·
t

)−1

= ϕ
−
(
ϕ
XH·
·

)−1

∗
XH·

t = ϕ
−
(
ϕ
XH·
·

)∗
H·

t .

Thus, Ham(M,ω) is stable under composition and inverse. This means that it is a group.
It remains to show it is a normal subgroup of Sympl(M,ω). For any ϕ ∈ Sympl(M,ω), by

Lemma 1.2.1 and by (1.2.83), we have

ϕ−1 ◦ ϕH·
t ◦ ϕ = ϕ−1 ◦ ϕXH·

t ◦ ϕ = ϕ
ϕ−1
∗ XH·
t = ϕ

Xϕ∗H·
t . (1.2.87)

This means Ham(M,ω) is normal. The proof of Proposition 1.2.25 is completed.

Let sympl(M,ω) and ham(M,ω) be formal Lie algebras of the Lie groups Sympl(M,ω) and
Ham(M,ω), i.e., their tangent spaces at the identity element cf. §2.1.1. Then by (1.2.82),

sympl(M,ω) = {X ∈ C∞(M,TM) : LXω = 0},
ham(M,ω) = {X ∈ C∞(M,TM) : there is H ∈ C∞(M) such that iXω = dH}.

(1.2.88)
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Exercise 1.2.1. Let X ∈ C∞(M,TM). On a local chart x = (x1, . . . , xn), for |t| small enough,
we write X =

∑n
i=1Xi(x)

∂
∂xi

, and the associated flow ϕXt (x) = (ϕ1(t, x), . . . , ϕn(t, x)). Verify
that (1.2.5) in this local coordinate is the ordinary differential equation : for j ∈ {1, . . . , n},

∂

∂t
ϕj(t, x) = Xj(ϕ

X
t (x)), ϕj(0, x) = xj . (1.2.89)

Exercise 1.2.2. Let ϕ : M → N be a diffeomorphism. For α ∈ Ω•(N), X,Y, Z ∈ C∞(M,TM),
we have:

a) For t ∈ R, we have etϕ∗X = ϕ ◦ etX ◦ ϕ−1, conclude that (1.2.11) holds.

b) [ϕ∗X,ϕ∗Y ] = ϕ∗[X,Y ].

c) By taking the differential of the above identity with ϕt = etZ , we deduce the Jacobi identity

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0. (1.2.90)

d) For ψ :M → N a smooth map of manifolds, we have dM (ψ∗α) = ψ∗(dNα).

Exercise 1.2.3. For X· ∈ C∞(R×M,TM), let ϕX·
t :M →M be the flow associated with X·.

a) For Y ∈ C∞(M,TM), f ∈ C∞(M), verify that ((ϕX·
−t)∗Y )f(y) = (Y (f ◦ ϕX·

−t))(ϕ
X·
t y) for

any y ∈M , conclude that

[X0, Y ] =
∂

∂t

∣∣∣
t=0

(
ϕX·
−t

)
∗
Y. (1.2.91)

b) For α ∈ Ω•(M), we have

LX0α =
∂

∂t

∣∣∣
t=0

(
ϕX·
t

)∗
α. (1.2.92)

c) We fix t ∈ R. For s ∈ R, set φs = ϕX·
t+s ◦

(
ϕX·
t

)−1

. Prove that for x ∈M ,

∂

∂s
φs(x) = Xt+s (φs(x)) . (1.2.93)

Thus, φs is the flow associated with the time dependent vector field Ys = Xt+s.

d) Verifies first (1.2.3). For α ∈ Ω•(M), prove that we have

∂

∂t

(
ϕX·
t

)∗
α =

(
ϕX·
t

)∗
LXt

α. (1.2.94)

Conclude that

∂

∂t

(
(ϕX·
t )−1

)∗
α = −LXt

(
(ϕX·
t )−1

)∗
α. (1.2.95)

Exercise 1.2.4. Verify directly from (1.2.88) that

a) ham(M,ω) ⊂ sympl(M,ω).

b) if X,Y ∈ sympl(M,ω) (resp. (ham(M,ω)), then [X,Y ] ∈ sympl(M,ω) (resp. (ham(M,ω)).
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1.3 Poisson manifolds

We show every symplectic manifold has a natural Poisson structure, and many results on Hamil-
tonian vector fields still hold for Poisson manifolds.

1.3.1 Poisson structure on symplectic manifolds

Let (M,ω) be a symplectic manifold of dimension 2n.

Definition 1.3.1. The Poisson bracket {, } : C∞(M) × C∞(M) → C∞(M) is defined by, for
f, g ∈ C∞(M),

{f, g} := ω(Xf , Xg). (1.3.1)

By (1.2.80) and (1.3.1), we have

{f, g} = ω(Xf , Xg) = −Xf g = Xg f. (1.3.2)

In a Darboux coordinate (x1, . . . , xn, p1, . . . , pn), we have ω =
∑
i dxi ∧ dpi, thus

Xf =

n∑
i=1

∂f

∂pi

∂

∂xi
− ∂f

∂xi

∂

∂pi
, {f, g} =

n∑
i=1

∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi
. (1.3.3)

Proposition 1.3.2. The Poisson bracket is invariant under symplectic morphisms, i.e., for any
ϕ ∈ Sympl(M,ω), f, g ∈ C∞(M), we have

{ϕ∗f, ϕ∗g} = ϕ∗{f, g}. (1.3.4)

Proof. For any ϕ ∈ Sympl(M,ω), by (1.2.83) and (1.3.1), we have

{ϕ∗f, ϕ∗g}x = ω(Xϕ∗f , Xϕ∗g)x = ω(ϕ−1
∗ Xf , ϕ

−1
∗ Xg)x =

((
ϕ−1

)∗
ω
)
(Xf , Xg)ϕ(x)

= ω(Xf , Xg)ϕ(x) = {f, g}ϕ(x) = (ϕ∗{f, g})x . (1.3.5)

The proof of Proposition 1.3.2 is completed.

Proposition 1.3.3. For any f, g, h ∈ C∞(M), we have

a) {f, g} = −{g, f},

b) {fg, h} = f{g, h}+ g{f, h},

c) (Jacobi identity) {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0.

Proof. a), b) is evident from (1.3.1) or from (1.3.3). By Proposition 1.2.25, for h ∈ C∞(M),
ϕXh
t = etXh ∈ Sympl(M,ω), by (1.3.5), we get

ϕXh∗
t {f, g} = {ϕXh∗

t f, ϕXh∗
t g}. (1.3.6)

By differential (1.3.6) at t = 0, we have

LXh
{f, g} = {LXh

f, g}+ {f, LXh
g}, (1.3.7)

which is equivalent to c). The proof of Proposition 1.3.3 is completed.
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Proposition 1.3.4. For f, g ∈ C∞(M), we have

X{f,g} = −[Xf , Xg]. (1.3.8)

Proof. For h ∈ C∞(M), by Proposition 1.3.3 and (1.3.2), we have

X{f,g}h = −{{f, g}, h} = {{g, h}, f}+ {{h, f}, g}
= −XfXgh+XgXfh = − [Xf , Xg]h. (1.3.9)

The proof of Proposition 1.3.4 is completed.

1.3.2 Poisson manifolds

Let M be a manifold.

Definition 1.3.5. We say that (M, {, }) is a Poisson manifold, if {, } : C∞(M) × C∞(M) →
C∞(M) is a R-bilinear map such that for any f, g, h ∈ C∞(M), we have

a) {f, g} = −{g, f},

b) {fg, h} = f{g, h}+ g{f, h},

c) (Jacobi identity) {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0.

The operator {, } is called a Poisson bracket on M .

By Proposition 1.3.3, every symplectic manifold is a Poisson manifold.
Let (M, {, }) be a Poisson manifold.

Lemma 1.3.6. For f, g ∈ C∞(M), x0 ∈M , we have

{1, f} = 0,

{f, g}x0 = 0, if dfx0 = 0.
(1.3.10)

Proof. By Definition 1.3.5, {1, f} = 1 ·{1, f}+1 ·{1, f}, thus we get the first equation of (1.3.10).
At first, if f |U = 0 for a neighborhood U of x0, then {f, g}x0

= 0. In fact, let φ ∈ C∞
c (U),

φ = 1 near x0, then (1 − φ)f = f , thus {f, g}x0
= {(1 − φ)f, g}x0

= (1 − φ)(x0){f, g}x0
+

f(x0){1− φ, g}x0
= 0.

Now on a local chart U0 near x0, ψ ∈ C∞
c (U), ψ = 1 near x0, then near x0,

f(x) = f(x0) +
∑
j

(ψxj)(hjψ) with hj(x) =

∫ 1

0

∂f

∂xj
(tx)dt, (1.3.11)

and ψxj , hjψ are C∞ functions on M . Thus

{f, g}x0 = {f(x0), g}0 + {(xjψ)(hjψ), g}0 = hj(0){xjψ, g}0 with hj(0) =
∂f

∂xj
(0).

The proof of Lemma 1.3.6 is completed.

By (1.3.10), {·, g} defines a vector field Xg on M for g ∈ C∞(M) by

Xgf = {f, g} for f ∈ C∞(M). (1.3.12)

We call Xg the Hamiltonian vector field of g.
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Definition 1.3.7. We define B ∈ C∞(M,Λ2(TM)) by: for f, g ∈ C∞(M),

Bx(dfx, dgx) = {f, g}x. (1.3.13)

By (1.3.10), for x ∈M , {f, g}x only depends on dfx, dgx ∈ T ∗
xM , thus (1.3.13) is well-defined.

By (1.3.12) and (1.3.13), we have

Xf = −idfB. (1.3.14)

In particular, B defines a linear map form T ∗M to TM . But in general, B can be degenerate.
As we will see in Proposition 1.3.9, if B is nondegenerate, then M is a symplectic manifold.

Proposition 1.3.8. Let (M, {, }) be a Poisson manifold. Then for f ∈ C∞(M),

a) Let H· ∈ C∞(R ×M,R) and ϕ
XH·
t be the flow associated with the Hamiltonian vector field

XHt of H·, then ϕ
XH·
t preserves the Poisson bracket { , }. We also have LXf

B = 0.

b) If ϕ ∈ Diff(M) preserves {, }, then ϕ−1
∗ Xf = Xϕ∗f .

c) We have a morphism of Lie algebras

f ∈ (C∞(M), {, }) → −Xf ∈ C∞(M,TM), (1.3.15)

i.e., the map is linear and for f, g ∈ C∞(M), we have

X{f,g} = −[Xf , Xg]. (1.3.16)

Proof. By Definition 1.3.5 c), we know

LXHt
{f, g} = {LXHt

f, g}+ {f, LXHt
g}. (1.3.17)

By Lemma 1.2.1 b) or Exercise 1.2.3 d), we have

∂

∂t
(((ϕ

XH·
t )−1)∗f)(y) = −d(ϕXH·

t )−1XHt
(y) · f = −(LXHt

((ϕ
XH·
t )−1)∗f)(y). (1.3.18)

From (1.3.17) and (1.3.18), we get ∂
∂t (ϕ

XH·
t )∗

{
((ϕ

XH·
t )−1)∗f, ((ϕ

XH·
t )−1)∗g

}
= 0. Thus (1.3.4)

holds for ϕ
XH·
t , i.e., ϕ

XH·
t preserves the Poisson bracket { , }.

For any f, g, h ∈ C∞(M), by (1.3.12) and (1.3.13), we have

(LXh
B)(df, dg) =LXh

(B(df, dg))−B(LXh
df, dg)−B(df, LXh

dg) (1.3.19)

={{f, g}, h} − {{f, h}, g} − {f, {g, h}} = 0.

Thus a) holds.
If ϕ preserves {, }, by (1.3.12), we get(
ϕ−1
∗ Xh

)
gx = dg

(
ϕ−1
∗ Xh

)
x
= d(g ◦ ϕ−1)(Xh)ϕ(x) = {g ◦ ϕ−1, h}ϕ(x)

= {g, ϕ∗h}x = (Xϕ∗hg)x . (1.3.20)

Thus b) holds. From the same argument of (1.3.9), we get c).
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1.3.3 Symplectic foliation

Let (M, {, }) be a Poisson manifold of dimension m.

Proposition 1.3.9. If B is nondegenerate, then for any f, g ∈ C∞(M),

ω(Xf , Xg) := {f, g} (1.3.21)

defines a symplectic form on M .

Proof. As B is nondegenerate, by (1.3.14), we have

{Xh(x) : h ∈ C∞(M)} = TxM. (1.3.22)

Thus ω is a well-defined 2-form on M . As B is nondegenerate, it implies ω is nondegenerate. By
Exercise 1.3.1, Jacobi identity implies ω is closed. Hence, ω is a symplectic form on M .

Recall that a distribution of TM is a subset F of TM such that for any x ∈ M , F ∩ TxM
is a vector space. The leaves of F is defined as follows: Two points are on the same leaf if they
can be connected by a piecewise smooth path tangent to F . A distribution F is integrable if for
any x0 ∈M , there exist a submanifold L ⊂M such that x0 ∈ L and for any x ∈ L, Fx = TxL.

For x ∈M , let

Fx = Span{Xf (x) : f ∈ C∞(M)}, (1.3.23)

then the subset F = ∪x∈MFx of TM defines a distribution onM . Note that the vector space Fx
need not have constant rank. By Proposition 1.3.8 a), b), for any H ∈ C∞(M), the flow ϕXH

t of
XH preserves F , thus

dϕXH
t (Fx) = F

ϕ
XH
t (x)

. (1.3.24)

Now for any x0 ∈ M , there exist h1, . . . , hk ∈ C∞(M) such that Xh1
(x0), . . . , Xhk

(x0) is a
basis of Fx0

, and there exists an open neighbourhood W of 0 ∈ Rk such that the map

W ∋ (t1, . . . , tk) → ϕ
Xhk
tk

. . . ϕ
Xh1
t1 (x0) ∈M

is well-defined, and thus get an k-dimensional submanifold L of M through x0. As the tangent

spaces of x ∈ L are given by the action of the flot ϕ
Xhj

tj on Fx0
, by (1.3.24), it must be Fx.

Thus we verified that the distribution F is integrable. The distribution F is called a symplectic
foliation of (M, { , }).

If F is a subbundle of TM , and L is a leave of F . Then by Proposition 1.3.9, L is a symplectic
manifold.

Theorem 1.3.10. If in some neighborhood U0 of m0 ∈ M , the symplectic foliation F is a
subbundle of TM , then there is a neighborhood U of m0 and a coordinate (xi, pj , zk) on U such
that

{xi, pj} = δij , (1.3.25)

and zero for the other Poisson brackets.

Such a coordinate is called a Poisson-Darboux coordinate.
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Proof. Assume that F is a subbundle of TM near m0 ∈M . Note first that {·, ·}|F is nondegen-
erate: if {h, f}x = 0 for any h ∈ C∞(M), then by (1.3.12), Xh(f)x = 0, thus df |Fx

= 0 and
(1.3.21) defines ω ∈ C∞(U0,Λ

2F∗) and ω is nondegenerate along F , and along the leaf, ω is
closed.

We assume that rkF = 2l. By Frobenius’s theorem, these exist a neighborhood U (resp. U,
resp. V) of y0 (resp. 0) in M (resp. R2l,Rm−2l), and a local coordinate

φ : m ∈ U → (y, z) ∈ U × V ⊂ R2l × Rm−2l, (1.3.26)

such that φ(m0) = 0, and

F = Span

{
∂

∂yi

}2l

i=1

. (1.3.27)

As the function zj are constant along the leaf of F , thus for any h ∈ C∞(U), as Xh ∈ C∞(U ,F),

{h, zj}m = Xhzj = 0. (1.3.28)

We identify U with U ×V . For z ∈ V , let ei(z), fj(z) be a symplectic frame on F|{0}×V , and
let {ej , fj}j be the canonical symplectic basis in (R2l, ωst). We define ϕ : U × V → R2l × V ,
which is linear on the first factor, by

ϕ

(
l∑
i=1

aiei(z) + bifi(z), z

)
=

(
l∑
i=1

aiei + bifi, z

)
. (1.3.29)

Then,

ϕ∗ωst|{0}×V = ω|{0}×V ∈ Λ2(T ∗U). (1.3.30)

Now we repeat the proof of Darboux’s theorem. For t ∈ [0, 1], set

ωt = (1− t)ω + tω1, with ω1 = ϕ∗ωst. (1.3.31)

By the construction, we have ω, ω1 ∈ C∞(U ,Λ2(T ∗U)) and dUω = 0. We would like to find
Xt ∈ C∞(U , TU) a smooth family of time dependent vector fields on U in the direction U , and
βt ∈ C∞(U , T ∗U) such that

ω̇t = dUβt, iXt
ωt + βt = 0, Xt|{0}×V = 0, (1.3.32)

with dU the exterior differential along U .
For s ∈ [0, 1], let ϕs : U × V → U × V be the smooth map defined by

ϕs(y, z) = (sy, z), (1.3.33)

and Ys be the smooth family of time dependent vector fields on U in the direction U defined by

Ys(ϕs(y, z)) =
∂

∂s
ϕs(y, z). (1.3.34)

Let β ∈ C∞(U , T ∗U) be defined by

β =

∫ 1

0

ϕ∗siYs
(ω1 − ω) ds. (1.3.35)
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Thus, by (1.3.30) and (1.3.31), as in (1.2.64), we get i∗(ω1 − ω) = 0 and

ω̇t = ω1 − ω = dUβ, β|{0}×V = 0. (1.3.36)

As ωt is nondegenerate in the direction U near y0, there exists Xt ∈ C∞([0, 1]×U , T ∗U) such
that (1.3.32) holds. By shrinking U and V , the flow ϕX·

t associated with Xt is defined on [0, 1].
Take Φ = ϕX·

1 . By (1.3.32), we have

Φ∗ ◦ ϕ∗ωst = ω. (1.3.37)

The proof of Theorem 1.3.10 is completed.

Exercise 1.3.1. If ω ∈ Ω2(M) is only nondegenerate on M , for f, g, h ∈ C∞(M), we can still
define Xf ∈ C∞(M,TM) by (1.2.80), and {f, g} by (1.3.1). Verify that

1. dω(Xf , Xg, Xh) =
∑

(f,g,h)Xfω(Xg, Xh) − ω([Xf , Xg], Xh), where
∑

(f,g,h) is the cyclic
sum on f, g, h.

2. Xfω(Xg, Xh) = {{g, h}, f} = −XfXgh.

3. Xfω(Xg, Xh)− ω([Xf , Xg], Xh) = −{{h, f}, g}.

4. Conclude that

−dω(Xf , Xg, Xh) = {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g}. (1.3.38)
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1.4 Kähler manifolds

Let X be a complex manifold with complex structure J . The almost complex structure J induces
a splitting TX ⊗R C = T (1,0)X ⊕ T (0,1)X, where T (1,0)X and T (0,1)X are the eigenbundles of J
corresponding to the eigenvalues

√
−1 and −

√
−1, respectively. Then we verify that T (1,0)X =

{v −
√
−1Jv : v ∈ TX}. Let T ∗(1,0)X and T ∗(0,1)X be the corresponding dual bundles. Let

Ωr,q(X) := C∞(X,Λr(T ∗(1,0)X)⊗ Λq(T ∗(0,1)X))

be the spaces of smooth (r, q)-forms on X.
On local holomorphic coordinates (z1, . . . , zn) with zj = xj +

√
−1yj , we denote

∂

∂zj
=

1

2

(
∂

∂xj
−
√
−1

∂

∂yj

)
,

∂

∂zj
=

1

2

(
∂

∂xj
+

√
−1

∂

∂yj

)
,

dzj = dxj +
√
−1dyj , dzj = dxj −

√
−1dyj .

(1.4.1)

Then on holomorphic coordinates (z1, . . . , zn), the ∂, ∂̄-operators on functions are defined by

∂f =
∑
j

dzj
∂

∂zj
f, ∂̄f =

∑
j

dzj
∂

∂zj
f for f ∈ C∞(X,C). (1.4.2)

They extend naturally to

∂ : Ω•,•(X) → Ω•+1,•(X), ∂̄ : Ω•,•(X) → Ω•,•+1(X), (1.4.3)

which verify the Leibniz rule (1.2.19) for ∂, ∂̄ and ∂2 = ∂̄2 = 0. Thus we have the decomposition

d = ∂ + ∂̄, ∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0. (1.4.4)

The operator ∂̄ is called the Dolbeault operator.

Definition 1.4.1. A J-invariant Riemannian metric gTX on TX is called a Kähler metric if
Θ = gTX(J ·, ·) is a closed form, i.e., dΘ = 0. In this case, the form Θ is called a Kähler form on
X, and the complex manifold (X, J) is called a Kähler manifold.

Certainly any Kähler manifold is a symplectic manifold. Kähler manifolds are an important
class of symplectic manifolds.

Example 1.4.2. (Projective space) For x, y ∈ Cn+1\{0}, we say x ∼ y if there is λ ∈ C× such
that x = λy. We verify that ∼ is an equivalent relation. Then the complex projective space
CPn is the quotient space (Cn+1\{0})/ ∼. Let π : Cn+1\{0} → CPn be the natural projection.
For z ∈ Cn+1\{0}, usually we note by [z] = [z0 : · · · : zn] = π(z) which called the homogenous
coordinate on CPn. Let Ui = {[z] ∈ CPn : zi ̸= 0}, then

ψi : Ui → Cn, [z] →
(z0
zi
, . . . ,

ẑi
zi
, . . . ,

zn
zi

)
(1.4.5)

defines holomorphic local coordinates of CPn, where ̂ means we omit the term. Thus CPn is a
complex manifold.

Let ω̃FS be the real 2-form on Cn+1\{0} defined by

ω̃FS,z =

√
−1

2π
∂∂̄ log

(
|z|2
)
=

√
−1

2π
∂∂̄ log

(
|z0|2 + · · ·+ |zn|2

)
=

√
−1

2π

(∑n
j=0 dzj ∧ dzj

|z|2
−
∑n
j=0 zjdzj ∧

∑n
k=0 zkdzk

|z|4

)
, (1.4.6)
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with |z|2 =
∑n
j=0 |zj |2.

Let U ⊂ CPn be an open set and φ : U → Cn+1\{0} a lifting of U , i.e., a holomorphic map
with π ◦ φ = IdU . Then φ

∗ω̃FS does not depend on the lifting φ. In fact, if φ1 : U → Cn+1\{0}
is another lifting, then for [z] ∈ U , there exists a holomorphic function f : U → C× such that
φ1([z]) = f([z])φ([z]). As ∂, ∂̄ commute with φ1, φ, we get

φ∗
1ω̃FS =

√
−1

2π
∂∂̄ log

(
|φ1([z])|2

)
= φ∗ω̃FS +

√
−1

2π
∂∂̄ log

(
|f |2

)
. (1.4.7)

But ∂∂̄ log
(
|f |2

)
= ∂(f

−1
∂̄ f) = 0 as f is a holomorphic function. Thus φ∗ω̃FS defines a global

differential form ωFS on CPn. As ω̃FS is closed, we know dωFS = φ∗dω̃FS = 0, thus ωFS is
closed.

To verify that ωFS is positive, by symmetric on the coordinates, we only need to verify it on
ψ0 : U0 → Cn, ψ0([z]) = (w1, . . . , wn) = w with wi =

zi
z0
. Now for the lifting φ : U0 → Cn+1\{0},

φ(w) = (1, w), we get for the coordinate ψ0,

ωFS =

√
−1

2π
∂∂̄ log

(
1 + |w|2

)
=

√
−1

2π
∂
(∑

j wjdwj

1 + |w|2
)

=

√
−1

2π

(∑
j dwj ∧ dwj
1 + |w|2

−
∑
j wjdwj ∧

∑
k wkdwk

(1 + |w|2)2
)
. (1.4.8)

Using the Cauchy-Schwarz inequality |w|2|u|2 ≥ |
∑n
j=1 ujwj |2, we know ωFS is positive, i.e.,

ωFS(u, u) > 0 for 0 ̸= u ∈ T (1,0)CPn.
Thus (CPn, ωFS) is symplectic, and ωFS is so-called Fubini-Study form on CPn.
Let

i : [z0 : z1] ∈ CP1 → [z0 : z1 : 0 : · · · : 0] ∈ CPn (1.4.9)

be an embedding of CP1 to CPn. Then∫
CP1

i∗ωFS =

√
−1

2π

∫
CP1

∂∂̄ log
(
|z0|2 + |z1|2

)
=

√
−1

2π

∫
C
∂∂̄ log

(
1 + |z|2

)
=

√
−1

2π

∫
C

dzdz

(1 + |z|2)2
=

1

π

∫
R2

dxdy

(1 + x2 + y2)
2 = 1. (1.4.10)

Moreover, by (1.4.8),∫
CPn

ωnFS = n!

(√
−1

2π

)n ∫
Cn

dw1dw1 . . . dwndwn
(1 + |w|2)n+1

= 1. (1.4.11)

Remark 1.4.3. By the result from algebraic topology, [ωFS ] is a generator of H2(CPn,Z), the
2th cohomology group of CPn with Z-coefficient.

1.5 Bibliographic notes

For basic material concerning manifolds, vector bundles and Riemannian geometry we refer to
[23], [54] and [40]. The material of this chapter is very standard. We recommend also two sueful
references on symplectic geometry [18] and on Poisson manifolds [53].

A proof of the Hodge theory, Theorem 1.2.4 can be found in [6, Theorem 3.54], [43, Theorem
1.4.1], [54].

For equivalent conditions on Kähler manifold in Section 1.4, cf. [43, Theorem 1.2.8], [6, §3.6].


