
Chapter 1

Demailly’s holomorphic Morse
inequalities

The first aim of this Chapter is to provide the background material on differential
geometry for the whole book. Then, in the last two sections, we present a heat
kernel proof of Demailly’s holomorphic Morse inequalities, Theorem 1.7.1.

This Chapter is organized as follows. In Section 1.1, we review connections
on vector bundles. In Section 1.2, we explain different connections on the tangent
bundle and their relations. In Section 1.3, we define the modified Dirac operator
for an almost complex manifold and prove the related Lichnerowicz formula. We
explain also the Atiyah-Singer index theorem for the modified Dirac operator. In

Section 1.4, we show that the operator ∂
E

+ ∂
E,∗

is a modified Dirac operator,
and we establish the Lichnerowicz and Bochner-Kodaira-Nakano formulas for the
Kodaira Laplacian. In Section 1.5, we deal with vanishing theorems for positive
line bundles and the spectral gap property for the modified Dirac operator and the
Kodaira Laplacian. In Section 1.6, we establish the asymptotic of the heat kernel
which is the analytic core result of this Chapter. Finally, in Section 1.7, we prove
Demailly’s holomorphic Morse inequalities.

1.1 Connections on vector bundles

In this section, we review the definition on connections and the associated curva-
tures. Section 1.1.1 reviews some general facts on connections on vector bundles,
and we specify them to the holomorphic case in Section 1.1.2.

1.1.1 Connection

Let E be a complex vector bundle over a smooth manifold X. Let TX be the
tangent bundle and T ∗X be the cotangent bundle. Let C∞(X,E) be the space of
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smooth sections of E on X. Let Ωr(X,E) be the spaces of smooth r-forms on X
with values in E, and set C∞(X) := C∞(X,C), Ω•(X) := Ω•(X,C).

Let d : Ω•(X)→ Ω•+1(X) be the exterior differential. It is characterized by
a). d2 = 0; b). for ϕ ∈ C∞(X), dϕ is the one form such that (dϕ)(U) = U(ϕ) for
a vector field U ; c). (Leibniz rule) for any α ∈ Ωq(X), β ∈ Ω(X), then

d(α ∧ β) = dα ∧ β + (−1)qα ∧ dβ. (1.1.1)

Then we verify that for any 1-form α, vector fields U, V on X, we have

dα(U, V ) = U(α(V ))− V (α(U))− α([U, V ]), (1.1.2)

here [U, V ] is the Lie bracket of U and V .
A linear map ∇E : C∞(X,E)→ C∞(X,T ∗X ⊗E) is called a connection on

E if for any ϕ ∈ C∞(X), s ∈ C∞(X,E) and U ∈ TX, we have

∇EU (ϕs) = U(ϕ) s+ ϕ∇EU s . (1.1.3)

Connections on E always exist. Indeed, let {Vk}k an open covering of X such
that E|Vk is trivial. If {ηkl}l is a local frame of E|Vk , any section s ∈ C∞(Vk, E)
has the form s =

∑
l slηkl with uniquely determined sl ∈ C∞(Vk). We define a

connection on E|Vk by ∇Ek s :=
∑
l dsl ⊗ ηkl. Consider now a partition of unity

{ψk}k subordinated to {Vk}k. Then ∇Es :=
∑
k∇Ek (ψks), s ∈ C∞(X,E), defines

a connection on E.
If∇E1 is another connection on E, then by (1.1.3),∇E1 −∇E ∈ Ω1(X,End(E)).
If ∇E is a connection on E, then there exists a unique extension ∇E :

Ω•(X,E)→ Ω•+1(X,E) verifying the Leibniz rule: for α ∈ Ωq(X), s ∈ Ωr(X,E),
we have

∇E(α ∧ s) = dα ∧ s+ (−1)qα ∧∇Es . (1.1.4)

From (1.1.2), for s ∈ C∞(X,E) and vector fields U, V on X, we have

(∇E)2(U, V )s = ∇EU∇EV s−∇EV∇EUs−∇E[U,V ]s . (1.1.5)

Then (∇E)2(U, V )(ϕs) = (∇E)2(U,ϕV )s = (∇E)2(ϕU, V )s = ϕ(∇E)2(U, V )s for
any ϕ ∈ C∞(X). We deduce that:

Theorem and Definition 1.1.1. The operator (∇E)2 defines a bundle morphism
(∇E)2 : E → Λ2(T ∗X)⊗E, called the curvature operator. Therefore, there exists
RE ∈ Ω2(X,End(E)), called the curvature of ∇E, such that (∇E)2 is given by
multiplication with RE, i.e., (∇E)2s = REs ∈ Ω2(X,E) for s ∈ C∞(X,E).

Let hE be a Hermitian metric on E, i.e., a smooth family {hEx }x∈X of
sesquilinear maps hEx : Ex ×Ex → C such that hEx (ξ, ξ) > 0 for any ξ ∈ Ex r {0}.
We call (E, hE) a Hermitian vector bundle on X. There always exist Hermitian
metrics on E by using the partition of unity argument as above.
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Definition 1.1.2. A connection ∇E is said to be a Hermitian connection on (E, hE)
if for any s1, s2 ∈ C∞(X,E),

d〈s1, s2〉hE = 〈∇Es1, s2〉hE + 〈s1,∇Es2〉hE . (1.1.6)

There always exist Hermitian connections. In fact, let ∇E0 be a connection
on E, then 〈∇E1 s1, s2〉hE = d〈s1, s2〉hE −〈s1,∇E0 s2〉hE defines a connection ∇E1 on
E. Now ∇E = 1

2 (∇E0 +∇E1 ) is a Hermitian connection on (E, hE).
Let {ξl}ml=1 be a local frame of E. Denote by h = (hlk = 〈ξk, ξl〉hE ) the matrix

of hE with respect to {ξl}ml=1. The connection form θ = (θlk) of ∇E with respect
to {ξl}ml=1 is defined by, with local 1-forms θlk,

∇Eξk = θlkξl . (1.1.7)

Remark 1.1.3. If E is a real vector bundle on X, certainly, everything still holds,
especially, a connection ∇E is said to be an Euclidean connection on (E, hE) if it
preserves the Euclidean metric hE .

1.1.2 Chern connection

Let E be a holomorphic vector bundle over a complex manifold X. Let hE be a
Hermitian metric on E. We call (E, hE) a holomorphic Hermitian vector bundle.

The almost complex structure J induces a splitting TX ⊗R C = T (1,0)X ⊕
T (0,1)X, where T (1,0)X and T (0,1)X are the eigenbundles of J corresponding to
the eigenvalues

√
−1 and −

√
−1, respectively. Let T ∗(1,0)X and T ∗(0,1)X be the

corresponding dual bundles. Let

Ωr,q(X,E) := C∞(X,Λr(T ∗(1,0)X)⊗ Λq(T ∗(0,1)X)⊗ E)

be the spaces of smooth (r, q)-forms on X with values in E.

The operator ∂
E

: C∞(X,E) → Ω0,1(X,E) is well defined. Any section
s ∈ C∞(X,E) has the local form s =

∑
l ϕlξl where {ξl}ml=1 is a local holomorphic

frame of E and ϕl are smooth functions. We set ∂
E
s =

∑
l(∂ϕl) ξl, here ∂ϕl =∑

j dzj
∂
∂zj

ϕl in holomorphic coordinates (z1, · · · , zn).

Definition 1.1.4. A connection ∇E on E is said to be a holomorphic connection if

∇EUs = iU (∂
E
s) for any U ∈ T (0,1)X and s ∈ C∞(X,E).

Theorem 1.1.5. There exists a unique holomorphic Hermitian connection ∇E on
(E, hE), called the Chern connection . With respect to a local holomorphic frame,
the connection matrix is given by θ = h−1 · ∂h.

Proof. By Definition 1.1.4, we have to define ∇EU just for U ∈ T (1,0)X. Relation
(1.1.6) implies for U ∈ T (1,0)X, s1, s2 ∈ C∞(X,E),

U〈s1, s2〉hE = 〈∇EUs1, s2〉hE + 〈s1,∇EU s2〉hE . (1.1.8)
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Since ∇E
U
s2 = iU (∂

E
s2), the above equation defines ∇EU uniquely. Moreover, if

{ξl}ml=1 is a local holomorphic frame, from (1.1.6) we deduce that θ = h−1 ·∂h. �

Since E is holomorphic, similar to (1.1.4), the operator ∂
E

extends naturally

to ∂
E

: Ω•,•(X,E) −→ Ω•,•+1(X,E) and (∂
E

)2 = 0.
Let ∇E be the holomorphic Hermitian connection on (E, hE). Then we have

a decomposition of ∇E after bidegree

∇E = (∇E)1,0 + (∇E)0,1 , (∇E)0,1 = ∂
E
,

(∇E)1,0 : Ω• , •(X,E) −→ Ω•+1 , •(X,E) .
(1.1.9)

By (1.1.8), (1.1.9) and (∂
E

)2 = 0 we have

(∂
E

)2 =
(
(∇E)1,0

)2
= 0, (∇E)2 = ∂

E
(∇E)1,0 + (∇E)1,0∂

E
. (1.1.10)

Thus the curvature RE ∈ Ω1,1(X,End(E)). If rk(E) = 1, End(E) is trivial and
RE is canonically identified to a (1, 1)-form on X, such that

√
−1RE is real.

In general, let us introduce an auxiliary Riemannian gTX metric on X, com-
patible with the complex structure J (i.e., gTX(·, ·) = gTX(J ·, J ·)). Then RE

induces a Hermitian matrix ṘE ∈ End(T (1,0)X ⊗E) such that for u, v ∈ T (1,0)
x X,

ξ, η ∈ Ex, and x ∈ X,

〈RE(u, v)ξ, η〉hE = 〈ṘE(u⊗ ξ), v ⊗ η〉. (1.1.11)

Definition 1.1.6. We say that (E, hE) is Nakano positive (resp. semi-positive) if
ṘE ∈ End(T (1,0)X ⊗ E) is positive definite (resp. semi-definite), and Griffiths
positive (resp. semi-positive) if 〈RE(v, v)ξ, ξ〉hE = 〈ṘE(v ⊗ ξ), v ⊗ ξ〉 > 0 (resp.

> 0) for all non-zero v ∈ T
(1,0)
x X and all non-zero ξ ∈ Ex. Certainly, these

definitions do not depend on the choice of gTX .

1.2 Connections on the tangent bundle

On the tangent bundle of a complex manifold, we can define several connections:
the Levi-Civita connection, the holomorphic Hermitian (i.e. Chern) connection
and Bismut connection. In this Section, we explain the relation between them. We
shall see that these three connections coincide, if X is a Kähler manifold.

We start by recalling in Section 1.2.1 some facts about the Levi-Civita con-
nection. In Section 1.3.1, we study in detail the holomorphic Hermitian connection
on the tangent bundle. In Section 1.3.2, we define the Bismut connection.

Let (X, J) be a complex manifold with complex structure J and dimCX = n.
Let ThX be the holomorphic tangent bundle on X, and let TX be the correspond-
ing real tangent bundle. Let gTX be any Riemannian metric on TX compatible
with J , i.e. gTX(Ju, Jv) = gTX(u, v) for any u, v ∈ TxX, x ∈ X. We will shortly
express this relation by gTX(J ·, J ·) = gTX(·, ·).
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1.2.1 Levi-Civita connection

The results of the section apply for any Riemannian manifold (X, gTX). We denote
by 〈·, ·〉 the C-bilinear form on TX ⊗R C induced by the metric gTX . Let ∇TX be
the Levi–Civita connection on (TX, gTX). By the explicit equation for

〈
∇TX ·, ·

〉
,

for U, V,W, Y vector fields on X,

2
〈
∇TXU V,W

〉
= U 〈V,W 〉+ V 〈U,W 〉 −W 〈U, V 〉

− 〈U, [V,W ]〉 − 〈V, [U,W ]〉+ 〈W, [U, V ]〉 . (1.2.1)

∇TX is the unique connection on TX which preserves the metric (satisfies (1.1.6))
and is torsion free, i.e.,

∇TXU V −∇TXV U = [U, V ]. (1.2.2)

The curvature RTX ∈ Λ2(T ∗X)⊗ End(TX) of ∇TX is defined by

RTX(U, V ) = ∇TXU ∇TXV −∇TXV ∇TXU −∇TX[U,V ]. (1.2.3)

Then we have the following well know facts

RTX(U, V )W +RTX(V,W )U +RTX(W,U)V = 0,

〈RTX(U, V )W,Y 〉 = 〈RTX(W,Y )U, V 〉.
(1.2.4)

Let {ei}2ni=1 be an orthonormal frame of TX and {ei}2ni=1 its dual basis in
T ∗X. The Ricci curvature Ric and scalar curvature rX of (TX, gTX) are defined
by

Ric = −
∑
j

〈
RTX(·, ej)·, ej

〉
, rX = −

∑
ij

〈
RTX(ei, ej)ei, ej

〉
. (1.2.5)

The Riemannian volume form dvX of (TX, gTX) has the form dvX = e1 ∧
· · · ∧ e2n if the orthonormal frame {ei} is oriented.

If α is a 1-form on X, the function Tr(∇α) is given by the formula

Tr(∇α) =
∑
i ei(α(ei))− α(∇TXei ei). (1.2.6)

The following formula is quite useful.

Proposition 1.2.1. For any C 1 1-form α with compact support, we have∫
X

Tr(∇α)dvX = 0. (1.2.7)

Proof. Let W be the vector field on X corresponding to α under the Riemannian
metric gTX , so that 〈W,Y 〉 = (α, Y ) for any Y ∈ TX.
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We denote by LW the Lie derivative of the vector field W . Recall that for
any vector field Y on X,

LWY = [W,Y ] = ∇TXW Y −∇TXY W. (1.2.8)

Thus by (1.2.8) and
〈
∇TXW ej , ej

〉
= 0, we get

LW dvX =
〈
LW e

j , ej
〉
dvX = −〈ej , LW ej〉 dvX

=
〈
∇TXej W, ej

〉
dvX =

(
ej 〈W, ej〉 −

〈
W,∇TXej ej

〉)
dvX

= Tr(∇α)dvX . (1.2.9)

We will denote by ∧ and i the exterior and interior product respectively.
E. Cartan’s homotopy formula tells us that on the bundle of exterior differentials
Λ(T ∗X),

LW = d · iW + iW · d. (1.2.10)

From (1.2.9) and (1.2.10), we get

0 =

∫
X

LW dvX =

∫
X

Tr(∇α)dvX . (1.2.11)

The proof of Proposition 1.2.1 is complete. �

For x0 ∈ X, W ∈ Tx0
X, let R 3 u → xu = expXx0

(uW ) be the geodesic

in X such that xu|u=0 = x, dxudu |u=0 = W . For ε > 0, we denote by BX(x0, ε)
and BTx0

X(0, ε) the open balls in X and Tx0
X with center x0 and radius ε,

respectively. Then the map Tx0X 3 Z → expXx0
(Z) ∈ X is a diffeomorphism from

BTx0
X(0, ε) onto BX(x0, ε) for ε small enough; by identifying Z =

∑
Ziei ∈ TxX

with (Z1, . . . Z2n) ∈ R2n, it yields a local chart for X around x0, called normal
coordinate system at x0. We will identify BTx0X(0, ε) with BX(x0, ε) by this map.

Let {ei}i be an oriented orthonormal basis of Tx0
X. We also denote by {ei}i

the dual basis of {ei}. Let ẽi(Z) be the parallel transport of ei with respect to
∇TX along the curve [0, 1] 3 u→ uZ. Then ej = ∂

∂Zj
.

The radial vector field R is the vector field defined by R =
∑
i Ziei with

(Z1, · · · , Z2n) the coordinate functions.

Proposition 1.2.2. The following identities hold:

R =
∑
j

Zjej =
∑
j

Zj ẽj(Z),

〈R, ej〉 = Zj .

(1.2.12)

Proof. Note that xu : [0, 1] 3 u → uZ is a geodesic, and R(xu) = udxudu , thus by

the geodesic equation ∇TXdxu
du

dxu
du = 0, we get

∇TXR R = u∇TXdxu
du

(u
dxu
du

) = u
dxu
du

= R. (1.2.13)
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Thus we have

R〈R, ẽj〉 = 〈∇TXR R, ẽj〉+ 〈R,∇TXR ẽj〉 = 〈R, ẽj〉. (1.2.14)

This means that 〈R, ẽj〉 is homogeneous of order one. But

〈R, ẽj〉 =
∑
k

Zk〈ek, ẽj〉 = Zj + O(|Z|2). (1.2.15)

Thus from (1.2.14) and (1.2.15), we infer the first equation of (1.2.12).
Since the Levi-Civita connection ∇TX is torsion free and [R, ei] = −ei, we

have

〈R,∇TXR ei〉 = 〈R,∇TXei R〉+ 〈R, [R, ei]〉 =
1

2
ei〈R,R〉 − 〈R, ei〉. (1.2.16)

From (1.2.13) and (1.2.16), we obtain

R〈R, ei〉 = 〈∇TXR R, ei〉+ 〈R,∇TXR ei〉 =
1

2
ei〈R,R〉 = Zi. (1.2.17)

But 〈R, ei〉 =
∑
j Zj〈ej , ei〉 = Zi + O(|Z|2). Thus we get the second equation of

(1.2.12). �

For α = (α1, · · · , α2n) ∈ N2n, set Zα = Zα1
1 · · ·Z

α2n
2n .

Lemma 1.2.3. If ẽi(Z) is written in the the basis {ei}, its Taylor expansion up
to order r is determined by the Taylor expansion up to order r − 2 of Rmqkl =
〈RTX(eq, em)ek, el〉Z . Moreover we have

ẽi(Z) = ei −
1

6

∑
j

〈
RTXx0

(R, ei)R, ej
〉
x0
ej +

∑
|α|>3

( ∂α

∂Zα
ẽi

)
(0)

Zα

α!
. (1.2.18)

Thus the Taylor expansion up to order r of gij(Z) = gTX(ei, ej)(Z) = 〈ei, ej〉Z is
a polynomial of the Taylor expansion up to order r − 2 of Rmqkl; moreover

gij(Z) = δij +
1

3

〈
RTXx0

(R, ei)R, ej
〉
x0

+ O(|Z|3). (1.2.19)

Proof. Let ΓTX be the connection form of ∇TX with respect to the frame {ẽi} of
TX, then ∇TX = d + ΓTX . Let ∂i = ∇ei be the partial derivatives along ei. By
the definition of our fixed frame, we have iRΓTX = 0. Thus

LRΓTX = [iR, d]ΓTX = iR(dΓTX + ΓTX ∧ ΓTX) = iRR
TX . (1.2.20)

Let θ̃(Z) = (θij(Z))2n
i,j=1 be the 2n× 2n-matrix such that

ei =
∑
j

θji (Z)ẽj(Z), ẽj(Z) = (θ̃(Z)−1)kj ek. (1.2.21)
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Set θj(Z) =
∑
i θ
j
i (Z)ei and

θ =
∑
j

ej ⊗ ej =
∑
j

θj ẽj ∈ T ∗X ⊗ TX. (1.2.22)

As ∇TX is torsion free, ∇TXθ = 0, thus the R2n-valued 1-form θ = (θj(Z))
satisfies the structure equation,

dθ + ΓTX ∧ θ = 0. (1.2.23)

Observe first that under our trivialization by {ẽi}, by (1.2.12), for the R2n-valued
function iRθ,

iRθ =
∑
j

Zjej = (Z1, · · · , Z2n) =: Z. (1.2.24)

Substituting (1.2.12), (1.2.24) and (LR − 1)Z = 0, into the identity iR(dθ +
ΓTX ∧ θ) = 0, from (1.2.20), we obtain

(LR − 1)LRθ = (LR − 1)(dZ + ΓTXZ) = (LRΓTX)Z = (iRR
TX)Z. (1.2.25)

Where we consider the curvature RTX as a matrix of two forms and θ is a R2n-
valued one form. The i-th component of RTXZ, θ is

〈
RTXR, ẽi

〉
, θi, from (1.2.25),

we get

iej (LR − 1)LRθ
i(Z) =

〈
RTX(R, ej)R, ẽi

〉
(Z). (1.2.26)

By (1.2.12), LRe
j = ej . Thus from the Taylor expansion of θij(Z), we get

∑
|α|>1

(|α|2 + |α|)(∂αθij)(0)
Zα

α!
=
〈
RTX(R, ej)R, ẽi

〉
(Z). (1.2.27)

Now by (1.2.21) and θij(x0) = δij , (1.2.27) determines the Taylor expansion

of θij(Z) up to order m in terms of the Taylor expansion of the coefficients of RTX

up to order m− 2. And

(θ̃−1)ij = δij −
1

6

〈
RTXx0

(R, ei)R, ej
〉
x0

+ O(|Z|3). (1.2.28)

By (1.2.21), (1.2.27), we infer (1.2.18).
From (1.2.21),

gij(Z) = θki (Z)θkj (Z). (1.2.29)

Thus the rest of Lemma 1.2.3 follows from (1.2.28) and (1.2.29). The proof of
Lemma 1.2.3 is complete. �
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Let E be a complex vector bundle on X, and let ∇E be a connection on E
with curvature RE := (∇E)2. Let (U , Z1, . . . , Z2n) be a local chart of X such that
0 ∈ U represents x0 ∈ X. SetR =

∑
i Zi

∂
∂Zi

. Now we identify EZ to Ex0
by parallel

transport with respect to the connection ∇E along the curve [0, 1] 3 u→ uZ; this
gives a trivialization of E near 0. We denote by ΓE the connection form with
respect to this trivialization of E near 0. Then in the frame ej = ∂

∂Zj
, ΓE becomes

a function with values in R2n ⊗ End(Crk(E)) and ∇E = d+ ΓE .

Lemma 1.2.4. The Taylor coefficients of ΓE(ej)(Z) at x0 up to order r are deter-
mined by Taylor coefficients of RE up to order r − 1. More precisely,∑

|α|=r

(∂αΓE)x0
(ej)

Zα

α!
=

1

r + 1

∑
|α|=r−1

(∂αRE)x0
(R, ej)

Zα

α!
. (1.2.30)

Especially,

ΓEZ (ej) =
1

2
REx0

(R, ej) + O(|Z|2). (1.2.31)

Proof. By the definition of our fixed frame, we have RE = dΓE + ΓE ∧ ΓE and

iRΓE = 0, LRΓE = [iR, d]ΓE = iR(dΓE + ΓE ∧ ΓE) = iRR
E . (1.2.32)

Using LRdZ
j = dZj and expanding both sides of the second equation of (1.2.32)

in Taylor’s series of at Z = 0, we obtain∑
α

(|α|+ 1)(∂αΓE)x0
(ej)

Zα

α!
=
∑
α

(∂αRE)x0
(R, ej)

Zα

α!
. (1.2.33)

By equating coefficients of Zα of both sides, we get Lemma 1.2.4. �

1.2.2 Chern connection

Recall that T (1,0)X is a holomorphic vector bundle with Hermitian metric hT
(1,0)X

induced by gTX . The map ThX 3 Y → 1
2 (Y −

√
−1JY ) ∈ T (1,0)X induces the

natural identification of ThX and T (1,0)X.
We will denote by 〈·, ·〉 the C-bilinear form on TX ⊗R C induced by gTX .

Note that 〈·, ·〉 vanishes on T (1,0)X × T (1,0)X and on T (0,1)X × T (0,1)X.
For U ∈ TX⊗RC, we will denote by U (1,0), U (0,1) its components in T (1,0)X

and T (0,1)X. Let {wj}nj=1 be a local orthonormal frame of T (1,0)X with dual frame

{wj}nj=1. Then

e2j−1 = 1√
2
(wj + wj) and e2j =

√
−1√
2

(wj − wj) , j = 1, . . . , n , (1.2.34)

form an orthonormal frame of TX. We fix this notation throughout the book and
use it without further notice.
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Let ∇T (1,0)X be the holomorphic Hermitian connection on (T (1,0)X,hT
(1,0)X)

with curvatureRT
(1,0)X . For v ∈ C∞(X,T (0,1)X), we define∇T (0,1)Xv := ∇T (1,0)Xv.

Then ∇T (0,1)X defines a connection on T (0,1)X. Set

∇̃TX = ∇T
(1,0)X ⊕∇T

(0,1)X . (1.2.35)

Then ∇̃TX is a connection on TX ⊗R C and it preserves TX; we still denote by
∇̃TX the induced connection on TX. Then ∇̃TX preserves the metric gTX .

Let T be the torsion of the connection ∇̃TX . Then T ∈ Λ2(T ∗X) ⊗ TX is
defined by

T (U, V ) = ∇̃TXU V − ∇̃TXV U − [U, V ], (1.2.36)

for vector fields U and V on X. Hence

T maps T (1,0)X ⊗ T (1,0)X (resp. T (0,1)X ⊗ T (0,1)X) into T (1,0)X

(resp. T (0,1)X) and vanishes on T (1,0)X ⊗ T (0,1)X.
(1.2.37)

Set
S = ∇̃TX −∇TX , S =

∑
i

S(ei)ei. (1.2.38)

Then S is a real 1-form on X taking values in the skew-adjoint endomorphisms of
TX. Since ∇TX is torsion free, we have for U, V ∈ TX,

T (U, V ) = S(U)V − S(V )U. (1.2.39)

Moreover, from (1.2.1), (1.2.36) and (1.2.38) and ∇TX preserves gTX , we obtain
directly

2 〈S(U)V,W 〉 − 〈T (U, V ),W 〉 − 〈T (W,U), V 〉+ 〈T (V,W ), U〉 = 0. (1.2.40)

By (1.2.37), (1.2.39) and (1.2.40), we get

〈S(wi)wk, wj〉 = 0,

2 〈S(wi)wk, wj〉 = 2 〈S(wk)wi, wj〉 = −〈T (wi, wj), wk〉 .
(1.2.41)

Since T (wi, wj) = 0, S(wj)wi = S(wi)wj , and so

S = 2S(wj)wj = 〈T (wi, wj), wj〉wi + 〈T (wi, wj), wj〉wi
= 〈T (ei, ej), ej〉 ei,

2 〈S(·)wj , wj〉 = 〈T (wi, wj), wj〉wi − 〈T (wi, wj), wj〉wi.
(1.2.42)

The connection ∇̃TX on TX induces naturally a covariant derivative on the
exterior bundle Λ(T ∗X) and we still denote it by ∇̃TX . For any differential forms
α, β and vector field Y , it satisfies

∇̃TXY (α ∧ β) = (∇̃TXY α) ∧ β + α ∧ ∇̃TXY β. (1.2.43)
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For a 1-form α and vector fields U, V , we have (∇̃TXU α, V ) = U(α, V )−(α, ∇̃TXU V ).
Likewise, ∇TX induces naturally a connection ∇TX on Λ(T ∗X).

We denote also by ε the exterior product T ∗X ⊗ Λ•(T ∗X)→ Λ•+1(T ∗X).

Lemma 1.2.5. For the exterior differentiation operator d acting on smooth sections
of Λ(T ∗X), we have

d = ε ◦ ∇̃TX + iT , d = ε ◦ ∇TX . (1.2.44)

Proof. We denote by d := ε ◦ ∇̃TX + iT . Then by using (1.2.43), we know that for
any homogeneous differential forms α, β, we have

d(α ∧ β) = (dα) ∧ β + (−1)degαα ∧ dβ. (1.2.45)

From Leibniz’s rule (1.2.45), it suffices to show that d agrees with d on functions
(which is clear) and 1–forms. Now, for any smooth function f on X, we have

ε ◦ ∇̃TXdf = ei ∧ ej〈∇̃TXei df, ej〉

= ei ∧ ej
(
ei(ej(f))− 〈df, ∇̃TXei ej〉

)
=

1

2
ei ∧ ej

(
ei(ej(f))− 〈df, ∇̃TXei ej〉 −

(
ej(ei(f))− 〈df, ∇̃TXej ei〉

))
= −1

2
ei ∧ ej〈df, T (ei, ej)〉 = −iT df.

(1.2.46)

Thus d coincides also d on 1–forms. Thus we get the first equation of (1.2.44). As
∇TX is torsion free, from the above argument, we obtain the second equation of
(1.2.44). �

If B ∈ Λ2(T ∗X)⊗ TX we will denote by Bas the anti-symmetrization of the
tensor V,W, Y → 〈B(V,W ), Y 〉. Then

Bas(V,W, Y ) = 〈B(V,W ), Y 〉 − 〈B(V, Y ),W 〉 − 〈B(Y,W ), V 〉. (1.2.47)

Especially from (1.2.37), we infer

Tas =
1

2
〈T (ei, ej), ek〉ei ∧ ej ∧ ek

=
1

2
〈T (wi, wj), wk〉wi ∧ wj ∧ wk +

1

2
〈T (wi, wj), wk〉wi ∧ wj ∧ wk

=: T (1,0)
as + T (0,1)

as .

(1.2.48)

Here T
(1,0)
as , T

(0,1)
as are the anti-symmetrizations of the component T (1,0), T (0,1) of

T in T (1,0)X and T (0,1)X.
Let Θ be the real (1, 1)-form defined by

Θ(X,Y ) = gTX(JX, Y ). (1.2.49)
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Note that the exterior differentiation operator d acting on smooth sections
of Λ(T ∗X) has the decomposition

d = ∂ + ∂. (1.2.50)

Proposition 1.2.6. We have the identity of 3–forms on X,

Tas = −
√
−1(∂ − ∂)Θ. (1.2.51)

Proof. By (1.2.34), we know that Θ =
√
−1
∑
i w

i ∧ wi. Thus

∇̃TXΘ =
√
−1((∇̃TXwi) ∧ wi + wi ∧ ∇̃TXwi)

=
√
−1
(
−〈∇̃TXwi, wj〉 − 〈wi, ∇̃TXwj〉

)
wi ∧ wj = 0.

(1.2.52)

From (1.2.44), (1.2.48) and (1.2.52) we have

dΘ = iTΘ =
√
−1(T (1,0)

as − T (0,1)
as ). (1.2.53)

The relations (1.2.48) and (1.2.53) yield

∂Θ =
√
−1T (1,0)

as , ∂Θ = −
√
−1T (0,1)

as . (1.2.54)

(1.2.54) imply (1.2.51). �

Definition 1.2.7. We call Θ as in (1.2.49) a Hermitian form on X and (X,Θ, gTX) a
complex Hermitian manifold. The metric gTX = Θ(·, J ·) on TX is called a Kähler
metric if Θ is a closed form, i.e. dΘ = 0. In this case, the form Θ is called a Kähler
form on X, and the complex manifold (X, J) is called a Kähler manifold.

Let ∇XJ ∈ T ∗X⊗End(TX) be the covariant derivative of J induced by the
Levi-Civita connection ∇TX .

Theorem 1.2.8. (X, J,Θ) is Kähler if and only if the bundle T (1,0)X and T (0,1)X
are preserved by the Levi-Civita connection ∇TX , or in other words, if and only
if ∇XJ = 0. In this case,

∇TX = ∇̃TX , S = 0, T = 0. (1.2.55)

Proof. As Θ is a (1, 1)-form, by (1.2.41), (1.2.48) and (1.2.51), dΘ = 0 is equivalent
to Tas = 0 and equivalent to S(wk)wi ∈ T (1,0)X for any i, k. But this means
that the bundles T (1,0)X and T (0,1)X are preserved by ∇TX . Hence (1.2.55) is
equivalent to (X,Θ) being Kähler.
Moreover, as J acts by multiplication with

√
−1 on T (1,0)X, we get for U ∈ TX,

〈S(U)wi, wj〉 = −
〈
∇TXU wi, wj

〉
= −1

2

〈
∇TXU (1−

√
−1J)wi, wj

〉
=

1

2

√
−1
〈
(∇XU J)wi, wj

〉
,

(1.2.56)
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by (1.2.38). Now, from J2 = −1 we deduce

J(∇XJ) + (∇XJ)J = 0. (1.2.57)

This means that (∇XJ) exchanges T (1,0)X and T (0,1)X. By (1.2.44) and (1.2.56),
∇XJ = 0 is equivalent to S(wk)wi ∈ T (1,0)X for any i, k. The proof of Theorem
1.2.8 is complete. �

1.2.3 Bismut connection

Let SB denote the 1-form with values in the antisymmetric elements of End(TX)
which satisfies for U, V,W ∈ TX,

〈SB(U)V,W 〉 =

√
−1

2

(
(∂ − ∂)Θ

)
(U, V,W ) = −1

2
Tas(U, V,W ). (1.2.58)

By (1.2.40), (1.2.47), (1.2.58), we have for U, V,W ∈ TX,〈
(SB − S)(U)V,W

〉
= −

〈
T (U, V ),W

〉
+
〈
T (U,W ), V

〉
. (1.2.59)

Relations (1.2.41), (1.2.48) and (1.2.58) yield

〈SB(ej)ωl, ωm〉 = −1

2
〈T (ej , ωl), ωm〉+

1

2
〈T (ej , ωm), ωl〉

= −〈S(ej)ωl, ωm〉,

〈SB(ej)ωl, ωm〉 = −1

2
〈T (ωl, ωm), ej〉 = 〈S(ej)ωl, ωm〉.

(1.2.60)

Definition 1.2.9. The Bismut connection ∇B on TX is defined by

∇B := ∇TX + SB = ∇̃TX + SB − S. (1.2.61)

In view of (1.2.58), the torsion of ∇B is 2SB which is a skew-symmetric
tensor.

The connection ∇B will be used in the Lichnerowicz formula (1.4.29).

Lemma 1.2.10. The connection ∇B preserves the complex structure of TX.

Proof. Using (1.2.60), we find that for V,W ∈ T (1,0)X,
〈
(SB − S)(U)V,W

〉
= 0,

for any U ∈ TX. Equivalently, (SB − S)(U) is a complex endomorphism of TX.
Using (1.2.61), we find that ∇B preserves the complex structure of TX. �

1.3 Spinc Dirac operator

This Section is organized as follows. In Section 1.3.1, we define the Clifford con-
nection. In Section 1.3.2, we define the spinc Dirac operator on a complex manifold
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and prove the related Lichnerowicz formula. In Section 1.3.3, we obtain the Lich-
nerowicz formula for the modified Dirac operator. In Section 1.3.4, we explain also
the Atiyah-Singer index theorem for the modified Dirac operator.

In this Section, we work on a smooth manifold with an almost complex
structure J .

1.3.1 Clifford connection

Let (X, J) be a smooth manifold with J an almost complex structure on TX.

Let gTX be any Riemannian metric on TX compatible with J . Let hΛ0,•
be the

Hermitian metric on Λ(T ∗(0,1)X) induced by gTX .
The fundamental Z2 spinor bundle induced by J is given by Λ(T ∗(0,1)X),

and its Z2-grading is defined by Λ(T ∗(0,1)X) = Λeven(T ∗(0,1)X)⊕Λodd(T ∗(0,1)X).
For any v ∈ TX with decomposition v = v(1,0) + v(0,1) ∈ T (1,0)X ⊕ T (0,1)X, let
v(1,0),∗ ∈ T ∗(0,1)X be the metric dual of v(1,0). Then

c(v) =
√

2(v(1,0),∗ ∧ − iv(0,1)) (1.3.1)

defines the Clifford action of v on Λ(T ∗(0,1)X), where ∧ and i denote the exterior
and interior product, respectively. We verify easily that for U, V ∈ TX,

c(U)c(V ) + c(V )c(U) = −2〈U, V 〉. (1.3.2)

For a skew-adjoint endomorphism A of TX, from (1.3.1), using the notation of
(1.2.34),

1

4
〈Aei, ej〉c(ei)c(ej) = −1

2

〈
Awj , wj

〉
+
〈
Awl, wm

〉
wm ∧ iwl

+
1

2

〈
Awl, wm

〉
iwl iwm +

1

2

〈
Awl, wm

〉
wl ∧ wm ∧ .

(1.3.3)

Let ∇det be a Hermitian connection on det(T (1,0)X) endowed with metric

induced by gTX . Let Rdet be its curvature. Let PT
(1,0)X be the natural projection

from TX ⊗R C onto T (1,0)X. Then the connection ∇1,0 = PT
(1,0)X∇TXPT (1,0)X

on T (1,0)X induces naturally a connection ∇det1 on det(T (1,0)X).
Let ΓTX ∈ T ∗X ⊗ End(TX), Γdet be the connection forms of ∇TX , ∇det

associated to the frames {ej}, w1 ∧ · · · ∧ wn, i.e.

∇TXei ej = ΓTX(ei)ej , ∇det(w1 ∧ · · · ∧ wn) = Γdetw1 ∧ · · · ∧ wn,

∇det1(w1 ∧ · · · ∧ wn) =
(∑

j〈Γ
TXwj , wj〉

)
w1 ∧ · · · ∧ wn.

(1.3.4)

The Clifford connection ∇Cl on Λ(T ∗(0,1)X) is defined for the frame {wj1 ∧
· · · ∧ wjk , 1 6 j1 < · · · < jk 6 n} by the local formula

∇Cl = d+
1

4

〈
ΓTXei, ej

〉
c(ei)c(ej) +

1

2
Γdet. (1.3.5)
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Proposition 1.3.1. ∇Cl defines a Hermitian connection on Λ(T ∗(0,1)X) and pre-
serves its Z2-grading. For any V,W vector fields of TX on X, we have[

∇Cl
V , c(W )

]
= c(∇TXV W ). (1.3.6)

Proof. At first, by (1.3.4) and (1.3.5), we have

[
∇Cl
V , c(ek)

]
=

1

4

[〈
ΓTX(V )ei, ej

〉
c(ei)c(ej), c(ek)

]
=
〈
ΓTX(V )ek, ej

〉
c(ej) = c(∇TXV ek).

(1.3.7)

Thus if ∇Cl is well defined, we get (1.3.6) from (1.3.7).
Now we observe that c(wj1) · · · c(wjk) 1, (1 6 j1 < · · · < jk 6 n) generate

a frame of Λ(T ∗(0,1)X). Taking into account (1.3.7), to verify that ∇Cl does not
depend on the choice of our frame {wj}nj=1, we only need to verify that ∇Cl1 is
well defined.

Relations (1.2.38), (1.3.3), (1.3.4) and (1.3.5) entail

∇Cl = d+
1

2
(∇det −∇det1) +

〈
ΓTXwl, wm

〉
wm ∧ iwl

− 1

2

〈
Swl, wm

〉
iwl iwm −

1

2

〈
Swl, wm

〉
wl ∧ wm ∧ .

(1.3.8)

From (1.3.8), we know

∇Cl1 =
1

2
(∇det −∇det1)− 1

2

∑
lm

〈
Swl, wm

〉
wl ∧ wm. (1.3.9)

Clearly, ∇det − ∇det1 is a 1–form on X, and the right hand side of (1.3.9) does
not depend on the choice of the frame wj . Thus ∇Cl1 is well defined.

Let c(ei)
∗ be the adjoint of c(ei) with respect to the Hermitian product on

Λ(T ∗(0,1)X). By (1.3.1), we have

c(ei)
∗ = −c(ei). (1.3.10)

Using (1.3.5), (1.3.10) and the anti–symmetry of
〈
ΓTXei, ej

〉
in i, j, we see

that ∇Cl preserves the Hermitian metric on Λ(T ∗(0,1)X).
Finally, from (1.3.5), ∇Cl preserves the Z2-grading on Λ(T ∗(0,1)X). The proof

of Proposition 1.3.1 is complete. �

Let RCl be the curvature of ∇Cl.

Proposition 1.3.2. We have the following identity :

RCl =
1

4

〈
RTXei, ej

〉
c(ei)c(ej) +

1

2
Rdet. (1.3.11)
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Proof. At first, observe that if i, j, k, l are different, then [c(ei)c(ej), c(ek)c(el)] = 0.
Thus from (1.3.2),[〈

ΓTX(W )ei, ej
〉
c(ei)c(ej),

〈
ΓTX(V )ek, el

〉
c(ek)c(el)

]
= 4

∑
i 6=j 6=k

〈
ΓTX(W )ei, ej

〉〈
ΓTX(V )ek, ej

〉
[c(ei)c(ej), c(ek)c(ej)]

= 4
〈
ΓTX(W )ei,Γ

TX(V )ek
〉
(c(ei)c(ek)− c(ek)c(ei))

= 4
〈
(ΓTX ∧ ΓTX)(W,V )ei, ek

〉
c(ei)c(ek). (1.3.12)

Moreover, we have

RTX = dΓTX + ΓTX ∧ ΓTX , (1.3.13)

RCl(el, em) = ∇Cl
el
∇Cl
em −∇

Cl
em∇

Cl
el
−∇Cl

[el,em].

Finally, (1.3.5), (1.3.12) and (1.3.13) yield (1.3.11). �

1.3.2 Dirac operator and Lichnerowicz formula

Let (E, hE) be a Hermitian vector bundle on X. Let∇E be a Hermitian connection
on (E, hE) with curvature RE .

Set Eq = Λq(T ∗(0,1)X)⊗E, E = ⊕nq=0E
q. We still denote by ∇Cl the connec-

tion on Λ(T ∗(0,1)X) ⊗ E induced by ∇Cl and ∇E . Let Ω0,q(X,E) := C∞(X,Eq)
be the set of smooth sections of Eq on X.

Along the fibers of Λ(T ∗(0,1)X) ⊗ E, we consider the pointwise Hermitian
product 〈·, ·〉Λ0,•⊗E induced by gTX and hE . The L2–scalar product on Ω0,•(X,E)
is given by

〈s1, s2〉 =

∫
X

〈s1(x), s2(x)〉Λ0,•⊗E dvX(x) . (1.3.14)

We denote the corresponding norm with ‖·‖L2 , and by L2(X,Λ(T ∗(0,1)X) ⊗ E)
or L2

0,•(X,E), the L2 completion of Ω0,•
0 (X,E), the subspace of Ω0,•(X,E) with

compact support.

Definition 1.3.3. The spinc Dirac operator Dc is defined by

Dc =

2n∑
j=1

c(ej)∇Cl
ej : Ω0,•(X,E) −→ Ω0,•(X,E) . (1.3.15)

By Proposition 1.3.1 and (1.3.1),Dc interchanges Ω0,even(X,E) and Ω0,odd(X,E).
We denote by

Dc
+ = Dc|Ω0,even(X,E), Dc

− = Dc|Ω0,odd(X,E). (1.3.16)

Lemma 1.3.4. Dc is a formally self–adjoint, first order elliptic differential operator
on Ω0,•(X,E).


