Proof. Let $s_{1}, s_{2} \in \Omega^{0, \bullet}(X, E)$ with compact support and let α be the 1-form on X given by $\alpha(Y)=\left\langle c(Y) s_{1}, s_{2}\right\rangle_{\Lambda^{0}, \bullet E E}$, for any vector field Y on X. Proposition 1.3.1 and (1.3.10) imply that for $x \in X$,

$$
\begin{equation*}
\left\langle s_{1}, D^{c} s_{2}\right\rangle_{\Lambda^{0}, \bullet E, x}=\left\langle D^{c} s_{1}, s_{2}\right\rangle_{\Lambda^{0}, \bullet E, x}-\operatorname{Tr}(\nabla \alpha)_{x} \tag{1.3.17}
\end{equation*}
$$

The integral over X of the last term vanishes by Proposition 1.2.1. Thus D^{c} is formally self-adjoint.

For $\zeta \in T^{*} X$, let $\zeta^{*} \in T X$ be the metric dual of ζ. The principal symbol $\sigma\left(D^{c}\right)$ of D^{c} is

$$
\begin{equation*}
\sigma\left(D^{c}\right)(\zeta)=\sqrt{-1} c\left(\zeta^{*}\right) \tag{1.3.18}
\end{equation*}
$$

By (1.3.2), $\left(\sigma\left(D^{c}\right)(\zeta)\right)^{2}=|\zeta|^{2}$, which means, that $\sigma\left(D^{c}\right)(\zeta)$ is invertible for any $\zeta \neq 0$. Thus D^{c} is a first order elliptic differential operator.

Let $\left(F, h^{F}\right)$ be a Hermitian vector bundle on X and let ∇^{F} be a Hermitian connection on F. Then the usual Bochner Laplacians Δ^{F}, Δ are defined by

$$
\begin{equation*}
\Delta^{F}:=-\sum_{i=1}^{2 n}\left(\left(\nabla_{e_{i}}^{F}\right)^{2}-\nabla_{\nabla_{e_{i}}^{T X}}^{F} e_{i}\right), \quad \Delta=\Delta^{\mathbb{C}} \tag{1.3.19}
\end{equation*}
$$

Let $s_{1}, s_{2} \in \mathscr{C}^{\infty}(X, F)$, with compact support and let α be the 1-form on X given by $\alpha(Y)(x)=\left\langle\nabla_{Y}^{F} s_{1}, s_{2}\right\rangle(x)$, for any $Y \in T_{x} X$. Then by (1.2.6), (1.2.7), we get the following useful equation :

$$
\begin{align*}
\int_{X}\left\langle\Delta^{F} s_{1}, s_{2}\right\rangle d v_{X} & =\int_{X}\left\langle\nabla^{F} s_{1}, \nabla^{F} s_{2}\right\rangle d v_{X}-\int_{X} \operatorname{Tr}(\nabla \alpha) d v_{X} \tag{1.3.20}\\
& =\int_{X}\left\langle\nabla^{F} s_{1}, \nabla^{F} s_{2}\right\rangle d v_{X}
\end{align*}
$$

We denote by Δ^{Cl} the Bochner Laplacian on $\Lambda\left(T^{*(0,1)} X\right) \otimes E$ associated to ∇^{Cl} as in (1.3.19). Now we prove the Lichnerowicz formula for D^{c}.

Theorem 1.3.5.

$$
\begin{equation*}
\left(D^{c}\right)^{2}=\Delta^{C l}+\frac{r^{X}}{4}+\frac{1}{2}\left(R^{E}+\frac{1}{2} R^{\mathrm{det}}\right)\left(e_{i}, e_{j}\right) c\left(e_{i}\right) c\left(e_{j}\right) \tag{1.3.21}
\end{equation*}
$$

Proof. By (1.3.2), (1.3.6) and (1.3.15),

$$
\begin{align*}
\left(D^{c}\right)^{2}= & \frac{1}{2} \sum_{i j}\left\{c\left(e_{i}\right) \nabla_{e_{i}}^{\mathrm{Cl}} c\left(e_{j}\right) \nabla_{e_{j}}^{\mathrm{Cl}}+c\left(e_{j}\right) \nabla_{e_{j}}^{\mathrm{Cl}} c\left(e_{i}\right) \nabla_{e_{i}}^{\mathrm{Cl}}\right\} \\
= & \frac{1}{2} \sum_{i j}\left\{\left(c\left(e_{i}\right) c\left(e_{j}\right)+c\left(e_{j}\right) c\left(e_{i}\right)\right) \nabla_{e_{i}}^{\mathrm{Cl}} \nabla_{e_{j}}^{\mathrm{Cl}}+c\left(e_{i}\right)\left[\nabla_{e_{i}}^{\mathrm{Cl}}, c\left(e_{j}\right)\right] \nabla_{e_{j}}^{\mathrm{Cl}}\right. \\
& \left.+c\left(e_{j}\right)\left[\nabla_{e_{j}}^{\mathrm{Cl}}, c\left(e_{i}\right)\right] \nabla_{e_{i}}^{\mathrm{Cl}}+c\left(e_{j}\right) c\left(e_{i}\right)\left[\nabla_{e_{j}}^{\mathrm{Cl}}, \nabla_{e_{i}}^{\mathrm{Cl}}\right]\right\} \tag{1.3.22}\\
= & -\sum_{i}\left(\nabla_{e_{i}}^{\mathrm{Cl}}\right)^{2}+\sum_{i j k}\left\langle\nabla_{e_{i}}^{T X} e_{j}, e_{k}\right\rangle c\left(e_{i}\right) c\left(e_{k}\right) \nabla_{e_{j}}^{\mathrm{Cl}} \\
& +\frac{1}{2} \sum_{i j} c\left(e_{j}\right) c\left(e_{i}\right)\left[\nabla_{e_{j}}^{\mathrm{Cl}}, \nabla_{e_{i}}^{\mathrm{Cl}}\right] .
\end{align*}
$$

But we have

$$
\begin{equation*}
\left\langle\nabla_{e_{i}}^{T X} e_{j}, e_{k}\right\rangle=-\left\langle e_{j}, \nabla_{e_{i}}^{T X} e_{k}\right\rangle \tag{1.3.23}
\end{equation*}
$$

In view of (1.3.2), (1.3.23), we obtain

$$
\begin{align*}
& \left\langle\nabla_{e_{i}}^{T X} e_{j}, e_{k}\right\rangle c\left(e_{i}\right) c\left(e_{k}\right) \nabla_{e_{j}}^{\mathrm{Cl}}=-c\left(e_{i}\right) c\left(e_{k}\right) \nabla_{\nabla_{e_{i}}^{T X} e_{k}}^{\mathrm{Cl}} \\
& \quad=\nabla_{\nabla_{e_{i}}^{T X} e_{i}}^{\mathrm{Cl}}-\frac{1}{2} \sum_{i \neq k} c\left(e_{i}\right) c\left(e_{k}\right)\left(\nabla_{e_{e_{i}}^{T X} e_{k}}^{\mathrm{Cl}}-\nabla_{\nabla_{e_{k}}^{T X} e_{i}}^{\mathrm{Cl}}\right) \tag{1.3.24}\\
& \quad=\nabla_{\nabla_{e_{i}}^{T X} e_{i}}^{\mathrm{Cl}}-\frac{1}{2} c\left(e_{i}\right) c\left(e_{k}\right) \nabla_{\left[e_{i}, e_{k}\right]}^{\mathrm{Cl}} .
\end{align*}
$$

Comparing to (1.3.13), we have here

$$
\begin{equation*}
\left(R^{\mathrm{Cl}}+R^{E}\right)\left(e_{l}, e_{m}\right)=\nabla_{e_{l}}^{\mathrm{Cl}} \nabla_{e_{m}}^{\mathrm{Cl}}-\nabla_{e_{m}}^{\mathrm{Cl}} \nabla_{e_{l}}^{\mathrm{Cl}}-\nabla_{\left[e_{l}, e_{m}\right]}^{\mathrm{Cl}} . \tag{1.3.25}
\end{equation*}
$$

(1.3.22)-(1.3.25) yield

$$
\begin{equation*}
\left(D^{c}\right)^{2}=-\sum_{i}\left(\left(\nabla_{e_{i}}^{\mathrm{Cl}}\right)^{2}-\nabla_{\nabla_{e_{i}}^{T X} e_{i}}^{\mathrm{Cl}}\right)+\frac{1}{2} c\left(e_{j}\right) c\left(e_{i}\right)\left(R^{\mathrm{Cl}}+R^{E}\right)\left(e_{j}, e_{i}\right) \tag{1.3.26}
\end{equation*}
$$

To simplify the notation, set

$$
\begin{equation*}
R_{i j k l}:=\left\langle R^{T X}\left(e_{j}, e_{i}\right) e_{k}, e_{l}\right\rangle \tag{1.3.27}
\end{equation*}
$$

By Proposition 1.3.2, we get

$$
\begin{align*}
c\left(e_{j}\right) c\left(e_{i}\right) R^{\mathrm{Cl}}\left(e_{j}, e_{i}\right)= & -\frac{1}{4} R_{i j k l} c\left(e_{i}\right) c\left(e_{j}\right) c\left(e_{k}\right) c\left(e_{l}\right) \tag{1.3.28}\\
& +\frac{1}{2} c\left(e_{i}\right) c\left(e_{j}\right) R^{\mathrm{det}}\left(e_{i}, e_{j}\right)
\end{align*}
$$

By the second equation of (1.2.4) and (1.3.2),

$$
\sum_{i \neq k \neq j} R_{i j k l} c\left(e_{i}\right) c\left(e_{j}\right) c\left(e_{k}\right)=2 \sum_{i<j<k}\left(R_{i j k l}+R_{j k i l}+R_{k i j l}\right) c\left(e_{i}\right) c\left(e_{j}\right) c\left(e_{k}\right)=0
$$

Thus

$$
\begin{align*}
R_{i j k l} c\left(e_{i}\right) c\left(e_{j}\right) c\left(e_{k}\right) c\left(e_{l}\right) & =-R_{i j j l} c\left(e_{i}\right) c\left(e_{l}\right)+R_{i j i l} c\left(e_{j}\right) c\left(e_{l}\right) \tag{1.3.29}\\
& =2 c\left(e_{j}\right) c\left(e_{l}\right) R_{i j i l}=-2 R_{i j i j}
\end{align*}
$$

In the last equation of (1.3.29), we use that $R_{i j i l}$ is symmetric in j, l (which follows by the first equation of (1.2.4)). By (1.2.5) and (1.3.27), we get the right hand side of the (1.3.29) equals $-2 r^{X}$. Hence (1.3.26)-(1.3.29) imply (1.3.21).

1.3.3 Modified Dirac operator

For any $\mathbb{Z}_{2^{-}}$graded vector space $V=V^{+} \oplus V^{-}$, the natural $\mathbb{Z}_{2^{-}}$-grading on $\operatorname{End}(V)$ is defined by
$\operatorname{End}(V)^{+}=\operatorname{End}\left(V^{+}\right) \oplus \operatorname{End}\left(V^{-}\right), \quad \operatorname{End}(V)^{-}=\operatorname{Hom}\left(V^{+}, V^{-}\right) \oplus \operatorname{Hom}\left(V^{-}, V^{+}\right)$, and we define $\operatorname{deg} B=0$ for $B \in \operatorname{End}(V)^{+}$, and $\operatorname{deg} B=1$ for $B \in \operatorname{End}(V)^{-}$. For $B, C \in \operatorname{End}(V)$, we define their supercommutator (or graded Lie bracket) by

$$
\begin{equation*}
[B, C]=B C-(-1)^{\operatorname{deg} B \cdot \operatorname{deg} C} C B \tag{1.3.30}
\end{equation*}
$$

For $B, B^{\prime}, C \in \operatorname{End}(V)$, the Jacobi identity holds:

$$
\begin{align*}
&(-1)^{\operatorname{deg} C \cdot \operatorname{deg} B^{\prime}}\left[B^{\prime},[B, C]\right]+(-1)^{\operatorname{deg} B^{\prime} \cdot \operatorname{deg} B}\left[B,\left[C, B^{\prime}\right]\right] \\
&+(-1)^{\operatorname{deg} B \cdot \operatorname{deg} C}\left[C,\left[B^{\prime}, B\right]\right]=0 \tag{1.3.31}
\end{align*}
$$

We will apply the above notation for spaces $\Lambda\left(T^{*(0,1)} X\right)$ and $\Omega^{0, \bullet}(X, E)$ with natural \mathbb{Z}_{2}-grading induced by the parity of the degree.
For $i_{1}<\cdots<i_{j}$, we define

$$
\begin{equation*}
{ }^{c}\left(e^{i_{1}} \wedge \cdots \wedge e^{i_{j}}\right)=c\left(e_{i_{1}}\right) \cdots c\left(e_{i_{j}}\right) \tag{1.3.32}
\end{equation*}
$$

Then by extending \mathbb{C}-linearly, ${ }^{c} B$ is defined for any $B \in \Lambda\left(T^{*} X \otimes_{\mathbb{R}} \mathbb{C}\right)$.
For $A \in \Lambda^{3}\left(T^{*} X\right)$, set $|A|^{2}=\sum_{i<j<k}\left|A\left(e_{i}, e_{j}, e_{k}\right)\right|^{2}$. Now let A be a smooth section of $\Lambda^{3}\left(T^{*} X\right)$. Let

$$
\begin{equation*}
\nabla_{U}^{A}=\nabla_{U}^{\mathrm{Cl}}+{ }^{c}\left(i_{U} A\right) \quad \text { for } U \in T X \tag{1.3.33}
\end{equation*}
$$

be the Hermitian connection on $\Lambda\left(T^{*(0,1)} X\right) \otimes E$ induced by ∇^{Cl} and A. Let Δ^{A} be the Bochner Laplacian defined by ∇^{A} as in (1.3.19).

Definition 1.3.6. The modified Dirac operators $D^{c, A}, D_{ \pm}^{c, A}$ are defined by

$$
\begin{equation*}
D^{c, A}:=D^{c}+{ }^{c} A, \quad D_{ \pm}^{c, A}:=D_{ \pm}^{c}+{ }^{c} A \tag{1.3.34}
\end{equation*}
$$

Theorem 1.3.7. The modified Dirac operator $D^{c, A}$ is formally self-adjoint and

$$
\begin{equation*}
\left(D^{c, A}\right)^{2}=\Delta^{A}+\frac{r^{X}}{4}+{ }^{c}\left(R^{E}+\frac{1}{2} R^{\mathrm{det}}\right)+{ }^{c}(d A)-2|A|^{2} \tag{1.3.35}
\end{equation*}
$$

Proof. By Lemma 1.3.4 and (1.3.10), the operator $D^{c}+{ }^{c} A$ is formally self-adjoint. By (1.3.6), $\nabla_{e_{i}}^{\mathrm{Cl} c} A={ }^{c}\left(\nabla_{e_{i}}^{\mathrm{Cl}} A\right.$). From (1.2.44) and (1.3.2) and since A is odd degree, we have

$$
\begin{align*}
& {\left[c\left(e_{i}\right),{ }^{c} A\right]=-2^{c}\left(i_{e_{i}} A\right),} \\
& c\left(e_{i}\right)\left(\nabla_{e_{i}}^{\mathrm{Cl} c} A\right)-\left(\nabla_{e_{i}}^{\mathrm{Cl}} A\right) c\left(e_{i}\right)=2^{c}\left(e^{i} \wedge \nabla_{e_{i}}^{T X} A\right)=2^{c}(d A) . \tag{1.3.36}
\end{align*}
$$

By (1.3.19), (1.3.33) and the first equation of (1.3.36),

$$
\begin{align*}
\Delta^{A}= & \Delta^{\mathrm{Cl}}+\frac{1}{2}\left(\nabla_{e_{i}}^{\mathrm{Cl}}\left[c\left(e_{i}\right),{ }^{c} A\right]+\left[c\left(e_{i}\right),{ }^{c} A\right] \nabla_{e_{i}}^{\mathrm{Cl}}\right) \\
& -\frac{1}{2}\left[c\left(\nabla_{e_{i}}^{T X} e_{i}\right),{ }^{c} A\right]-\frac{1}{4} \sum_{i}\left[c\left(e_{i}\right),{ }^{c} A\right]^{2} \tag{1.3.37}\\
= & \Delta^{\mathrm{Cl}}-2^{c}\left(i_{e_{i}} A\right) \nabla_{e_{i}}^{\mathrm{Cl}}+\frac{1}{2}\left[c\left(e_{i}\right), \nabla_{e_{i}}^{\mathrm{Cl}} A\right]-\sum_{i}{ }^{c}\left(i_{e_{i}} A\right)^{2} .
\end{align*}
$$

Then Theorem 1.3.5, (1.3.33), (1.3.36) and (1.3.37) imply

$$
\begin{align*}
\left(D^{c}+{ }^{c} A\right)^{2}= & \left(D^{c}\right)^{2}+\left[c\left(e_{i}\right),{ }^{c} A\right] \nabla_{e_{i}}^{\mathrm{Cl}}+c\left(e_{i}\right)\left(\nabla_{e_{i}}^{\mathrm{Cl} ~} A\right)+\left({ }^{c} A\right)^{2} \\
= & \Delta^{A}+\left({ }^{c} A\right)^{2}+\sum_{i}{ }^{c}\left(i_{e_{i}} A\right)^{2}+c\left(e_{i}\right)\left(\nabla_{e_{i}}^{\mathrm{Cl} c} A\right) \tag{1.3.38}\\
& -\frac{1}{2}\left[c\left(e_{i}\right),\left(\nabla_{e_{i}}^{\mathrm{Cl}}{ }^{c} A\right)\right]+\frac{r^{X}}{4}+{ }^{c}\left(R^{E}+\frac{1}{2} R^{\mathrm{det}}\right) .
\end{align*}
$$

Relations (1.3.36) and (1.3.38) yield

$$
\begin{equation*}
\left(D^{c}+{ }^{c} A\right)^{2}=\Delta^{A}+\left({ }^{c} A\right)^{2}+\sum_{i}{ }^{c}\left(i_{e_{i}} A\right)^{2}+{ }^{c}(d A)+\frac{r^{X}}{4}+{ }^{c}\left(R^{E}+\frac{1}{2} R^{\mathrm{det}}\right) \tag{1.3.39}
\end{equation*}
$$

Let $I=\left\{i_{1}, \cdots, i_{m}\right\}$ be an ordered subset of $\{1, \cdots, 2 n\}$, and assume that all $i_{j} \in I$ are distinct. Let $|I|$ be the cardinal of I. Set ${ }^{c} e_{I}=c\left(e_{i_{1}}\right) \cdots c\left(e_{i_{m}}\right)$. Take $k \leqslant 2 n$, and let I, J be two ordered subsets of $\{k+1, \cdots, 2 n\}$ such that $I \cap J=\emptyset$. Then

$$
\begin{equation*}
{ }^{c} e_{1 \cdots k}{ }^{c} e_{I}{ }^{c} e_{1 \cdots k}{ }^{c} e_{J}=(-1)^{k|I|}\left({ }^{c} e_{1 \cdots k}\right)^{2}{ }^{c} e_{I}{ }^{c} e_{J}=(-1)^{k|I|+\frac{k(k+1)}{2} c} e_{I}{ }^{c} e_{J} \tag{1.3.40}
\end{equation*}
$$

Since A is odd degree, (1.3.40) imply

$$
\begin{align*}
& { }^{c}\left(i_{e_{i}} A\right)^{2}=\sum_{k=0}^{2} \sum_{i_{1}<\cdots<i_{k}}(-1)^{\frac{k(k-1)}{2} c}\left(\left(i_{e_{i_{1}}} \cdots i_{e_{i_{k}}} i_{e_{i}} A\right)^{2}\right), \tag{1.3.41}\\
& { }^{c}(A)^{2}=\sum_{k=0}^{3} \sum_{i_{1}<\cdots<i_{k}}(-1)^{\frac{k(k+1)}{2} c}\left(\left(i_{e_{i_{1}}} \cdots i_{e_{i_{k}}} A\right)^{2}\right) .
\end{align*}
$$

Observe that since $A \in \Lambda^{3}\left(T^{*} X\right), A^{2}=0$ and $\left(i_{e_{i_{1}}} i_{e_{i_{2}}} A\right)^{2}=0$. Thus

$$
\begin{equation*}
\left({ }^{c} A\right)^{2}+\sum_{i}{ }^{c}\left(i_{e_{i}} A\right)^{2}=-2 \sum_{i_{1}<i_{2}<i_{3}}\left(i_{e_{i_{1}}} i_{e_{i_{2}}} i_{e_{i_{3}}} A\right)^{2}=-2|A|^{2} . \tag{1.3.42}
\end{equation*}
$$

From (1.3.39) and (1.3.42), we infer (1.3.35).

1.3.4 Atiyah-Singer index theorem

Theorem 1.3.8. If X is compact, the modified Dirac operator $D^{c, A}$ is an essentially self-adjoint Fredholm operator, thus its kernel $\operatorname{Ker}\left(D^{c, A}\right)$ is a finite dimensional complex vector space.
Proof. At first, if $s_{k} \in L_{0, \bullet}^{2}(X, E), D^{c, A} s_{k}=0$ and $\lim _{k \rightarrow \infty} s_{k}=s \in L_{0, \bullet}^{2}(X, E)$, then $D^{c, A} s=0$ in the sense of distributions. By Theorem A.3.4, $s \in \Omega^{0, \bullet}(X, E)$ and $s \in \operatorname{Ker}\left(D^{c, A}\right)$. Thus the space $\operatorname{Ker}\left(D^{c, A}\right)$ is closed, so a Hilbert space. Since X is compact, Theorems A.3.1, A.3.2 and Lemma 1.3.4 imply that $D^{c, A}$ is essentially self-adjoint and the unit ball

$$
\begin{equation*}
B=\left\{s \in L_{0, \bullet}^{2}(X, E):\|s\|_{L^{2}} \leqslant 1, D^{c, A} s=0\right\} \subset \operatorname{Ker}\left(D^{c, A}\right) \tag{1.3.43}
\end{equation*}
$$

is compact. Thus $\operatorname{Ker}\left(D^{c, A}\right)$ is finite dimensional and $D^{c, A}$ is Fredhlom.
When X is compact, we define the index $\operatorname{Ind}\left(D_{+}^{c, A}\right)$ of $D_{+}^{c, A}$ as

$$
\begin{align*}
\operatorname{Ind}\left(D_{+}^{c, A}\right) & :=\operatorname{dim} \operatorname{Ker}\left(D_{+}^{c, A}\right)-\operatorname{dim} \operatorname{Coker}\left(D_{+}^{c, A}\right) \tag{1.3.44}\\
& =\operatorname{dim} \operatorname{Ker}\left(D_{+}^{c, A}\right)-\operatorname{dim} \operatorname{Ker}\left(D_{-}^{c, A}\right)
\end{align*}
$$

For any Hermitian (complex) vector bundle (F, h^{F}) with Hermitian connection ∇^{F} and curvature R^{F} on X, set

$$
\begin{align*}
\operatorname{ch}\left(F, \nabla^{F}\right) & :=\operatorname{Tr}\left[\exp \left(\frac{-R^{F}}{2 \pi \sqrt{-1}}\right)\right] \\
c_{1}\left(F, \nabla^{F}\right) & :=\operatorname{Tr}\left[\frac{-R^{F}}{2 \pi \sqrt{-1}}\right] \tag{1.3.45}\\
\operatorname{Td}\left(F, \nabla^{F}\right) & :=\operatorname{det}\left(\frac{R^{F} /(2 \pi \sqrt{-1})}{\exp \left(R^{F} /(2 \pi \sqrt{-1})\right)-1}\right)
\end{align*}
$$

By Appendix B.5, these are closed real differential forms on X and their cohomology classes do not depend on the choice of the metric h^{F} and connection ∇^{F}. The corresponding cohomology classes are called the Chern class of F, the first Chern class of F, the Todd class of F, respectively, and we denote them by $\operatorname{ch}(F), c_{1}(F)$, $\operatorname{Td}(F) \in H^{*}(X, \mathbb{R})$.
Theorem 1.3.9 (Atiyah-Singer index Theorem). If X is compact, $\operatorname{Ind}\left(D_{+}^{c, A}\right)$ is a topological invariant given by

$$
\begin{equation*}
\operatorname{Ind}\left(D_{+}^{c, A}\right)=\int_{X} \operatorname{Td}\left(T^{(1,0)} X\right) \operatorname{ch}(E) \tag{1.3.46}
\end{equation*}
$$

1.4 Lichnerowicz formula for \square^{E}

This Section is organized as follows. In Section 1.4.1, we exhibit the relation between the operator $\bar{\partial}^{E}+\bar{\partial}^{E, *}$ and the Dirac operator D^{c}. In Section 1.4.2, we prove Bismut's Lichnerowicz formula for the Kodaira Laplacian \square^{E}. In Section 1.4.3, we establish the Bochner-Kodaira-Nakano formula for \square^{E}. In Section 1.4.4, we prove the Bochner-Kodaira-Nakano formula with boundary term.

We will use the notation from Sections 1.2, 1.3.

1.4.1 The operator $\bar{\partial}^{E}+\bar{\partial}^{E, *}$

Let (X, J) be a complex manifold with complex structure J and $\operatorname{dim}_{\mathbb{C}} X=n$, and let $g^{T X}$ be any Riemannian metric on $T X$ compatible with J. We consider a holomorphic Hermitian vector bundle $\left(E, h^{E}\right)$ on X. Let ∇^{E} be the holomorphic Hermitian (i.e. Chern) connection on (E, h^{E}) whose curvature is R^{E}.
Let $\bar{\partial}^{E}$ be the Dolbeault operator acting on $\Omega^{0, \bullet}(X, E):=\oplus_{q} \Omega^{0, q}(X, E)$. Then

$$
\begin{equation*}
\left(\bar{\partial}^{E}\right)^{2}=0 \tag{1.4.1}
\end{equation*}
$$

The complex $\left(\Omega^{0, \bullet}(X, E), \bar{\partial}^{E}\right)$ is called the Dolbeault complex and its cohomology, called Dolbeault cohomology of X with values in E, is denoted by $H^{0, \bullet}(X, E)$.

By the Dolbeault isomorphism (Theorem B.4.4), $H^{0, \bullet}(X, E)$ is canonically isomorphic to the q-th cohomology group $H^{q}\left(X, \mathscr{O}_{X}(E)\right)$ of the sheaf $\mathscr{O}_{X}(E)$ of holomorphic sections of E over X. We shortly denote $H^{q}(X, E):=H^{q}\left(X, \mathscr{O}_{X}(E)\right)$. Especially for $q=0$,

$$
\begin{equation*}
H^{0,0}(X, E)=H^{0}\left(X, \mathscr{O}_{X}(E)\right)=H^{0}(X, E) \tag{1.4.2}
\end{equation*}
$$

Let $\bar{\partial}^{E, *}$ be the formal adjoint of $\bar{\partial}^{E}$ on the Dolbeault complex $\Omega^{0, \bullet}(X, E)$ with respect to the scalar product $\langle\cdot, \cdot\rangle$ in (1.3.14). Set

$$
\begin{align*}
& D=\sqrt{2}\left(\bar{\partial}^{E}+\bar{\partial}^{E, *}\right) \\
& \square^{E}=\bar{\partial}^{E} \bar{\partial}^{E, *}+\bar{\partial}^{E, *} \bar{\partial}^{E} \tag{1.4.3}
\end{align*}
$$

Then \square^{E} is called the Kodaira Laplacian and

$$
\begin{equation*}
D^{2}=2 \square^{E} \tag{1.4.4}
\end{equation*}
$$

Thus D^{2} preserves the \mathbb{Z}-grading of $\Omega^{0, \bullet}(X, E)$. It is a fundamental result, that the elements of $\operatorname{Ker}\left(\square^{E}\right)$, called harmonic forms, represent the Dolbeault cohomology. The following Theorem follows from the more general Theorem 3.1.8 on noncompact manifolds (cf. Remark 3.1.10).

Theorem 1.4.1 (Hodge theory). If X is a compact complex manifold, then for any $q \in \mathbb{N}$, we have the following direct sum decomposition

$$
\begin{align*}
\Omega^{0, q}(X, E) & =\operatorname{Ker}\left(\left.D\right|_{\Omega^{0, q}}\right) \oplus \operatorname{Im}\left(\left.\square^{E}\right|_{\Omega^{0, q}}\right) \\
& =\operatorname{Ker}\left(\left.D\right|_{\Omega^{0, q}}\right) \oplus \operatorname{Im}\left(\left.\bar{\partial}^{E}\right|_{\Omega^{0, q-1}}\right) \oplus \operatorname{Im}\left(\left.\bar{\partial}^{E, *}\right|_{\Omega^{0, q+1}}\right) \tag{1.4.5}
\end{align*}
$$

Thus for any $q \in \mathbb{N}$, we have the canonical isomorphism,

$$
\begin{equation*}
\operatorname{Ker}\left(\left.D\right|_{\Omega^{0, q}}\right)=\operatorname{Ker}\left(\left.D^{2}\right|_{\Omega^{0, q}}\right) \simeq H^{0, q}(X, E) \tag{1.4.6}
\end{equation*}
$$

Especially, $H^{q}(X, E) \simeq H^{0, q}(X, E)$ is finite dimensional.
Definition 1.4.2. The Bergman kernel of E is $P\left(x, x^{\prime}\right),\left(x, x^{\prime} \in X\right)$, the Schwartz kernel of P, the orthogonal projection from $\left(L^{2}\left(X, \Lambda\left(T^{*(0,1)} X\right) \otimes E\right),\langle \rangle\right)$ onto $\operatorname{Ker}(D)$, the kernel of D acting on $\Omega^{0, \bullet}(X, E) \cap L^{2}\left(X, \Lambda\left(T^{*(0,1)} X\right) \otimes E\right)$, with respect to the Riemannian volume form $d v_{X}\left(x^{\prime}\right)$. Especially,

$$
P\left(x, x^{\prime}\right) \in\left(\Lambda\left(T^{*(0,1)} X\right) \otimes E\right)_{x} \otimes\left(\Lambda\left(T^{*(0,1)} X\right) \otimes E\right)_{x^{\prime}}^{*}
$$

Remark 1.4.3. From Theorem 1.4.1, the Bergman kernel $P\left(x, x^{\prime}\right)$ is smooth on $x, x^{\prime} \in X$ when X is compact. In general, by the ellipticity of D and Schwartz kernel Theorem, we know $P\left(x, x^{\prime}\right)$ is \mathscr{C}^{∞} (cf. Problem 1.5).

Recall that the tensors $S, T, \mathcal{S}, T_{a s}$ were defined in (1.2.38) and (1.2.48).
Lemma 1.4.4. For the operators $\bar{\partial}^{E},\left(\nabla^{E}\right)^{1,0}$ acting on $\Omega^{\bullet \bullet}(X, E)$ in (1.1.9), we have

$$
\begin{align*}
\bar{\partial}^{E} & =\bar{w}^{j} \wedge \widetilde{\nabla}_{\bar{w}_{j}}^{T X}+i_{T^{(0,1)}} \\
& =\bar{w}^{j} \wedge \widetilde{\nabla}_{\bar{w}_{j}}^{T X}+\frac{1}{2}\left\langle T\left(\bar{w}_{j}, \bar{w}_{k}\right), w_{m}\right\rangle \bar{w}^{j} \wedge \bar{w}^{k} \wedge i_{\bar{w}_{m}} \tag{1.4.7}\\
\left(\nabla^{E}\right)^{1,0} & =w^{j} \wedge \widetilde{\nabla}_{w_{j}}^{T X}+i_{T^{(1,0)}} \\
& =w^{j} \wedge \widetilde{\nabla}_{w_{j}}^{T X}+\frac{1}{2}\left\langle T\left(w_{j}, w_{k}\right), \bar{w}_{m}\right\rangle w^{j} \wedge w^{k} \wedge i_{w_{m}} \tag{1.4.8}
\end{align*}
$$

For the formal adjoints $\bar{\partial}^{E, *}$ and $\left(\nabla^{E}\right)^{1,0 *}$ of $\bar{\partial}^{E}$ and $\left(\nabla^{E}\right)^{1,0}$ with respect to (1.3.14), we have

$$
\begin{align*}
\bar{\partial}^{E, *}= & -i_{\bar{w}_{j}} \widetilde{\nabla}_{w_{j}}^{T X}-\left\langle T\left(w_{j}, w_{k}\right), \bar{w}_{k}\right\rangle i_{\bar{w}_{j}} \\
& +\frac{1}{2}\left\langle T\left(w_{j}, w_{k}\right), \bar{w}_{m}\right\rangle \bar{w}^{m} \wedge i_{\bar{w}_{k}} \wedge i_{\bar{w}_{j}} \tag{1.4.9}\\
\left(\nabla^{E}\right)^{1,0 *}= & -i_{w_{j}} \widetilde{\nabla}_{\bar{w}_{j}}^{T X}-\left\langle T\left(\bar{w}_{j}, \bar{w}_{k}\right), w_{k}\right\rangle i_{w_{j}} \\
& +\frac{1}{2}\left\langle T\left(\bar{w}_{j}, \bar{w}_{k}\right), w_{m}\right\rangle w^{m} \wedge i_{w_{k}} i_{w_{j}} . \tag{1.4.10}
\end{align*}
$$

Proof. The operator $\bar{\partial}^{E}$ on E is given by

$$
\begin{equation*}
\bar{\partial}^{E}=\sum_{i=1}^{n} \bar{w}^{i} \wedge \nabla \bar{w}_{i} \tag{1.4.11}
\end{equation*}
$$

We still denote by $\widetilde{\nabla}^{T X}$ the connection $\widetilde{\nabla}^{T X} \otimes 1+1 \otimes \nabla^{E}$ and by i_{T} the operator $i_{T} \otimes 1$ on $\Lambda^{\bullet \bullet}\left(T^{*} X\right) \otimes E$. From (1.2.44), we deduce

$$
\begin{equation*}
\nabla^{E}=\varepsilon \circ \widetilde{\nabla}^{T X}+i_{T} \tag{1.4.12}
\end{equation*}
$$

Relations (1.2.37) and (1.4.12) imply (1.4.7) and (1.4.8), by decomposition after bidegree and the definition of T. Observe that from (1.2.38), the $(0,1)$ and $(1,0)$ components of \mathcal{S} are

$$
\begin{align*}
& \mathcal{S}^{(0,1)}=\left(\left\langle\widetilde{\nabla}_{w_{i}}^{T X} \bar{w}_{i}, w_{j}\right\rangle-\left\langle\nabla_{e_{k}}^{T X} e_{k}, w_{j}\right\rangle\right) \bar{w}_{j}, \\
& \mathcal{S}^{(1,0)}=\left(\left\langle\widetilde{\nabla}_{\bar{w}_{i}}^{T X} w_{i}, \bar{w}_{j}\right\rangle-\left\langle\nabla_{e_{k}}^{T X} e_{k}, \bar{w}_{j}\right\rangle\right) w_{j} . \tag{1.4.13}
\end{align*}
$$

Let $s_{1}, s_{2} \in \Omega_{0}^{\bullet \bullet \bullet}(X, E)$ and let α be the (0,1)-form on X given for any vector field $U=U^{(1,0)} \oplus U^{(0,1)} \in T^{(1,0)} X \oplus T^{(0,1)} X$ on X, by $\alpha(U)=-\left\langle i_{U^{(0,1)}} s_{1}, s_{2}\right\rangle_{\Lambda \bullet \bullet \bullet E}$. Note that from (1.2.6),

$$
\begin{equation*}
\operatorname{Tr}(\nabla \alpha)=w_{j} \alpha\left(\bar{w}_{j}\right)+\bar{w}_{j} \alpha\left(w_{j}\right)-\alpha\left(\nabla_{e_{k}}^{T X} e_{k}\right) \tag{1.4.14}
\end{equation*}
$$

Proceeding as in the proof of (1.3.17), (1.4.13) and (1.4.14) entail the following relation between pointwise scalar products:

$$
\begin{align*}
\left\langle s_{1}, \bar{w}^{i} \widetilde{\nabla} \frac{T X}{\bar{w}_{i}} s_{2}\right\rangle_{\Lambda \bullet, \bullet \otimes E, x}=-\left\langle i_{\bar{w}_{i}} \widetilde{\nabla}_{w_{i}}^{T X} s_{1}, s_{2}\right\rangle_{\Lambda \bullet, \bullet \otimes E, x} & \\
& -\operatorname{Tr}(\nabla \alpha)_{x}+i_{\mathcal{S}^{(0,1)}} \alpha . \tag{1.4.15}
\end{align*}
$$

The integral of the last term vanishes by Proposition 1.2.1, so integrating (1.4.15) and (1.2.42) over X, we infer (1.4.9).

Let β be the $(1,0)$ form on X given by $\beta(U)=-\left\langle i_{U^{(1,0)}} s_{1}, s_{2}\right\rangle_{\Lambda \bullet, \bullet \otimes E}$. Then as in (1.4.15),

$$
\begin{align*}
\left\langle s_{1}, w^{j} \widetilde{\nabla}_{w_{j}}^{T X} s_{2}\right\rangle_{\Lambda \bullet \bullet \bullet \otimes E, x}=-\left\langle i_{w_{j}} \widetilde{\nabla}_{\bar{w}_{j}}^{T X} s_{1}, s_{2}\right\rangle_{\Lambda \bullet \bullet} \otimes E, x & \\
& -\operatorname{Tr}(\nabla \beta)_{x}+i_{\mathcal{S}^{(1,0)}} \beta . \tag{1.4.16}
\end{align*}
$$

Integration of (1.4.16) and (1.2.42) gives (1.4.10).
In this Section, in the definition (1.3.15) of the spin ${ }^{c}$ Dirac operator D^{c}, we choose $\nabla^{\text {det }}$ to be the holomorphic Hermitian connection on $\operatorname{det}\left(T^{(1,0)} X\right)$. Consequently D is a modified Dirac operator.
Theorem 1.4.5. We have the following identity

$$
\begin{equation*}
D=D^{c}-\frac{1}{4}^{c}\left(T_{a s}\right) \tag{1.4.17}
\end{equation*}
$$

Proof. In view of (1.3.1), (1.4.7) and (1.4.9), we have

$$
\begin{align*}
\sqrt{2} \bar{\partial}^{E} & =c\left(w_{i}\right) \widetilde{\nabla}_{\bar{w}_{i}}^{T X}-\frac{1}{4} c\left(w_{i}\right) c\left(w_{j}\right) c\left(T\left(\bar{w}_{i}, \bar{w}_{j}\right)\right), \\
\sqrt{2} \bar{\partial}^{E, *} & =c\left(\bar{w}_{i}\right) \widetilde{\nabla}_{w_{i}}^{T X}+\frac{\sqrt{2}}{2}\left\langle T\left(w_{i}, w_{j}\right), \bar{w}_{k}\right\rangle i_{\bar{w}_{j}} i_{\bar{w}_{i}} \wedge \bar{w}^{k} \tag{1.4.18}\\
& =c\left(\bar{w}_{i}\right) \widetilde{\nabla}_{w_{i}}^{T X}+\frac{1}{4} c\left(\bar{w}_{j}\right) c\left(\bar{w}_{i}\right) c\left(T\left(w_{i}, w_{j}\right)\right) .
\end{align*}
$$

Taking into account (1.4.3) and (1.4.18), we get

$$
\begin{align*}
D= & c\left(w_{i}\right) \widetilde{\nabla}_{\bar{w}_{i}}^{T X}+c\left(\bar{w}_{i}\right) \widetilde{\nabla}_{w_{i}}^{T X} \\
& -\frac{1}{4} c\left(w_{i}\right) c\left(w_{j}\right) c\left(T\left(\bar{w}_{i}, \bar{w}_{j}\right)\right)-\frac{1}{4} c\left(\bar{w}_{i}\right) c\left(\bar{w}_{j}\right) c\left(T\left(w_{i}, w_{j}\right)\right) . \tag{1.4.19}
\end{align*}
$$

Let $\Gamma^{T^{(1,0)} X} \in T^{*} X \otimes \operatorname{End}\left(T^{(1,0)} X\right)$ be the connection form of $\nabla^{T^{(1,0)} X}$ associated to the frames $\left\{w_{j}\right\}$. Note that for the frame $\left\{\bar{w}^{j_{1}} \wedge \cdots \wedge \bar{w}^{j_{k}}, 1 \leqslant j_{1}<\cdots<j_{k} \leqslant n\right\}$,

$$
\begin{align*}
& \widetilde{\nabla}^{T X}=d+\left\langle\Gamma^{T^{(1,0)} X} w_{l}, \bar{w}_{m}\right\rangle \bar{w}^{m} \wedge i_{\bar{w}_{l}} \\
& \Gamma^{\operatorname{det}}=\operatorname{Tr}\left[\Gamma^{T^{(1,0)} X}\right] \tag{1.4.20}
\end{align*}
$$

Comparing with (1.2.38), (1.3.3), (1.3.5), we obtain

$$
\begin{equation*}
\widetilde{\nabla}^{T X}=\nabla^{\mathrm{Cl}}+\frac{1}{4} \sum_{i j}\left\langle S(\cdot) e_{i}, e_{j}\right\rangle c\left(e_{i}\right) c\left(e_{j}\right) \tag{1.4.21}
\end{equation*}
$$

Clearly, by (1.2.38),

$$
\begin{equation*}
\frac{1}{4}\left(\left\langle S\left(e_{i}\right) e_{i}, e_{j}\right\rangle\left(c\left(e_{i}\right)\right)^{2} c\left(e_{j}\right)+\left\langle S\left(e_{i}\right) e_{j}, e_{i}\right\rangle c\left(e_{i}\right) c\left(e_{j}\right) c\left(e_{i}\right)\right)=-\frac{1}{2} c(\mathcal{S}) \tag{1.4.22}
\end{equation*}
$$

Thus (1.2.39), (1.4.21), (1.4.22) imply

$$
\begin{align*}
c\left(w_{i}\right) & \widetilde{\nabla} \stackrel{\bar{w}}{i}_{X}^{X}+c\left(\bar{w}_{i}\right) \widetilde{\nabla}_{w_{i}}^{T X} \\
& =D^{c}-\frac{1}{2} c(\mathcal{S})+\frac{1}{4} \sum_{j \neq i \neq k}\left\langle S\left(e_{i}\right) e_{j}, e_{k}\right\rangle c\left(e_{i}\right) c\left(e_{j}\right) c\left(e_{k}\right) \tag{1.4.23}\\
& =D^{c}-\frac{1}{2} c(\mathcal{S})+\frac{1}{4}^{c}\left(T_{a s}\right)
\end{align*}
$$

Using (1.2.42), we get

$$
\begin{align*}
& \frac{1}{4} c\left(\bar{w}_{i}\right) c\left(\bar{w}_{j}\right) c\left(T\left(w_{i}, w_{j}\right)\right)+\frac{1}{4} c\left(w_{i}\right) c\left(w_{j}\right) c\left(T\left(\bar{w}_{i}, \bar{w}_{j}\right)\right) \\
& \quad=\frac{1}{4}\left\langle T\left(e_{i}, e_{j}\right), e_{k}\right\rangle c\left(e_{i}\right) c\left(e_{j}\right) c\left(e_{k}\right)=\frac{1}{2} c\left(T_{a s}\right)-\frac{1}{2} c(\mathcal{S}) . \tag{1.4.24}
\end{align*}
$$

Finally (1.4.19), (1.4.23) and (1.4.24) imply (1.4.17).
When X is compact, the Euler number $\chi(X, E)$ of the holomorphic vector bundle E is defined by

$$
\begin{equation*}
\chi(X, E)=\sum_{q=0}^{n}(-1)^{q} \operatorname{dim} H^{q}(X, E) \tag{1.4.25}
\end{equation*}
$$

From Theorems 1.3.9, 1.4.1, 1.4.5, we obtain:
Theorem 1.4.6 (Riemann-Roch-Hirzebruch Theorem). If X is compact, then

$$
\begin{equation*}
\chi(X, E)=\int_{X} \operatorname{Td}\left(T_{h} X\right) \operatorname{ch}(E) \tag{1.4.26}
\end{equation*}
$$

1.4.2 Bismut's Lichnerowicz formula for \square^{E}

Recall that the Bismut connection ∇^{B} preserves the complex structure on $T X$ by Lemma 1.2.10, thus, as in (1.2.43), it induces a natural connection ∇^{B} on $\Lambda\left(T^{*(0,1)} X\right)$ which preserves its \mathbb{Z}-grading. Let $\nabla^{B, \Lambda^{0, \bullet}}, \nabla^{B, \Lambda^{0, \bullet} \otimes E}$ be the connections on $\Lambda\left(T^{*(0,1)} X\right), \Lambda\left(T^{*(0,1)} X\right) \otimes E$ defined by

$$
\begin{align*}
& \nabla^{B, \Lambda^{0, \bullet}}=\nabla^{B}+\left\langle S(\cdot) w_{j}, \bar{w}_{j}\right\rangle \\
& \nabla^{B, \Lambda^{0} \cdot \bullet} \otimes E=\nabla^{B, \Lambda^{0}, \bullet} \otimes 1+1 \otimes \nabla^{E} \tag{1.4.27}
\end{align*}
$$

By (1.2.42), $\left\langle S(\cdot) w_{j}, \bar{w}_{j}\right\rangle$ is a purely imaginary form, thus $\nabla^{B, \Lambda^{0} \bullet \bullet} \otimes E$ is a Hermitian connection on $\Lambda\left(T^{*(0,1)} X\right) \otimes E$ which preserves its \mathbb{Z}-grading. We denote by $R^{B, \Lambda^{0, \bullet}}$ the curvature of $\nabla^{B, \Lambda^{0, \bullet}}$.
By (1.2.60), (1.3.3) and (1.3.8), as in (1.4.21), we get for $U \in T X$,

$$
\begin{equation*}
\nabla_{U}^{B, \Lambda^{0,} \bullet \otimes E}=\nabla_{U}^{\mathrm{Cl}}+\frac{1}{2} c\left(S^{B}(U)\right)=\nabla_{U}^{\mathrm{Cl}}-\frac{1}{4}^{c}\left(i_{U} T_{a s}\right) \tag{1.4.28}
\end{equation*}
$$

As in (1.3.19), we denote by $\Delta^{B, \Lambda^{0, \bullet} \otimes E}$ the Bochner Laplacian defined by $\nabla^{B, \Lambda^{0,} \bullet} \otimes E$.

Theorem 1.4.7.

$$
\begin{align*}
D^{2}=\Delta^{B, \Lambda^{0,} \bullet} \otimes E
\end{align*}+\frac{r^{X}}{4}+{ }^{c}\left(R^{E}+\frac{1}{2} \operatorname{Tr}\left[R^{T^{(1,0)} X}\right]\right) .
$$

Proof. Let $R^{\text {det }}$ be the curvature of the holomorphic Hermitian connection on $\operatorname{det}\left(T^{(1,0)} X\right)$. Then

$$
\begin{equation*}
R^{\mathrm{det}}=\operatorname{Tr}\left[R^{T^{(1,0)} X}\right] \tag{1.4.30}
\end{equation*}
$$

Theorem 1.3.7 and relations (1.2.51), (1.4.17) and (1.4.30) entail (1.4.29).
Remark 1.4.8. If (X, Θ) is Kähler, then $\nabla^{B, E}$ coincides with $\nabla^{\Lambda\left(T^{*(0,1)} X\right) \otimes E}$, the connection on $\Lambda\left(T^{*(0,1)} X\right) \otimes E$ induced by the holomorphic Hermitian connections $\nabla^{T^{(1,0)} X}$ and ∇^{E}. Moreover, $r^{X}=2 R^{\operatorname{det}}\left(w_{i}, \bar{w}_{i}\right)$. (1.4.29) reads

$$
\begin{align*}
D^{2}= & \Delta^{\Lambda\left(T^{*(0,1)} X\right) \otimes E}-R^{E}\left(w_{j}, \bar{w}_{j}\right) \\
& +2\left(R^{E}+\frac{1}{2} \operatorname{Tr}\left[R^{T^{(1,0)} X}\right]\right)\left(w_{i}, \bar{w}_{j}\right) \bar{w}^{j} \wedge i_{\bar{w}_{i}} \tag{1.4.31}
\end{align*}
$$

1.4.3 Bochner-Kodaira-Nakano formula

Let Θ be the real $(1,1)$-form associated to $g^{T X}$ as in (1.2.49). We define the Lefschetz operator $L=(\Theta \wedge) \otimes 1$ on $\Lambda^{\bullet \bullet}\left(T^{*} X\right) \otimes E$ and its adjoint $\Lambda=i(\Theta)$ with respect to the Hermitian product $\langle\cdot, \cdot\rangle_{\Lambda} \bullet \bullet \otimes E$ induced by $g^{T X}$ and h^{E}. For $\left\{w_{j}\right\}_{j=1}^{n}$ a local orthonormal frame of $T^{(1,0)} X$, we have

$$
\begin{equation*}
L=\sqrt{-1} w^{j} \wedge \bar{w}^{j} \wedge, \quad \Lambda=-\sqrt{-1} i_{\bar{w}_{j}} i_{w_{j}} . \tag{1.4.32}
\end{equation*}
$$

Let us define the formal adjoints $\left(\nabla^{E}\right)^{1,0 *}$ of $\left(\nabla^{E}\right)^{1,0}$ and $\left(\nabla^{E}\right)^{0,1 *}=\bar{\partial}^{E, *}$ of $\left(\nabla^{E}\right)^{0,1}=\bar{\partial}^{E}$ with respect to (1.3.14) as in Lemma 1.4.4. We use next the the supercommutator defined in (1.3.30), and we apply it on $\Omega^{\bullet \bullet}(X, E)$ endowed with natural \mathbb{Z}_{2}-grading induced by the parity of degree.

Definition 1.4.9. The holomorphic and anti-holomorphic Kodaira Laplacians are defined by:

$$
\begin{align*}
& \bar{\square}^{E}=\left[\left(\nabla^{E}\right)^{1,0},\left(\nabla^{E}\right)^{1,0 *}\right] \\
& \square^{E}=\left[\bar{\partial}^{E}, \bar{\partial}^{E, *}\right] . \tag{1.4.33}
\end{align*}
$$

The Hermitian torsion operator is defined by

$$
\begin{equation*}
\mathcal{T}:=[\Lambda, \partial \Theta]=[i(\Theta), \partial \Theta] \tag{1.4.34}
\end{equation*}
$$

Let us express now \mathcal{T} in terms of the torsion T of the connection $\widetilde{\nabla}^{T X}$.
Lemma 1.4.10. We have

$$
\begin{equation*}
\mathcal{T}=\frac{1}{2}\left\langle T\left(w_{j}, w_{k}\right), \bar{w}_{m}\right\rangle\left[2 w^{k} \wedge \bar{w}^{m} \wedge i_{\bar{w}_{j}}-2 \delta_{j m} w^{k}-w^{j} \wedge w^{k} \wedge i_{w_{m}}\right] \tag{1.4.35}
\end{equation*}
$$

Proof. From (1.2.48), (1.2.54) and (1.4.34), we obtain

$$
\begin{align*}
& \mathcal{T}=\frac{\sqrt{-1}}{2}\left\langle T\left(w_{j}, w_{k}\right), \bar{w}_{m}\right\rangle\left\{\left[\Lambda, \omega^{j}\right] \wedge \omega^{k} \wedge \bar{w}^{m}\right. \\
&\left.+\omega^{j} \wedge\left[\Lambda, \omega^{k}\right] \wedge \bar{w}^{m}+\omega^{j} \wedge \omega^{k} \wedge\left[\Lambda, \bar{w}^{m}\right]\right\} \tag{1.4.36}
\end{align*}
$$

By the formula (1.4.32) for Λ, we easily get

$$
\begin{equation*}
\left[\Lambda, \omega^{j}\right]=-\sqrt{-1} i_{\bar{w}_{j}}, \quad\left[\Lambda, \bar{\omega}^{m}\right]=\sqrt{-1} i_{w_{m}} \tag{1.4.37}
\end{equation*}
$$

Now, (1.4.36), (1.4.37) together with $T\left(w_{j}, w_{k}\right)=-T\left(w_{k}, w_{j}\right)$ imply the desired relation (1.4.35).

We have the following generalization of the usual Kähler identities in the presence of torsion.
Theorem 1.4.11 (generalized Kähler identities).

$$
\begin{align*}
{\left[\bar{\partial}^{E, *}, L\right] } & =\sqrt{-1}\left(\left(\nabla^{E}\right)^{1,0}+\mathcal{T}\right) \tag{1.4.38a}\\
{\left[\left(\nabla^{E}\right)^{1,0 *}, L\right] } & =-\sqrt{-1}\left(\bar{\partial}^{E}+\overline{\mathcal{T}}\right) \tag{1.4.38b}\\
{\left[\Lambda, \bar{\partial}^{E}\right] } & =-\sqrt{-1}\left(\left(\nabla^{E}\right)^{1,0 *}+\mathcal{T}^{*}\right) \tag{1.4.38c}\\
{\left[\Lambda,\left(\nabla^{E}\right)^{1,0}\right] } & =\sqrt{-1}\left(\bar{\partial}^{E, *}+\overline{\mathcal{T}}^{*}\right) \tag{1.4.38d}
\end{align*}
$$

Proof. Remark that the third and forth formulas are the adjoints of the first two. Thus it suffices to prove (1.4.38a), (1.4.38b). Using (1.4.9) we find

$$
\begin{align*}
{\left[\bar{\partial}^{E, *}, L\right]=\left[-i_{\bar{w}_{i}} \widetilde{\nabla}_{w_{i}}^{T X}, L\right] } & -\left\langle T\left(w_{j}, w_{k}\right), \bar{w}_{k}\right\rangle\left[i_{\bar{w}_{j}}, L\right] \\
& +\frac{1}{2}\left\langle T\left(w_{j}, w_{k}\right), \bar{w}_{m}\right\rangle\left[\bar{w}^{m} \wedge i_{\bar{w}_{k}} i_{\bar{w}_{j}}, L\right] \tag{1.4.39}
\end{align*}
$$

By (1.4.32),

$$
\begin{equation*}
\left[i_{\bar{w}_{j}}, L\right]=-\sqrt{-1} w^{j} \wedge, \quad\left[i_{w_{j}}, L\right]=\sqrt{-1} \bar{w}^{j} \wedge \tag{1.4.40}
\end{equation*}
$$

By (1.2.52), $\widetilde{\nabla}_{w_{i}}^{T X} L=L \widetilde{\nabla}_{w_{i}}^{T X}$ so from (1.4.40)

$$
\begin{equation*}
\left[-i_{\bar{w}_{j}} \widetilde{\nabla}_{w_{j}}^{T X}, L\right]=-\left[i_{\bar{w}_{j}}, L\right] \widetilde{\nabla}_{w_{j}}^{T X}=\sqrt{-1} w^{j} \wedge \widetilde{\nabla}_{w_{j}}^{T X} \tag{1.4.41}
\end{equation*}
$$

By (1.4.40), we infer

$$
\begin{align*}
{\left[\bar{w}^{m} \wedge i_{\bar{w}_{k}} i_{\bar{w}_{j}}, L\right] } & =\bar{w}^{m} \wedge\left(\left[i_{\bar{w}_{k}}, L\right] i_{\bar{w}_{j}}+i_{\bar{w}_{k}}\left[i_{\bar{w}_{j}}, L\right]\right) \\
& =-\sqrt{-1} \bar{w}^{m} \wedge\left(\omega^{k} \wedge i_{\bar{w}_{j}}+i_{\bar{w}_{k}} \omega^{j}\right) . \tag{1.4.42}
\end{align*}
$$

Relations (1.4.39)-(1.4.42) yield finally

$$
\begin{align*}
{\left[\bar{\partial}^{E, *}, L\right]=\sqrt{-1} w^{j} \wedge \widetilde{\nabla}_{w_{j}}^{T X} } & +\sqrt{-1}\left\langle T\left(w_{j}, w_{k}\right), \bar{w}_{k}\right\rangle w^{j} \tag{1.4.43}\\
& +\sqrt{-1}\left\langle T\left(w_{j}, w_{k}\right), \bar{w}_{m}\right\rangle w^{k} \wedge \bar{w}^{m} \wedge i_{\bar{w}_{j}}
\end{align*}
$$

Adding (1.4.8) and (1.4.35) shows that $\sqrt{-1}\left(\left(\nabla^{E}\right)^{1,0}+\mathcal{T}\right)$ equals the right hand side of (1.4.43), hence (1.4.38a) holds.

Formula (1.4.38b) can be proved along similar lines as (1.4.38a). Alternatively, as the computation is local, we can choose a local holomorphic frame of E and using (1.4.40), we reduce the proof to the case of a trivial line bundle E. But then (1.4.38b) follows from (1.4.38a) by conjugation.

Theorem 1.4.12 (Bochner-Kodaira-Nakano formula).

$$
\begin{equation*}
\square^{E}=\bar{\square}^{E}+\left[\sqrt{-1} R^{E}, \Lambda\right]+\left[\left(\nabla^{E}\right)^{1,0}, \mathcal{T}^{*}\right]-\left[\left(\nabla^{E}\right)^{0,1}, \overline{\mathcal{T}}^{*}\right] \tag{1.4.44}
\end{equation*}
$$

Proof. From (1.4.38d) we deduce that $\bar{\partial}^{E, *}=-\sqrt{-1}\left[\Lambda,\left(\nabla^{E}\right)^{1,0}\right]-\overline{\mathcal{T}}^{*}$. Thus

$$
\begin{equation*}
\square^{E}=\left[\bar{\partial}^{E}, \bar{\partial}^{E, *}\right]=-\sqrt{-1}\left[\bar{\partial}^{E},\left[\Lambda,\left(\nabla^{E}\right)^{1,0}\right]\right]-\left[\bar{\partial}^{E}, \overline{\mathcal{T}}^{*}\right] . \tag{1.4.45}
\end{equation*}
$$

The Jacobi identity (1.3.31) implies

$$
\begin{equation*}
\left[\bar{\partial}^{E},\left[\Lambda,\left(\nabla^{E}\right)^{1,0}\right]\right]=\left[\Lambda,\left[\left(\nabla^{E}\right)^{1,0}, \bar{\partial}^{E}\right]\right]+\left[\left(\nabla^{E}\right)^{1,0},\left[\bar{\partial}^{E}, \Lambda\right]\right] \tag{1.4.46}
\end{equation*}
$$

Since $\left(\bar{\partial}^{E}\right)^{2}=0,\left(\left(\nabla^{E}\right)^{1,0}\right)^{2}=0$, we have

$$
\begin{equation*}
R^{E}=\left(\nabla^{E}\right)^{2}=\left[\left(\nabla^{E}\right)^{1,0}, \bar{\partial}^{E}\right] \tag{1.4.47}
\end{equation*}
$$

Using the expression of $\left[\bar{\partial}^{E}, \Lambda\right]$ given in (1.4.38c) we find

$$
\begin{equation*}
\left[\left(\nabla^{E}\right)^{1,0},\left[\bar{\partial}^{E}, \Lambda\right]\right]=\sqrt{-1}\left[\left(\nabla^{E}\right)^{1,0},\left(\nabla^{E}\right)^{1,0 *}\right]+\sqrt{-1}\left[\left(\nabla^{E}\right)^{1,0}, \mathcal{T}^{*}\right] \tag{1.4.48}
\end{equation*}
$$

Taking into account the definition of $\bar{\square}^{E}$ (cf. (1.4.33)), we conclude (1.4.44) from (1.4.45)-(1.4.48).

Corollary 1.4.13. Assume that $\left(X, g^{T X}\right)$ is Kähler. Then

$$
\begin{align*}
& \square^{E}=\bar{\square}^{E}+\left[\sqrt{-1} R^{E}, \Lambda\right], \tag{1.4.49a}\\
& \Delta=2 \square=2 \bar{\square} . \tag{1.4.49b}
\end{align*}
$$

Here $\bar{\square}:=\bar{\square}^{\mathbb{C}}=\partial \partial^{*}+\partial^{*} \partial ; \square:=\square^{\mathbb{C}}$ are usual ∂-Laplacian and $\bar{\partial}$-Laplacian, $\Delta=d d^{*}+d^{*} d$ is the Bochner Laplacian on $\Lambda\left(T^{*} X\right)$ and d^{*} is the adjoint of d.

Therefore, the Hodge decomposition holds for the de Rham cohomology group $H^{\bullet}(X, \mathbb{C}):$
(a) $H^{j}(X, \mathbb{C}) \cong \oplus_{p+q=j} H^{q}\left(X, \mathscr{O}_{X}^{p}\right) \cong \oplus_{p+q=j} H^{p, q}(X)$,
(b) $H^{p, q}(X) \cong \overline{H^{q, p}(X)}$.

We denote here by $H^{p, q}(X):=H^{p, q}(X, \mathbb{C})$ the Dolbeault cohomology groups.

Proof. Indeed, by Theorem $1.2 .8, g^{T X}$ is Kähler if and only if $\mathcal{T}=0$, so (1.4.49a) follows trivially from (1.4.44). By taking $E=\mathbb{C}$ with a trivial metric, we obtain\square. Moreover

$$
\begin{equation*}
\Delta=\left[d, d^{*}\right]=\left[\partial+\bar{\partial}, \partial^{*}+\bar{\partial}^{*}\right]=\square+\bar{\square}+\left[\partial, \bar{\partial}^{*}\right]+\left[\bar{\partial}, \partial^{*}\right] \tag{1.4.50}
\end{equation*}
$$

and the two latter brackets vanish (Problem 1.6). By the real analogue of Theorem 1.4.1 (Hodge theory), $H^{\bullet}(X, \mathbb{C}) \simeq \operatorname{Ker}(\Delta)$. This completes the proof.

Theorem 1.4.14 (Nakano's inequality). For any $s \in \Omega_{0}^{\bullet \bullet \bullet}(X, E)$,

$$
\begin{align*}
& \frac{3}{2}\left\langle\square^{E} s, s\right\rangle \geqslant\left\langle\left[\sqrt{-1} R^{E}, \Lambda\right] s, s\right\rangle \\
&-\frac{1}{2}\left(\|\mathcal{T} s\|_{L^{2}}^{2}+\left\|\mathcal{T}^{*} s\right\|_{L^{2}}^{2}+\|\overline{\mathcal{T}} s\|_{L^{2}}^{2}+\left\|\overline{\mathcal{T}}^{*} s\right\|_{L^{2}}^{2}\right) \tag{1.4.51}
\end{align*}
$$

If $\left(X, g^{T X}\right)$ is Kähler, then

$$
\begin{equation*}
\left\langle\square^{E} s, s\right\rangle \geqslant\left\langle\left[\sqrt{-1} R^{E}, \Lambda\right] s, s\right\rangle . \tag{1.4.52}
\end{equation*}
$$

Proof. Let $s \in \Omega_{0}^{\bullet \bullet \bullet}(X, E)$. Since

$$
\begin{align*}
& \left\langle\square^{E} s, s\right\rangle=\left\|\bar{\partial}^{E} s\right\|_{L^{2}}^{2}+\left\|\bar{\partial}^{E, *} s\right\|_{L^{2}}^{2} \tag{1.4.53}\\
& \left\langle\bar{\square}^{E} s, s\right\rangle=\left\|\left(\nabla^{E}\right)^{1,0} s\right\|_{L^{2}}^{2}+\left\|\left(\nabla^{E}\right)^{1,0 *} s\right\|_{L^{2}}^{2}
\end{align*}
$$

we deduce from (1.4.44) that

$$
\begin{align*}
& \left\|\bar{\partial}^{E} s\right\|_{L^{2}}^{2}+\left\|\bar{\partial}^{E, *} s\right\|_{L^{2}}^{2}=\left\|\left(\nabla^{E}\right)^{1,0} s\right\|_{L^{2}}^{2}+\left\|\left(\nabla^{E}\right)^{1,0 *} s\right\|_{L^{2}}^{2} \tag{1.4.54}\\
& \quad+\left\langle\left[\sqrt{-1} R^{E}, \Lambda\right] s, s\right\rangle+\left\langle\left[\left(\nabla^{E}\right)^{1,0}, \mathcal{T}^{*}\right] s, s\right\rangle-\left\langle\left[\bar{\partial}^{E}, \overline{\mathcal{T}}^{*}\right] s, s\right\rangle .
\end{align*}
$$

By the Cauchy-Schwarz inequality, we find

$$
\begin{aligned}
\left|\left\langle\left[\left(\nabla^{E}\right)^{1,0}, \mathcal{T}^{*}\right] s, s\right\rangle\right| & \leqslant \frac{1}{2}\left(\left\|\left(\nabla^{E}\right)^{1,0} s\right\|_{L^{2}}^{2}+\left\|\left(\nabla^{E}\right)^{1,0 *} s\right\|_{L^{2}}^{2}+\|\mathcal{T} s\|_{L^{2}}^{2}+\left\|\mathcal{T}^{*} s\right\|_{L^{2}}^{2}\right), \\
\left|\left\langle\left[\bar{\partial}^{E}, \overline{\mathcal{T}}^{*}\right] s, s\right\rangle\right| & \leqslant \frac{1}{2}\left(\left\|\bar{\partial}^{E} s\right\|_{L^{2}}^{2}+\left\|\bar{\partial}^{E, *} s\right\|_{L^{2}}^{2}+\|\overline{\mathcal{T}} s\|_{L^{2}}^{2}+\left\|\overline{\mathcal{T}}^{*} s\right\|_{L^{2}}^{2}\right)
\end{aligned}
$$

Therefore

$$
\begin{align*}
& \frac{3}{2}\left(\left\|\bar{\partial}^{E} s\right\|_{L^{2}}^{2}+\left\|\bar{\partial}^{E, *} s\right\|_{L^{2}}^{2}\right) \geqslant \frac{1}{2}\left(\left\|\left(\nabla^{E}\right)^{1,0} s\right\|_{L^{2}}^{2}+\left\|\left(\nabla^{E}\right)^{1,0 *} s\right\|_{L^{2}}^{2}\right) \\
& \quad+\left\langle\left[\sqrt{-1} R^{E}, \Lambda\right] s, s\right\rangle-\frac{1}{2}\left(\|\mathcal{T} s\|_{L^{2}}^{2}+\left\|\mathcal{T}^{*} s\right\|_{L^{2}}^{2}+\|\overline{\mathcal{T}} s\|_{L^{2}}^{2}+\left\|\overline{\mathcal{T}}^{*} s\right\|_{L^{2}}^{2}\right), \tag{1.4.55}
\end{align*}
$$

whereby the conclusion.

For the purpose of proving vanishing theorems and the spectral gap for forms of bidegree $(0, q)$ with values in a positive bundle (especially on noncompact manifolds or with boundary), we derive sometimes another form of the Bochner-Kodaira-Nakano formula. Set $\widetilde{E}=E \otimes K_{X}^{*}$ where $K_{X}^{*}=\Lambda^{n}\left(T^{(1,0)} X\right)=$ $\operatorname{det}\left(T^{(1,0)} X\right)$. Since $K_{X} \otimes K_{X}^{*} \cong \mathbb{C}$, there exists a natural isometry

$$
\begin{align*}
& \Psi=\sim: \Lambda^{0, q}\left(T^{*} X\right) \otimes E \longrightarrow \Lambda^{n, q}\left(T^{*} X\right) \otimes \widetilde{E} \tag{1.4.56}\\
& \Psi s=\widetilde{s}=\left(w^{1} \wedge \ldots \wedge w^{n} \wedge s\right) \otimes\left(w_{1} \wedge \ldots \wedge w_{n}\right)
\end{align*}
$$

where $\left\{w_{j}\right\}_{j=1}^{n}$ a local orthonormal frame of $T^{(1,0)} X$.
Theorem 1.4.15. For any $s \in \Omega^{0, \bullet}(X, E)$, we have

$$
\begin{align*}
\square^{E} s= & \Psi^{-1} \bar{\square}^{\widetilde{E}} \Psi s+R^{E \otimes K_{X}^{*}}\left(w_{j}, \bar{w}_{k}\right) \bar{w}^{k} \wedge i_{\bar{w}_{j}} s \\
& +\Psi^{-1}\left(\nabla^{\widetilde{E}}\right)^{1,0} \mathcal{T}^{*} \Psi s-\left[\bar{\partial}^{E}, \Psi^{-1} \overline{\mathcal{T}}^{*} \Psi\right] s . \tag{1.4.57}
\end{align*}
$$

Proof. We apply (1.4.44) for \widetilde{s} :

$$
\begin{equation*}
\square^{\widetilde{E}} \widetilde{s}=\bar{\square}^{\widetilde{E}} \widetilde{s}+\left[\sqrt{-1} R^{\widetilde{E}}, \Lambda\right] \widetilde{s}+\left[\left(\nabla^{\widetilde{E}}\right)^{1,0}, \mathcal{T}^{*}\right] \widetilde{s}-\left[\bar{\partial}^{\widetilde{E}}, \overline{\mathcal{T}}^{*}\right] \widetilde{s} \tag{1.4.58}
\end{equation*}
$$

Since K_{X}^{*} is a holomorphic bundle,

$$
\begin{equation*}
\bar{\partial}^{\widetilde{E}} \widetilde{s}=\left(\bar{\partial}^{E} s\right)^{\sim}, \quad \bar{\partial}^{\widetilde{E}, *} \widetilde{s}=\left(\bar{\partial}^{E, *} s\right)^{\sim}, \quad \square^{\widetilde{E}} \widetilde{s}=\left(\square^{E} s\right)^{\sim} \tag{1.4.59}
\end{equation*}
$$

Hence $\Psi^{-1} \square^{\widetilde{E}} \widetilde{s}=\square^{E} s$. Likewise

$$
\begin{align*}
& \Psi^{-1}\left[\bar{\partial}^{\widetilde{E}}, \overline{\mathcal{T}}^{*}\right] \widetilde{s}=\left[\bar{\partial}^{E}, \Psi^{-1} \overline{\mathcal{T}}^{*} \Psi\right] s \\
& \Psi^{-1}\left[\left(\nabla^{\widetilde{E}}\right)^{1,0}, \mathcal{T}^{*}\right] \widetilde{s}=\Psi^{-1}\left(\nabla^{\widetilde{E}}\right)^{1,0} \mathcal{T}^{*} \widetilde{s} \tag{1.4.60}\\
& \Psi^{-1} \bar{\square}^{\widetilde{E}} \Psi s=\Psi^{-1}\left(\nabla^{\widetilde{E}}\right)^{1,0}\left(\nabla^{\widetilde{E}}\right)^{1,0 *} \Psi s
\end{align*}
$$

By (1.4.37) we have

$$
\begin{equation*}
\left[\sqrt{-1} R^{\widetilde{E}}, \Lambda\right]=R^{\widetilde{E}}\left(w_{j}, \bar{w}_{k}\right)\left(w^{j} \wedge i_{w_{k}}-i_{\bar{w}_{j}} \bar{w}^{k} \wedge\right) \tag{1.4.61}
\end{equation*}
$$

thus

$$
\begin{equation*}
\Psi^{-1}\left[\sqrt{-1} R^{\widetilde{E}}, \Lambda\right] \widetilde{s}=R^{E \otimes K_{X}^{*}}\left(w_{j}, \bar{w}_{k}\right) \bar{w}^{k} \wedge i_{\bar{w}_{j}} s \tag{1.4.62}
\end{equation*}
$$

From(1.4.59), (1.4.60) and (1.4.62), we obtain (1.4.57).
Remark 1.4.16. Assume now that $g^{T X}$ is Kähler. Then $\mathcal{T}=0$, and $\widetilde{\nabla}^{T X}$ on $\Lambda\left(T^{*(0,1)} X\right) \otimes E$ is induced by the holomorphic Hermitian connections $\nabla^{T^{(1,0)} X}$, ∇^{E}. On $\Omega^{0, \bullet}(X, E)$, set $\Delta^{0, \bullet}=-\sum_{i}\left(\widetilde{\nabla}_{w_{i}}^{T X} \widetilde{\nabla}_{\bar{w}_{i}}^{T X}-\widetilde{\nabla}_{\nabla_{w_{i}}^{T X} \bar{w}_{i}}^{T X}\right)$. From (1.4.8) and (1.4.10), for $s \in \Omega^{0, \bullet}(X, E)$, we obtain $\Psi^{-1} \square^{\widetilde{E}} \Psi s=\Delta^{0, \bullet} s$. We infer from (1.4.57):

$$
\begin{equation*}
\square^{E} s=\Delta^{0, \bullet} s+R^{E \otimes K_{X}^{*}}\left(w_{j}, \bar{w}_{k}\right) \bar{w}^{k} \wedge i_{\bar{w}_{j}} s \quad \text { for } s \in \Omega^{0, \bullet}(X, E) . \tag{1.4.63}
\end{equation*}
$$

