
Chapter 2

Moment maps and symplectic
reductions

In this chapter, we explain two main concepts of this book: moment map and symplectic reduc-
tion. The symplectic reduction has its original in classical Hamiltonian mechanic and was used
by physicists since more that one century, it was introduced by Mardsen-Weinstein for mathe-
maticians in 1970’s, and it gives a systematical way to construct new symplectic manifolds from
known symplectic manifolds. When we apply it formally to infinite dimensional spaces it gives
an efficacy way to construct symplectic forms on the moduli spaces of certain geometric objects.

In Section 2.1, we give a short introduction to Lie groups, Lie algebras and Lie algebra coho-
mology. In particular, we establish Cartan-Chevalley-Eilenberg theorem: de Rham cohomology
of a compact connected Lie group coincides with the cohomology of its Lie algebra, which is
in fact at the origin of the notion of Lie algebra cohomology. In Section 2.2, we study the lo-
cal structure of a group action on a manifold, so-called the slice theorem. In Section 2.3, we
introduce the moment map and the symplectic reduction. The Cartan-Chevalley-Eilenberg the-
orem helps us to understand when a symplectic action is Hamiltonian. And the slice theorem
shows the quotient space in the definition of symplectic reduction has a smooth structure. The
most important point is that the symplectic form on the original manifold induces naturally a
symplectic form on the reduced space. Section 2.4 is a brief introduction on symplectic cuts.

2.1 Introduction to Lie groups and Lie algebras

The aim of this section is to give a short introduction to Lie groups, Lie algebras, and Lie algebra
cohomology.

38



CHAPTER 2. MOMENT MAPS AND SYMPLECTIC REDUCTIONS 39

2.1.1 Lie groups and Lie algebras

Set K = R or C.

Definition 2.1.1. Let g be a K-vector space. We call that an antisymmetric K-bilinear form
[·, ·] : g× g → g is a Lie bracket, if it satisfies the Jacobi identity, i.e.,

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 for any X,Y, Z ∈ g. (2.1.1)

In this case, we will call that (g, [, ]) is a K-Lie algebra. If k is a K-vector subspace of g and
[u, v] ∈ k for any u, v ∈ k, then we call k is a Lie subalgebra of g.

A K-linear map ψ : g → h of two K-Lie algebras is called a morphism of Lie algebras if
[ψ(u), ψ(v)] = ψ([u, v]) for any u, v ∈ g.

Here are some examples. We define the map [ , ] :Mn(K)×Mn(K) →Mn(K) by

[A,B] = AB −BA for A,B ∈Mn(K). (2.1.2)

Then Mn(K) is a K-Lie algebra with Lie bracket [ , ].
If M is a manifold, by (1.2.10), and by Exercise 1.2.2, [, ] is a Lie bracket on C∞(M,TM).

If ω is a symplectic form on M , by Proposition 1.3.3, the Poisson algebra (C∞(M), { , }) is a
Lie algebra, and we verify that sympl(M,ω) and ham(M,ω) are also Lie algebras. Moreover, by
(1.3.8), we have a morphism of Lie algebras

C∞(M) ∋ f → −Xf ∈ C∞(M,TM). (2.1.3)

Definition 2.1.2. A group G is called a Lie group if it’s a manifold, and the multiplication

(g, h) ∈ G×G→ gh ∈ G (2.1.4)

is a smooth map. We denote by e ∈ G the identity element in G. If in addition that the
multiplication commutes, we say G is an abelian Lie group.

A morphism φ : G → G′ of two Lie groups G,G′ is a C∞ map and preserves the operations
on groups, i.e., φ(gh) = φ(g)φ(h) for any g, h ∈ G.

A Lie subgroup H of a Lie group G is an injective homomorphism of Lie groups φ : H → G.
A torus means a Lie group isomorphic to the quotient group Rk/Zk for some k.
For a K-vector space E, and a Lie group G, we call (E, ρ) a K-representation of G, if ρ : G→

GL(E) is a morphism of Lie groups. The representation ρ : G→ GL(E) is said to be irreducible
if any subspace of E which is stable by G is either {0} or E.

A morphism f : E → F between representations is a linear map which is equivariant, i.e.,
f(gv) = gf(v) for any g ∈ G and v ∈ E.

Let G be a Lie group. For h ∈ G, the left multiplication Lh and the right multiplication Rh
are defined by

Lh : g ∈ G→ hg ∈ G, Rh : g ∈ G→ gh ∈ G. (2.1.5)

A vector field X ∈ C∞(G,TG) on G is called left (resp. right) invariant if for any h ∈ G, we
have

Lh∗X = X, (resp. Rh∗X = X). (2.1.6)

Let C∞(G,TG)L be the space of left invariant vector fields on G. By Exercise 1.2.2, if X, Y
∈ C∞(G,TG)L, then [X,Y ] ∈ C∞(G,TG)L. Thus C∞(G,TG)L is a Lie algebra.

We denote by g = TeG the tangent space of G at e.
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Proposition 2.1.3. The linear maps

ψ : X ∈ g → XL = ((dLh)eX)h∈G ∈ C∞(G,TG)L (2.1.7)

is well-defined, and is a bijection. In particular, for X,Y ∈ g, we define

[X,Y ] = ψ−1[XL, YL], (2.1.8)

then (2.1.8) defines a Lie algebra structure on g, and we call g the Lie algebra of G.

Proof. For W ∈ C∞(G,TG), then Lg∗W =W for any g ∈ G is equivalent to

(dLg)(W (g−1h)) =W (h) for g, h ∈ G, i.e., (dLg)(W (e)) =W (g) for g ∈ G. (2.1.9)

Thus h→ (dLh)eX is a left invariant vector on G and

Y ∈ C∞(G,TG)L → Ye ∈ g (2.1.10)

is the inverse of ψ. Finally, the Jacobi identity for [ , ] on g is from the Jacobi identity for the
vector fields and (2.1.8). The proof of Proposition 2.1.3 is completed.

In the sequel, we do not distinguish g and C∞(G,TG)L. If X ∈ g, let ϕXt : G → G be
the flow associated with the left invariant vector field X. By the uniqueness of the solution of
ordinary differential equations, we verify that

ϕXt
(
ϕXs (g)

)
= ϕXt+s(g), ϕXt (e) = ϕtX1 (e). (2.1.11)

Lemma 2.1.4. For X ∈ g, ϕXt is well-defined for all t ∈ R, and we have

ϕXt (g) = gϕXt (e). (2.1.12)

Proof. By the existence of the solution of ordinary differential equations, there is ε > 0 such that
the flow ϕXt (e) is well-defined for |t| < ε. For |t| < ε, g ∈ G, we have

∂

∂t

(
gϕXt (e)

)
= (dLg)

(
XL

(
ϕXt (e)

))
= XL

(
gϕXt (e)

)
. (2.1.13)

By the uniqueness of the solution of ordinary differential equations and by (2.1.13), we know
that for g ∈ G, for |t| < ε, the flow ϕXt (g) is well-defined, and (2.1.12) holds. Thus by the first
equation of (2.1.11), we know that ϕXt is defined for t ∈ R. Using the same argument again, we
know that (2.1.12) holds for t ∈ R.

The exponential map exp : g → G is defined by: for X ∈ g,

exp(X) := eX := ϕX1 (e). (2.1.14)

By (2.1.11), (2.1.12), we have

ϕXt (g) = getX . (2.1.15)

Now we give another description of the Lie bracket on g. For h ∈ G, set

Ch = LhRh−1 : G→ G. (2.1.16)
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Then Ch is a homomorphism of G. By taking the derivation at e, we get

Adh := (dCh)e : g → g. (2.1.17)

Since for h1, h2 ∈ G, we have Ch1
Ch2

= Ch1h2
, by (2.1.17), we get

Adh1
Adh2

= Adh1h2
∈ GL(g), AdhAdh−1 = Idg . (2.1.18)

Thus, we get a homomorphism of groups Ad : G → GL(g) which is called the adjoint represen-
tation of G. By taking the derivation of Adh on h at e, we get for X ∈ g,

adX := (dAd)e (X) ∈ End(g) =: gl(g). (2.1.19)

Let g∗ be the dual of g. For α ∈ g∗, h ∈ G, X ∈ g, we define Ad∗hα, ad
∗
Xα ∈ g∗ by: for Y ∈ g,

(Ad∗hα, Y ) := (α,Adh−1Y ), (ad∗Xα, Y ) := −(α, adXY ). (2.1.20)

By (2.1.18) and (2.1.20), we get for h1, h2 ∈ G,

Ad∗h1
Ad∗h2

= Ad∗h1h2
. (2.1.21)

Thus Ad∗ : G→ GL(g∗) is a homomorphism of groups which is called the coadjoint representa-
tion of G. By (2.1.19), we have

ad∗X = (dAd∗)e (X). (2.1.22)

Proposition 2.1.5. If X,Y ∈ g, we have

adXY = [X,Y ], (2.1.23)

and ad : g → gl(g) is a homomorphism of Lie algebras with Lie bracket (2.1.2) on gl(g).

Proof. By Definition, we have

[X,Y ] =
∂

∂t

∣∣∣
t=0

(
ϕX−t,∗Y

)
e
,

(
ϕX−t,∗Y

)
e
=

∂

∂s

∣∣∣
s=0

ϕX−t

(
ϕYs
(
ϕXt (e)

))
. (2.1.24)

By (2.1.15) and (2.1.16), we get

ϕX−t

(
ϕYs
(
ϕXt (e)

))
= etXesY e−tX = CetXe

sY . (2.1.25)

By (2.1.17), (2.1.19), (2.1.24) and (2.1.25), we have

[X,Y ] =
∂2

∂s∂t

∣∣∣
(s,t)=(0,0)

CetXe
sY =

∂

∂t

∣∣∣
t=0

AdetXY = adXY. (2.1.26)

By Jacobi identity and (2.1.26), we get for X,Y, Z ∈ g,

ad[X,Y ]Z = [[X,Y ], Z] = [X, [Y,Z]]− [Y, [X,Z]]

= adXadY Z − adY adXZ = [adX , adY ]Z. (2.1.27)

The proof of Proposition 2.1.5 is completed.
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Example 2.1.6. For m ∈ N∗, K = R or C, the group GL(m,K) is a Lie group, with its Lie algebra
gl(m,K) = Mm(K), the space of K-valued m×m matrices. For A,B ∈ Mm(K), g ∈ GL(m,K),
the exponential map is given by

exp(A) =

∞∑
k=0

Ak

k!
, (2.1.28)

and we have via the usual matrix operations

Adg(A) = gAg−1, adAB = [A,B] = AB −BA. (2.1.29)

Proof. For x = (x1, . . . , xm)t ∈ Km, we define the norm |x| of x by

|x|2 =

m∑
i=1

|xi|2. (2.1.30)

For A ∈Mm(K), we denote by ∥A∥ the operator norm, that is

∥A∥ = sup
x∈Km\{0}

|Ax|
|x|

. (2.1.31)

Using ∥Ak∥ ⩽ ∥A∥k, we know that the sum of the right-hand side of (2.1.28) is absolutely and
uniformly convergent, we denote it by ϕ(A). Moreover, by (2.1.28), for t, s ∈ R,

ϕ((t+ s)A) = ϕ(tA)ϕ(sA). (2.1.32)

By Definition and by (2.1.32), we get ∂
∂tϕ(tA) = ϕ(tA)A. Thus, the exponential map exp(A) is

given by ϕ(A), the right-hand side of (2.1.28).
By Definition, for h ∈ GL(m,K), A,B ∈Mm(K), we have

AdhA = (dCh)eA =
∂

∂t

∣∣∣
t=0

Ch(e
tA) =

∂

∂t

∣∣∣
t=0

hetAh−1 = hAh−1, (2.1.33)

adAB =
∂

∂t

∣∣∣
t=0

AdetAB =
∂

∂t

∣∣∣
t=0

etABe−tA = AB −BA.

Remark 2.1.7. As d expe : g → g is identity, we know exp : g → G is a diffeomorphism from an
open neighborhood U ⊂ g of 0 to an open neighborhood V ⊂ G of e. Thus if G is connected,
for any g ∈ G, there exist v1, . . . , vk ∈ g such that g =

∏
j e
vj , but exp : g → G need not be

surjective. If G is compact and connected, then we can prove exp : g → G is surjective. Here
is an example: for any A ∈ sl(2,R), the Lie algebra of SL(2,R), there exists Q ∈ O(2), λ ∈ R

or
√
−1R such that A = Q

(
λ ∗
0 −λ

)
Qt, thus Tr[eA] ≥ −2. But

(
x 0
0 x−1

)
∈ SL(2,R) for

any x < −1.

Proposition 2.1.8. A compact connected abelian Lie group G is a torus.

Proof. As G is abelian, the map ψ : G×G→ G, ψ(x, y) = xy is a homomorphism of Lie groups.
As dψ(e,e)(u, v) = u+ v for any u, v ∈ g, Exercise 2.1.2 a) implies that

exp(u) exp(v) = exp(u+ v). (2.1.34)
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Thus exp : g → G is a morphism of Lie groups in view g as an additive Lie group. As G is
connected, the argument in Remark 2.1.7 and (2.1.34) imply that exp : g → G is surjective and
Γ := ker(exp) is a discrete subgroup of g. Thus G = g/Γ. As G is compact, we conclude from
Exercise 2.1.3 that there exists e1, . . . , edimG ∈ Γ such that

Γ = Ze1 ⊕ · · · ⊕ ZedimG and G = ⊕jR/Zej . (2.1.35)

The proof of Proposition 2.1.8 is completed.

Lemma 2.1.9. Let H be an abelian compact Lie group and let ρ : H → GL(V ) be a finite-
dimensional complex irreducible representation of H. Then dimV = 1.

Proof. Let gV be a H-invariant metric on V . If h ∈ H, since h acts by isometry, we can
diagonalize ρ(h):

V =
⊕

λ∈Spec(ρ(h))

Vλ with ρ(h)|Vλ
= λ IdVλ

. (2.1.36)

Now for any h′ ∈ H, since hh′ = h′h, h′ preserve the Vλ’s, so the Vλ’s are stable by H, hence
there is a λ0(h) such that ρ(h) = λ0(h) IdV . Thus, ρ(H) ⊂ C IdV and if dimV > 1, (V, ρ) cannot
be irreducible.

Example 2.1.10. Let u(n), sp(2n) be the Lie algebras of U(n), Sp(2n). Then we have

sp(2n) = {A ∈M2n(R) : AtJ0 = −J0A}

=

{(
α β
γ −αt

)
: βt = β, γt = γ, α, β, γ ∈Mn(R)

}
.

(2.1.37)

In fact, by (1.1.76),

A ∈ Sp(2n) if and only if J0 = AtJ0A. (2.1.38)

Thus sp(2n) is a subset of the right-hand side of (2.1.37). Now if A ∈M2n(R), A = J−1
0 (−At)J0,

we know that esA = J−1
0 e−sA

t

J0 = J−1
0 (e−sA)tJ0 for s ∈ R. This implies e−sA ∈ Sp(2n) thus

A = ∂
∂s |s=0e

sA ∈ sp(2n).

The Cartan involution Θ : Sp(2n) → Sp(2n) of Sp(2n) is defined by Θ(g) = (gt)−1. Let
ϑ : sp(2n) → sp(2n) be the differential of Θ. Then

Θ2 = Id, ϑ(A) = −At. (2.1.39)

By (1.1.66) and (2.1.39), we get

{g ∈ Sp(2n) : Θ(g) = g} = U(n)(= τ(U(n))), ker(ϑ− Id) = u(n). (2.1.40)

Thus we have the Cartan decomposition of sp(2n) :

sp(2n) = u⊕ p, (2.1.41)

with u its anti-symmetric part and p its symmetric part:

u := ker(ϑ− Id) =

{(
α −β
β α

)
: αt = −α, βt = β, α, β ∈Mn(R)

}
,

p := ker(ϑ+ Id) =

{(
α β
β −α

)
: αt = α, βt = β, α, β ∈Mn(R)

}
.

(2.1.42)

By using Θ is an automorphism of Lie groups or from the direct computation, we get

[u, u] ⊂ u, [p, p] ⊂ u, [u, p] ⊂ p. (2.1.43)
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Theorem 2.1.11. The map

exp : p → {B ∈ Sp(2n) : B is symmetric and positive }, A→ eA, (2.1.44)

is well-defined and bijective. In particular, for any B ∈ Sp(2n), there exists unique A ∈ p,
Q ∈ U(n) such that B = eAQ.

Proof. At first, if A ∈ p, then eA is symmetric and positive, and eA ∈ Sp(2n) by the argument
after (2.1.38). Thus (2.1.44) is well-defined.

If B ∈ Sp(2n) is symmetric and positive, then there exists Q ∈ O(2n) such that

B = Qdiag(λ1, . . . , λ2n)Q
t, (2.1.45)

and λj > 0 for 1 ≤ j ≤ 2n. Set

A = Qdiag(log λ1, . . . , log λ2n)Q
t, (2.1.46)

and from (1.1.38), Bs = esA for any s ∈ R. By Proposition 1.1.18, we know esA ∈ Sp(2n). Thus
A ∈ sp(2n), as A is symmetric, we get A ∈ p. Thus (2.1.44) is surjective.

If B = eA and A ∈ p. Then there exists Q1 ∈ O(2n) such that A = Q1diag(µ1, . . . , µ2n)Q
t
1,

thus B = Q1diag(e
µ1 , . . . , eµ2n)Qt1. By (1.1.38), we get for s ∈ R,

Bs = Q1diag(e
sµ1 , . . . , esµ2n)Qt1 = esA.

By taking the differential at s = 0, we get A = ∂
∂s |s=0B

s. Thus (2.1.44) is injective.
Now the last part is from Proposition 1.1.18. The proof of Theorem 2.1.11 is completed.

Now we state some results of the theory of Lie groups which we will not prove here.

Theorem 2.1.12. A closed subgroup of a Lie group is a Lie subgroup.

Theorem 2.1.13. If H is a closed Lie subgroup of G, then the homogeneous space G/H is a
smooth manifold with quotient topology of G.

In fact, Theorem 2.1.13 is a direct consequence of Corollary 2.2.7 when G is compact, whose
proof does not use Theorem 2.1.13.

Definition 2.1.14. Let M be a connected topology space. We say that M is simply connected
if for any continuous closed curve γ : S1 →M , there exists a continuous map γt : S1× [0, 1] →M
such that γ1(S1) = pt (i.e., constant map) and γ0(S1) = γ. That is, the fundamental group
π1(M) of M is zero.

Theorem 2.1.15. (Second theorem of Lie) Let G and H be two connected Lie groups and
π1(G) = 0. If ϕ : g → h is a homomorphism of Lie algebras of these two Lie groups, then there
exists a unique homomorphism Φ : G → H of Lie groups such that dΦ|e = ϕ, for e the identity
element of G.

Let Ω•
L(G) be the space of left invariant differential forms on G. We define for α ∈ Λ•g∗,

g ∈ G,

τL(α)g = (dLg)
∗α ∈ Λ•(T ∗

gG), (2.1.47)

i.e., for Y1, . . . , Yk ∈ TgG, we have

τL(α)g(Y1, . . . , Yk) = α(dLg−1Y1, . . . , dLg−1Yk). (2.1.48)
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Then we verify as in Proposition 2.1.3 that τL(α) ∈ Ω•
L(G), and τL : Λ•g∗ → Ω•

L(G) is an
isomorphism of algebras. In particular, G is orientable.

When G is compact, if α ∈ ΩdimG(G) is left invariant, and∫
G

α = 1, (2.1.49)

with the orientation on G induced by α, then we call α a left Haar form on G.

Proposition 2.1.16. If G is compact and connected, then a left Haar form is also right invariant.

Proof. Let α be a left Haar form on G. For g ∈ G, let ϱg ∈ C∞(G,R×) be the nonvanishing
function on G defined by, for h ∈ G (

R∗
gα
)
h
= ϱg(h)αh. (2.1.50)

As α is left invariant, we have

L∗
hR

∗
gα = (L∗

hϱg)α. (2.1.51)

By LhRg = RgLh, we get

L∗
hR

∗
gα = R∗

gL
∗
hα = R∗

gα = ϱgα. (2.1.52)

Thus ϱg is a left invariant function. Hence, it is a constant.
On the other hand, by RhRg = Rgh, we have

R∗
gR

∗
hα = ϱhR

∗
gα = ϱhϱgα, R∗

gR
∗
hα = R∗

ghα = ϱghα. (2.1.53)

As Rg-action is smooth on g, thus by (2.1.50) and (2.1.53), the function

ϱ : g ∈ G→ ϱg ∈ R× (2.1.54)

is multiplicative and smooth. Moreover, ρ· is positive near the identity element.
We claim that if G is compact, for all g ∈ G, ϱg = ±1. Otherwise, there is g ∈ G such that

|ϱg| > 1. Then limk→∞ |ϱgk | = limk→∞ |ϱkg | = ∞, which contradicts with the compactness of G.
If G is moreover connected, we get ρ ≡ 1. The proof of Proposition 2.1.16 is completed.

Remark 2.1.17. For a compact Lie group G and α in (2.1.49), then ϱ ≡ 1 or −1 on each connected
component of G, thus α need not be right invariant. We define the Haar measure dµ on G by∫
G
fdµ :=

∫
G
fα for f ∈ C∞(G). It is a left and right invariant measure on G, i.e., for any

h ∈ G, ∫
G

(R∗
hf) dµ =

∫
G

(L∗
hf) dµ =

∫
G

fdµ. (2.1.55)

In fact Rh preserves (resp. inverses) the orientation induced by α if ϱh = 1 (resp. −1), thus∫
G

(R∗
hf) dµ =

∫
G

R∗
h(fR

∗
h−1α) =

ϱh
|ϱh|

∫
G

fR∗
h−1α =

ϱh
|ϱh|

ϱh−1

∫
G

fα =

∫
G

fdµ. (2.1.56)

In the same way, Lh preserves the orientation and
∫
G
(L∗

hf)α =
∫
G
L∗
h(fL

∗
h−1α) =

∫
G
fL∗

h−1α =∫
G
fdµ. The proof of Proposition 2.1.16 implies also a left invariant positive measure on G is

right invariant (as automatically ρ > 0) and the Haar measure is unique.
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2.1.2 Cohomology groups of a Lie group and of a Lie algebra

Let G be a Lie group with Lie algebra g. Let M be a manifold of dimension m. We say that G
acts (leftly) on M via a smooth map

ϑ : (g, x) ∈ G×M → ϑ(g, x) = g · x ∈M, (2.1.57)

if for any g, h ∈ G, x ∈M , we have

e · x = x, (gh) · x = g · (h · x). (2.1.58)

If G acts on M , then we call M a G-manifold. For g ∈ G, we still denote by g : M → M the
diffeomorphism M ∋ x→ g · x ∈M .

Definition 2.1.18. Let Ω•(M)G be the space of G-invariant differential forms on M , i.e.,

Ω•(M)G = {α ∈ Ω•(M) : g∗α = α, for any g ∈ G}. (2.1.59)

As the exterior differential d commutes with g∗, (Ω•(M)G, d) is a subcomplex of (Ω•(M), d),
i.e., d(Ω•(M)G) ⊂ Ω•+1(M)G. Let H•(M,R)G be the cohomology group of (Ω•(M)G, d), i.e.,
for k ∈ N,

Hk(M,R)G =
ker(d|Ωk(M)G)

Im(d|Ωk−1(M)G)
. (2.1.60)

We introduce first some notations. Let πG, πM be the natural projections from G × M

to G and M . The fiberwise integration
∫ G

: Ω•(G × M) → Ω•−dimG(M) is defined by: for
α ∈ Ω•(M), β ∈ Ω•(G) and f ∈ C∞(G×M),∫ G

fπ∗
M (α) ∧ π∗

G(β) = α

∫
G

fβ. (2.1.61)

For a manifold X, we denote by dX the exterior differential on X. We claim that for any
ψ ∈ Ω•(G×M),

dM
∫ G

ψ =

∫ G

dG×Mψ. (2.1.62)

At first, for f ∈ C∞(G×M), β ∈ Ω•(G), we have

dG×M (fπ∗
Gβ) = dMf ∧ π∗

Gβ + dG (fπ∗
G(β)) . (2.1.63)

By Stokes formula and by (2.1.61), we get∫ G

dG×M (fπ∗
Gβ) =

∫ G

dMf ∧ π∗
Gβ = dM

(∫ G

fπ∗
Gβ

)
. (2.1.64)

Observe that by (2.1.61), for α ∈ Ω•(M), γ ∈ Ω•(G×M), we have∫ G

π∗
Mα ∧ γ = α

∫ G

γ. (2.1.65)

Thus (2.1.64) implies (2.1.62).
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Theorem 2.1.19. If G is compact and connected, then the inclusion i : Ω•(M)G → Ω•(M) is a
quasi-isomorphism of complexes, i.e., i induces an isomorphism H•(M,R)G ≃ H•(M,R).

Proof. Let θ ∈ ΩdimG(G) be the left Haar form on G as in (2.1.49). Let r : Ω•(M) → Ω•(M) be
the linear map defined by: for α ∈ Ω•(M), x ∈M ,

r(α)x =

∫
g∈G

(g∗α)x θ(g). (2.1.66)

For α ∈ Ω•(M), x ∈ M , we define αx(g) = (g∗α)x ∈ Λ•(T ∗
xM) as a function on G. For any

h ∈ G, we get by Remark 2.1.17,

(h∗r(α))x =

∫
g∈G

(h∗g∗α)x θ(g) =

∫
g∈G

((gh)∗α)x θ(g)

=

∫
g∈G

(R∗
hα

x) (g)θ(g) = r(α)x. (2.1.67)

Thus, r(α) ∈ Ω•(M)G. Clearly, we have

r ◦ i = IdΩ•(M)G . (2.1.68)

For α ∈ Ω•(M), as θ(g) has maximal degree on G, from (2.1.62), we get

r(dMα)x =

∫
g∈G

(
g∗dMα

)
x
θ(g) =

∫
g∈G

(
dMg∗α

)
x
θ(g)

=
(∫ G

dG×M (g∗α ∧ θ(g))
)
x
= dMr(α)x. (2.1.69)

This means that r : (Ω•(M), d) → (Ω•(M)G, d) is a morphism of complexes. Let

i∗ : H•(M,R)G → H•(M,R), r∗ : H•(M,R) → H•(M,R)G, (2.1.70)

be the maps induced by i, r. Then (2.1.68) implies

r∗ ◦ i∗ = IdH•(M,R)G . (2.1.71)

We will show that i ◦ r is chain homotopy to IdΩ•(M).
As θ(g) has maximal degree, by (2.1.61), we have

i ◦ r(α) =
∫
G

g∗α θ(g) =

∫ G

ϑ∗(α) ∧ π∗
G(θ). (2.1.72)

Let φ : U ⊂ G → V ⊂ RdimG be a local coordinate near e ∈ G such that φ(e) = 0 and V
convex. Let σ be a form on G with degree dimG such that

Supp(σ) ⊂ U and

∫
G

σ = 1. (2.1.73)

As G is connected, we get H0(G,R) = R. Moreover as G is compact and orientable, by
Poincaré duality,

[α] ∈ HdimG(G,R) →
∫
G

α ∈ R, (2.1.74)
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is an isomorphism. Thus [σ] and [θ] are in the same cohomology class. This means there is
η ∈ ΩdimG−1(G) such that

dGη = θ − σ. (2.1.75)

By (2.1.72) and (2.1.75), we get

i ◦ r(α) =
∫ G

ϑ∗(α) ∧ π∗
G(σ) +

∫ G

ϑ∗(α) ∧ π∗
G(d

Gη). (2.1.76)

Let H1 : Ωk(M) → Ωk−1(M) be the linear map defined by: for α ∈ Ωk(M),

H1(α) = (−1)k
∫ G

ϑ∗(α) ∧ π∗
G(η). (2.1.77)

For α ∈ Ωk(M), by (2.1.62) and ϑ∗(dMα) = dG×Mϑ∗(α), we get

(dMH1 +H1d
M )α = (−1)kdM

∫ G

ϑ∗(α) ∧ π∗
G(η) + (−1)k+1

∫ G

ϑ∗(dMα) ∧ π∗
G(η)

=

∫ G

ϑ∗(α) ∧ π∗
G(d

Gη). (2.1.78)

We identify U ⊂ G and V ⊂ RdimG via φ. For s ∈ [0, 1], set ϕs : (u, x) ∈ U ×M → (su, x) ∈
U ×M , and let Xs be the vector field on sU ×M defined as in (1.2.47). For β ∈ Ω•(U ×M), set

K(β) =

∫ 1

0

ϕ∗s (iXsβ) ds. (2.1.79)

We know from (1.2.64) that (
dG×MK +KdG×M)β = β − ϕ∗0β. (2.1.80)

Let H2 : Ωk(M) → Ωk−1(M) be a linear map defined by: for α ∈ Ωk(M),

H2(α) =

∫ G

K(ϑ∗α) ∧ π∗
G(σ). (2.1.81)

By (2.1.62), (2.1.73), σ has maximal degree on G, and dG×M (ϑ∗α) = ϑ∗dMα, we get

(dMH2 +H2d
M )α = dM

∫ G

K(ϑ∗α) ∧ π∗
G(σ) +

∫ G

K
(
ϑ∗(dMα)

)
∧ π∗

G(σ)

=

∫ G (
dG×MK(ϑ∗α) +K(dG×M (ϑ∗α))

)
∧ π∗

G(σ) =

∫ G

(ϑ∗α− ϕ∗0ϑ
∗α) ∧ π∗

G(σ)

=

∫ G

ϑ∗α ∧ π∗
G(σ)− α. (2.1.82)

Take H = H1 +H2. By (2.1.76), (2.1.78) and (2.1.82), we get

i ◦ r − IdΩ•(M) = dH +Hd. (2.1.83)

This means i ◦ r is chain homotopy to identity. Thus

i∗ ◦ r∗ = IdH•(M,R) . (2.1.84)

The proof of Theorem 2.1.19 is completed.
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Remark 2.1.20. As G is connected, for any g ∈ G, there exists a smooth path [0, 1] ∋ t→ gt ∈ G
from e to g. Let Xt be the vector field on M associated with the flow gt. Then for any closed
α ∈ Ω•(M), by (1.2.20) and (1.2.94), we get

g∗α− α =

∫ 1

0

∂

∂t
g∗t α =

∫ 1

0

g∗tLXtα = d

∫ 1

0

g∗t iXtα. (2.1.85)

Thus G acts on H•(M,R) as identity map, i.e., trivially on H•(M,R), which is a direct con-
sequence of Theorem 2.1.19. However, this fact does not imply directly Theorem 2.1.19, which
means there exists a closed β ∈ Ω•(M)G, such that β − α is exact.

For j ∈ N, let Hj(M,Z) be the j-th cohomology group of M with integer coefficients, then

Hj(M,R) = Hj(M,Z)⊗Z R. (2.1.86)

As G is connected and Hj(M,Z) is discrete, the G-action on Hj(M,Z) must be trivial. Thus
we get a topological proof of the fact that G acts trivially on H•(M,R).

We will first apply Theorem 2.1.19 to the case M = G with the left G action where G is a
connected compact Lie group.

Recall that Ω•
L(G) is the space of left invariant differential forms on a Lie group G. Then

as for any g ∈ G, L∗
g · d = d · L∗

g on Ω•(G), thus d(Ω•
L(G)) ⊂ Ω•+1

L (G), we know (Ω•
L(G), d) is

a subcomplex of (Ω•(G), d). We denote by δ the differential on Λ•g∗ induced by the exterior
differential d on Ω•

L(G) under the isomorphism τL : Λ•g∗ → Ω•
L(G) in (2.1.47).

Proposition 2.1.21. For α ∈ Λkg∗, X0, . . . , Xk ∈ g, we have

δα(X0, . . . , Xk) =
∑

0⩽i<j⩽k

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk). (2.1.87)

Proof. As before we identify X0, . . . , Xk ∈ g with left invariant vector fields on G. Then for 0 ⩽
i ⩽ k, (τLα)(X0, . . . , X̂i, . . . , Xk) is a constant function on G and is equal to α(X0, . . . , X̂i, . . . ,
Xk). As dτLα = τLδα, by (1.2.12), we get

(τLδα)(X0, . . . , Xk) = (dτLα)(X0, . . . , Xk)

=
∑

0⩽i<j⩽k

(−1)i+j(τLα)([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk). (2.1.88)

As [Xi, Xj ] is also a left invariant vector field on G, each term at the right hand side of (2.1.88)
is constant on G and when we evaluate it at e ∈ G, it is the corresponding term in (2.1.87). The
proof of Proposition 2.1.21 is completed.

As d2 = 0 on Ω•
L(G), by construction,

δ2 = (τ−1
L dτL)

2 = 0 : Λ•g∗ → Λ•g∗. (2.1.89)

We check directly that (2.1.89) still holds for any Lie algebra (not necessary for Lie algebras of
compact Lie groups). This motives the following definition.

Definition 2.1.22. Let g be a Lie algebra, and δ is given by (2.1.87). The cohomology group
of Lie algebra g is defined by: for j ∈ N,

Hj(g) := Hj(Λ•g∗, δ) :=
ker(δ|Λjg∗)

Im(δ|Λj−1g∗)
. (2.1.90)



CHAPTER 2. MOMENT MAPS AND SYMPLECTIC REDUCTIONS 50

Corollary 2.1.23. If G is a connected compact Lie group with Lie algebra g, then

H•(G,R) = H•(g). (2.1.91)

Proof. From Theorem 2.1.19 and Proposition 2.1.21, we get Corollary 2.1.23.

The Ad∗-action of G (resp. ad∗-action of g) on g∗ induces corresponding action on Λ•g∗ by:
for any α, β ∈ Λ•g∗, g ∈ G, X ∈ g,

Ad∗g(α ∧ β) = Ad∗gα ∧Ad∗gβ, ad∗X(α ∧ β) = ad∗Xα ∧ β + α ∧ ad∗Xβ. (2.1.92)

We denote by (Λ•g∗)Ad the subspace of Λ•g∗ which is Ad∗-invariant, and by

(Λ•g∗)ad := {α ∈ Λ•g∗ : ad∗Xα = 0 for X ∈ g}, (2.1.93)

the subspace of Λ•g∗ on which ad∗-action of g is zero.
Next we consider G with a G×G action defined by : for g1, g2, h ∈ G,

Ig1,g2 · h = g1hg
−1
2 = Rg−1

2
Lg1h. (2.1.94)

We denote by C•
I (G) the space of G×G-invariant differential forms on G. Then again (C•

I (G), d)
is a subcomplex of (Ω•(G), d).

Proposition 2.1.24. We have

τ−1
L (C•

I (G)) = (Λ•g∗)Ad, d|(Λ•g∗)Ad = 0. (2.1.95)

Moreover if G is connected, then

τ−1
L (C•

I (G)) = (Λ•g∗)ad. (2.1.96)

Proof. By Definition, we have

τ−1
L (C•

I (G)) = {α ∈ Λ•g∗ : R∗
gτLα = τLα, for all g ∈ G}. (2.1.97)

For any X1, . . . , Xk ∈ g. If α ∈ τ−1
L (CkI (G)), then for g ∈ G, by (2.1.20), (2.1.48), (2.1.92) and

(2.1.97), as α = (τLα)e, we get

α(X1, . . . , Xk) =
(
R∗
gτLα

)
e
(X1, . . . , Xk) = (τLα)eg (dRgX1, . . . , dRgXk)

= α(Adg−1X1, . . . ,Adg−1Xk) = (Ad∗gα)(X1, . . . , Xk). (2.1.98)

Thus τ−1
L (C•

I (G)) ⊂ (Λ•g∗)Ad. Inversely, if α = Ad∗gα for any g ∈ G, then for h, g ∈ G,(
R∗
gτLα

)
h
(dLhX1, . . . , dLhXk) = (τLα)hg (dRgdLhX1, . . . , dRgdLhXk)

= α(Adg−1X1, . . . ,Adg−1Xk) = (Ad∗gα)(X1, . . . , Xk)

= α(X1, . . . , Xk) = (τLα)h(dLhX1, . . . , dLhXk). (2.1.99)

Thus τLα ∈ C•
I (G) and we get the first identity of (2.1.95).

If G is connected, G is generated by a neighborhood of e. Then (2.1.96) is a consequence of
Remark 2.1.7 and the first identity of (2.1.95).
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Let σ : g ∈ G→ g−1 ∈ G be the inverse map. For X ∈ g, g ∈ G, we have

σ
(
getX

)
= e−tXg−1. (2.1.100)

This means

dσg(dLg(X)) = −dRg−1X, i.e., dσg = −dRg−1dLg−1 . (2.1.101)

Thus for α ∈ Ωk(G), we have

(σ∗α)g = (−1)k
(
R∗
g−1L∗

g−1α
)
g
. (2.1.102)

If α ∈ CkI (G), by (2.1.102), we have

σ∗α = (−1)kα, σ∗dα = (−1)k+1dα. (2.1.103)

From (2.1.103) and σ∗dα = dσ∗α, we get dα = 0. The proof of Proposition 2.1.24 is completed.

Theorem 2.1.25 (Cartan 1929, Chevalley-Eilenberg 1948). If G is a connected compact Lie
group with Lie algebra g, then

H•(G,R) = H•(g) = (Λ•g∗)Ad = (Λ•g∗)ad. (2.1.104)

Proof. It is a consequence of Theorem 2.1.19, Proposition 2.1.24 and (2.1.91).

Now we give some results on the cohomology groups of Lie algebras.

Proposition 2.1.26. If g is a Lie algebra, then

H0(g) = R, H1(g) = (g/[g, g])
∗
. (2.1.105)

Proof. By (2.1.87), we have

δ|Λ0g∗ = 0. (2.1.106)

From (2.1.106), we get the first identity of (2.1.105). For α ∈ g∗, by (2.1.87),

δα = 0 if and only if 0 = δα(X,Y ) = −α([X,Y ]) for all X,Y ∈ g. (2.1.107)

By (2.1.106) and (2.1.107), we have

H1(g∗) = ker(δ|Λ1g∗) = (g/[g, g])
∗
. (2.1.108)

The proof of Proposition 2.1.26 is completed.

Proposition 2.1.26 motives the following definition.

Definition 2.1.27. Let h be a linear subspace of a Lie algebra g. The h is called a Lie subalgebra
of g if [h, h] ⊂ h. If [h, g] ⊂ h, then h is called an idea of g.

A Lie algebra g is called abelian if [g, g] = 0. A Lie algebra g is called simple, if it is not
abelian and contains no nonzero proper ideals. A Lie algebra g is called semisimple, if it is a
direct sum of simple Lie algebras.

A Lie group is called semisimple (resp. simple) if its Lie algebra is semisimple (resp. simple).
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If a Lie algebra g is semisimple, then g = [g, g].

Proposition 2.1.28. a) A compact connected Lie group H with Lie algebra h is semisimple if
and only if its center Z(H) := {g ∈ H : gh = hg for any h ∈ H} is finite if and only if [h, h] = h.

b) A Lie algebra g is semisimple if and only if the symmetric bilinear form (Killing form)

B(a, b) := Tr |g[adaadb] for a, b ∈ g (2.1.109)

is nondegenerate on g.

Proposition 2.1.29 (Whitehead’s lemma). If g is a semisimple Lie algebra, then

H0(g) = R, H1(g) = 0, H2(g) = 0. (2.1.110)

Proof. The first and second identities of (2.1.110) follow form Proposition 2.1.26 and Definition
2.1.27. We will proof the third identity of (2.1.110) only for the case where g is a Lie algebra of
a compact connected Lie group G. By Theorem 2.1.25, we need to show(

Λ2g∗
)ad

= 0. (2.1.111)

If α ∈
(
Λ2g∗

)ad
, then for any X,Y, Z ∈ g, by Proposition 2.1.24 and (2.1.87), we have

0 = δα(X,Y, Z) = −α([X,Y ], Z)− α([Y,Z], X)− α([Z,X], Y ),

0 = (ad∗Xα) (Y, Z) = −α([X,Y ], Z)− α(Y, [X,Z]).
(2.1.112)

From (2.1.112), we get

α([Y, Z], X) = 0. (2.1.113)

As [g, g] = g, we get α = 0, which finishes the proof in the case where g is a Lie algebra of a
compact connected Lie group G.

Remark 2.1.30. To get the third equation of (2.1.110) in general case, we need a result, so called
Weyl’s trick, from the semisimple Lie algebra. In fact for any real semisimple Lie algebra g,
there is a real semisimple Lie algebra u such that u is the Lie algebra of a compact connected
Lie group and g⊗R C = u⊗R C. Then

H2(g)⊗R C = H2(g⊗R C) = H2(u⊗R C) = H2(u)⊗R C = 0. (2.1.114)

By Theorem 2.1.25, Proposition 2.1.28 and (2.1.110), we get for a compact connected Lie
group G with finite center,

H0(G,R) = R, H1(G,R) = H2(G,R) = 0. (2.1.115)

Recall that the k-th homotopy group of a manifold M is the set of homotopy classes of maps
f : Sk →M , which forms a group.

Theorem 2.1.31 (Bott 1956). If G is a compact, connected and simply connected simple Lie
group, then

π1(G) = 0, π2(G) = 0, π3(G) ≃ Z. (2.1.116)
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The proof of this theorem is more difficult and we omit the proof. Combining Hurewicz’s
theorem, we get

H1(G,Z) = H2(G,Z) = 0, H0(G,Z) = H3(G,Z) = Z. (2.1.117)

By (2.1.86), (2.1.116) (or (2.1.117)) refines (2.1.115). Here we give an example to illustrate this
point.

Example 2.1.32. If G = SU(2), then G =

{(
a b

−b a

)
: |a|2 + |b|2 = 1, and a, b ∈ C

}
= S3 the

3-dimensional sphere (as A =

(
a b
c d

)
∈ SU(2) if and only if |a|2+ |b|2 = |c|2+ |d|2 = ad−bc =

1, and ab+ cd = 0). We know well that

π1(S3) = 0, π2(S3) = 0, π3(S3) ≃ Z. (2.1.118)

Exercise 2.1.1. We use x to denote the coordinate for the real number R.

1. Consider the additive group (R,+), verify first it is a Lie group. We identify R as its Lie
algebra by a ∈ R → a ∂

∂x ∈ Lie(R). Compute etXv (y) for y ∈ R. Conclude that exp(v) = v.

2. Consider the multiplicative group (R×
+,×), verify first it is a Lie group. We identify R as

its Lie algebra by a ∈ R → a ∂
∂x ∈ Lie(R×

+). Compute etXv (y) for y ∈ R. Conclude that
exp(v) = ev.

Exercise 2.1.2. Let φ : G → H be a homomorphism of Lie groups with Lie algebras g, h. Let
φ∗ = (dφ)e : g → h be the differential of φ.

1. Verify that the inverse map G ∋ g → g−1 ∈ G is smooth. (Hint: for the map ψ : G×G ∋
(g, h) → gh ∈ G, deduce from the implicit function theorem that ψ−1(e) is a smooth
submanifold of G×G.)

2. For g ∈ G, v ∈ g, verify φ(exp(v)) = exp(φ∗v) and φ∗(Adgv) = Adφ(g)φ∗v.

3. Deduce that for u, v ∈ g, φ∗(aduv) = adφ∗uφ∗v.

4. Conclude that for g ∈ G, u, v ∈ g, Adg[u, v] = [Adgu,Adgv].

Exercise 2.1.3. Let Γ be a discrete subgroup of Rn. Verify that

1. Take 0 ̸= e1 ∈ Γ of smallest positive norm, show that Γ/Ze1 is a discrete subgroup in
Rn/Re1. (Hint: Otherwise, there exist gj ∈ Γ, aj ∈]− 1

2 ,
1
2 ] such that gj − aje1 → 0.)

2. Conclude that there exists linearly independent vectors e1, . . . , ek ∈ Γ such that Γ =
Ze1 ⊕ · · · ⊕ Zek.

Exercise 2.1.4. Let G = S1 × S1 be the two dimensional torus. For any irrational number α, the
map ψ : R → G, t → (eit, eiαt) identifies R as a Lie subgroup H = {(eit, eiαt) : t ∈ R} of G.
Verify that H is not closed in G and H = G.

Exercise 2.1.5. For K = R or C, we will denote by gl(m,K), sl(m,K), o(m) and so(m) the Lie
algebras of GL(m,K), SL(m,K), O(m) and SO(m).
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1. Verify that

gl(m,K) =Mm(K),

sl(m,K) = {A ∈Mm(K) : Tr[A] = 0},
u(m) = {A ∈Mm(C) : A+A∗ = 0},
o(m) = {A ∈Mm(R) : A+At = 0},
so(m) = {A ∈ o(m) : Tr[A] = 0}.

(2.1.119)

2. Verify that dimR u(m) = m2, dimR o(m) = m(m− 1)/2.

Exercise 2.1.6. Let G be the special affine group of Rm which is the semi-direct product of Rm
by SL(m,R), i.e., the multiplication on G := Rm ⋊ SL(m,R) is given by

(u,A) · (v,B) = (u+Av,AB) for (u,A), (v,B) ∈ Rm × SL(m,R). (2.1.120)

1. Verify that G can be represented as a subgroup of SL(m+1,R) of the form
(
A u
0 1

)
where

A ∈ SL(m,R), u ∈ Rm.

2. Verify that the Lie algebra of G is g = Rm × sl(m,R) with the Lie bracket

[(u,A), (v,B)] = (Av −Bu,AB −BA) for (u,A), (v,B) ∈ Rm × sl(m,R). (2.1.121)

3. Verify that Rm × {0} is an ideal of g.

4. Conclude that G is not semisimple, but [g, g] = g.

Exercise 2.1.7. Let M be an oriented connected compact manifold of dimension m.

1. Verify that H0(M,R) = {f ∈ C∞(M) : df = 0}. Verify that for f ∈ C∞(M), df = 0 if
and only if f is constant on M . Conclude that

H0(M,R) = {f ∈ C∞(M) : f ≡ C} ≃ R. (2.1.122)

2. Let gTM be a Riemannian metric onM . We define the Hodge star operator ∗ : Λj(T ∗
xM) →

Λm−j(T ∗
xM) by

α ∧ ∗xβ = ⟨α, β⟩Λ(T∗
xM) dvM (x). (2.1.123)

Prove that

∗ · ∗|Λj(T∗
xM) = (−1)(m−j)j . (2.1.124)

3. Verify that

d∗|Ωj(M) = (−1)mj+m+1 ∗ d∗, ∗∆ = ∆ ∗ . (2.1.125)

4. Prove that α ∈ ker(∆|Ωm(M)) if and only if d(∗α) = 0. Conclude that dvM ∈ ker(∆|Ωm(M))
and Hm(M,R) ≃ R{dvM}. Thus Hm(M,R) ∋ α→

∫
M
α ∈ R is an isomorphism.
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5. Prove that α ∈ ker(∆|Ωj(M)) if and only if ∗α ∈ ker(∆|Ωm−j(M)). Conclude that the
Poincaré duality holds, i.e., the bilinear form

Hj(M,R)×Hm−j(M,R) → Hm(M,R) → R, (α, β) → α ∧ β →
∫
M

α ∧ β. (2.1.126)

is nondegenerate.

Exercise 2.1.8. We use the notation in Remark 2.1.7. Let G be a connected Lie group. For g ∈ G,
let γ : [0, 1] → G be a continuous path from e to g. Prove that there exists 0 ≤ t1 < · · · < tk ≤ 1
such that γ([0, 1)] ⊂ ∪ki=1γ(tj) · V , and conclude that tj ∈ V . . . V , in particular, the first part of
Remark 2.1.7 holds.


