2.2 Actions of Lie groups on manifolds

In this section, we study the local structure of group actions on manifolds, in particular, we introduce the important notation: principal G-bundle.

2.2.1 Induced vector fields by group actions

Let G be a Lie group with Lie algebra \mathfrak{g}. Let M be a smooth manifold. We assume that G acts on the left on M as in (2.1.58).

Definition 2.2.1. For any $\xi \in \mathfrak{g}$, the vector field ξ^{M} on M induced by ξ is defined by: for any $x \in M$,

$$
\begin{equation*}
\xi_{x}^{M}=\left.\frac{d}{d t}\right|_{t=0} \exp (t \xi) \cdot x \tag{2.2.1}
\end{equation*}
$$

Let $e^{t \xi^{M}}(t \in \mathbb{R})$ be the flow associated with $\xi^{M} \in \mathscr{C}^{\infty}(M, T M)$.
Lemma 2.2.2. For any $g \in G, \xi \in \mathfrak{g}, x \in M$ and $t \in \mathbb{R}$, we have

$$
\begin{align*}
& \exp (t \xi) \cdot x=e^{t \xi^{M}}(x) \tag{2.2.2}\\
& \left(\operatorname{Ad}_{g} \xi\right)^{M}=g_{*} \xi^{M}
\end{align*}
$$

For the action G on \mathfrak{g}^{*} by $\mathrm{Ad}_{G}^{*}, \eta \in \mathfrak{g}$ and $\beta \in \mathfrak{g}^{*}$, we have

$$
\begin{equation*}
\eta_{\beta}^{\mathfrak{q}^{*}}=\operatorname{ad}_{\eta}^{*} \beta \tag{2.2.3}
\end{equation*}
$$

Proof. For any $t \in \mathbb{R},(2.1 .11)$ and (2.1.14), we get

$$
\begin{equation*}
\frac{d}{d t} \exp (t \xi) \cdot x=\left.\frac{d}{d s}\right|_{s=0} \exp (s \xi) \exp (t \xi) \cdot x=\xi_{\exp (t \xi) \cdot x}^{M}, \quad \frac{d}{d t} e^{t \xi^{M}}(x)=\xi^{M}\left(e^{t \xi^{M}}(x)\right) \tag{2.2.4}
\end{equation*}
$$

Then by $\left.\exp (t \xi) \cdot x\right|_{t=0}=\left.e^{t \xi^{M}}(x)\right|_{t=0}=x$, and the uniqueness of the solutions of ordinary differential equations, we get the first equation of (2.2.2).

By $\exp \left(\operatorname{Ad}_{g} \xi\right)=g \cdot \exp \xi \cdot g^{-1}$ and the first equation of (2.2.2), we have

$$
\begin{align*}
\left(\operatorname{Ad}_{g} \xi\right)_{x}^{M} & =\left.\frac{d}{d t}\right|_{t=0} \exp \left(t \operatorname{Ad}_{g} \xi\right) \cdot x=\left.\frac{d}{d t}\right|_{t=0} g \cdot \exp (t \xi)\left(g^{-1} x\right) \\
& =\left.\frac{d}{d t}\right|_{t=0} g \cdot e^{t \xi^{M}}\left(g^{-1} x\right)=\left(g_{*} \xi^{M}\right)(x) \tag{2.2.5}
\end{align*}
$$

Finally for any $X \in \mathfrak{g}, M=\mathfrak{g}^{*}$,

$$
\begin{align*}
\left(\eta_{\beta}^{M}, X\right) & =\left.\frac{d}{d t}\right|_{t=0}\left(\operatorname{Ad}_{\exp (t \eta)}^{*} \beta, X\right)=\left.\frac{d}{d t}\right|_{t=0}\left(\beta, \operatorname{Ad}_{\exp (-t \eta)} X\right) \tag{2.2.6}\\
& =-\left(\beta, \operatorname{ad}_{\eta} X\right)=\left(\operatorname{ad}_{\eta}^{*} \beta, X\right)
\end{align*}
$$

The proof of Lemma 2.2.2 is completed.
Proposition 2.2.3. The map

$$
\begin{equation*}
(\mathfrak{g},[,]) \rightarrow\left(\mathscr{C}^{\infty}(M, T M),[,]\right), \quad \xi \mapsto-\xi^{M} \tag{2.2.7}
\end{equation*}
$$

is a morphism of Lie algebras, i.e., it is linear and for any $\xi, \eta \in \mathfrak{g}$

$$
\begin{equation*}
[\xi, \eta]^{M}=-\left[\xi^{M}, \eta^{M}\right] \tag{2.2.8}
\end{equation*}
$$

Proof. Fix $x \in M$, the orbit map $R_{x}: G \rightarrow M, g \mapsto g \cdot x$ is smooth and

$$
\begin{equation*}
\xi_{x}^{M}=\left.\frac{d}{d t}\right|_{t=0} \exp (t \xi) \cdot x=\left(d R_{x}\right) \xi \tag{2.2.9}
\end{equation*}
$$

Thus the map $\xi \in \mathfrak{g} \mapsto-\xi^{M} \in \mathscr{C}^{\infty}(M, T M)$ is linear. By Lemma 2.2.2, we have

$$
\begin{align*}
{[\xi, \eta]^{M} } & =\left(\operatorname{ad}_{\xi} \eta\right)^{M}=\left.\frac{d}{d t}\right|_{t=0}\left(\operatorname{Ad}_{\exp (t \xi)} \eta\right)^{M}=\left.\frac{d}{d t}\right|_{t=0} \exp (t \xi)_{*} \eta^{M} \tag{2.2.10}\\
& =\left.\frac{d}{d t}\right|_{t=0} e_{*}^{t \xi^{M}} \eta^{M}=-\left[\xi^{M}, \eta^{M}\right] .
\end{align*}
$$

The proof of Proposition 2.2.3 is completed.

2.2.2 The slice theorem

Let G be a compact Lie group. Let M be a smooth manifold with a left G-action. If $x \in M$, its orbit will be denoted by $G \cdot x$,

$$
\begin{equation*}
G \cdot x=\{y \in M: y=g \cdot x \text { for some } g \in G\} \tag{2.2.11}
\end{equation*}
$$

and its stabilizer G_{x} is defined by

$$
\begin{equation*}
G_{x}=\{g \in G: g \cdot x=x\} . \tag{2.2.12}
\end{equation*}
$$

The G-action is called free if $G_{x}=\{e\}$ for any $x \in M$; locally free if G_{x} is discrete for any $x \in M$; effective if $\cap_{x \in M} G_{x}=\{e\}$.

Obviously the stabilizers of points are closed subgroups of G. Thus G_{x} is a Lie subgroup of G and G / G_{x} is a smooth manifold.

Proposition 2.2.4. If G is a compact Lie group, its orbits are submanifolds of M.
Proof. For $x \in M$, let $R_{x}: G \rightarrow M, g \mapsto g \cdot x$, be the orbit map. We evaluate the kernel of the differential of it, $T_{g} R_{x}: T_{g} G \rightarrow T_{g x} M$. By invariance, it is sufficient to study the case where $g=e$,

$$
\begin{equation*}
\operatorname{ker}\left(T_{e} R_{x}\right)=\left\{X \in \mathfrak{g} \mid X_{x}^{M}=0\right\} \tag{2.2.13}
\end{equation*}
$$

is the Lie algebra of G_{x}. So

$$
\begin{equation*}
R_{x}: G / G_{x} \rightarrow M \tag{2.2.14}
\end{equation*}
$$

is an injective immersion. As G is compact, R_{x} is proper. So R_{x} is an embedding and $G \cdot x=\operatorname{Im} R_{x}$ is a submanifold of M.

Now we consider the orbit space which is the quotient space $G \backslash M:=\{G x: x \in M\}$ endowed with the quotient topology. In general, the topology of the orbit space can be very bad, even not Hausdorff.

Proposition 2.2.5. If G is compact, then $G \backslash M$ is a Hausdorff space.
Proof. Let $G \cdot x$ and $G \cdot y$ be two distinct orbits. They are compact as images of G. As M is Hausdorff, there is an open neighborhood U of x such that $\bar{U} \cap G \cdot y=\emptyset$. Now, for the quotient map $\pi: M \rightarrow G \backslash M, \pi(U)$ and the complement of $\pi(\bar{U})$ are both open. They don't intersect and the former contains $\pi(x)$ and the latter $\pi(y)$.

For $x \in M$, then the tangent space of the orbit $G \cdot x$ is given by

$$
\begin{equation*}
T_{x}(G \cdot x)=\left\{\xi_{x}^{M}: \xi \in \mathfrak{g}\right\} \subset T_{x} M \tag{2.2.15}
\end{equation*}
$$

For any $h \in G_{x}, \xi \in \mathfrak{g}$, by (2.2.5), $d h\left(\xi_{x}^{M}\right)=\left(\operatorname{Ad}_{h} \xi\right)_{x}^{M}$, thus $T_{x}(G \cdot x)$ is preserved by G_{x}-action, and

$$
\begin{equation*}
N_{x}=T_{x} M / T_{x}(G \cdot x) \tag{2.2.16}
\end{equation*}
$$

is a linear representation of G_{x}. We define

$$
\begin{equation*}
G \times_{G_{x}} N_{x}=G \times N_{x} / \sim \tag{2.2.17}
\end{equation*}
$$

and $(g, v) \sim(f, w)$ if and only if there exists $h \in G_{x}$ such that

$$
\begin{equation*}
f=g h, \quad w=d h^{-1}(v) \tag{2.2.18}
\end{equation*}
$$

We verify easily that \sim is an equivalent relation on $G \times N_{x}$. And the zero section is $G \times{ }_{G_{x}}\{0\}=$ G / G_{x}.

Theorem 2.2.6 (Slice theorem). There exists an equivariant diffeomorphism from an equivariant open neighborhood of the zero section in $G \times_{G_{x}} N_{x}$ to an open neighborhood of $G \cdot x$ in M, which sends the zero section G / G_{x} onto the orbit $G \cdot x$ by the map R_{x} in (2.2.14).

Proof. Let $g_{0}^{T M}$ be a Riemannian metric on M. For any $g \in G$,

$$
\begin{equation*}
\left(g \cdot g_{0}^{T M}\right)_{x}(u, v)=\left(g^{-1}\right)^{*} g_{0}^{T M}(u, v)_{x}:=g_{0}^{T M}\left(d g^{-1}(u), d g^{-1}(v)\right)_{g^{-1} x} \tag{2.2.19}
\end{equation*}
$$

for $u, v \in T_{x} M, x \in M$ defines a metric on $T M$. We say a metric $g_{1}^{T M}$ on $T M$ is G-invariant if $g \cdot g_{1}^{T M}=g_{1}^{T M}$ for any $g \in G$.

Let $d \mu$ be a Haar measure on G. Then

$$
\begin{equation*}
g^{T M}=\int_{G}\left(g \cdot g_{0}^{T M}\right) d \mu(g) \tag{2.2.20}
\end{equation*}
$$

is a G-invariant metric on $T M$. In fact, for any $g_{1} \in G$, as $L_{g_{1}^{-1}}^{*} d \mu=d \mu$, by (1.2.2) and Exercise 2.2.1, we get

$$
\begin{align*}
g_{1} \cdot g^{T M}=\int_{G}\left(\left(g_{1} g\right) \cdot g_{0}^{T M}\right) d \mu(g)=\int_{G} L_{g_{1}}^{*}\left(g \cdot g_{0}^{T M}\right. & \left.\left(L_{g_{1}^{-1}}^{*} d \mu\right)(g)\right) \\
& =\int_{G} g \cdot g_{0}^{T M}\left(L_{g_{1}^{-1}}^{*} d \mu\right)(g)=g^{T M} \tag{2.2.21}
\end{align*}
$$

Let $B^{T_{x} M}(0, \delta)$ be the ball in $T_{x} M$ with the center 0 and the radius $\delta>0$. Then for δ small, the exponential map with respect to the metric $g^{T M}$,

$$
\begin{equation*}
\exp _{x}: T_{x} M \supset B^{T_{x} M}(0, \delta) \rightarrow M \tag{2.2.22}
\end{equation*}
$$

is a diffeomorphism.
Note that for any $g \in G, g$ is an isometry of $\left(M, g^{T M}\right)$. So the image of a geodesic by g is a geodesic. This and the uniqueness of a geodesic for fixed starting point and its derivative imply that

$$
\begin{equation*}
g \cdot \exp _{x} v=\exp _{g \cdot x} d g(v), \quad \text { for } x \in M, v \in T_{x} M, g \in G \tag{2.2.23}
\end{equation*}
$$

We identify N_{x} by $T_{x}(G \cdot x)^{\perp}$, the orthogonal complement of $T_{x}(G \cdot x)$ in $\left(T_{x} M, g^{T M}\right)$. Let $B^{N_{x}}(0, r)$ be the ball in N_{x} with the center 0 and the radius r. For r small, we define a map

$$
\begin{equation*}
\phi: G \times N_{x} \supset G \times B^{N_{x}}(0, r) \rightarrow M, \quad(g, v) \mapsto g \cdot \exp _{x} v \tag{2.2.24}
\end{equation*}
$$

Then for any $h \in G_{x}$, by (2.2.23),

$$
\phi\left(\left(g h, d h^{-1}(v)\right)\right)=g h \cdot \exp _{x}\left(d h^{-1}(v)\right)=g h \cdot h^{-1} \exp _{x} v=g \cdot \exp _{x} v=\phi((g, v))
$$

Since $g^{T M}$ is a G-invariant metric, the G_{x} action preserves the ball $B^{N_{x}}(0, r)$. So the map

$$
\begin{equation*}
\varphi: G \times_{G_{x}} N_{x} \supset G \times_{G_{x}} B^{N_{x}}(0, r) \rightarrow M, \quad[g, v] \mapsto g \cdot \exp _{x} v \tag{2.2.25}
\end{equation*}
$$

is well-defined. The map φ is G-equivariant, in fact for any $g^{\prime} \in G$,

$$
\begin{equation*}
\varphi\left(\left[g^{\prime} g, v\right]\right)=g^{\prime} g \cdot \exp _{x} v=g^{\prime} \varphi([g, v]) \tag{2.2.26}
\end{equation*}
$$

Now we need to prove that for r sufficient small, $\varphi: G \times{ }_{G_{x}} B^{N_{x}}(0, r) \rightarrow \varphi\left(G \times_{G_{x}} B^{N_{x}}(0, r)\right)$ is a diffeomorphism (we will explain the differential structure on $G \times{ }_{G_{x}} B^{N_{x}}(0, r)$ in Corollary 2.2.7 if $G_{x} \neq\{e\}$). By Proposition 2.2.4, we know that $\left.\varphi\right|_{G / G_{x}}: G \times_{G_{x}}\{0\} \rightarrow M$ is an embedding. By Lemma 1.2.18, we only need to prove that for any $g \in G$,

$$
\begin{equation*}
d \varphi_{[g, 0]}: T_{[g, 0]}\left(G \times_{G_{x}} N_{x}\right)=\mathfrak{g} \times_{G_{x}} N_{x} \rightarrow T_{g x} M \tag{2.2.27}
\end{equation*}
$$

is bijective, with the equivalence relation $(\xi, v) \sim\left(\operatorname{Ad}_{h^{-1}} \xi, d h^{-1}(v)\right)$ for any $\xi \in \mathfrak{g}, h \in G_{x}$ and $v \in N_{x}$. As φ is G-equivariant, we only need to establish (2.2.27) for $g=e$. By (2.2.25),

$$
\begin{equation*}
d \varphi_{[e, 0]}[\xi, v]=\xi_{x}^{M}+v . \tag{2.2.28}
\end{equation*}
$$

So

$$
\begin{equation*}
d \varphi_{[e, 0]}: T_{[e, 0]}\left(G \times_{G_{x}} N_{x}\right) \rightarrow T_{x} M=T_{x}(G \cdot x) \oplus N_{x} \tag{2.2.29}
\end{equation*}
$$

is surjective. This implies that $d \varphi_{[e, 0]}$ is bijective because

$$
\begin{equation*}
\operatorname{dim} T_{[e, 0]}\left(G \times_{G_{x}} N_{x}\right)=\operatorname{dim} G+\operatorname{dim} N_{x}-\operatorname{dim} G_{x}=\operatorname{dim} M \tag{2.2.30}
\end{equation*}
$$

By Lemma 1.2.18, the proof of Theorem 2.2.6 is completed.
Corollary 2.2.7. If for any $x \in M, G_{x}=\{e\}$, in other words, G is a free action on M, then there exists a differential structure on $G \backslash M$ with the quotient topology.
Proof. By Proposition 2.2.5, $G \backslash M$ is Hausdorff. By Theorem 2.2.6, we have the G-equivariant diffeomorphism for any $x \in M$

$$
\begin{equation*}
\varphi_{x}: G \times B^{N_{x}}(0, r) \rightarrow \mathcal{V}_{x} \subset M, \quad(g, v) \rightarrow g \cdot \exp _{x}(v) \tag{2.2.31}
\end{equation*}
$$

Locally, we have the homomorphism

$$
\begin{equation*}
\tilde{\varphi}_{x}: \mathcal{U}_{x}=B^{N_{x}}(0, r) \rightarrow W_{x}=G \backslash \mathcal{V}_{x} \subset G \backslash M, \quad v \rightarrow\left[\exp _{x}(v)\right] \tag{2.2.32}
\end{equation*}
$$

The subset $G \backslash \mathcal{V}_{x}$ is open in $G \backslash M$ since \mathcal{V}_{x} is open in M. If $W_{x} \cap W_{y} \neq \emptyset$ for $x, y \in M$, we need to prove that

$$
\begin{equation*}
\tilde{\varphi}_{y}^{-1} \circ \tilde{\varphi}_{x}: \mathcal{U}_{x} \supset \tilde{\varphi}_{x}^{-1}\left(W_{x} \cap W_{y}\right) \rightarrow \tilde{\varphi}_{y}^{-1}\left(W_{x} \cap W_{y}\right) \subset \mathcal{U}_{y} \tag{2.2.33}
\end{equation*}
$$

is \mathscr{C}^{∞}. For $v \in \tilde{\varphi}_{x}^{-1}\left(W_{x} \cap W_{y}\right)$, then $\varphi_{x}([e, v]) \in \mathcal{V}_{y}$, and thus

$$
\begin{equation*}
\varphi_{y}^{-1} \circ\left(\varphi_{x}([e, v])\right)=\left(g(v), \tilde{\varphi}_{y}^{-1} \circ \tilde{\varphi}_{x}(v)\right) \in G \times B^{N_{y}}(0, r) \tag{2.2.34}
\end{equation*}
$$

is \mathscr{C}^{∞} on \mathcal{V}. In particular, $\tilde{\varphi}_{y}^{-1} \circ \tilde{\varphi}_{x}$ is \mathscr{C}^{∞}. Thus $\left\{\tilde{\varphi}_{x}\right\}$ define local coordinates of $G \backslash M$, and $G \backslash M$ is a smooth manifold.

Definition 2.2.8. Let $\pi: P \rightarrow M$ be a smooth map of two manifolds. We say that P is a principal bundle over M with (right action) structure group G (or a principal G-bundle over M) if there is a covering of M by open sets $\left\{U_{i}\right\}$ and diffeomorphisms $\varphi_{i}: \pi^{-1}\left(U_{i}\right) \rightarrow U_{i} \times G$ such that for $x \in U_{i} \cap U_{j}$,

$$
\begin{equation*}
\varphi_{i} \circ \varphi_{j}^{-1}(x, g)=\left(x, \varphi_{i j}(x) g\right) \tag{2.2.35}
\end{equation*}
$$

with $\varphi_{i j}(x) \in \mathscr{C}^{\infty}\left(U_{i} \cap U_{j}, G\right)$. Then G acts on the right on P by $q \cdot g=:=\varphi_{i}^{-1}\left(\varphi_{i}(q) \cdot g\right)$ for $q \in \pi^{-1}\left(U_{i}\right)$ with right G-action on $U_{i} \times G$ and by (2.2.35), $q \cdot g$ does not depend on the choice of U_{i}.

By Corollary 2.2.7, if G is compact and the action of G on a manifold P is free, then P / G is a smooth manifold. Moreover, $\pi: P \rightarrow P / G$ is a principal G-bundle. In fact, if $W_{x} \cap W_{y} \neq \emptyset$, then for $(h, v) \in G \times B^{N_{x}}(0, r)$,

$$
\begin{equation*}
\varphi_{y}^{-1} \circ \varphi_{x}(h, v)=\left(h \cdot g(v), \tilde{\varphi}_{y}^{-1} \circ \tilde{\varphi}_{x} v\right) \in G \times B^{N_{y}}(0, r) . \tag{2.2.36}
\end{equation*}
$$

Note that in the proof of Corollary 2.2.7, we do not use Theorem 2.1.13, thus it gives also a proof of Theorem 2.1.13 when H is compact.
Definition 2.2.9. Let $\pi: P \rightarrow M$ be a principal G-bundle. For $\rho: G \rightarrow \mathrm{GL}(E)$ a linear representation of G (i.e., ρ is a homomorphism of groups), where E is a finite-dimensional vector space, the vector bundle induced by ρ and π is defined by

$$
\begin{equation*}
P \times_{G} E=\{(p, v): p \in P, v \in E\} / \sim, \quad(p, v) \sim\left(p g, \rho(g)^{-1}(v)\right), \text { for any } g \in G \tag{2.2.37}
\end{equation*}
$$

In fact, on U_{i}, we have a trivialization of $P \times_{G} E$ induced by $\varphi_{i}: \pi^{-1}\left(U_{i}\right) \rightarrow U_{i} \times G$,

$$
\begin{array}{lcc}
\pi^{-1}\left(U_{i}\right) \times_{G} E & \xrightarrow{\varphi_{U_{i}}} U_{i} \times G \times_{G} E & \xrightarrow{\rho_{U_{i}}} U_{i} \times E, \tag{2.2.38}\\
{[p, v]} & {[(x, g), v]} & (x, \rho(g) v),
\end{array}
$$

By (2.2.37), the last map in (2.2.38) is a canonical isomorphism and $\rho_{U_{i}}^{-1}(x, v)=[(x, e), v]$, thus

$$
\begin{equation*}
\rho_{U_{i}} \circ \varphi_{U_{i}} \circ\left(\rho_{U_{j}} \circ \varphi_{U_{j}}\right)^{-1}(x, v)=\rho_{U_{i}}\left(\left[\left(x, \varphi_{i j}(x)\right), v\right]\right)=\left(x, \rho\left(\varphi_{i j}(x)\right) v\right), \tag{2.2.39}
\end{equation*}
$$

and $\rho\left(\varphi_{i j}(x)\right)$ is smooth. Thus $P \times_{G} E$ is a vector bundle on M.
Remark 2.2.10. If for any $x \in M,\left|G_{x}\right|<\infty$, then locally,

$$
\begin{equation*}
G \backslash \mathcal{V}_{x}=G \backslash G \times_{G_{x}} \mathcal{U}_{x}=G_{x} \backslash \mathcal{U}_{x} \tag{2.2.40}
\end{equation*}
$$

where the finite group G_{x} acts on \mathcal{U}_{x} linearly. In this case, $G \backslash M$ is not a manifold. It is an orbifold.

2.2.3 Poisson structure on \mathfrak{g}^{*}

Let G be a connected Lie group with Lie algebra \mathfrak{g}. Then G acts on \mathfrak{g}^{*} by Ad^{*}-action. For $\beta \in \mathfrak{g}^{*}$, the coadjoint orbit of β is defined by

$$
\begin{equation*}
\mathcal{O}_{\beta}:=G \cdot \beta=\operatorname{Ad}_{G}^{*} \beta \subset \mathfrak{g}^{*} \tag{2.2.41}
\end{equation*}
$$

Let

$$
\begin{equation*}
G_{\beta}=\left\{g \in G: \operatorname{Ad}_{g}^{*} \beta=\beta\right\} \tag{2.2.42}
\end{equation*}
$$

be the stabilizer of β, then G_{β} is a closed subgroup of G, thus G_{β} is a Lie subgroup of G, and by Theorem 2.1.13, $\mathcal{O}_{\beta} \simeq G / G_{\beta}$ is a manifold with quotient topology of G. Note that $[g] \in G / G_{\beta} \rightarrow \operatorname{Ad}_{g}^{*} \beta \in \mathfrak{g}^{*}$ is smooth and proper, thus \mathcal{O}_{β} is a submanifold of \mathfrak{g}^{*}, and its tangent space at $\gamma \in \mathcal{O}_{\beta}$ is

$$
\begin{equation*}
T_{\gamma} \mathcal{O}_{\beta}=\left\{\operatorname{ad}_{X}^{*} \gamma \in T_{\gamma} \mathfrak{g}^{*} \simeq \mathfrak{g}^{*}: X \in \mathfrak{g}\right\} \tag{2.2.43}
\end{equation*}
$$

Definition 2.2.11. For any $F, G \in \mathscr{C}{ }^{\infty}\left(\mathfrak{g}^{*}\right)$, we define $\{F, G\} \in \mathscr{C}^{\infty}\left(\mathfrak{g}^{*}\right)$ by: for any $\beta \in \mathfrak{g}^{*}$,

$$
\begin{equation*}
\{F, G\}(\beta)=\left(\beta,\left[d F_{\beta}, d G_{\beta}\right]\right) \tag{2.2.44}
\end{equation*}
$$

where $d F_{\beta}$, the differential of F at β, lies in $T_{\beta}^{*} \mathfrak{g}^{*}$ which is naturally identified with \mathfrak{g} and [,] is the Lie bracket of \mathfrak{g}.

Theorem 2.2.12. The bracket $\{$,$\} on \mathscr{C}^{\infty}\left(\mathfrak{g}^{*}\right)$ is a Poisson bracket, i.e., $\left(\mathfrak{g}^{*},\{\},\right)$ is a Poisson manifold.
Proof. By (2.2.44) and the Leibniz's rule, we get for any $F, G, H \in \mathscr{C}^{\infty}\left(\mathfrak{g}^{*}\right)$,

$$
\begin{equation*}
\{F, G\}=-\{G, F\}, \quad\{F H, G\}=H\{F, G\}+F\{H, G\} \tag{2.2.45}
\end{equation*}
$$

What we should prove is the Jacobi identity and we will show that it is a direct consequence of the Jacobi identity of the Lie bracket of \mathfrak{g}.

By (2.1.20) and (2.2.44), we have

$$
\begin{equation*}
\{\{F, G\}, H\}(\beta)=\left(\beta,\left[d\{F, G\}_{\beta}, d H_{\beta}\right]\right)=\left(\operatorname{ad}_{d H_{\beta}}^{*} \beta, d\{F, G\}_{\beta}\right) \tag{2.2.46}
\end{equation*}
$$

We compute first $d\{F, G\}$. Let's choose a base $\left\{e_{j}\right\}$ of \mathfrak{g} and its dual basis $\left\{e_{i}^{*}\right\}$ of \mathfrak{g}^{*}. Then at $\beta=\beta_{i} e_{i}^{*}$

$$
\begin{align*}
& d F_{\beta}=\frac{\partial F}{\partial \beta_{i}}(\beta) e_{i} \\
& {\left[d F_{\beta}, d G_{\beta}\right]=\frac{\partial F}{\partial \beta_{i}}(\beta) \frac{\partial G}{\partial \beta_{j}}(\beta)\left[e_{i}, e_{j}\right] .} \tag{2.2.47}
\end{align*}
$$

By (2.1.20), (2.2.44) and (2.2.47), we have

$$
\begin{align*}
d\{ & F, G\}_{\beta}=d\left(\beta,\left[d F_{\beta}, d G_{\beta}\right]\right) \\
& =\left(e_{k}^{*},\left[d F_{\beta}, d G_{\beta}\right]\right) e_{k}+\frac{\partial^{2} F}{\partial \beta_{i} \partial \beta_{\ell}}(\beta)\left(\beta,\left[e_{i}, d G_{\beta}\right]\right) e_{\ell}+\frac{\partial^{2} G}{\partial \beta_{j} \partial \beta_{\ell}}(\beta)\left(\beta,\left[d F_{\beta}, e_{j}\right]\right) e_{\ell} \\
& =\left[d F_{\beta}, d G_{\beta}\right]+\frac{\partial^{2} F}{\partial \beta_{i} \partial \beta_{\ell}}(\beta)\left(\beta,-\operatorname{ad}_{d G_{\beta}} e_{i}\right) e_{\ell}+\frac{\partial^{2} G}{\partial \beta_{j} \partial \beta_{\ell}}(\beta)\left(\beta, \operatorname{ad}_{d F_{\beta}} e_{j}\right) e_{\ell} \tag{2.2.48}\\
& =\left[d F_{\beta}, d G_{\beta}\right]+\frac{\partial^{2} F}{\partial \beta_{i} \partial \beta_{\ell}}(\beta)\left(\operatorname{ad}_{d G_{\beta}}^{*} \beta, e_{i}\right) e_{\ell}+\frac{\partial^{2} G}{\partial \beta_{j} \partial \beta_{\ell}}(\beta)\left(-\operatorname{ad}_{d F_{\beta}}^{*} \beta, e_{j}\right) e_{\ell} \\
& =\left[d F_{\beta}, d G_{\beta}\right]+D^{2} F\left(\operatorname{ad}_{d G_{\beta}}^{*} \beta, \cdot\right)-D^{2} G\left(\operatorname{ad}_{d F_{\beta}}^{*} \beta, \cdot\right),
\end{align*}
$$

where $D^{2} F$ is the Hessian of the function F. Therefore, by (2.1.20), (2.2.46) and (2.2.48), we get

$$
\begin{align*}
\{\{F, G\}, H\}_{\beta}= & \left(\operatorname{ad}_{d H}^{*} \beta,[d F, d G]\right)+\left(\operatorname{ad}_{d H}^{*} \beta, D^{2} F\left(\operatorname{ad}_{d G}^{*} \beta, \cdot\right)\right) \\
& -\left(\operatorname{ad}_{d H}^{*} \beta, D^{2} G\left(\operatorname{ad}_{d F}^{*} \beta, \cdot\right)\right) \\
= & (\beta,[[d F, d G], d H])+D^{2} F\left(\operatorname{ad}_{d G}^{*} \beta, \operatorname{ad}_{d H}^{*} \beta\right)-D^{2} G\left(\operatorname{ad}_{d F}^{*} \beta, \operatorname{ad}_{d H}^{*} \beta\right) \tag{2.2.49}
\end{align*}
$$

By the Jacobi identity (2.1.1) of the Lie bracket of \mathfrak{g} and (2.2.49), we get the Jacobi identity of this Poisson bracket.

Let us compute the Hamiltonian vector field of this Poisson structure. For $F, H \in \mathscr{C}{ }^{\infty}\left(\mathfrak{g}^{*}\right)$, let X_{H} be the Hamiltonian vector field associated with H. Then by (1.3.12), for $\beta \in \mathfrak{g}^{*}$,

$$
\begin{equation*}
\left(X_{H} \cdot F\right)(\beta)=\{F, H\}(\beta)=\left(\beta,\left[d F_{\beta}, d H_{\beta}\right]\right)=\left(\operatorname{ad}_{d H_{\beta}}^{*} \beta, d F_{\beta}\right) \tag{2.2.50}
\end{equation*}
$$

Thus

$$
\begin{equation*}
X_{H}(\beta)=\operatorname{ad}_{d H_{\beta}}^{*} \beta . \tag{2.2.51}
\end{equation*}
$$

By (2.2.43), the Hamiltonian vector fields span precisely the tangent space of the coadjoint orbit \mathcal{O}_{β}, thus the symplectic foliation \mathcal{F} in Section 1.3.3 at $\beta \in \mathfrak{g}^{*}$ is given by

$$
\begin{equation*}
\mathcal{F}_{\beta}=T_{\beta} \mathcal{O}_{\beta} \tag{2.2.52}
\end{equation*}
$$

Proposition 2.2.13. The coadjoint orbits in \mathfrak{g}^{*} are the symplectic leaves of the Poisson manifold $\left(\mathfrak{g}^{*},\{\},\right)$, with the symplectic form

$$
\begin{equation*}
\omega_{\beta}\left(\lambda_{\beta}^{\mathfrak{g}^{*}}, \mu_{\beta}^{\mathfrak{q}^{*}}\right)=(\beta,[\lambda, \mu]), \quad \lambda, \mu \in \mathfrak{g} . \tag{2.2.53}
\end{equation*}
$$

Proof. By (2.2.52), \mathcal{O}_{β} are the symplectic leaves of $\left(\mathfrak{g}^{*},\{\},\right)$.
For $\lambda, \mu \in \mathfrak{g}$, we define the functions $F, G \in \mathscr{C}^{\infty}\left(\mathfrak{g}^{*}\right)$ by

$$
\begin{equation*}
F(\beta)=(\beta, \lambda), \quad G(\beta)=(\beta, \mu) \tag{2.2.54}
\end{equation*}
$$

Then we have $d F_{\beta}=\lambda$ and $d G_{\beta}=\mu$. Thus by (1.3.13), (2.1.20) and (2.2.44),

$$
\begin{align*}
B_{\beta}(\lambda, \mu) & =B_{\beta}\left(d F_{\beta}, d G_{\beta}\right)=\{F, G\}(\beta) \\
& =(\beta,[\lambda, \mu])=-\left(\operatorname{ad}_{\lambda}^{*} \beta, \mu\right) . \tag{2.2.55}
\end{align*}
$$

By (2.2.3) and (2.2.55), we have

$$
\begin{equation*}
i_{\lambda} B_{\beta}=-\operatorname{ad}_{\lambda}^{*} \beta=-\lambda_{\beta}^{\mathfrak{g}^{*}} . \tag{2.2.56}
\end{equation*}
$$

Thus by (1.3.14), (1.3.21) and (2.2.55), we have

$$
\begin{equation*}
\omega_{\beta}\left(\lambda_{\beta}^{\mathfrak{q}^{*}}, \mu_{\beta}^{\mathfrak{q}^{*}}\right)=\omega_{\beta}\left(-i_{\lambda} B_{\beta},-i_{\mu} B_{\beta}\right)=B_{\beta}(\lambda, \mu)=(\beta,[\lambda, \mu]) \tag{2.2.57}
\end{equation*}
$$

The proof of Proposition 2.2.13 is completed.
Exercise 2.2.1. Verify in (2.2.19), for any $g_{1}, g_{2} \in G, g_{1} \cdot\left(g_{2} \cdot g_{0}^{T M}\right)=\left(g_{1} g_{2}\right) \cdot g_{0}^{T M}$.
Exercise 2.2.2. (Coadjoint orbits in $\left.\mathfrak{s o}(3)^{*}\right)$ Let $\left\{e_{i}\right\}$ be the canonical orthonormal basis of \mathbb{R}^{3}. For $X=\left(x_{1}, x_{2}, x_{3}\right)^{t}, Y=\left(y_{1}, y_{2}, y_{3}\right)^{t} \in \mathbb{R}^{3}$, the inner product $\langle X, Y\rangle$ is given by $X \cdot Y=\sum_{i=1}^{3} x_{i} y_{i}$, and the cross product (or vector product) of X and Y is defined by

$$
\begin{align*}
& X \times Y=\operatorname{det}\left(\begin{array}{ccc}
e_{1} & e_{2} & e_{3} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right) \tag{2.2.58}\\
= & \left(x_{2} y_{3}-x_{3} y_{2}\right) e_{1}-\left(x_{1} y_{3}-x_{3} y_{1}\right) e_{2}+\left(x_{1} y_{2}-x_{2} y_{1}\right) e_{3}
\end{align*}
$$

1. Verify that the following map is an isomorphism of vector spaces from \mathbb{R}^{3} to $\mathfrak{s o}(3)$, the Lie algebra of $\mathrm{SO}(3)$:

$$
\mathbb{R}^{3} \ni\left(\begin{array}{l}
x \tag{2.2.59}\\
y \\
z
\end{array}\right)=X \mapsto \widehat{X}=\left(\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right) \in \mathfrak{s o}(3) .
$$

2. For $X, Y, Z \in \mathbb{R}^{3}$, verify that

$$
\begin{align*}
& \langle X \times Y, Z\rangle=(X \times Y) \cdot Z=\operatorname{det}(X, Y, Z), \\
& X \times(Y \times Z)=(X \cdot Z) Y-(X \cdot Y) Z \tag{2.2.60}
\end{align*}
$$

In particular $X \perp X \times Y, Y \perp X \times Y$, and $\langle X \times Y, Z\rangle$ is antisymmetric on X, Y, Z.
3. $[\widehat{X}, \widehat{Y}]=\widehat{X \times Y}=\widehat{\widehat{X} \cdot Y}$. Conclude that the Killing form B on $\mathfrak{s o}(3)$ in (2.1.109) is given by $B(\widehat{X}, \widehat{Y})=\operatorname{Tr}[\widehat{X} \widehat{Y}]$.
4. $-\frac{1}{2} \operatorname{Tr}[\widehat{X} \widehat{Y}]=X \cdot Y$, thus the map (2.2.59) is an isometry from $\left(\mathbb{R}^{3},\langle\quad\rangle\right)$ onto $\left(\mathfrak{s o}(3),-\frac{1}{2} B\right)$.
5. $\operatorname{Ad}_{A} \widehat{X}=\widehat{A X}$, for $A \in \mathrm{SO}(3)$. Thus (2.2.59) is a morphism of $\mathrm{SO}(3)$-representations for the adjoint action of $\mathrm{SO}(3)$ on $\mathfrak{s o}(3)$.
6. We identify $\mathfrak{s o}(3)$ with $\mathfrak{s o}(3)^{*}$ via the metric $-\frac{1}{2} B$, then for $A \in \mathrm{SO}(3), \widehat{\xi} \in \mathfrak{s o}(3)^{*}$, we have

$$
\begin{equation*}
\operatorname{Ad}_{A}^{*} \widehat{\xi}=\widehat{A \xi}, \quad \operatorname{ad}_{\widehat{X}}^{*} \widehat{\xi}=\widehat{X \times \xi}=\widehat{\widehat{X} \xi} \tag{2.2.61}
\end{equation*}
$$

Thus the induces map from \mathbb{R}^{3} onto $\mathfrak{s o}(3)^{*}$ is a morphism of $\mathrm{SO}(3)$-representations for the coadjoint action of $\mathrm{SO}(3)$ on $\mathfrak{s o}(3)^{*}$.
7. The coadjoint orbits in $\mathfrak{s o}(3)^{*}$ are $\mathcal{O}_{r}:=\left\{\xi \in \mathbb{R}^{3}:|\xi|=r\right\}$, the spheres of radius $r>0$ with center 0 , and the singular orbit $\{0\}$.
8. For any $v \in T_{\xi} \mathcal{O}_{r} \subset \mathbb{R}^{3}, \widehat{v}=\operatorname{ad}_{\widehat{\eta}}^{*} \widehat{\xi}$ with $\eta=-v \times \xi / r^{2}$.
9. The induced symplectic form on \mathcal{O}_{r} is σ_{0} / r, where

$$
\sigma_{0}(\xi)=i_{\xi / r} d v=\frac{1}{r}(x d y \wedge d z+y d z \wedge d x+z d x \wedge d y) \text { for } \xi=(x, y, z)^{t} \in \mathcal{O}_{r}
$$

is the volume form on \mathcal{O}_{r} induced by the Euclidean volume form $d v$ on \mathbb{R}^{3}.

2.3 Moment maps

We introduce the most geometric objects of this book: moment maps and associated symplectic reductions.

2.3.1 Basic properties of moment maps

Let G be a Lie group with Lie algebra \mathfrak{g} and (M, ω) be a symplectic manifold of dimension $2 n$. We assume that G acts on the left on M. We define the G-action on the space of functions from M to \mathfrak{g}^{*} by: for $g \in G, x \in M, \phi: M \rightarrow \mathfrak{g}^{*}$,

$$
\begin{equation*}
(g \cdot \phi)_{x}=\operatorname{Ad}_{g}^{*}\left(\phi\left(g^{-1} x\right)\right) \tag{2.3.1}
\end{equation*}
$$

If $g \cdot \phi=\phi$ for any $g \in G$, then we say that $\phi: M \rightarrow \mathfrak{g}^{*}$ is G-equivariant.
We call that G acts symplectically on (M, ω) if its action preserves ω, i.e., for any $g \in G$, $g^{*} \omega=\omega$.
Definition 2.3.1. A symplectic action of a Lie group G on a symplectic manifold (M, ω) is called Hamiltonian if there exists a map $\mu: M \rightarrow \mathfrak{g}^{*}$ satisfying

$$
\begin{equation*}
d(\mu, \xi)=i_{\xi^{M}} \omega \quad \text { for } \xi \in \mathfrak{g} \tag{2.3.2}
\end{equation*}
$$

and μ is G-equivariant, i.e.,

$$
\begin{equation*}
\mu(g x)=\operatorname{Ad}_{g}^{*} \mu(x) \quad \text { for } g \in G, x \in M \tag{2.3.3}
\end{equation*}
$$

This map μ is called a moment map for the G-action on M.
For any $\xi \in \mathfrak{g}$, by (1.2.80) and (2.3.2), the Hamiltonian vector field $X_{(\mu, \xi)}$ of the function $(\mu, \xi)=\mu(\xi)$ is given by

$$
\begin{equation*}
X_{(\mu, \xi)}=X_{\mu(\xi)}=\xi^{M} \tag{2.3.4}
\end{equation*}
$$

Thus $\xi^{M} \in \mathfrak{h a m}(M, \omega) \subset \mathfrak{s y m p l}(M, \omega)$. If G is connected, then Remark 2.1.7 and (2.3.2) imply that $g^{*} \omega=\omega$ for any $g \in G$, i.e., we can drop the condition that G acts symplectically on (M, ω) in Definition 2.3.1.
Lemma 2.3.2. Let $\mu: M \rightarrow \mathfrak{g}^{*}$ be the moment map for a Hamiltonian G-action on (M, ω), then for $\eta, \xi \in \mathfrak{g}$,

$$
\begin{equation*}
(\mu,[\eta, \xi])=\omega\left(\eta^{M}, \xi^{M}\right) \tag{2.3.5}
\end{equation*}
$$

and μ defines a morphism of Lie algebras

$$
\begin{equation*}
\mu:(\mathfrak{g},[,]) \rightarrow\left(\mathscr{C}^{\infty}(M),\{,\}\right), \quad \xi \mapsto(\mu, \xi) \tag{2.3.6}
\end{equation*}
$$

Proof. At first, $\mu: \mathfrak{g} \rightarrow \mathscr{C}^{\infty}(M)$ is linear. For $\eta, \xi \in \mathfrak{g}$, by (1.3.2), (2.3.2) and (2.3.4), we get for $x \in M$,

$$
\begin{equation*}
\{\mu(\eta), \mu(\xi)\}_{x}=\omega\left(X_{\mu(\eta)}, X_{\mu(\xi)}\right)_{x}=\omega\left(\eta^{M}, \xi^{M}\right)_{x}=\xi^{M}(\mu, \eta)_{x} \tag{2.3.7}
\end{equation*}
$$

From (2.1.20) and (2.3.3), we get

$$
\begin{align*}
\xi^{M}(\mu, \eta)_{x} & =\left.\frac{d}{d t}\right|_{t=0}(\mu(\exp (t \xi) \cdot x), \eta)=\left.\frac{d}{d t}\right|_{t=0}\left(\operatorname{Ad}_{\exp (t \xi)}^{*} \mu(x), \eta\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(\mu(x), \operatorname{Ad}_{\exp (-t \xi)} \eta\right)=(\mu(x),-[\xi, \eta]) \tag{2.3.8}\\
& =(\mu,[\eta, \xi])_{x}
\end{align*}
$$

From (2.3.7) and (2.3.8), the proof of Lemma 2.3.2 is completed.

Remark 2.3.3. If G is connected, then we can replace (2.3.3) by that (2.3.6) defines a morphism of Lie algebras.

In fact, if $\mu:(\mathfrak{g},[],) \rightarrow\left(\mathscr{C}^{\infty}(M),\{\},\right)$ is a morphism of Lie algebras, then for $\eta, \xi \in \mathfrak{g}$, by (1.3.1), (2.3.2) and (2.3.7), we have

$$
\begin{equation*}
\left(\xi^{M} \cdot \mu, \eta\right)=\{\mu(\eta), \mu(\xi)\}=(\mu,[\eta, \xi])=\left(\operatorname{ad}_{\xi}^{*} \mu, \eta\right) . \tag{2.3.9}
\end{equation*}
$$

Thus $\frac{\partial}{\partial t}\left(\mu\left(e^{t \xi} \cdot x\right), \operatorname{Ad}_{e^{t \xi}} \eta\right)=\left(\left(\xi^{M} \cdot \mu\right)\left(e^{t \xi} \cdot x\right), \operatorname{Ad}_{e^{t \xi} \eta}\right)+\left(\mu\left(e^{t \xi} \cdot x\right),\left[\xi, \operatorname{Ad}_{\left.e^{t \xi} \eta\right]}\right)=0\right.$ for any $t \in \mathbb{R}$. This implies that (2.3.3) holds for $g=e^{t \xi}$. If G is connected, Remark 2.1.7 and (2.3.3) for $e^{t \xi}$ imply that $\mu: M \rightarrow \mathfrak{g}^{*}$ is G-equivariant.

We assume now that a connected Lie group G acts symplectically on a connected symplectic manifold (M, ω). Then by Lemma 2.3.2 and Remark 2.3.3, the existence and uniqueness of the moment map is equivalent to the existence and uniqueness of the lifting μ such that the following diagram of morphisms of Lie algebras is commutative:

here the map $\mathfrak{g} \rightarrow \mathfrak{s y m p l}(M, \omega)$ is $\xi \rightarrow-\xi^{M}$, and then map $\mathscr{C}^{\infty}(M) \rightarrow \mathfrak{s y m p l}(M, \omega)$ is $f \rightarrow-X_{f}$.
Proposition 2.3.4. If M is connected compact and $H^{1}(M, \mathbb{R})=0$, then every symplectic action of a connected Lie group G is Hamiltonian.

Proof. Let $\left\{\xi_{i}\right\}_{i=1}^{\operatorname{dim} G}$ be a basis of \mathfrak{g}. As the G-action is symplectic, we have $L_{\xi_{i}^{M}} \omega=0$, thus $d i_{\xi_{i}^{M}} \omega=0$. Since $H^{1}(M, \mathbb{R})=0$, there exists $\mu_{i} \in \mathscr{C}^{\infty}(M)$ such that

$$
\begin{equation*}
i_{\xi_{i}^{M}} \omega=d \mu_{i} \tag{2.3.11}
\end{equation*}
$$

As M is compact, we can fix the free constant by requiring $\int_{M} \mu_{i} \omega^{n}=0$. We define $\mu: M \rightarrow \mathfrak{g}^{*}$ by

$$
\begin{equation*}
\mu\left(\sum_{i} a_{i} \xi_{i}\right)=\sum_{i} a_{i} \mu_{i}, \text { where } a_{i} \in \mathbb{R} \tag{2.3.12}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
i_{\xi^{M}} \omega=d \mu(\xi) \text { and } \int_{M} \mu(\xi) \omega^{n}=0 \text { for any } \xi \in \mathfrak{g} \tag{2.3.13}
\end{equation*}
$$

For $\xi, \eta \in \mathfrak{g}$, set

$$
\begin{equation*}
C(\xi, \eta):=\mu([\xi, \eta])-\{\mu(\xi), \mu(\eta)\} \tag{2.3.14}
\end{equation*}
$$

By (1.3.8), (2.2.8) and (2.3.4), we get

$$
\begin{equation*}
X_{\mu([\xi, \eta])}=[\xi, \eta]^{M}=-\left[\xi^{M}, \eta^{M}\right]=-\left[X_{\mu(\xi)}, X_{\mu(\eta)}\right]=X_{\{\mu(\xi), \mu(\eta)\}} . \tag{2.3.15}
\end{equation*}
$$

By (1.2.80), (2.3.15) implies that $d C(\xi, \eta)=0$, thus $C(\xi, \eta)$ is a constant function on M as M is connected. Now by (1.3.1), (2.3.13), as $L_{\eta^{M}} \omega=0$, we have

$$
\begin{align*}
\int_{M}\{\mu(\xi), \mu(\eta)\} \omega^{n} & =\int_{M} \omega\left(\xi^{M}, \eta^{M}\right) \omega^{n}=\int_{M} \eta^{M}(\mu(\xi)) \omega^{n} \tag{2.3.16}\\
& =\int_{M} L_{\eta^{M}}\left(\mu(\xi) \omega^{n}\right)=\int_{M} d i_{\eta^{M}}\left(\mu(\xi) \omega^{n}\right)=0
\end{align*}
$$

By (2.3.13) and (2.3.16), we get $C(\xi, \eta)=0$ for any $\xi, \eta \in \mathfrak{g}$. By Remark 2.3.3, we know that the symplectic G-action is Hamiltonian if G is connected.

Proposition 2.3.5. Assume a connected Lie group G acts symplectically on a connected symplectic manifold (M, ω). If $H^{1}(\mathfrak{g})=0$, then there exists at most a moment map.

Assume one of the following conditions holds:
(a) M is compact and $H^{1}(\mathfrak{g})=0$,
(b) $H^{1}(\mathfrak{g})=H^{2}(\mathfrak{g})=0$,
then there exists a unique moment map for this G-action on M.
Proof. First, we claim that

$$
\begin{equation*}
[\mathfrak{s y m p l}(M, \omega), \mathfrak{s y m p l}(M, \omega)] \subset \mathfrak{h a m}(M, \omega) \tag{2.3.17}
\end{equation*}
$$

In fact, for $X, Y \in \mathfrak{s y m p l}(M, \omega)$, we have $L_{X} \omega=L_{Y} \omega=0$. Then by (1.2.20) and the formula [$\left.L_{X}, i_{Y}\right]=i_{[X, Y]}$, we have

$$
\begin{align*}
i_{[X, Y]} \omega & =L_{X} i_{Y} \omega-i_{Y} L_{X} \omega=L_{X} i_{Y} \omega=i_{X} d i_{Y} \omega+d i_{X} i_{Y} \omega \\
& =i_{X} L_{Y} \omega-i_{X} i_{Y} d \omega+d(\omega(Y, X))=d(\omega(Y, X)) \tag{2.3.18}
\end{align*}
$$

Thus $[X, Y]$ is the Hamiltonian vector field associated with $\omega(Y, X)$.
For the uniqueness of the moment map, we assume that there exist two moment maps μ_{1} and μ_{2} satisfying Definition 2.3.1. Then for $\xi, \eta \in \mathfrak{g}$, by Lemma 2.3.2 and (2.3.4),

$$
\begin{align*}
\mu_{1}([\xi, \eta]) & =\left\{\mu_{1}(\xi), \mu_{1}(\eta)\right\}=\omega\left(X_{\mu_{1}(\xi)}, X_{\mu_{1}(\eta)}\right)=\omega\left(X_{\mu_{2}(\xi)}, X_{\mu_{2}(\eta)}\right) \tag{2.3.19}\\
& =\mu_{2}([\xi, \eta])
\end{align*}
$$

Therefore, the moment map is unique if $\mathfrak{g}=[\mathfrak{g}, \mathfrak{g}]$ which is equivalent to $H^{1}(\mathfrak{g})=0$ by Proposition 2.1.26.

Assume now that $H^{1}(\mathfrak{g})=0$, then by Proposition 2.1.26, $\mathfrak{g}=[\mathfrak{g}, \mathfrak{g}]$. Thus for any $\zeta \in \mathfrak{g}$, there exist $u_{j}, v_{j} \in \mathfrak{g}$, such that $\zeta=\sum_{j=1}^{k}\left[u_{j}, v_{j}\right]$. Set

$$
\begin{equation*}
\mu(\zeta):=\sum_{j} \omega\left(u_{j}^{M}, v_{j}^{M}\right) \tag{2.3.20}
\end{equation*}
$$

Then by (2.2.8) and (2.3.18),

$$
\begin{equation*}
d(\mu(\zeta))=\sum_{j} d\left(\omega\left(u_{j}^{M}, v_{j}^{M}\right)\right)=\sum_{j} i_{\left[v_{j}^{M}, u_{j}^{M}\right]} \omega=\sum_{j} i_{\left[u_{j}, v_{j}\right]^{M}} \omega=i_{\zeta^{M}} \omega \tag{2.3.21}
\end{equation*}
$$

By (2.3.21), $\mu(\zeta)$ is defined up to a constant.
Let $\left\{\xi_{i}\right\}_{i=1}^{\operatorname{dim} G}$ be a basis of \mathfrak{g}, and we fix $\mu_{i}=\mu\left(\xi_{i}\right)$ and extend linearly on \mathfrak{g} by (2.3.12), then by (2.3.15), $C(\xi, \eta)$ in (2.3.14) is a constant function on M as M is connected.

- If M is compact, we can normalize μ by requiring $\int_{M} \mu\left(\xi_{i}\right) \omega^{n}=0$ for $1 \leq i \leq \operatorname{dim} G$. Then $C(\xi, \eta) \equiv 0$ as in the proof of Proposition 2.3.4.
\bullet If M may be noncompact, the equation (2.3.14) defines an element $C \in \Lambda^{2} \mathfrak{g}^{*}$. For $\xi, \eta, \zeta \in \mathfrak{g}$, by (2.1.87) and (2.3.14),

$$
\begin{align*}
(\delta C)(\xi, \eta, \zeta) & =-C([\xi, \eta], \zeta)+C([\xi, \zeta], \eta)-C([\eta, \zeta], \xi) \\
& =-\sum_{(\xi, \eta, \zeta)}(\mu([[\xi, \eta], \zeta])-\{\mu([\xi, \eta]), \mu(\zeta)\}) \tag{2.3.22}
\end{align*}
$$

here $\sum_{(\xi, \eta, \zeta)}$ is the cyclic sum of ξ, η, ζ.
By the Jacobi identity $\sum_{(\xi, \eta, \zeta)}[[\xi, \eta], \zeta]=0,(2.3 .14)$ and (2.3.22), we get

$$
\begin{equation*}
(\delta C)(\xi, \eta, \zeta)=\sum_{(\xi, \eta, \zeta)}(\{\{\mu(\xi), \mu(\eta)\}, \mu(\zeta)\}+\{C(\xi, \eta), \mu(\zeta)\})=0 \tag{2.3.23}
\end{equation*}
$$

in the last equality, we use the Jacobi identity for $\{$,$\} and C(\xi, \eta)$ is a constant function on M.
By the condition $H^{2}(\mathfrak{g})=0$ and (2.3.23), there exists $\alpha \in \mathfrak{g}^{*}$ such that $C=\delta \alpha$. That is, by (2.1.87), $C(\xi, \eta)=-\alpha([\xi, \eta])$.

We define $\tilde{\mu}(\xi)=\mu(\xi)+(\alpha, \xi)$. Then

$$
\begin{align*}
\tilde{\mu}([\xi, \eta])-\{\tilde{\mu}(\xi), \tilde{\mu}(\eta)\}=\mu([\xi, \eta])+(\alpha,[\xi, \eta])-\{\mu(\xi)+ & (\alpha, \xi), \mu(\eta)+(\alpha, \eta)\} \\
& =C(\xi, \eta)+(\alpha,[\xi, \eta])=0 \tag{2.3.24}
\end{align*}
$$

Then by Remark 2.3.3, $\tilde{\mu}$ is a moment map and the G-action is Hamiltonian.
From Propositions 2.1.29 and 2.3.5, we get
Corollary 2.3.6. If a connected semisimple Lie group G acts symplectically on a connected symplectic manifold (M, ω), then the G-action is Hamiltonian and there is a unique moment map assciated with this G-action.

We collect now some properties of the moment map.
Proposition 2.3.7. Let $\mu: M \rightarrow \mathfrak{g}^{*}$ be a moment map. Then

1) For $x \in M$, let \mathfrak{g}_{x} be the Lie algebra of the stabilizer $G_{x}=\{g \in G: g \cdot x=x\}$ of x, then

$$
\begin{equation*}
\mathfrak{g}_{x}=\left(\operatorname{Im} d \mu_{x}\right)^{\perp} \subset \mathfrak{g} . \tag{2.3.25}
\end{equation*}
$$

2) The map $\mu: M \rightarrow\left(\mathfrak{g}^{*},\{\},\right)$ is a homomorphism of Poisson manifolds. That is, for $F, G \in$ $\mathscr{C}^{\infty}\left(\mathfrak{g}^{*}\right)$, we have

$$
\begin{equation*}
\mu^{*}\{F, G\}=\left\{\mu^{*} F, \mu^{*} G\right\} \tag{2.3.26}
\end{equation*}
$$

3) (Functional property) If $H \subset G$ is a Lie subgroup of G, we have an embedding of their Lie algebras $i: \mathfrak{h} \rightarrow \mathfrak{g}$ and the dual map $i^{*}: \mathfrak{g}^{*} \rightarrow \mathfrak{h}^{*}$. Then by the definition, $\mu_{H}:=i^{*} \circ \mu: M \rightarrow \mathfrak{h}^{*}$ is a moment map for the H-action on M.
Proof. In fact, by Lemma 2.2.2, for $\xi \in \mathfrak{g}$,

$$
\begin{equation*}
\xi \in \mathfrak{g}_{x} \Leftrightarrow \xi_{x}^{M}=0 \Leftrightarrow\left(d \mu_{x}, \xi\right)=i_{\xi_{x}^{M}} \omega=0 \tag{2.3.27}
\end{equation*}
$$

Thus 1) holds.
For $F, G \in \mathscr{C}^{\infty}\left(\mathfrak{g}^{*}\right), x \in M$, set $F_{1}(\gamma)=\left(d F_{\mu(x)}, \gamma\right), G_{1}(\gamma)=\left(d G_{\mu(x)}, \gamma\right)$ two linear functions on \mathfrak{g}^{*}, then $F_{1}=d F_{1}=d F_{\mu(x)}, G_{1}=d G_{1}=d G_{\mu(x)} \in \mathfrak{g}$ and by Lemma 2.3.2, (1.3.1), (2.2.44) and (2.3.4),

$$
\begin{align*}
& \mu^{*}\{F, G\}_{x}=\{F, G\}_{\mu(x)}=\left(\mu(x),\left[d F_{\mu(x)}, d G_{\mu(x)}\right]\right) \\
&=\left(\mu(x),\left[F_{1}, G_{1}\right]\right)=\left\{\left(\mu, F_{1}\right),\left(\mu, G_{1}\right)\right\}_{x} . \tag{2.3.28}
\end{align*}
$$

Recall that the value of $\left\{\mu^{*} F, \mu^{*} G\right\}$ at $x \in M$ depends only on the differentials of $\mu^{*} F$ and $\mu^{*} G$ at x and

$$
\begin{equation*}
d\left(\mu^{*} F\right)_{x}=d(F \circ \mu)_{x}=d F_{\mu(x)}\left(d \mu_{x}\right)=\left(d \mu_{x}, F_{1}\right)=d\left(\mu, F_{1}\right)_{x} \tag{2.3.29}
\end{equation*}
$$

From (2.3.28), (2.3.29), we get (2.3.26).
The part 3) is trivial. The proof of Proposition 2.3.7 is completed.

