2.3.2 Examples of moment maps

Example 1: (Symplectic vector space) Let (V, ω) be a symplectic vector space of dimension $2 n$. Then the symplectic group $\operatorname{Sp}(V)=\left\{g \in \mathrm{GL}(V): g^{*} \omega=\omega\right\}$ with Lie algebra $\mathfrak{s p}(V)$, acts naturally on V. The map $\mu: V \rightarrow \mathfrak{s p}(V)^{*}$ defined by: for $v \in V, \xi \in \mathfrak{s p}(V) \subset \operatorname{End}(V)$,

$$
\begin{equation*}
(\mu(v), \xi)=\frac{1}{2} \omega(\xi v, v) \tag{2.3.30}
\end{equation*}
$$

is a moment map for this $\operatorname{Sp}(V)$-action on V.
In fact, for $\xi \in \mathfrak{s p}(V), u, v \in V$,

$$
\begin{equation*}
\xi_{v}^{M}=\left.\frac{d}{d t}\right|_{t=0} \exp (t \xi) v=\xi v \quad \text { and } \quad \omega(\xi u, v)+\omega(u, \xi v)=0 \tag{2.3.31}
\end{equation*}
$$

So $\omega(\xi u, v)=\omega(\xi v, u)$, and by (2.3.30), for $g \in \operatorname{Sp}(V)$,

$$
\begin{equation*}
u(\mu(v), \xi)=\frac{1}{2} u(\omega(\xi v, v))=\frac{1}{2} \omega(\xi u, v)+\frac{1}{2} \omega(\xi v, u)=\omega(\xi v, u) \tag{2.3.32}
\end{equation*}
$$

and

$$
\begin{align*}
(\mu(g v), \xi) & =\frac{1}{2} \omega(\xi g v, g v)=\frac{1}{2} \omega\left(g^{-1} \xi g v, v\right) \tag{2.3.33}\\
& =\left(\mu(v), \operatorname{Ad}_{g^{-1}} \xi\right)=\left(\operatorname{Ad}_{g}^{*} \mu(v), \xi\right)
\end{align*}
$$

Thus $\mu: V \rightarrow \mathfrak{s p}(V)^{*}$ in (2.3.30) is a moment map.
If $V=\mathbb{R}^{2 n}$ with the canonical symplectic form $\omega_{s t}=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}=\left\langle J_{0} \cdot, \cdot\right\rangle$, where $v=\binom{x}{y}, x, y \in \mathbb{R}^{n}$ and $J_{0}=\left(\begin{array}{cc}0 & -I \\ I & 0\end{array}\right)$ is the canonical complex structure on $\mathbb{R}^{2 n}$ and \langle, is the canonical Euclidean metric on $\mathbb{R}^{2 n}$ (cf. (1.1.31)). Then by (2.3.30),

$$
\begin{equation*}
(\mu(v), \xi)=\frac{1}{2} \omega(\xi v, v)=\frac{1}{2}\left\langle J_{0} \xi v, v\right\rangle=\frac{1}{2} v^{t} J_{0} \xi v=\frac{1}{2} \operatorname{Tr}\left[v v^{t} J_{0} \xi\right] \tag{2.3.34}
\end{equation*}
$$

Let $B_{\mathfrak{s p}(2 n)}$ be the bilinear form on $\mathfrak{s p}(2 n)$ defined by: for $\xi, \eta \in \mathfrak{s p}(2 n)$,

$$
\begin{equation*}
B_{\mathfrak{s p}(2 n)}(\xi, \eta)=-\left.\frac{1}{2} \operatorname{Tr}\right|_{\mathbb{R}^{2 n}}[\xi \eta] \tag{2.3.35}
\end{equation*}
$$

It is Ad-invariant, as $\left.\operatorname{Tr}\right|_{\mathbb{R}^{2 n}}\left[\operatorname{Ad}_{g} \xi \operatorname{Ad}_{g} \eta\right]=\left.\operatorname{Tr}\right|_{\mathbb{R}^{2 n}}[\xi \eta]$ for any $g \in \operatorname{Sp}(2 n)$. By (2.1.41) and (2.3.35), we verify that

$$
\begin{equation*}
\left.B_{\mathfrak{s p}(2 n)}\right|_{\mathfrak{u}}>0,\left.\quad B_{\mathfrak{s p}(2 n)}\right|_{\mathfrak{p}}<0 \quad \text { and } \quad B_{\mathfrak{s p}(2 n)}(\mathfrak{u}, \mathfrak{p})=0 \tag{2.3.36}
\end{equation*}
$$

Thus $B_{\mathfrak{s p}(2 n)}$ is nondegenerate. The bilinear form $B_{\mathfrak{s p}(2 n)}$ is called a Killing form on $\mathfrak{s p}(2 n)$. From the general theory of Lie algebra (cf. Proposition 2.1.28), the nondegenerateness of the Killing form implies that $\mathfrak{s p}(2 n)$ is semisimple.

We identify $\mathfrak{s p}(2 n)^{*}$ with $\mathfrak{s p}(2 n)$ by $B_{\mathfrak{s p}(2 n)}$. From (2.3.34), we have

$$
\mu(v)=-v v^{t} J_{0}=\left(\begin{array}{ll}
-x y^{t} & x x^{t} \tag{2.3.37}\\
-y y^{t} & y x^{t}
\end{array}\right) \in \mathfrak{s p}(2 n) \simeq \mathfrak{s p}(2 n)^{*} .
$$

We can check directly $\mu(v) \in \mathfrak{s p}(2 n)$, as $\mu(v)^{t} J_{0}+J_{0} \mu(v)=-J_{0}^{t} v v^{t} J_{0}-J_{0} v v^{t} J_{0}=0$.

The unitary group $\mathrm{U}(n)$ is identified as a Lie subgroup of $\mathrm{Sp}(2 n)$ via τ in (1.1.59). The embedding $i: \mathrm{U}(n) \rightarrow \mathrm{Sp}(2 n)$ induces an injective morphism of Lie algebras $i: \mathfrak{u}(n) \rightarrow \mathfrak{s p}(2 n)$ by $i=\left.\tau\right|_{\mathfrak{u}(n)}$ which identifies $\mathfrak{u}(n)$ as \mathfrak{u}. The map i via (2.1.41) induces $i^{*}: \mathfrak{s p}(2 n) \simeq \mathfrak{s p}(2 n)^{*}=$ $\mathfrak{p}^{*} \oplus \mathfrak{u}^{*} \rightarrow \mathfrak{u}^{*}=\tau(\mathfrak{u}(n))^{*} \simeq \mathfrak{u}(n)$. Note that the decomposition $\mathfrak{s p}(2 n)=\mathfrak{p} \oplus \mathfrak{u}$ is simply the decomposition of a matrix as a sum of symmetric and antisymmetric matrices, and (2.3.36) implies the identification $\mathfrak{s p}(2 n) \simeq \mathfrak{s p}(2 n)^{*}$ identifies \mathfrak{p} to \mathfrak{p}^{*} and \mathfrak{u} to \mathfrak{u}^{*} via $B_{\mathfrak{s p}(2 n)}$, thus i^{*} is the projection of a matrix to its antisymmetric part, i.e.,

$$
i^{*}\left(\begin{array}{cc}
\alpha & \beta \tag{2.3.38}\\
\gamma & -\alpha^{t}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
\alpha-\alpha^{t} & \beta-\gamma \\
\gamma-\beta & \alpha-\alpha^{t}
\end{array}\right)
$$

By Proposition 2.3.7, (2.3.37) and (2.3.38), we get

$$
\begin{align*}
\tau\left(\mu_{\mathrm{U}(n)}\right)(v) & =i^{*} \circ \mu(v)=\frac{1}{2}\left(\begin{array}{cc}
y x^{t}-x y^{t} & x x^{t}+y y^{t} \\
-x x^{t}-y y^{t} & y x^{t}-x y^{t}
\end{array}\right) \\
& =\frac{1}{2} \tau\left(y x^{t}-x y^{t}+\sqrt{-1}\left(-x x^{t}-y y^{t}\right)\right) \tag{2.3.39}\\
& =-\tau\left(\frac{\sqrt{-1}}{2}(x+\sqrt{-1} y)\left(x^{t}-\sqrt{-1} y^{t}\right)\right)=\tau\left(-\frac{\sqrt{-1}}{2} z z^{*}\right) \in \tau(\mathfrak{u}(n)),
\end{align*}
$$

where $z=x+\sqrt{-1} y \in \mathbb{C}^{n}$. Thus the moment map of the $\mathrm{U}(n)$-action on $\left(\mathbb{C}^{n}, \omega_{\text {st }}\right)$ with $\omega_{\text {st }}=\frac{\sqrt{-1}}{2} \sum_{j=1}^{n} d z_{j} \wedge d \bar{z}_{j}$, is

$$
\begin{equation*}
\mu_{\mathrm{U}(n)}(z)=-\frac{\sqrt{-1}}{2} z z^{*} \in \mathfrak{u}(n) . \tag{2.3.40}
\end{equation*}
$$

Note that by Exercise 2.3.4, the identification of $\mathfrak{u}(n)$ and $\mathfrak{u}(n)^{*}$ via $B_{\mathfrak{s p}(2 n)}$ is exactly the identification via the Euclidean metric $B_{\mathfrak{u}(n)}(\xi, \eta)=-\operatorname{Tr}_{\mathbb{C}^{n}}[\xi \eta]$ on $\mathfrak{u}(n)$.

Example 2: (Cotangent bundle) Let $\pi: T^{*} M \rightarrow M$ be the cotangent bundle of a manifold M. By Example 1.2.14, we can define a canonical 1-form $\lambda_{s t}=\sum p_{i} d x_{i}$ on $T^{*} M$ which is independent of coordinates x_{i} on M and dual coordinates p_{i} on $T^{*} M$. Intrinsically,

$$
\begin{equation*}
\left(\lambda_{s t}\right)_{(x, p)}(v)=(p, d \pi(v))_{x} \quad \text { for } v \in T_{(x, p)}\left(T^{*} M\right) \tag{2.3.41}
\end{equation*}
$$

The 2-form $\omega_{s t}:=-d \lambda_{s t}$ is closed and nondegenerate, it defines the canonical symplectic form on $T^{*} M$.

For $\varphi \in \operatorname{Diff}(M)$, the group of diffeomorphisms of M, we denote by $d \varphi: T_{x} M \rightarrow T_{\varphi(x)} M$ its differential, and $(d \varphi)^{*}: T_{\varphi(x)}^{*} M \rightarrow T_{x}^{*} M$ its dual. Then φ induces a diffeomorphism $\tilde{\varphi}$ of $Q:=T^{*} M$ defined by

$$
\begin{equation*}
\tilde{\varphi}: T_{x}^{*} M \rightarrow T_{\varphi(x)}^{*} M, \quad \tilde{\varphi}(x, p)=\left(\varphi(x),\left(d \varphi^{-1}\right)^{*}(p)\right) . \tag{2.3.42}
\end{equation*}
$$

Certainly, $\operatorname{Diff}(M) \ni \varphi \rightarrow \tilde{\varphi} \in \operatorname{Diff}\left(T^{*} M\right)$ identifies $\operatorname{Diff}(M)$ as a subgroup of $\operatorname{Diff}\left(T^{*} M\right)$. Thus we will not distinct φ and $\tilde{\varphi}$, and $\operatorname{Diff}(M)$ acts naturally on $T^{*} M$.

The formal Lie algebra of $\operatorname{Diff}(M)$ is $\mathscr{C}^{\infty}(M, T M)$, the space of vector fields on M. We apply formally the Ad , ad actions in (2.1.18)-(2.1.20) to the group $\operatorname{Diff}(M)$ and its Lie algebra $\mathscr{C}^{\infty}(M, T M)$, then for $\varphi \in \operatorname{Diff}(M), X \in \mathscr{C}^{\infty}(M, T M)$, we get by (1.2.4),

$$
\begin{equation*}
\left(\operatorname{Ad}_{\varphi} X\right)_{x}=\left.\frac{\partial}{\partial t}\right|_{t=0} \varphi \circ e^{t X} \circ \varphi^{-1}(x)=(d \varphi)\left(X\left(\varphi^{-1}(x)\right)\right)=\left(\varphi_{*} X\right)_{x} \tag{2.3.43}
\end{equation*}
$$

For $X \in \mathscr{C}^{\infty}(M, T M)$, (2.3.42) induces an infinitesimal action $X^{Q} \in \mathscr{C}^{\infty}(Q, T Q)$ on Q by: for $(x, p) \in T_{x}^{*} M$

$$
\begin{equation*}
X^{Q}(x, p)=\left.\frac{d}{d t}\right|_{t=0} e^{t X} \cdot(x, p) \tag{2.3.44}
\end{equation*}
$$

On local coordinates (cf. Example 1.2.14),

$$
\begin{equation*}
X^{Q}(x, p)=\left(X_{x},-L_{X} p\right) \tag{2.3.45}
\end{equation*}
$$

here p is understood as a constant section of $T^{*} M$, and $L_{X} p$ defined by (1.2.9).
Lemma 2.3.8. The forms $\lambda_{s t}$, $\omega_{s t}$ are $\operatorname{Diff}(M)$-invariant, i.e., for any $\varphi \in \operatorname{Diff}(M), \tilde{\varphi}^{*} \lambda_{s t}=$ $\lambda_{s t}$. The map

$$
\begin{equation*}
\mu: T^{*} M \rightarrow \mathscr{C}^{\infty}(M, T M)^{*}, \quad(\mu, X)_{(x, p)}=i_{X^{Q}}\left(\lambda_{s t}\right)_{(x, p)}=p\left(X_{x}\right) \in \mathscr{C}^{\infty}\left(T^{*} M\right) \tag{2.3.46}
\end{equation*}
$$

is the moment map on $T^{*} M$ with respect to the $\operatorname{Diff}(M)$-action. In other words, $\mu_{(x, p)}=p \circ \delta_{x}$, where $\delta_{x}(X)=X_{x}$.

Proof. By (2.3.41) and $\pi \circ \tilde{\varphi}=\varphi \circ \pi$, we have

$$
\begin{align*}
\left(\tilde{\varphi}^{*} \lambda_{s t}\right)_{(x, p)}(v) & =\left(\lambda_{s t}\right)_{\left(\varphi(x),\left(d \varphi^{-1}\right)^{*}(p)\right)}(d \tilde{\varphi}(v))=\left(\left(d \varphi^{-1}\right)^{*} p, d \pi \circ d \tilde{\varphi}(v)\right) \tag{2.3.47}\\
& =\left(\left(d \varphi^{-1}\right)^{*} p, d \varphi \circ d \pi(v)\right)=p(d \pi(v))=\left(\lambda_{s t}\right)_{(x, p)}(v) .
\end{align*}
$$

Thus $\tilde{\varphi}^{*} \omega_{s t}=-d \tilde{\varphi}^{*} \lambda_{s t}=\omega_{s t}$, i.e., $\omega_{s t}$ is also $\operatorname{Diff}(M)$-invariant.
For any $X \in \mathscr{C}^{\infty}(M, T M)$, by (2.3.47), we have

$$
\begin{equation*}
L_{X^{Q}} \lambda_{s t}=0 . \tag{2.3.48}
\end{equation*}
$$

Then by Cartan formula (1.2.20) and (2.3.48), we get

$$
\begin{equation*}
d i_{X^{Q}} \lambda_{s t}=-i_{X^{Q}} d \lambda_{s t}=i_{X^{Q}} \omega_{s t} . \tag{2.3.49}
\end{equation*}
$$

From (2.3.49), what we need to prove now is that μ is $\operatorname{Diff}(M)$-equivariant. In fact, for $\varphi \in$ Diff(M),

$$
\begin{align*}
\left(\mu_{\varphi(x, p)}, X\right) & =\left(\mu_{\left(\varphi(x),\left(d \varphi^{-1}\right)^{*}(p)\right)}, X\right)=\left(\left(d \varphi^{-1}\right)^{*} p\right)\left(X_{\varphi(x)}\right)=p\left(\left(d \varphi^{-1}\right) X_{\varphi(x)}\right) \tag{2.3.50}\\
& =p\left(\operatorname{Ad}_{\varphi^{-1}} X\right)_{x}=\left(\mu_{(x, p)}, \operatorname{Ad}_{\varphi^{-1}} X\right)=\left(\left(\operatorname{Ad}_{\varphi}^{*} \mu\right)_{(x, p)}, X\right)
\end{align*}
$$

The proof of Lemma 2.3.8 is completed.
Proposition 2.3.9. (Coadjoint orbit) Let G be a Lie group. For $\beta \in \mathfrak{g}^{*}$, the Ad^{*}-action of G on its coadjoint orbit $M=\mathcal{O}_{\beta}=G \cdot \beta=\operatorname{Ad}_{G} \cdot \beta \subset \mathfrak{g}^{*}$ is Hamiltonian and the natural injection $\mu: \mathcal{O}_{\beta} \rightarrow \mathfrak{g}^{*}$ is a moment map.

Proof. By (2.2.43), $T_{\alpha} \mathcal{O}_{\beta}=\left\{\eta_{\alpha}^{M}: \eta \in \mathfrak{g}\right\}=\left\{\operatorname{ad}_{\eta}^{*} \alpha: \eta \in \mathfrak{g}\right\}$. The form ω is defined by: for $\xi, \eta \in \mathfrak{g}$,

$$
\begin{equation*}
\omega\left(\xi^{M}, \eta^{M}\right)_{\alpha}=(\alpha,[\xi, \eta])=-\left(\operatorname{ad}_{\xi}^{*} \alpha, \eta\right) . \tag{2.3.51}
\end{equation*}
$$

Here we prove directly that ω is a symplectic form on \mathcal{O}_{β}. At first, for $g \in G$, by (1.2.4) and (2.2.2),

$$
\begin{align*}
\left(g^{*} \omega\right)\left(\xi^{M}, \eta^{M}\right)_{\alpha}=\omega\left(\left(\operatorname{Ad}_{g} \xi\right)^{M}\right. & \left.,\left(\operatorname{Ad}_{g} \eta\right)^{M}\right)_{\operatorname{Ad}_{g}^{*} \alpha} \\
& =\left(\operatorname{Ad}_{g}^{*} \alpha,\left[\operatorname{Ad}_{g} \xi, \operatorname{Ad}_{g} \eta\right]\right)=\left(\operatorname{Ad}_{g}^{*} \alpha, \operatorname{Ad}_{g}[\xi, \eta]\right)=(\alpha,[\xi, \eta]) \tag{2.3.52}
\end{align*}
$$

Thus ω is G-invariant. If $\omega\left(\xi^{M}, \eta^{M}\right)_{\alpha}=0$ for any $\eta \in \mathfrak{g}$, then by (2.3.51), $\operatorname{ad}_{\xi}^{*} \alpha=0$, but $\xi_{\alpha}^{M}=\operatorname{ad}_{\xi}^{*} \alpha$. This concludes that ω is nondegenerate.

Now we check that μ is G-equivalent. In fact, for $\alpha \in \mathcal{O}_{\beta}, g \in G$, we have

$$
\begin{equation*}
\mu_{g \cdot \alpha}=\mu_{\operatorname{Ad}_{g}^{*} \alpha}=\operatorname{Ad}_{g}^{*} \alpha=\operatorname{Ad}_{g}^{*} \mu_{\alpha} \tag{2.3.53}
\end{equation*}
$$

Thus from (2.2.53), for $\xi, \eta \in \mathfrak{g}$, we get

$$
\begin{align*}
d(\mu, \xi)_{\alpha}\left(\eta_{\alpha}^{M}\right) & =\left.\frac{d}{d t}\right|_{t=0}\left(\operatorname{Ad}_{e^{t \eta}}^{*} \alpha, \xi\right)=\left(\operatorname{ad}_{\eta}^{*} \alpha, \xi\right) \tag{2.3.54}\\
& =(\alpha,[\xi, \eta])=\omega_{\alpha}\left(\xi_{\alpha}^{M}, \eta_{\alpha}^{M}\right)
\end{align*}
$$

Since the vector fields η^{M} span the tangent space, (2.3.54) means that $d \mu(\xi)=i_{\xi^{M}} \omega$. Finally, by Cartan formula (1.2.20) and ω is G-invariant, we get for $\eta \in \mathfrak{g}$,

$$
\begin{equation*}
0=d^{2} \mu(\eta)=d i_{\eta^{M}} \omega=L_{\eta^{M}} \omega-i_{\eta^{M}} d \omega=-i_{\eta^{M}} d \omega . \tag{2.3.55}
\end{equation*}
$$

By using again that the vector fields η^{M} span the tangent space, we see $d \omega=0$. Thus $\left(\mathcal{O}_{\beta}, \omega\right)$ is a symplectic manifold and μ is the moment map. The proof of Proposition 2.3.9 is completed.

