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2.3.2 Examples of moment maps

Example 1: (Symplectic vector space) Let (V, ω) be a symplectic vector space of dimension
2n. Then the symplectic group Sp(V ) = {g ∈ GL(V ) : g∗ω = ω} with Lie algebra sp(V ), acts
naturally on V . The map µ : V → sp(V )∗ defined by: for v ∈ V, ξ ∈ sp(V ) ⊂ End(V ),

(µ(v), ξ) =
1

2
ω(ξv, v) (2.3.30)

is a moment map for this Sp(V )-action on V .
In fact, for ξ ∈ sp(V ), u, v ∈ V ,

ξMv =
d

dt

∣∣∣∣
t=0

exp(tξ)v = ξv and ω(ξu, v) + ω(u, ξv) = 0. (2.3.31)

So ω(ξu, v) = ω(ξv, u), and by (2.3.30), for g ∈ Sp(V ),

u(µ(v), ξ) =
1

2
u(ω(ξv, v)) =

1

2
ω(ξu, v) +

1

2
ω(ξv, u) = ω(ξv, u), (2.3.32)

and

(µ(gv), ξ) =
1

2
ω(ξgv, gv) =

1

2
ω(g−1ξgv, v)

= (µ(v),Adg−1ξ) = (Ad∗gµ(v), ξ).
(2.3.33)

Thus µ : V → sp(V )∗ in (2.3.30) is a moment map.
If V = R2n with the canonical symplectic form ωst =

∑n
i=1 dxi ∧ dyi = ⟨J0·, ·⟩, where

v =

(
x
y

)
, x, y ∈ Rn and J0 =

(
0 −I
I 0

)
is the canonical complex structure on R2n and ⟨ , ⟩

is the canonical Euclidean metric on R2n (cf. (1.1.31)). Then by (2.3.30),

(µ(v), ξ) =
1

2
ω(ξv, v) =

1

2
⟨J0ξv, v⟩ =

1

2
vtJ0ξv =

1

2
Tr[vvtJ0ξ]. (2.3.34)

Let Bsp(2n) be the bilinear form on sp(2n) defined by: for ξ, η ∈ sp(2n),

Bsp(2n)(ξ, η) = −1

2
Tr |R2n [ξ η]. (2.3.35)

It is Ad-invariant, as Tr |R2n [AdgξAdgη] = Tr |R2n [ξ η] for any g ∈ Sp(2n). By (2.1.41) and
(2.3.35), we verify that

Bsp(2n)|u > 0, Bsp(2n)|p < 0 and Bsp(2n)(u, p) = 0. (2.3.36)

Thus Bsp(2n) is nondegenerate. The bilinear form Bsp(2n) is called a Killing form on sp(2n).
From the general theory of Lie algebra (cf. Proposition 2.1.28), the nondegenerateness of the
Killing form implies that sp(2n) is semisimple.

We identify sp(2n)∗ with sp(2n) by Bsp(2n). From (2.3.34), we have

µ(v) = −vvtJ0 =

(
−xyt xxt

−yyt yxt

)
∈ sp(2n) ≃ sp(2n)∗. (2.3.37)

We can check directly µ(v) ∈ sp(2n), as µ(v)tJ0 + J0µ(v) = −J t0vvtJ0 − J0vv
tJ0 = 0.
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The unitary group U(n) is identified as a Lie subgroup of Sp(2n) via τ in (1.1.59). The
embedding i : U(n) → Sp(2n) induces an injective morphism of Lie algebras i : u(n) → sp(2n)
by i = τ |u(n) which identifies u(n) as u. The map i via (2.1.41) induces i∗ : sp(2n) ≃ sp(2n)∗ =
p∗ ⊕ u∗ → u∗ = τ(u(n))∗ ≃ u(n). Note that the decomposition sp(2n) = p ⊕ u is simply the
decomposition of a matrix as a sum of symmetric and antisymmetric matrices, and (2.3.36)
implies the identification sp(2n) ≃ sp(2n)∗ identifies p to p∗ and u to u∗ via Bsp(2n), thus i

∗ is
the projection of a matrix to its antisymmetric part, i.e.,

i∗
(
α β
γ −αt

)
=

1

2

(
α− αt β − γ
γ − β α− αt

)
. (2.3.38)

By Proposition 2.3.7, (2.3.37) and (2.3.38), we get

τ(µU(n))(v) = i∗ ◦ µ(v) = 1

2

(
yxt − xyt xxt + yyt

−xxt − yyt yxt − xyt

)
=

1

2
τ(yxt − xyt +

√
−1(−xxt − yyt))

= −τ
(√−1

2
(x+

√
−1y)(xt −

√
−1yt)

)
= τ

(
−

√
−1

2
zz∗
)
∈ τ(u(n)),

(2.3.39)

where z = x +
√
−1y ∈ Cn. Thus the moment map of the U(n)-action on (Cn, ωst) with

ωst =
√
−1
2

∑n
j=1 dzj ∧ dzj , is

µU(n)(z) = −
√
−1

2
zz∗ ∈ u(n). (2.3.40)

Note that by Exercise 2.3.4, the identification of u(n) and u(n)∗ via Bsp(2n) is exactly the iden-
tification via the Euclidean metric Bu(n)(ξ, η) = −TrCn [ξ η] on u(n).

Example 2: (Cotangent bundle) Let π : T ∗M → M be the cotangent bundle of a
manifold M . By Example 1.2.14, we can define a canonical 1-form λst =

∑
pidxi on T

∗M which
is independent of coordinates xi on M and dual coordinates pi on T

∗M . Intrinsically,

(λst)(x,p)(v) = (p, dπ(v))x for v ∈ T(x,p)(T
∗M). (2.3.41)

The 2-form ωst := −dλst is closed and nondegenerate, it defines the canonical symplectic form
on T ∗M .

For φ ∈ Diff(M), the group of diffeomorphisms of M , we denote by dφ : TxM → Tφ(x)M
its differential, and (dφ)∗ : T ∗

φ(x)M → T ∗
xM its dual. Then φ induces a diffeomorphism φ̃ of

Q := T ∗M defined by

φ̃ : T ∗
xM → T ∗

φ(x)M, φ̃(x, p) = (φ(x), (dφ−1)∗(p)). (2.3.42)

Certainly, Diff(M) ∋ φ→ φ̃ ∈ Diff(T ∗M) identifies Diff(M) as a subgroup of Diff(T ∗M). Thus
we will not distinct φ and φ̃, and Diff(M) acts naturally on T ∗M .

The formal Lie algebra of Diff(M) is C∞(M,TM), the space of vector fields on M . We
apply formally the Ad, ad actions in (2.1.18)–(2.1.20) to the group Diff(M) and its Lie algebra
C∞(M,TM), then for φ ∈ Diff(M), X ∈ C∞(M,TM), we get by (1.2.4),

(AdφX)x =
∂

∂t
|t=0φ ◦ etX ◦ φ−1(x) = (dφ)(X(φ−1(x))) = (φ∗X)x. (2.3.43)
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For X ∈ C∞(M,TM), (2.3.42) induces an infinitesimal action XQ ∈ C∞(Q,TQ) on Q by: for
(x, p) ∈ T ∗

xM

XQ(x, p) =
d

dt

∣∣∣∣
t=0

etX · (x, p). (2.3.44)

On local coordinates (cf. Example 1.2.14),

XQ(x, p) = (Xx,−LXp), (2.3.45)

here p is understood as a constant section of T ∗M , and LXp defined by (1.2.9).

Lemma 2.3.8. The forms λst, ωst are Diff(M)-invariant, i.e., for any φ ∈ Diff(M), φ̃∗λst =
λst. The map

µ : T ∗M → C∞(M,TM)∗, (µ,X)(x,p) = iXQ(λst)(x,p) = p(Xx) ∈ C∞(T ∗M). (2.3.46)

is the moment map on T ∗M with respect to the Diff(M)-action. In other words, µ(x,p) = p ◦ δx,
where δx(X) = Xx.

Proof. By (2.3.41) and π ◦ φ̃ = φ ◦ π, we have

(φ̃∗λst)(x,p)(v) = (λst)(φ(x),(dφ−1)∗(p))(dφ̃(v)) = ((dφ−1)∗p, dπ ◦ dφ̃(v))
= ((dφ−1)∗p, dφ ◦ dπ(v)) = p(dπ(v)) = (λst)(x,p)(v).

(2.3.47)

Thus φ̃∗ωst = −dφ̃∗λst = ωst, i.e., ωst is also Diff(M)-invariant.
For any X ∈ C∞(M,TM), by (2.3.47), we have

LXQλst = 0. (2.3.48)

Then by Cartan formula (1.2.20) and (2.3.48), we get

diXQλst = −iXQdλst = iXQωst. (2.3.49)

From (2.3.49), what we need to prove now is that µ is Diff(M)-equivariant. In fact, for φ ∈
Diff(M),

(µφ(x,p), X) = (µ(φ(x),(dφ−1)∗(p)), X) = ((dφ−1)∗p)(Xφ(x)) = p((dφ−1)Xφ(x))

= p(Adφ−1X)x = (µ(x,p),Adφ−1X) = ((Ad∗φµ)(x,p), X).
(2.3.50)

The proof of Lemma 2.3.8 is completed.

Proposition 2.3.9. (Coadjoint orbit) Let G be a Lie group. For β ∈ g∗, the Ad∗-action of G
on its coadjoint orbit M = Oβ = G · β = AdG · β ⊂ g∗ is Hamiltonian and the natural injection
µ : Oβ → g∗ is a moment map.

Proof. By (2.2.43), TαOβ = {ηMα : η ∈ g} = {ad∗ηα : η ∈ g}. The form ω is defined by: for
ξ, η ∈ g,

ω(ξM , ηM )α = (α, [ξ, η]) = −(ad∗ξα, η). (2.3.51)

Here we prove directly that ω is a symplectic form on Oβ . At first, for g ∈ G, by (1.2.4) and
(2.2.2),

(g∗ω)(ξM , ηM )α = ω((Adgξ)
M , (Adgη)

M )Ad∗
gα

= (Ad∗gα, [Adgξ,Adgη]) = (Ad∗gα,Adg[ξ, η]) = (α, [ξ, η]). (2.3.52)
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Thus ω is G-invariant. If ω(ξM , ηM )α = 0 for any η ∈ g, then by (2.3.51), ad∗ξα = 0, but

ξMα = ad∗ξα. This concludes that ω is nondegenerate.
Now we check that µ is G-equivalent. In fact, for α ∈ Oβ , g ∈ G, we have

µg·α = µAd∗
gα

= Ad∗gα = Ad∗gµα. (2.3.53)

Thus from (2.2.53), for ξ, η ∈ g, we get

d(µ, ξ)α(η
M
α ) =

d

dt

∣∣∣∣
t=0

(Ad∗etηα, ξ) = (ad∗ηα, ξ)

= (α, [ξ, η]) = ωα(ξ
M
α , η

M
α ).

(2.3.54)

Since the vector fields ηM span the tangent space, (2.3.54) means that dµ(ξ) = iξMω. Finally,
by Cartan formula (1.2.20) and ω is G-invariant, we get for η ∈ g,

0 = d2µ(η) = diηMω = LηMω − iηMdω = −iηMdω. (2.3.55)

By using again that the vector fields ηM span the tangent space, we see dω = 0. Thus (Oβ , ω) is a
symplectic manifold and µ is the moment map. The proof of Proposition 2.3.9 is completed.


