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2.3.3 Symplectic reductions

In this subsection, we consider a Hamiltonian action of a compact Lie group G on a symplectic
manifold (M,w) with moment map u: M — g*.

We say that a € g* is a regular value of u if p=1(a) = 0 or for any = € p~ (), du : T,M —
T, (9" = g" is surjective. By the Sard theorem, the measure of the set of the points which are
not the regular value is zero.

If a € g* is a regular value of y, then u~!(a) is a smooth manifold. Recall that its coadjoint
orbit is O, = G- o = Adga.

Proposition 2.3.10. For any « € g*, G acts on p=1(O,). If a € g* is a regular value of y,
then for any x € u~*(a), the map

g To(G-xz), &M (2.3.56)

18 bijective and
T.(G-z) = Tp(p (). (2.3.57)

In this case, the G-action is locally free on p=*(G - «), that is, for any x € u~*(G - «), there
exists an open neighborhood U of e € G such that U acts freely on u= (G - ). Inversely, if G
acts locally free on =1 (G - ), then « is a reqular value of ju.

Proof. By (2.3.3), we know if z € u=1(0,), then for any g € G, u(gz) € O,, thus G acts on
-1
1 (Oa).
For any X € T, M, £ € g, by (2.3.2), we have
(du(X),€) = w(eM, X). (2.3.58)

x

From (2.3.58), dyu is surjective at x if and only if the equation ¢¥ = 0 implies £ = 0, i.e., G acts
locally free near = in (G - «). Thus (2.3.56) and the last part of Proposition 2.3.10 hold.
For X € T,(u~!(a)) and ¢ € g, we have du(X) = 0. By (2.3.58), we get ¢M € T, (u~!(a))* .
Since dim T, (1~ ()t~ = dim M — dim p~(a) = dim G, we get (2.3.57). The proof of Lemma
2.3.10 is completed. O

We state now the following main result of this subsection which gives an effective way to
construct the symplectic manifolds from the known symplectic manifolds. This fundamental
construction has many applications in geometry, in particular to get the natural symplectic
structure on the different moduli spaces.

Theorem 2.3.11. If G acts freely on u=1(0), then the orbit space Mg := G\u~*(0) is a smooth
manifold, and the natural projection m : u=1(0) — Mg is a principle G-bundle, and there exists
a unique symplectic form wg on Mg satisfying T™*wg = 1*w, with v : u~1(0) < M the natural
embedding.

Definition 2.3.12. The symplectic manifold (Mg, weg) is called the Mardsen-Weinstein sym-
plectic reduction of (M,w) with respect to the Hamiltonian G-action, it is also called the reduced
space or symplectic quotient.

The following technical Lemma allows us to obtain the symplectic form on the reduction
space from the original manifold.

Let H be a Lie group and 7 : P — M be a principal H-bundle. We say that a form g on P
is horizontal if for any v € ker(dn), i,8 = 0. Set

Q(P)":={BeQ*(P):g*"B=p, foranygec H},

(2.3.59)
Q% (P)pas := {8 € Q’(P)H : B is horizontal}.
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Then Q°(P)# is the H-invariant subspace of Q®(P) and we say that 3 is a basic form on P if
B € Q*(P)pas-

Lemma 2.3.13. The exterior differential d¥ preserves Q*(P)pas, thus (2°(P)pas, d¥) is a sub-
complex of the de Rham complex (Q®(P),d"). The pull-back map 7 induces an isomorphism of
complexes (Q*(M),dM) and (Q°*(P)pas, d?), i.e.,

For any k € N, ©* : Q¥(M) — QF(P)pas is an isomorphism and 7*d™ = dFn*. (2.3.60)
In particular, dM & = 0 if and only if d¥m*a = 0.
If & € Q%(M), then & is nondegenerate if and only if ker(7*&) = ker(dn).
Proof. If o € QF(P)pas, then g*dPa = d¥g*a = da for any g € H, thus dCa € QF1(P)H.
Moreover, as o € QF(P)y,g, for any € € g, by (2.2.2), Lera = Lea = 0 and igpav = 0. Thus by
the Cartan formula (1.2.20),
icrd"a = Lepa —digra = 0. (2.3.61)
This means that d”« is horizontal. Thus d¥ : QF(P)pas — QFF1(P)pas and it is a subcomplex
of (Q*(P),d").
Note that for any a € Q*(M), Y3,...,Y, € T,P,p € P,

(r*a)(Y1,...,Y) = a(dr(Y1),...,dw(Yy)). (2.3.62)
From (2.3.62), 7*@& is horizontal and for any g € G, as m o g = m, we have
(¢m*a)(Y1,..., V) = ald(r o g)(Y1),...,d(mog)(Yi)) = n*a(Yr,...,Ys). (2.3.63)

Thus 7*@ is basic, and 7* maps QF(M) to QF(P)pas. As dm : T,P — Tr(,) M is surjective for
any p € P, from (2.3.62), 7% : QF(M) — QF(P)y,s is injective.
Assume now a € QF(P)y,.s, we define a € QF(M) by
ap(X1,..., Xe) =ap(Yip, ... Yip), (2.3.64)

foranyz € M, p € 7~ (z) and X; € T, M, 1 < j < k, where Y}, € T, P such that dn(Y},) = X;.
Then @ does not depend on the choices of p, Yj,,. In fact, fixing p € 71 (z) first, if Yj’)p e 1T,P
such that dr(Y/,) = X; we have Y; , — Y] € ker(dr), thus

by 0 — by o =y g o= 0. (2.3.65)

For p,p’ € 7~ !(x), then there exists g € G, such that p’ = p-g. By (2.3.65), we can choose
Yjpg = dg(Yjp), then
pg(Y1,pgs -+ s Yipg) = apg(dg(Yip), -1 dg(Yip)) = (") p(Yips -+ Yip)

2.3.66
= O[p(YLp,...7Yk’p). ( )

From (2.3.65) and (2.3.66), & is well-defined and a = 7*a. Thus 7* : QF(M) — QF(P)p.s is
surjective.
As the pull-back map commutes with the exterior differential, we have 7*d™ = d”z*. Thus
we have established (2.3.60). From (2.3.60), d™a = 0 if and only if d”7*a = 0.
Finally, from (2.3.62),
a € Q%(M) is nondegenerate < if ixa = 0,then X =0
< if Y € ker(n*a), then dn(Y) =0 (2.3.67)
< ker(r*a) = ker(dm).

The proof of Lemma 2.3.13 is completed. O
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Proof of Theorem 2.3.11. As w is G-invariant and G preserves p~1(0) (cf. (2.3.3)), we know
1*w € Q2(u~1(0))€. For any z € p~1(0), £ € g and X € T,u~1(0),

x

So igmr*w = 0. By Lemma 2.3.13, there exists a unique w € 0%(Mg), such that 7*@ = *w. As
div*w = 1*dw = 0, this implies dw = 0. By Proposition 2.3.10,

ker(v*w) = T(u~1(0))> = T(G - z) = ker(dn).
So @ is nondegenerate. O

In general, for a regular value a € g* of u, we consider the reduction on its coadjoint orbit
O,. Recall that the stabilizer of « is

Go={g€G:Adja=a}. (2.3.69)

By (2.3.3), G acts on u~(O,). If v is a regular value of u, by Proposition 2.3.10, the G-action
is locally free on 1~*(0,) and the G,-action is locally free on u=!(a).

Lemma 2.3.14. The group G acts freely on p=1(O4) if and only if G, acts freely on p='(«).
Moreover, the map ¥ : Go\u~ (o) = G\u"1(O4) induced by the injection p='(a) — p=H(O4),
is a diffeomorphism.

Proof. Tt is obvious that if G acts freely on p=1(0,), then G, acts freely on u~!(a). Now we
assume G, acts freely on = (). If g € G and x € p~ (O, ) such that gx = z, then as u(x) € O,
there exists h € G such that p(z) = Adja. So by (2.3.3), y := h~ 'z € p~!(a), and

htghy =h'ghh e =h"'e =y, a=puly) =uh ghy) = Adj -1 g0 (2.3.70)

Thus h~lgh € G,. As G, acts freely on u~!(a), we know h~'gh = e, thus g = e. So G acts
freely on = 1(0,).

About the map 1, it is obvious that it is well-defined. For any x € u~1(0,), there exists

h € G such that h™'z € p=!(a). So the map ¢ is surjective. If x,y € p~!(a) and h € G such
that hx =y, then

a=p(y) = Adjp(z) = Ad;a. (2.3.71)

So h € G,. Thus the map 1 is injective.
We claim that for x € p=1(a),

T.(u () N T (G- x) = Tp(Gy - ). (2.3.72)
It is obvious that T, (G -z) C Tp(n~ () NTw(G - x). For € € g,if €M € T, (u= () NTw(G - 2),
we have du(¢€M) = 0. Thus by (2.3.3) and p(x) = a, we get
adia = 2| Adpeou@) = 2| ulexp(te)e)
S dt], P dt|,_, (2.3.73)
= du(&") = 0.
So ¢ € g and €M € T,.(G,, - 7). Thus (2.3.72) holds.
As 1) is induced by the injection p~!(a) < p=1(0,) which is €°°, thus ¢ is €>°. Finally

from (2.3.72), we know dvp : T(Go\p () — T(G\u"1(O,)) is also bijective, thus v is a
diffeomorphism. 0
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Theorem 2.3.15. If G acts freely on u=(O,), then there exists a unique w, € Q*(G\u=1(0,))
such that 1*m*ws = 1*w € Q?(u~ () and wy, is a symplectic form, where 7 : p=1(On) — My =
G\u~(0y,) is the projection, and 1: p~(a) < M is the natural embedding.

The symplectic manifold ( o = G\ H0O,),wy) is called the Marsden-Weinstein symplectic
reduction of (M, w) at a € g* with respect to the Hamiltonian G-action, or the reduction at the
coadjoint orbit Q.

First proof. Forany x € M, X € T,(p~ ' () and € € ga, (ignw)(X) = w(&), X) = (ixdp, &), =
0, as X(u), = 0. Certainly, for g € Gq, g*(+*w) = 2*w, thus by Lemma 2.3.13, there exists a
unique

0 € (G \p ) = Q*(G\nu1(0,)) such that 7iw = 1*w, (2.3.74)

where m1 @ p7(a) = Go\pp"! () is the natural projection. Since dw = 0, by Lemma 2.3.13, we
get dwo = 0. By Proposition 2.3.10 and (2.3.72), we have

ker(1*w) = T (u () N To(p™H ()™ = To(u™ (@) N T(G - ) (2.3.75)
=T,(Gy - z) = ker(dmy). o
By Lemma 2.3.13, @ is nondegenerate. O

Second proof. We denote by w® the symplectic form on O, defined by (2.3.51). We consider a
new symplectic manifold (M x O, w — w®*) with a G-action induced by the G-actions on M
and O,:

g(z,8) = (9-2,AdyB) forge G,v e M, € O,. (2.3.76)

By Proposition 2.3.9, pq(8) = 8 is the moment map for the G-action on (O, we, ). Thus, the
map

f:Mx0Oyf—g* px,b)=upl)—p4 (2.3.77)
is a moment map for the G-action on M x O,. Then the map
PO = BH0) = {(z,u(2) r 2 € pH(Oa)}, @ (2, p1(x)) (2.3.78)
is bijective. Since G acts freely on u~1(0,) and i~1(0), we have G\pu~ ((9 )~ G\u L(0). B
Proposition 2.3.11, we get Theorem 2.3.15. Moreover, for ¥ : =1 (a) < p=1(0,) — a71(0), we
have U*(w — woa) = 2*w, thus we get the same symplectic form on G\ u 1(O,) as in the first
proof. O

Proposition 2.3.16. Let G, H be two Lie groups with Lie algebras g, b, acting on a symplectic
manifold (M,w). We suppose that G is compact and g(hz) = h(gx) for anyg € G,h € Hyxz € M,
and that

w= (e, pmg): M — g ebh” (2.3.79)

is a moment map for the G x H-action on (M,w). For a € g*, if G, acts freely on u&l(a), then
H acts naturally and Hamziltonianly on My, = Ga\ual(a), with the associated moment map
WH,o defined by: fory € M,

pra(y) =pa(z)  and x € p~(Q) such that m(z) =y, (2.3.80)

with 1 : p~ () — M, the natural projection.
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Proof. Observe first that for x € M, g € G,h € H, u((g,h)x) = Ad(, ypu(z) if and only if

ne((g,h)z) = Adguc(z),  pu((g, h)z) = Adypn (2). (2.3.81)

And d(p, (B,€)) = ig,eymw for any B € g,§ € b if and only if

d(pa, ) =iguw, and d(pm,§) = igmw. (2.3.82)

Thus pg : M — g*, pg : M — b* are moment maps for the G and H-actions on M. Inversely, if
the G, H actions are Hamiltonian and (2.3.81) holds, then the G x H-action on M is Hamiltonian
and 4 = (g, pr) is the associated moment map.

By (2.3.81), H acts on ug'(a), thus for h € H, y € M,, let z € p~*(a) such that m (z) =y,
we define that

h-y=m(hx). (2.3.83)

Then 71 (hz) and pg(x) do not depend on the choice of z, as if 2’ € p~!(a) such that 7 (2') = y,
then there is g € G, such that ' = gz, and by (2.3.81), we get pg(z) = pg ().

Finally, for £ € b, X € T,M,, we take X € T,p(a) such that dm(X) = X, then by
(2.3.81), we get

X (p006)y = X (par, €)2 = w(€)", X) = wal(g)", X), (2:3.84)
as ) € T,p () and dmy(€)") = &)™~ Moreover, (2.3.80) and (2.3.81) imply pp,q(hy) =
Ad} i o(y). Thus pp e is a moment map for the H-action on M,. O

Ezample 2.3.17. (Projective space) The group S! acts on (C",wg;) by

VT, ) = (e 2, eV ) (2.3.85)

By Subsection 2.3.2, the S! C U(n) action is a Hamiltonian action and pgi = i* o MU (n) s the
moment map by the functional property, where i : Lie(S!) — u(n) is the embedding, and

i(§) =& -Iden  for € = /=16 € Lie(S') = vV—1R. (2.3.86)
By (2.3.35) and (2.3.39), for z € C™, we have

22 - Idcn} = gld% (2.3.87)

(1s1(2), &) = (b (n)(2),1(§)) = —Tr[ _ \/;T

We use the bilinear form (scalar product) —&n for €, € Lie(S') = v/—1IR to identify Lie(S!)*
and Lie(S!), then

pg (2) = —\/2?1\42 € Lie(S")* = V—1R. (2.3.88)

Now we consider the symplectic reduction on fﬂt € Lie(SY)*,¢ > 0. By (2.3.88), we get

ugﬁ(— —”2_1) ={zeC": |z2=1} =81, (2.3.89)

the 2n — 1-dimensional unit sphere. So the symplectic reduction on —@ € Lie(St)* is ST\S?" 1

the projective space CP" . We show now that the symplectic form @ on the symplectic reduction
CP" ! induced by ws; is just 7 times the Fubini-Study form wpg.
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For the C*-principal bundle © : C* \ {0} — CP" ! with the C* action on C" \ {0} by
a-(z1,...,20) = (az1,...,az,)" for a € C*. At first, Gpg € Q2(C"\{0N)T™ (cf. (1.4.6)), as Tps
is a (1,1)-form and the C* action is holomorphic, we only need to verify it for u,v € 70 cn,
then by (1.4.6),

(a"@rs)(u,0): = Wps(au, @) a. = Wrs(u,)..
Moreover, kerwps = ker(dm). By using a linear transformation, we only need to verify it for

x = (1,0,...,0), but

- VI L _ ~ o 0 _
Wps,e = e jz:;dzj ANdZ;, and kerWpg, = R{a—Zl, 3721} = ker(d),.

Thus from Lemma 2.3.13 and the construction in Example 1.4.2, wpg € Q2 ((C]P’”_l) is the unique
2-form such that
LT)FS = %*wps. (2390)
But by (1.4.6) and >>7_, z;dz; = 0 on 8", we know as differential forms on §*"~1,
_ V=1 ¢ 1 -
Wrps = ? ];dzj A\ de = ;wst|82"*1 S QQ(SQTL 1). (2391)

By applying Lemma 2.3.13, (2.3.90) and (2.3.91) for the S'-principal bundle 7 : §?"~1 — CP"!,
we get

1
wrpg = —Ww. (2392)
T
Now we consider U(n) x St-action on C" by: for z = (z1, ..., 2,),
(A, ) (21,...,2) =P A(z1,. .., 20)" (2.3.93)

Then the U(n), S! actions commute. By (2.3.40) and (2.3.88), the associated moment map is

) = Gy (s () = (~ Yoz~ o

> € u(n) @ Lie(S"). (2.3.94)

Thus for a = —@ € Lie(S"), the induced U(n) action on CP" ! is defined by

Blz] :==[Bz] for B € U(n), (2.3.95)
here 2] is the homogenous coordinate of CP" ', and as B 7 1([2]), the moment map for the
U(n) action on (CP" ™!, nwpg) is given by

(2D, 4) = (o (1), 4) = VT

Ezercise 2.3.1. In the context of Lemma 2.3.2, for n € g, let L, f be the Lie derivative of 7 on
f € € (M), verify that

Tr[Azz*) (Az, 2)
) el R
2|2 2|22

for A € u(n). (2.3.96)

{nm), f}=—Lymf=Lyf. (2.3.97)
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Eercise 2.3.2. Let Q = { (é 1%) c SL(Q,C)}, Qt = { (3 1%) € SL(2,C) : t > 0}, and

we identify U(1) as a subgroup of SU(2) via t € U(1) — <é 1%) € SU(2).

1. Verify that Q, Q™ are closed subgroups of SL(2,C) and Q = U(1) - Q.

2. For any A € SL(2,C), there exists a unique decomposition A = UB with U € SU(2), B €
Qr.
3. Using Example 2.1.32 to show that SL(2,C)/Q ~ SU(2)/U(1) ~ CP*.

a

4. Verify that sl(2,C) = { (‘C‘ b > € MQ(C)}, su(2) = { (_b _ba> ca€V/—IRb € c},

—a
and
sl(2,C) 3 & — {n — — Trez[én)} € s1(2,C)* (2.3.98)

is an isomorphism of SL(2, C)-representations.

5. The left multiplication of SL(2,C) on SL(2,C)/Q ~ CP! induces an SL(2,C)-Hamiltonian
action on T*CP! with moment map p : T*CP* — sl(2,C)* ~ sl(2,C). Verify that Im(u) =

0 C 0 C
AdsL(2,c) <0 O> = Adsy(2) <0 0)-

6. The left multiplication of SU(2) on SU(2)/U(1) ~ CP! induces an SU(2)-Hamiltonian
action on T*CP! with moment map v : T*CP! — su(2)* ~ su(2). Verify that

Im(v) = {AdSU(Q) (—Oz g) 1z € (C}.
Ezercise 2.3.3. Let u: M — g* be a moment map.
1. For a € g*, x € u=1(0,,), verify that G-z € p=1(O,).
2. Verify that as differential forms on G - z,
(W) =we (G - x). (2.3.99)
Assume that G acts freely on p=1(0,).

3. Verify that for 7 : p=1(O04) — G\u"1(On), we have ker(dn), = {¢M : ¢ € g}. For
r € u Y 0y), & € g, prove that

w(E@m") = (w, [6m)), -

Conclude that in general, ker(dr) C ker(y*w) need not to hold for j : p=1(0,) — M
the natural embedding. Thus we can not apply directly Lemma 2.3.13 for this principal
G-bundle to get the symplectic form on the reduction space G \ u=1(0,).

4. Verify from Proposition 2.3.9 that for Y € T30,, £ € g,

(Y,6) = w2 (£5=,Y). (2.3.100)

5. Let wt = w — p*w% € O2(u=1(O,)), verify that w* is closed and

WHEM X)) =0 for X e Tu 1 (O,),€ € g.
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6. Verify that
ker(wh) C (Tpu~ ()t = T,(G - ).

Conclude that there exists " € Q?(G\p~1(O,)) such that w# = 7*w". Verify that o' = ©
in Theorem 2.3.15.

Ezercise 2.3.4. The nondegenerate bilinear form on u(n) is defined by: for £, n € u(n)

By (§,m) = — Tren[€ ). (2.3.101)

1. Verify that Trcn[{n] € R for §,1 € u(n), and By, is Adyy)-invariant, i.e., By (£, 1) =
By (Adg€, Adyn) for any g € U(n).

2. By the identification (1.1.59), verify that with By (,) in (2.3.35)
Bsp(Zn)(T(g)a 7_(77)) = Bu(n) (5, 77) (23102)
3. Verify that (2.3.36) holds. Thus

§eu(n) = f={neun) = pn) = Bumn(&n)} € un) (2.3.103)
is an identification of u(n) to u(n)* via the Euclidean metric By,) on u(n).
4. Verify directly that (2.3.40) is a moment map for the natural U(n)-action on (C™,wyp).

Ezercise 2.3.5. Let M, ,(K) be the vector space of n x r matrices over K. We define the action
of U(n) x U(r) on M, ,(C) by

(A,B)-Z =AZB™! for Ac U(n),B € U(r), Z € M, .(C). (2.3.104)

By the identification M, ,(C) 3 Z = (z;x) — (zjx) € C"", the canonical symplectic form on
M, »(C) is given by

1. Verify that under the identification (2.3.103), u(Z) = —@(ZZ*, —Z*Z) € u(n) x u(r) is
a moment map for the U(n) x U(r) action on M, ,(C).

2. Verify that the symplectic reduction at QL« for the U (r)-action is G(r,n) the Grassman-
nian of r-planes in C™.

3. Verify that U(n) acts Hamiltonianly on G(r,n) with the symplectic form induced by w on
M, »(C) and the associated moment map is given by

(Lo ([2]):4) = gﬂm [Z(2°2)7' 2 A]

for A € u(n), and Z € M,,,.(C) with [Z] the homogenous coordinate of G(r,n).
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2.4 Symplectic cuts

The Lie algebra Lie(S') is v/—1R with the usual exponential map: for ¢ € Lie(S!), ¢ € St =
{z € C: |z] = 1}. Now we identify R with Lie(S') by the map § — \/—16. Then under this
identification, the scalar product on Lie(S!) is the canonical scalar product on R defined by
(u,v) = uv for u,v € R.

Let S! act on C by multiplication and the canonical symplectic form on C is wg(z) = @dz/\
dz for z € C. Then under our identification of R and Lie(S!), the associated moment map is

1
usi(z) = f§|z|2 for z € C. (2.4.1)
Let S! act Hamiltonianly on a symplectic manifold (M,w) with moment map p : M — R.
Let G =S! act on M x C by
g-(x,2)=(g-x,g2) forzeM,ze€C,geG=S" (2.4.2)

Then the moment map i for the S'-action on (M x C,&0 = w + w) is
iz, z) = p(x) — %|z\2 forz e M,z € C. (2.4.3)
We assume that S acts freely on ©=1(0). Then S! acts freely on
F0) = {(w,2) € M x € ula) = 4P}, (2.4.4)

as we have a S! -equivariant diffeomorphism
¥ (RY) xSt = EH0)\ pTH(0) x {0} = My, (w,¢") = (x,€\/u(x)). (2.4.5)

Thus the reduction space M>q := S'\z71(0) is a symplectic manifold with symplectic form wxg
induced by @, we call M a symplectic cut of M with respect to the S'-action.

Theorem 2.4.1. The manifold (Ms:,ws1) imbeds in M>q as a symplectic submanifold of codi-
mension 2, and its complements is symplectic diffeomorphic to the open subset ,ufl(Ri) of M.
And M is the disjoint union of Mg and p~'(RY).

Proof. As the symplectic form wg: is the restriction of w>g on Mg1, we get the first part of
Theorem 2.4.1. Observe that ¥*w = M‘H*I(Ri)’ we get the second part of Theorem 2.4.1. O

Now let H = S' acts on M x C by
g-(2,2)=(g-2,2) forxe M,2€C,gc H=S" (2.4.6)

Then the associated moment map is pg(z, z) = p(z).
As G, H-actions on M x C commute, we get a G x H Hamiltonian action on M x C. By
Proposition 2.3.16, H acts Hamiltonianly on M>o with the moment map 1>¢ given by

p=o(y) =0 if y € Mg,
ply) ifyep '(RY).

Finally the fixed point set M§10 of H-action on M>q is the union (MSl Np Y RY)) U Mg, ie;,
in addition to the fixed point set that existed prior to cutting, there is one new fixed point set
created by cutting: the reduced space Mg:.

In the same way, by using the symplectic form w — ws on M x C, we get the symplectic cut
M<o = Mg U p=(] — 00,0[). The procedure of splitting M as two symplectic manifolds Mg
and M« is a symplectic analogue of degenerations of varieties in algebraic geometry.

(2.4.7)
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2.5 Bibliographic notes

The reference [18] is again a nice reference for this chapter. Another reference is [32].

Theorem 2.1.25 is a result of E. Cartan [19] which is in fact at the origin of the notion
of Lie algebra cohomology. Then Chevalley and Eilenberg [21] gave a systematic treatment of
the methods by which topological questions concerning compact Lie groups may be reduced to
algebraic questions concerning Lie algebras, in particular, they gave a complete proof of Theorem
2.1.25 which we followed here.

For basic material on cohomology groups with integer coefficient and homotopy groups, cf.
[15], [45]. For Remark 2.1.30 on Weyl’s unitary trick, cf. [33, §3.6] or [38]. Theorem 2.1.31 was
established in Bott [12], and a classical reference is Milnor’s book [46], we can also find a proof
on m2(G) = 0 in [16, Proposition 5.7.5]. For the Hurewicz’s theorem, cf. [15, Theorem 17.21].

For compact Lie groups, we can use the book [16]. Knapp’s books [38], [39] are very complete
references for Lie groups.

The symplectic reduction was introduced in mathematics by Marsden and Weinstein [44],
even it was used in mechanics.

Symplectic cuts were first introduced by Lerman [42] as a symplectic analogy of degeneration
of varieties.



