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2.3.3 Symplectic reductions

In this subsection, we consider a Hamiltonian action of a compact Lie group G on a symplectic
manifold (M,ω) with moment map µ :M → g∗.

We say that α ∈ g∗ is a regular value of µ if µ−1(α) = ∅ or for any x ∈ µ−1(α), dµ : TxM →
Tµ(x)g

∗ = g∗ is surjective. By the Sard theorem, the measure of the set of the points which are
not the regular value is zero.

If α ∈ g∗ is a regular value of µ, then µ−1(α) is a smooth manifold. Recall that its coadjoint
orbit is Oα = G · α = Ad∗Gα.

Proposition 2.3.10. For any α ∈ g∗, G acts on µ−1(Oα). If α ∈ g∗ is a regular value of µ,
then for any x ∈ µ−1(α), the map

g → Tx(G · x), ξ 7→ ξMx (2.3.56)

is bijective and
Tx(G · x) = Tx(µ

−1(α))⊥ω . (2.3.57)

In this case, the G-action is locally free on µ−1(G · α), that is, for any x ∈ µ−1(G · α), there
exists an open neighborhood U of e ∈ G such that U acts freely on µ−1(G · α). Inversely, if G
acts locally free on µ−1(G · α), then α is a regular value of µ.

Proof. By (2.3.3), we know if x ∈ µ−1(Oα), then for any g ∈ G, µ(gx) ∈ Oα, thus G acts on
µ−1(Oα).

For any X ∈ TxM , ξ ∈ g, by (2.3.2), we have

(dµ(X), ξ) = ω(ξMx , X). (2.3.58)

From (2.3.58), dµ is surjective at x if and only if the equation ξMx = 0 implies ξ = 0, i.e., G acts
locally free near x in µ−1(G · α). Thus (2.3.56) and the last part of Proposition 2.3.10 hold.

For X ∈ Tx(µ
−1(α)) and ξ ∈ g, we have dµ(X) = 0. By (2.3.58), we get ξMx ∈ Tx(µ

−1(α))⊥ω .
Since dimTx(µ

−1(α))⊥ω = dimM − dimµ−1(α) = dimG, we get (2.3.57). The proof of Lemma
2.3.10 is completed.

We state now the following main result of this subsection which gives an effective way to
construct the symplectic manifolds from the known symplectic manifolds. This fundamental
construction has many applications in geometry, in particular to get the natural symplectic
structure on the different moduli spaces.

Theorem 2.3.11. If G acts freely on µ−1(0), then the orbit space MG := G\µ−1(0) is a smooth
manifold, and the natural projection π : µ−1(0) → MG is a principle G-bundle, and there exists
a unique symplectic form ωG on MG satisfying π∗ωG = ı∗ω, with ı : µ−1(0) ↪→ M the natural
embedding.

Definition 2.3.12. The symplectic manifold (MG, ωG) is called the Mardsen-Weinstein sym-
plectic reduction of (M,ω) with respect to the Hamiltonian G-action, it is also called the reduced
space or symplectic quotient.

The following technical Lemma allows us to obtain the symplectic form on the reduction
space from the original manifold.

Let H be a Lie group and π : P → M be a principal H-bundle. We say that a form β on P
is horizontal if for any v ∈ ker(dπ), ivβ = 0. Set

Ω•(P )H := {β ∈ Ω•(P ) : g∗β = β, for any g ∈ H},
Ω•(P )bas := {β ∈ Ω•(P )H : β is horizontal}.

(2.3.59)
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Then Ω•(P )H is the H-invariant subspace of Ω•(P ) and we say that β is a basic form on P if
β ∈ Ω•(P )bas.

Lemma 2.3.13. The exterior differential dP preserves Ω•(P )bas, thus (Ω•(P )bas, d
P ) is a sub-

complex of the de Rham complex (Ω•(P ), dP ). The pull-back map π∗ induces an isomorphism of
complexes (Ω•(M), dM ) and (Ω•(P )bas, d

P ), i.e.,

For any k ∈ N, π∗ : Ωk(M) → Ωk(P )bas is an isomorphism and π∗dM = dPπ∗. (2.3.60)

In particular, dM ᾱ = 0 if and only if dPπ∗ᾱ = 0.
If ᾱ ∈ Ω2(M), then ᾱ is nondegenerate if and only if ker(π∗ᾱ) = ker(dπ).

Proof. If α ∈ Ωk(P )bas, then g∗dPα = dP g∗α = dPα for any g ∈ H, thus dPα ∈ Ωk+1(P )H .
Moreover, as α ∈ Ωk(P )bas, for any ξ ∈ g, by (2.2.2), LξPα = Lξα = 0 and iξPα = 0. Thus by
the Cartan formula (1.2.20),

iξP d
Pα = LξPα− dP iξPα = 0. (2.3.61)

This means that dPα is horizontal. Thus dP : Ωk(P )bas → Ωk+1(P )bas and it is a subcomplex
of (Ω•(P ), dP ).

Note that for any ᾱ ∈ Ωk(M), Y1, . . . , Yk ∈ TpP , p ∈ P ,

(π∗ᾱ)(Y1, . . . , Yk) = ᾱ(dπ(Y1), . . . , dπ(Yk)). (2.3.62)

From (2.3.62), π∗ᾱ is horizontal and for any g ∈ G, as π ◦ g = π, we have

(g∗π∗ᾱ)(Y1, . . . , Yk) = ᾱ(d(π ◦ g)(Y1), . . . , d(π ◦ g)(Yk)) = π∗ᾱ(Y1, . . . , Yk). (2.3.63)

Thus π∗ᾱ is basic, and π∗ maps Ωk(M) to Ωk(P )bas. As dπ : TpP → Tπ(p)M is surjective for

any p ∈ P , from (2.3.62), π∗ : Ωk(M) → Ωk(P )bas is injective.
Assume now α ∈ Ωk(P )bas, we define ᾱ ∈ Ωk(M) by

ᾱx(X1, . . . , Xk) := αp(Y1,p, . . . , Yk,p), (2.3.64)

for any x ∈M , p ∈ π−1(x) and Xj ∈ TxM , 1 ≤ j ≤ k, where Yj,p ∈ TpP such that dπ(Yj,p) = Xj .
Then ᾱ does not depend on the choices of p, Yj,p. In fact, fixing p ∈ π−1(x) first, if Y ′

j,p ∈ TpP
such that dπ(Y ′

j,p) = Xj we have Yj,p − Y ′
j,p ∈ ker(dπ), thus

iYj,p
α− iY ′

j,p
α = iYj,p−Y ′

j,p
α = 0. (2.3.65)

For p, p′ ∈ π−1(x), then there exists g ∈ G, such that p′ = p · g. By (2.3.65), we can choose
Yj,pg = dg(Yj,p), then

αpg(Y1,pg, . . . , Yk,pg) = αpg(dg(Y1,p), . . . , dg(Yk,p)) = (g∗α)p(Y1,p, . . . , Yk,p)

= αp(Y1,p, . . . , Yk,p).
(2.3.66)

From (2.3.65) and (2.3.66), ᾱ is well-defined and α = π∗ᾱ. Thus π∗ : Ωk(M) → Ωk(P )bas is
surjective.

As the pull-back map commutes with the exterior differential, we have π∗dM = dPπ∗. Thus
we have established (2.3.60). From (2.3.60), dM ᾱ = 0 if and only if dPπ∗ᾱ = 0.

Finally, from (2.3.62),

ᾱ ∈ Ω2(M) is nondegenerate ⇔ if iX ᾱ = 0, then X = 0

⇔ if Y ∈ ker(π∗ᾱ), then dπ(Y ) = 0

⇔ ker(π∗ᾱ) = ker(dπ).

(2.3.67)

The proof of Lemma 2.3.13 is completed.
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Proof of Theorem 2.3.11. As ω is G-invariant and G preserves µ−1(0) (cf. (2.3.3)), we know
ı∗ω ∈ Ω2(µ−1(0))G. For any x ∈ µ−1(0), ξ ∈ g and X ∈ Txµ

−1(0),

ω(ξMx , X) = ⟨dµ(X), ξ⟩x = 0. (2.3.68)

So iξMx ı
∗ω = 0. By Lemma 2.3.13, there exists a unique ω̄ ∈ Ω2(MG), such that π∗ω̄ = ı∗ω. As

dı∗ω = ı∗dω = 0, this implies dω̄ = 0. By Proposition 2.3.10,

ker(ı∗ω) = T (µ−1(0))⊥,ω = T (G · x) = ker(dπ).

So ω̄ is nondegenerate.

In general, for a regular value α ∈ g∗ of µ, we consider the reduction on its coadjoint orbit
Oα. Recall that the stabilizer of α is

Gα = {g ∈ G : Ad∗gα = α}. (2.3.69)

By (2.3.3), G acts on µ−1(Oα). If α is a regular value of µ, by Proposition 2.3.10, the G-action
is locally free on µ−1(Oα) and the Gα-action is locally free on µ−1(α).

Lemma 2.3.14. The group G acts freely on µ−1(Oα) if and only if Gα acts freely on µ−1(α).
Moreover, the map ψ : Gα\µ−1(α) → G\µ−1(Oα) induced by the injection µ−1(α) ↪→ µ−1(Oα),
is a diffeomorphism.

Proof. It is obvious that if G acts freely on µ−1(Oα), then Gα acts freely on µ−1(α). Now we
assume Gα acts freely on µ−1(α). If g ∈ G and x ∈ µ−1(Oα) such that gx = x, then as µ(x) ∈ Oα

there exists h ∈ G such that µ(x) = Ad∗hα. So by (2.3.3), y := h−1x ∈ µ−1(α), and

h−1ghy = h−1ghh−1x = h−1x = y, α = µ(y) = µ(h−1ghy) = Ad∗h−1ghα. (2.3.70)

Thus h−1gh ∈ Gα. As Gα acts freely on µ−1(α), we know h−1gh = e, thus g = e. So G acts
freely on µ−1(Oα).

About the map ψ, it is obvious that it is well-defined. For any x ∈ µ−1(Oα), there exists
h ∈ G such that h−1x ∈ µ−1(α). So the map ψ is surjective. If x, y ∈ µ−1(α) and h ∈ G such
that hx = y, then

α = µ(y) = Ad∗hµ(x) = Ad∗hα. (2.3.71)

So h ∈ Gα. Thus the map ψ is injective.
We claim that for x ∈ µ−1(α),

Tx(µ
−1(α)) ∩ Tx(G · x) = Tx(Gα · x). (2.3.72)

It is obvious that Tx(Gα ·x) ⊂ Tx(µ
−1(α))∩Tx(G ·x). For ξ ∈ g, if ξMx ∈ Tx(µ

−1(α))∩Tx(G ·x),
we have dµ(ξMx ) = 0. Thus by (2.3.3) and µ(x) = α, we get

ad∗ξα =
d

dt

∣∣∣∣
t=0

Ad∗exp(tξ)µ(x) =
d

dt

∣∣∣∣
t=0

µ(exp(tξ)x)

= dµ(ξMx ) = 0.

(2.3.73)

So ξ ∈ gα and ξMx ∈ Tx(Gα · x). Thus (2.3.72) holds.
As ψ is induced by the injection µ−1(α) ↪→ µ−1(Oα) which is C∞, thus ψ is C∞. Finally

from (2.3.72), we know dψ : T (Gα\µ−1(α)) → T (G\µ−1(Oα)) is also bijective, thus ψ is a
diffeomorphism.
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Theorem 2.3.15. If G acts freely on µ−1(Oα), then there exists a unique ωα ∈ Ω2(G\µ−1(Oα))
such that ı∗π∗ωα = ı∗ω ∈ Ω2(µ−1(α)) and ωα is a symplectic form, where π : µ−1(Oα) →Mα :=
G\µ−1(Oα) is the projection, and ı : µ−1(α) ↪→M is the natural embedding.

The symplectic manifold (Mα := G\µ−1(Oα), ωα) is called the Marsden-Weinstein symplectic
reduction of (M,ω) at α ∈ g∗ with respect to the Hamiltonian G-action, or the reduction at the
coadjoint orbit Oα.

First proof. For any x ∈M , X ∈ Tx(µ
−1(α)) and ξ ∈ gα, (iξMx ω)(X) = ω(ξMx , X) = ⟨iXdµ, ξ⟩x =

0, as X(µ)x = 0. Certainly, for g ∈ Gα, g
∗(ı∗ω) = ı∗ω, thus by Lemma 2.3.13, there exists a

unique
ω̄ ∈ Ω2(Gα\µ−1(α)) = Ω2(G\µ−1(Oα)) such that π∗

1 ω̄ = ı∗ω, (2.3.74)

where π1 : µ−1(α) → Gα\µ−1(α) is the natural projection. Since dω = 0, by Lemma 2.3.13, we
get dω̄ = 0. By Proposition 2.3.10 and (2.3.72), we have

ker(ı∗ω) = Tx(µ
−1(α)) ∩ Tx(µ−1(α))⊥ω = Tx(µ

−1(α)) ∩ Tx(G · x)
= Tx(Gα · x) = ker(dπ1).

(2.3.75)

By Lemma 2.3.13, ω̄ is nondegenerate.

Second proof. We denote by ωOα the symplectic form on Oα defined by (2.3.51). We consider a
new symplectic manifold (M × Oα, ω − ωOα) with a G-action induced by the G-actions on M
and Oα:

g(x, β) = (g · x,Ad∗gβ) for g ∈ G, x ∈M,β ∈ Oα. (2.3.76)

By Proposition 2.3.9, µα(β) = β is the moment map for the G-action on (Oα, ωOα). Thus, the
map

µ̃ :M ×Oα → g∗, µ̃(x, β) = µ(x)− β (2.3.77)

is a moment map for the G-action on M ×Oα. Then the map

µ−1(Oα) → µ̃−1(0) = {(x, µ(x)) : x ∈ µ−1(Oα)}, x 7→ (x, µ(x)) (2.3.78)

is bijective. Since G acts freely on µ−1(Oα) and µ̃
−1(0), we have G\µ−1(Oα) ≃ G\µ̃−1(0). By

Proposition 2.3.11, we get Theorem 2.3.15. Moreover, for Ψ : µ−1(α) ↪→ µ−1(Oα) → µ̃−1(0), we
have Ψ∗(ω − ωOα) = ı∗ω, thus we get the same symplectic form on G \ µ−1(Oα) as in the first
proof.

Proposition 2.3.16. Let G,H be two Lie groups with Lie algebras g, h, acting on a symplectic
manifold (M,ω). We suppose that G is compact and g(hx) = h(gx) for any g ∈ G, h ∈ H,x ∈M ,
and that

µ = (µG, µH) :M → g∗ ⊕ h∗ (2.3.79)

is a moment map for the G×H-action on (M,ω). For α ∈ g∗, if Gα acts freely on µ−1
G (α), then

H acts naturally and Hamiltonianly on Mα := Gα\µ−1
G (α), with the associated moment map

µH,α defined by: for y ∈Mα,

µH,α(y) = µH(x) and x ∈ µ−1(α) such that π1(x) = y, (2.3.80)

with π1 : µ−1(α) →Mα the natural projection.
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Proof. Observe first that for x ∈M , g ∈ G, h ∈ H, µ((g, h)x) = Ad∗(g,h)µ(x) if and only if

µG((g, h)x) = Ad∗gµG(x), µH((g, h)x) = Ad∗hµH(x). (2.3.81)

And d(µ, (β, ξ)) = i(β,ξ)Mω for any β ∈ g, ξ ∈ h if and only if

d(µG, β) = iβMω, and d(µH , ξ) = iξMω. (2.3.82)

Thus µG :M → g∗, µH :M → h∗ are moment maps for the G and H-actions on M . Inversely, if
the G,H actions are Hamiltonian and (2.3.81) holds, then the G×H-action onM is Hamiltonian
and µ = (µG, µH) is the associated moment map.

By (2.3.81), H acts on µ−1
G (α), thus for h ∈ H, y ∈Mα, let x ∈ µ−1(α) such that π1(x) = y,

we define that

h · y = π1(hx). (2.3.83)

Then π1(hx) and µH(x) do not depend on the choice of x, as if x′ ∈ µ−1(α) such that π1(x
′) = y,

then there is g ∈ Gα such that x′ = gx, and by (2.3.81), we get µH(x) = µH(x′).

Finally, for ξ ∈ h, X ∈ TyMα, we take X̃ ∈ Txµ
−1(α) such that dπ1(X̃) = X, then by

(2.3.81), we get

X(µH,α, ξ)y = X̃(µH , ξ)x = ω(ξMx , X̃) = ωα(ξ
Mα
y , X), (2.3.84)

as ξMx ∈ Txµ
−1(α) and dπ1(ξ

M
x ) = ξMα

y . Moreover, (2.3.80) and (2.3.81) imply µH,α(hy) =
Ad∗hµH,α(y). Thus µH,α is a moment map for the H-action on Mα.

Example 2.3.17. (Projective space) The group S1 acts on (Cn, ωst) by

e
√
−1θ(z1, . . . , zn)

t := (e
√
−1θz1, . . . , e

√
−1θzn)

t. (2.3.85)

By Subsection 2.3.2, the S1 ⊂ U(n) action is a Hamiltonian action and µS1 = i∗ ◦ µU(n) is the
moment map by the functional property, where i : Lie(S1) → u(n) is the embedding, and

i(ξ) = ξ · IdCn for ξ =
√
−1θ ∈ Lie(S1) =

√
−1R. (2.3.86)

By (2.3.35) and (2.3.39), for z ∈ Cn, we have

(µS1(z), ξ) = (µU(n)(z), i(ξ)) = −Tr
[
−

√
−1

2
zz∗ξ · IdCn

]
=

√
−1

2
|z|2ξ. (2.3.87)

We use the bilinear form (scalar product) −ξη for ξ, η ∈ Lie(S1) =
√
−1R to identify Lie(S1)∗

and Lie(S1), then

µS1(z) = −
√
−1

2
|z|2 ∈ Lie(S1)∗ =

√
−1R. (2.3.88)

Now we consider the symplectic reduction on −
√
−1
2 t ∈ Lie(S1)∗, t > 0. By (2.3.88), we get

µ−1
S1

(
−

√
−1

2

)
= {z ∈ Cn : |z|2 = 1} = S2n−1, (2.3.89)

the 2n−1-dimensional unit sphere. So the symplectic reduction on −
√
−1
2 ∈ Lie(S1)∗ is S1\S2n−1,

the projective space CPn−1. We show now that the symplectic form ω̄ on the symplectic reduction
CPn−1 induced by ωst is just π times the Fubini-Study form ωFS .
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For the C×-principal bundle π̃ : Cn \ {0} → CPn−1 with the C× action on Cn \ {0} by

a · (z1, . . . , zn)t = (az1, . . . , azn)
t for a ∈ C×. At first, ω̃FS ∈ Ω2(Cn \{0})C×

(cf. (1.4.6)), as ω̃FS
is a (1, 1)-form and the C× action is holomorphic, we only need to verify it for u, v ∈ T

(1,0)
z Cn,

then by (1.4.6),

(a∗ω̃FS)(u, v)z = ω̃FS(au, av)az = ω̃FS(u, v)z.

Moreover, ker ω̃FS = ker(dπ̃). By using a linear transformation, we only need to verify it for
x = (1, 0, . . . , 0)t, but

ω̃FS,x =

√
−1

2π

n∑
j=2

dzj ∧ dzj , and ker ω̃FS,x = R
{ ∂

∂z1
,
∂

∂z1

}
= ker(dπ̃)x.

Thus from Lemma 2.3.13 and the construction in Example 1.4.2, ωFS ∈ Ω2(CPn−1) is the unique
2-form such that

ω̃FS = π̃∗ωFS . (2.3.90)

But by (1.4.6) and
∑n
j=1 zjdzj = 0 on S2n−1, we know as differential forms on S2n−1,

ω̃FS =

√
−1

2π

n∑
j=1

dzj ∧ dzj =
1

π
ωst|S2n−1 ∈ Ω2(S2n−1). (2.3.91)

By applying Lemma 2.3.13, (2.3.90) and (2.3.91) for the S1-principal bundle π : S2n−1 → CPn−1,
we get

ωFS =
1

π
ω̄. (2.3.92)

Now we consider U(n)× S1-action on Cn by: for z = (z1, . . . , zn)
t,

(A, eiθ)(z1, . . . , zn)
t = eiθA(z1, . . . , zn)

t. (2.3.93)

Then the U(n), S1 actions commute. By (2.3.40) and (2.3.88), the associated moment map is

µ(z) := (µU(n)(z), µS1(z)) =

(
−
√
−1

2
zz∗,−

√
−1

2
|z|2
)

∈ u(n)⊕ Lie(S1). (2.3.94)

Thus for α = −
√
−1
2 ∈ Lie(S1), the induced U(n) action on CPn−1 is defined by

B[z] := [Bz] for B ∈ U(n), (2.3.95)

here [z] is the homogenous coordinate of CPn−1, and as z
|z| ∈ π−1([z]), the moment map for the

U(n) action on (CPn−1, πωFS) is given by

(µ([z]), A) =
(
µU(n)(

z

|z|
), A

)
=

√
−1

Tr[Azz∗]

2|z|2
=

√
−1

⟨Az, z⟩
2|z|2

for A ∈ u(n). (2.3.96)

Exercise 2.3.1. In the context of Lemma 2.3.2, for η ∈ g, let Lηf be the Lie derivative of η on
f ∈ C∞(M), verify that

{µ(η), f} = −LηM f = Lηf. (2.3.97)
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Exercise 2.3.2. Let Q =
{(

t b
0 1/t

)
∈ SL(2,C)

}
, Q+ =

{(
t b
0 1/t

)
∈ SL(2,C) : t > 0

}
, and

we identify U(1) as a subgroup of SU(2) via t ∈ U(1) →
(
t 0
0 1/t

)
∈ SU(2).

1. Verify that Q,Q+ are closed subgroups of SL(2,C) and Q = U(1) ·Q+.

2. For any A ∈ SL(2,C), there exists a unique decomposition A = UB with U ∈ SU(2), B ∈
Q+.

3. Using Example 2.1.32 to show that SL(2,C)/Q ≃ SU(2)/U(1) ≃ CP1.

4. Verify that sl(2,C) =
{(a b

c −a

)
∈ M2(C)

}
, su(2) =

{( a b

−b −a

)
: a ∈

√
−1R, b ∈ C

}
,

and
sl(2,C) ∋ ξ → {η → −TrC2 [ξη]} ∈ sl(2,C)∗ (2.3.98)

is an isomorphism of SL(2,C)-representations.

5. The left multiplication of SL(2,C) on SL(2,C)/Q ≃ CP1 induces an SL(2,C)-Hamiltonian
action on T ∗CP1 with moment map µ : T ∗CP1 → sl(2,C)∗ ≃ sl(2,C). Verify that Im(µ) =

AdSL(2,C)

(
0 C
0 0

)
= AdSU(2)

(
0 C
0 0

)
.

6. The left multiplication of SU(2) on SU(2)/U(1) ≃ CP1 induces an SU(2)-Hamiltonian
action on T ∗CP1 with moment map ν : T ∗CP1 → su(2)∗ ≃ su(2). Verify that

Im(ν) =
{
AdSU(2)

(
0 z
−z̄ 0

)
: z ∈ C

}
.

Exercise 2.3.3. Let µ :M → g∗ be a moment map.

1. For α ∈ g∗, x ∈ µ−1(Oα), verify that G · x ∈ µ−1(Oα).

2. Verify that as differential forms on G · x,

µ∗(ωOα) = ω ∈ Ω2(G · x). (2.3.99)

Assume that G acts freely on µ−1(Oα).

3. Verify that for π : µ−1(Oα) → G\µ−1(Oα), we have ker(dπ)x = {ξMx : ξ ∈ g}. For
x ∈ µ−1(Oα), ξ, η ∈ g, prove that

ω(ξMx , η
M
x ) = ⟨µ, [ξ, η]⟩x .

Conclude that in general, ker(dπ) ⊂ ker(ȷ∗ω) need not to hold for ȷ : µ−1(Oα) → M
the natural embedding. Thus we can not apply directly Lemma 2.3.13 for this principal
G-bundle to get the symplectic form on the reduction space G \ µ−1(Oα).

4. Verify from Proposition 2.3.9 that for Y ∈ TβOα, ξ ∈ g,

(Y, ξ) = ωOα(ξOα

β , Y ). (2.3.100)

5. Let ωµ = ω − µ∗ωOα ∈ Ω2(µ−1(Oα)), verify that ωµ is closed and

ωµ(ξM , X) = 0 for X ∈ Tµ−1(Oα), ξ ∈ g.
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6. Verify that

ker(ωµx ) ⊂ (Txµ
−1(α))⊥ω = Tx(G · x).

Conclude that there exists ωµ ∈ Ω2(G\µ−1(Oα)) such that ωµ = π∗ωµ. Verify that ωµ = ω
in Theorem 2.3.15.

Exercise 2.3.4. The nondegenerate bilinear form on u(n) is defined by: for ξ, η ∈ u(n)

Bu(n)(ξ, η) = −TrCn [ξ η]. (2.3.101)

1. Verify that TrCn [ξ η] ∈ R for ξ, η ∈ u(n), and Bu(n) is AdU(n)-invariant, i.e., Bu(n)(ξ, η) =
Bu(n)(Adgξ,Adgη) for any g ∈ U(n).

2. By the identification (1.1.59), verify that with Bsp(2n) in (2.3.35)

Bsp(2n)(τ(ξ), τ(η)) = Bu(n)(ξ, η). (2.3.102)

3. Verify that (2.3.36) holds. Thus

ξ ∈ u(n) → β = {η ∈ u(n) → β(η) = Bu(n)(ξ, η)} ∈ u(n)∗ (2.3.103)

is an identification of u(n) to u(n)∗ via the Euclidean metric Bu(n) on u(n).

4. Verify directly that (2.3.40) is a moment map for the natural U(n)-action on (Cn, ω0).

Exercise 2.3.5. Let Mn,r(K) be the vector space of n× r matrices over K. We define the action
of U(n)×U(r) on Mn,r(C) by

(A,B) · Z = AZB−1 for A ∈ U(n), B ∈ U(r), Z ∈Mn,r(C). (2.3.104)

By the identification Mn,r(C) ∋ Z = (zjk) → (zjk) ∈ Cnr, the canonical symplectic form on
Mn,r(C) is given by

ω =

n∑
j=1

r∑
k=1

√
−1

2
dzjk ∧ dzjk.

1. Verify that under the identification (2.3.103), µ(Z) = −
√
−1
2 (ZZ∗,−Z∗Z) ∈ u(n)× u(r) is

a moment map for the U(n)×U(r) action on Mn,r(C).

2. Verify that the symplectic reduction at
√
−1
2 Ir for the U(r)-action is G(r, n) the Grassman-

nian of r-planes in Cn.

3. Verify that U(n) acts Hamiltonianly on G(r, n) with the symplectic form induced by ω on
Mn,r(C) and the associated moment map is given by

(
µU(n)([Z]), A

)
=

√
−1

2
TrCn

[
Z(Z∗Z)−1Z∗A

]
for A ∈ u(n), and Z ∈Mn,r(C) with [Z] the homogenous coordinate of G(r, n).
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2.4 Symplectic cuts

The Lie algebra Lie(S1) is
√
−1R with the usual exponential map: for ξ ∈ Lie(S1), eξ ∈ S1 =

{z ∈ C : |z| = 1}. Now we identify R with Lie(S1) by the map θ →
√
−1θ. Then under this

identification, the scalar product on Lie(S1) is the canonical scalar product on R defined by
⟨u, v⟩ = uv for u, v ∈ R.

Let S1 act on C by multiplication and the canonical symplectic form on C is ωst(z) =
√
−1
2 dz∧

dz for z ∈ C. Then under our identification of R and Lie(S1), the associated moment map is

µS1(z) = −1

2
|z|2 for z ∈ C. (2.4.1)

Let S1 act Hamiltonianly on a symplectic manifold (M,ω) with moment map µ : M → R.
Let G = S1 act on M × C by

g · (x, z) = (g · x, gz) for x ∈M, z ∈ C, g ∈ G = S1. (2.4.2)

Then the moment map µ̃ for the S1-action on (M × C, ω̃ = ω + ωst) is

µ̃(x, z) = µ(x)− 1

2
|z|2 for x ∈M, z ∈ C. (2.4.3)

We assume that S1 acts freely on µ−1(0). Then S1 acts freely on

µ̃−1(0) = {(x, z) ∈M × C : µ(x) =
1

2
|z|2}, (2.4.4)

as we have a S1 -equivariant diffeomorphism

ψ : µ−1(R∗
+)× S1 → µ̃−1(0) \ µ−1(0)× {0} =: M̃1, (x, eiθ) → (x, eiθ

√
µ(x)). (2.4.5)

Thus the reduction space M≥0 := S1\µ̃−1(0) is a symplectic manifold with symplectic form ω≥0

induced by ω̃, we call M≥0 a symplectic cut of M with respect to the S1-action.

Theorem 2.4.1. The manifold (MS1 , ωS1) imbeds in M≥0 as a symplectic submanifold of codi-
mension 2, and its complements is symplectic diffeomorphic to the open subset µ−1(R×

+) of M .
And M≥0 is the disjoint union of MS1 and µ−1(R×

+).

Proof. As the symplectic form ωS1 is the restriction of ω≥0 on MS1 , we get the first part of
Theorem 2.4.1. Observe that ψ∗ω̃ = ω|µ−1(R×

+), we get the second part of Theorem 2.4.1.

Now let H = S1 acts on M × C by

g · (x, z) = (g · x, z) for x ∈M, z ∈ C, g ∈ H = S1. (2.4.6)

Then the associated moment map is µH(x, z) = µ(x).
As G, H-actions on M × C commute, we get a G × H Hamiltonian action on M × C. By

Proposition 2.3.16, H acts Hamiltonianly on M≥0 with the moment map µ≥0 given by

µ≥0(y) =0 if y ∈MS1 ,

µ(y) if y ∈ µ−1(R×
+).

(2.4.7)

Finally the fixed point set MS1
≥0 of H-action on M≥0 is the union (MS1 ∩ µ−1(R×

+)) ∪MS1 , i.e;,
in addition to the fixed point set that existed prior to cutting, there is one new fixed point set
created by cutting: the reduced space MS1 .

In the same way, by using the symplectic form ω − ωst on M ×C, we get the symplectic cut
M≤0 = MS1 ∪ µ−1(] − ∞, 0[). The procedure of splitting M as two symplectic manifolds M≥0

and M≤0 is a symplectic analogue of degenerations of varieties in algebraic geometry.
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2.5 Bibliographic notes

The reference [18] is again a nice reference for this chapter. Another reference is [32].
Theorem 2.1.25 is a result of E. Cartan [19] which is in fact at the origin of the notion

of Lie algebra cohomology. Then Chevalley and Eilenberg [21] gave a systematic treatment of
the methods by which topological questions concerning compact Lie groups may be reduced to
algebraic questions concerning Lie algebras, in particular, they gave a complete proof of Theorem
2.1.25 which we followed here.

For basic material on cohomology groups with integer coefficient and homotopy groups, cf.
[15], [45]. For Remark 2.1.30 on Weyl’s unitary trick, cf. [33, §3.6] or [38]. Theorem 2.1.31 was
established in Bott [12], and a classical reference is Milnor’s book [46], we can also find a proof
on π2(G) = 0 in [16, Proposition 5.7.5]. For the Hurewicz’s theorem, cf. [15, Theorem 17.21].

For compact Lie groups, we can use the book [16]. Knapp’s books [38], [39] are very complete
references for Lie groups.

The symplectic reduction was introduced in mathematics by Marsden and Weinstein [44],
even it was used in mechanics.

Symplectic cuts were first introduced by Lerman [42] as a symplectic analogy of degeneration
of varieties.


