
Chapter 4

Localizations and
Duistermaat-Heckman measures

Let (M,ω) be a compact symplectic manifold with a Hamiltonian torus action. In 1982, Duister-
maat and Heckman discovered that the push-forward of the symplectic volume form onM under
the associated moment map, so-called now the Duistermaat-Heckman (DH) measure, is locally
polynomial with respect to the Lebesgue measure on the dual of its Lie algebra. If the fixed point
sets of the torus action are isolated, they can evaluate explicitly the Fourier transformation of
the DH measure by using the geometric data on the fixed point sets. Note that the classical
stationary phase formula only gives an asymptotic formula. Thus all these interesting results
were very surprising for many people and motivated many mathematicians to understand this
formula deeply. Soon after, Berline and Vergne established a general localization formula which
evaluates the integral of a differential form by using the geometric data on the fixed point sets
for any smooth manifold, inspired by Bott’s work on the localization of characteristic classes in
1967, and Atiyah and Bott developed a more topological approach. Witten applied formally the
DH localization formula on loop spaces and deduced the famous Atiyah-Singer index theorem
for pure Dirac operators. Atiyah explained these ideas to mathematicians in a conference in
honor of Laurent Schwartz in 1983 at École Polytechnique, and it is exactly this point motivated
Bismut to move from probability to geometry. All these evens are exciting even we look back 30
years later.

In this chapter, after introduced the theory on connections and curvatures for vector bundles
in Section 4.1, we explain in detail the construction of equivariant Euler forms of real vector
bundles. Then we present Bismut’s proof of the Berline-Vergne (BV) localization formula, an
advantage of this approach is that one sees how the equivariant Euler form appears geometrically
in the localization formula. We explain also the theory behind the localization formula: equivari-
ant cohomology. Then in Section 4.3, as an application, we deduce the DH localization formula
from the BV localization formula, and establish that the DH measure is locally polynomial with
respect the Lebesgue measure.

4.1 Connections and curvatures

In this section we introduce the theory on connections which is simply a way to do the differential
calculus on manifolds. In different geometric situations, connections need to be compatible with
extra structures, this motivates us to introduce Hermitian connections which are compatible with
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CHAPTER 4. LOCALIZATIONS AND DUISTERMAAT-HECKMAN MEASURES 118

metrics, and Chern connections which are compatible with complex structures on manifolds and
metrics on vector bundles.

4.1.1 Connection

Let E be a complex vector bundle over a smooth manifold M . Let C∞(M,E) be the space of
smooth sections of E on M . Let Ωq(M,E) := C∞(M,Λq(T ∗M) ⊗ E) be the spaces of smooth
q-forms on M with values in E.

A linear map ∇E : C∞(M,E) → C∞(M,T ∗M ⊗ E) is called a connection on E if for any
φ ∈ C∞(M,C), s ∈ C∞(M,E) and U ∈ TM , we have

∇E
U (φs) := (∇E(φs))U = U(φ) s+ φ∇E

U s . (4.1.1)

Connections on E always exist. Indeed, let {Vk}k an open covering ofM such that E|Vk
is trivial.

If {ηkl}l is a local frame of E|Vk
, any section s ∈ C∞(Vk, E) has the form s =

∑
l slηkl with

uniquely determined sl ∈ C∞(Vk,C). We define a connection on E|Vk
by ∇E

k s :=
∑
l dsl ⊗ ηkl.

Consider now a partition of unity {ψk}k subordinated to {Vk}k. Then ∇Es :=
∑
k∇E

k (ψks), for
s ∈ C∞(M,E), defines a connection on E.

If ∇E
1 is another connection on E, then by (4.1.1), for any φ ∈ C∞(M), (∇E

1 −∇E)(φs) =
φ(∇E

1 −∇E)s, thus
∇E

1 −∇E ∈ Ω1(M,End(E)). (4.1.2)

Inversely, if A ∈ Ω1(M,End(E)), then ∇E + A satisfies also (4.1.1), thus ∇E + A defines a
connection on E. Thus the space of connections on E is an infinite dimensional affine space
∇E +Ω1(M,End(E)).

A connection ∇E on E induces naturally a connection ∇E∗
on its dual vector bundle E∗ by:

for s ∈ C∞(M,E), s′ ∈ C∞(M,E∗),

d(s′, s) = (∇E∗
s′, s) + (s′,∇Es) . (4.1.3)

We verify that (4.1.1) holds for ∇E∗
, thus it is a connection on E∗.

If ∇F is a connection on another vector bundle F on M , then ∇E ,∇F induce a natural
connection ∇E⊗F on E ⊗ F : for s ∈ C∞(M,E), σ ∈ C∞(M,F ), U ∈ TM ,

∇E⊗F
U (s⊗ σ) = ∇E

Us⊗ σ + s⊗∇F
Uσ. (4.1.4)

We denote it formally as
∇E⊗F = ∇E ⊗ IdF +IdE ⊗∇F . (4.1.5)

In this way, a connection ∇E on E induces naturally a connection on End(E), etc: for example,
for A ∈ C∞(M,End(E)), s ∈ C∞(M,E), U ∈ TM , we have

(∇End(E)
U A)s = ∇E

U (As)−A(∇E
Us). (4.1.6)

For a smooth curve γ : [0, 1] →M , the parallel transport τs(v) ∈ Eγ(s) of v ∈ Eγ(0) along the
curve γ with respect to a connection ∇E is the solution of the equation

∇E
γ̇ τ·(v) = 0 and τ0(v) = v, (4.1.7)

with γ̇(s) = ∂
∂sγ(s) ∈ Tγ(s)M . Then by the existence and uniqueness of the solutions of ordinary

differential equations, we know τs : Eγ(0) → Eγ(s) is a linear isomorphism and is C∞ on s.
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If ∇E is a connection on E, then there exists a unique extension

∇E : Ω•(M,E) → Ω•+1(M,E)

verifying the Leibniz rule: for α ∈ Ωq(M), s ∈ Ωp(M,E), we have

∇E(α ∧ s) = dα ∧ s+ (−1)qα ∧∇Es . (4.1.8)

Lemma 4.1.1. For s ∈ C∞(M,E) and vector fields U, V on M , φ ∈ C∞(M), we have

(∇E)2(U, V )s = ∇E
U∇E

V s−∇E
V∇E

Us−∇E
[U,V ]s , (4.1.9a)

(∇E)2(U, V )(φs) = (∇E)2(U,φV )s = (∇E)2(φU, V )s = φ(∇E)2(U, V )s. (4.1.9b)

Proof. Let {ξl}l be a local frame of E on an open set W , then on W , we have

∇Es =
∑
l

αlξl with αl ∈ Ω1(W ). (4.1.10)

From (1.2.12), (4.1.8) and (4.1.10), we get (∇E)2s =
∑
l(dαl)ξl − αl ∧∇Eξl, thus

(∇E)2(U, V )s = (dαl)(U, V )ξl −
(
αl(U)∇E

V ξl − αl(V )∇E
Uξl

)
= U(αl(V ))ξl − V (αl(U))ξl − αl([U, V ])ξl − αl(U)∇E

V ξl + αl(V )∇E
Uξl

= ∇E
U (αl(V )ξl)−∇E

V (αl(U)ξl)−∇E
[U,V ]s. (4.1.11)

By (4.1.10) and (4.1.11), we get (4.1.9a).
By (1.2.12), (4.1.1) and (4.1.9a), we get directly (4.1.9b). The proof of Lemma 4.1.1 is

completed.

By (4.1.9b), for x ∈ M , ((∇E)2(U, V )s)x ∈ Ex depends only on Ux, Vx, sx, thus (∇E)2x ∈
Λ2(T ∗

xM)⊗ End(Ex). By (1.2.15) and (4.1.8), for any α ∈ Ωq(M), s ∈ C∞(M,E), we get

(∇E)2(α ∧ s) = α ∧ (∇E)2s. (4.1.12)

Definition 4.1.2. The curvature of ∇E is the tensor RE ∈ Ω2(M,End(E)) such that (∇E)2 is
given by multiplication with RE , i.e., (∇E)2s = REs ∈ Ω2(M,E) for s ∈ C∞(M,E).

From Definition 4.1.2 and (4.1.8), the Bianchi identity holds: as a 3-form with values in
End(E), we have

[∇E , RE ] = 0. (4.1.13)

Let {ξl}rl=1 be a local frame of E. The connection form ϑ = (ϑlk) of ∇E with respect to
{ξl}rl=1 is defined by, with local 1-forms ϑlk,

∇Eξk = ϑlkξl . (4.1.14)

Thus under the trivialization of E by using the frame {ξl}rl=1, we have

∇E = d+ ϑ, and RE = dϑ+ ϑ ∧ ϑ, (4.1.15)

here d is the usual differential acting on Cr-valued functions, as ∇E(fkξk) = dfk ⊗ ξk + fkϑ
l
kξl,

by (4.1.14). Especially, if rk(E) = 1, then RE is a closed 2-form, as ϑ ∧ ϑ = 0 and End(E) = C.
Let hE be a Hermitian metric on E, i.e., a smooth family {hEx }x∈M of sesquilinear maps

hEx : Ex × Ex → C such that hEx (ξ, ξ) > 0 for any ξ ∈ Ex ∖ {0}. We call (E, hE) a Hermitian
vector bundle on M , and we denote also hE(u, v) by ⟨u, v⟩hE or ⟨u, v⟩. There always exist
Hermitian metrics on E by using the partition of unity argument as above.
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Definition 4.1.3. A connection ∇E is said to be a Hermitian connection on (E, hE) if ∇E

preserves hE , i.e., for any s1, s2 ∈ C∞(M,E), X ∈ C∞(M,TM), we have

X⟨s1, s2⟩hE = ⟨∇E
Xs1, s2⟩hE + ⟨s1,∇E

Xs2⟩hE . (4.1.16)

There always exist Hermitian connections. In fact, let ∇E
0 be a connection on E, then

⟨∇E
1 s1, s2⟩hE = d⟨s1, s2⟩hE − ⟨s1,∇E

0 s2⟩hE (4.1.17)

defines the adjoint connection∇E
1 of∇E

0 on E. Now∇E = 1
2 (∇

E
0 +∇E

1 ) is a Hermitian connection
on (E, hE).

Let ∇E be a Hermitian connection on (E, hE), and RE be the associated curvature. Then
by (4.1.9a) and (4.1.16), for any U, V ∈ C∞(M,TM), we have

⟨RE(U, V )s1, s2⟩hE + ⟨s1, RE(U, V )s2⟩hE = 0. (4.1.18)

Thus RE is a 2-form with values in the skew-symmetric endomorphisms of E.

Remark 4.1.4. If E is a real vector bundle on M , certainly, all above discussion still holds,
especially, hE is a Euclidean metric on E if it is a smooth family {hEx }x∈M of bilinear forms
hEx : Ex × Ex → R such that hEx (ξ, ξ) > 0 for any ξ ∈ Ex ∖ {0}, and a connection ∇E is said to
be a Euclidean connection on the Euclidean vector bundle (E, hE) if it preserves the Euclidean
metric hE . As in (4.1.18), the curvature RE of a Euclidean connection ∇E on (E, hE) is a 2-form
with values in the antisymmetric endomorphisms of E.

Let π : N → M be a smooth map between two manifolds, let E be a vector bundle on M
with connection ∇E , then the pull back vector bundle π∗E on N is defined by π∗E = ∪y∈NEπ(y)
with the smooth structure induced by π and E. The pull back connection ∇π∗E on π∗E over N
is defined by: for φ ∈ C∞(N), s ∈ C∞(M,E), U ∈ TyN , y ∈ N ,

∇π∗E
U (φπ∗s) = U(φ)π∗s(y) + φ(y)π∗(∇E

dπ(U)s), (4.1.19)

and (π∗s)(y) := s(π(y)) defines a smooth section π∗s on π∗E over N . If hE is a metric on E,
then the pull-back metric π∗hE on π∗E is defined by π∗hEy (u, v) = hEπ(y)(u, v).

Let π : E →M be a vector bundle equipped with a connection ∇E . We apply (4.1.19) to the
vector bundle π∗E over E, then we get a connection ∇π∗E on π∗E over E.

For x ∈ M , the tangent bundle along the fiber (or vertical tangent bundle) of π : E → M
is canonically identified with Ex, thus we will identify π∗E as the vertical tangent bundle of
π : E →M , which is a subbundle of TE. Let v ∈ C∞(E, π∗E) be the tautological section, i.e.,
v(x,w) = (w,w) ∈ π∗E. Then

∇π∗Ev ∈ C∞(E, T ∗E ⊗ π∗E) = C∞(E,Hom(TE, π∗E)) . (4.1.20)

For any (x,w) ∈ E, u ∈ Ex as a vertical vector at (x,w) along the fiber Ex, by (4.1.19), we have

∇π∗E
u v = u ∈ π∗E . (4.1.21)

Thus for any (x,w) ∈ E, ∇π∗E
· v : T(x,w)E → π∗Ex is surjective.

Set
THE = ker(∇π∗Ev) ⊂ TE . (4.1.22)

As ∇π∗E
· v : T(x,w)E → π∗Ex is surjective, the rank of THE is locally constant on E, thus THE

is a subbundle of TE and we call THE the horizontal subbundle of TE induced by ∇E . As
vector bundles over E, we have

TE = THE ⊕ π∗E . (4.1.23)



CHAPTER 4. LOCALIZATIONS AND DUISTERMAAT-HECKMAN MEASURES 121

As dπ : TE → TM is surjective and dπ(π∗E) = 0, we know dπ : THE → TM is surjective. Since
they have the same dimension, dπ : TH(x,w)E → TxM is an isomorphism. Thus for Y ∈ TxM ,

there exists a unique Y H ∈ TH(x,w)E such that

dπ(Y H) = Y . (4.1.24)

We call Y H ∈ THE the lifting of Y . Now it is clear on E,

TE = THE ⊕ π∗E ≃ π∗TM ⊕ π∗E . (4.1.25)

Proposition 4.1.5. For any σ ∈ C∞(E, π∗E), by considering σ as a vecotr field on E, we have

∇π∗E
XH σ = [XH , σ] for any X ∈ C∞(M,TM). (4.1.26)

Proof. Let U be a local chart with trivialization ψ : E U ≃ U × E0. Then by (4.1.14), there
exists ϑ ∈ Ω1(U,End(E0)) such that

∇E = d+ ϑ .

By (4.1.19), for (x, u) ∈ U × E0,

v(x,u) = u , and (∇π∗Ev)(x,u) = du+ ϑu. (4.1.27)

From (4.1.22) and (4.1.27), for X ∈ TxM , we get

TH(x,u)E = ker(∇π∗Ev) = {(Y,−ϑ(Y )u) : Y ∈ TxM} , XH
(x,u) = (X,−ϑ(X)u). (4.1.28)

By (4.1.28), for s ∈ C∞(M,E), X ∈ C∞(M,TM), by considering π∗s as a vector field on E, we
can compute the connection ∇E by

π∗(∇E
Xs) = [XH , π∗s]. (4.1.29)

From (4.1.19) and (4.1.29), we get (4.1.26).

If ∇E is a Euclidean connection on (E, hE), then by (4.1.19), ∇π∗E is a Euclidean connection
on (π∗E, π∗hE). By (4.1.22), for Y ∈ TM , we get

Y H |v|2π∗hE =
〈
∇π∗E
Y H v, v

〉
+
〈
v,∇π∗E

Y H v
〉
= 0. (4.1.30)

As ∇E is Euclidean, by (4.1.29), for s1, s2 ∈ C∞(M,E), X ∈ C∞(M,TM),

(LXHπ∗hE)(π∗s1, π
∗s2) = XH ⟨π∗s1, π

∗s2⟩ − ⟨LXHπ∗s1, π
∗s2⟩ − ⟨π∗s1, LXHπ∗s2⟩

= π∗ (X ⟨s1, s2⟩ −
〈
∇E
Xs1, s2

〉
−
〈
s1,∇E

Xs2
〉)

= 0. (4.1.31)

Thus

LXHπ∗hE = 0. (4.1.32)
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4.1.2 Chern connection

A complex vector bundle E on a complex manifold X is a holomorphic vector bundle if the
transition functions ψji ∈ C∞(Ui ∩ Uj ,Mr(C)) in Definition 1.2.5 are holomorphic.

Let E be a holomorphic vector bundle over a complex manifold X. Let hE be a Hermitian
metric on E. We call (E, hE) a holomorphic Hermitian vector bundle.

The complex structure J induces a splitting TX⊗RC = T (1,0)X⊕T (0,1)X, where T (1,0)X and
T (0,1)X are the eigenbundles of J corresponding to the eigenvalues

√
−1 and −

√
−1, respectively.

Let T ∗(1,0)X and T ∗(0,1)X be the corresponding dual bundles. Let

Ωp,q(X,E) := C∞(X,Λp(T ∗(1,0)X)⊗ Λq(T ∗(0,1)X)⊗ E)

be the spaces of smooth (p, q)-forms on X with values in E.
The operator ∂̄E : C∞(X,E) → Ω0,1(X,E) is well-defined. Any section s ∈ C∞(X,E) has

the local form s =
∑
l φlξl where {ξl}rl=1 is a local holomorphic frame of E and φl are smooth

functions. In holomorphic coordinates (z1, . . . , zn), we set

∂̄Es =
∑
l

(∂̄φl) ξl with ∂̄φl =
∑
j

dzj
∂

∂zj
φl. (4.1.33)

Definition 4.1.6. A connection ∇E on E is said to be a holomorphic connection if ∇E
Us =

iU (∂̄
Es) for any U ∈ T (0,1)X and s ∈ C∞(X,E).

Theorem 4.1.7. There exists a unique holomorphic Hermitian connection ∇E on a holomorphic
Hermitian vector bundle (E, hE), called the Chern connection . With respect to a local holomor-
phic frame {ξl}, denote by h = (hlk = ⟨ξk, ξl⟩hE ) the matrix of hE with respect to {ξl}rl=1, then
the connection matrix is given by ϑ = h−1 · ∂h.

Proof. By Definition 4.1.6, we have to define ∇E
U just for U ∈ T (1,0)X. Relation (4.1.16) implies

for U ∈ T (1,0)X, s1, s2 ∈ C∞(X,E),

U⟨s1, s2⟩hE = ⟨∇E
Us1, s2⟩hE + ⟨s1,∇E

U
s2⟩hE . (4.1.34)

Since ∇E
U
s2 = iU (∂̄

Es2), the above equation defines ∇E
U uniquely. Moreover, if {ξl}rl=1 is a local

holomorphic frame, from (4.1.16) we deduce that ϑ = h−1 · ∂h.

Since E is holomorphic, similar to (4.1.8), the operator ∂̄E extends naturally to ∂̄E : Ω•,•(X,E)
→ Ω•,•+1(X,E) verifying: for α ∈ Ωq(X), s ∈ Ω•,•(X,E), we have

∂̄E(α ∧ s) = ∂̄α ∧ s+ (−1)qα ∧ ∂̄Es. (4.1.35)

Then from ∂̄2 = 0, we verify that (∂̄E)2 = 0.
Let ∇E be the holomorphic Hermitian connection on (E, hE). Then we have a decomposition

of ∇E according to bidegree

∇E = (∇E)1,0 + (∇E)0,1 ,

(∇E)0,1 = ∂̄E : Ω•,•(X,E) → Ω•,•+1(X,E) ,

(∇E)1,0 : Ω• , •(X,E) −→ Ω•+1 , •(X,E) .

(4.1.36)

By (4.1.34), (4.1.36) and (∂̄E)2 = 0 we have

(∂̄E)2 =
(
(∇E)1,0

)2
= 0, (∇E)2 = ∂̄E(∇E)1,0 + (∇E)1,0∂̄E . (4.1.37)
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Combining with (4.1.18), the curvature RE ∈ Ω1,1(X,End(E)) is a (1, 1)-form with values in
the skew-symmetric endomorphisms of E. If rk(E) = 1, End(E) is trivial and RE is canonically
identified to a (1, 1)-form on X, such that

√
−1RE is real.

The complex (Ω•,•(X,E), ∂
E
) is called the Dolbeault complex and its cohomology, called

Dolbeault cohomology of X with values in E, is denoted by H•,•(X,E), i.e., for p, q ∈ N,

Hp,q(X,E) :=
ker(∂

E |Ωp,q(X,E))

Im(∂
E |Ωp,q−1(X,E))

. (4.1.38)

Exercise 4.1.1. Let E,F be two K-vector bundles on M and K = R or C. Let A : C∞(M,E) →
C∞(M,F ) be a K-linear map. Assume for any φ ∈ C∞(M), s ∈ C∞(M,E), x ∈ M , we have
(A(φs))x = φ(x)(As)x. Verify that

1. If s|U = 0 on a neighborhood U of x0, then (As)x0 = 0.

2. If sx0
= 0, then (As)x0

= 0. (Hint: s =
∑
l alξl and a(x0) = 0 for {ξl} a local frame of E,

we write s =
∑
l(ψal)(ψξl) as in (1.3.11) near x0.)

3. For u ∈ Ex, taking s ∈ C∞(M,E) such that sx = u and we define Axu = (As)x. Then
A ∈ C∞(M,Hom(E,F )) and for any s ∈ C∞(M,E), x ∈M , (As)x = Axsx.

Exercise 4.1.2. For ∇E a connection on a Hermitian vector bundle (E, hE) on M , we define for
s1, s2 ∈ C∞(M,E),

(∇EhE)(s1, s2) := d⟨s1, s2⟩ − ⟨∇Es1, s2⟩ − ⟨s1,∇Es2⟩.

1. Verify that for f ∈ C∞(M), X ∈ C∞(M,TM), we have

(∇EhE)fX(s1, s2) = (∇EhE)X(f s1, s2) = (∇EhE)X(s1, f s2) = f(∇EhE)X(s1, s2).

2. Conclude that ∇EhE ∈ Ω1(M,E∗⊗E
∗
), here E

∗
means the space of antilinear maps from

E to C. In particular, we define (∇EhE)(s1, s2) = ⟨As1, s2⟩, then A ∈ Ω1(M,End(E)).
Verify that for X ∈ TxM , A(X) ∈ End(Ex) is self-adjoint. We denote A by (hE)−1∇EhE .

3. Let ∇E∗ be the adjoint connection of ∇E with respect to hE . Verify that

∇E∗ = ∇E + (hE)−1∇EhE .

Exercise 4.1.3. In the context of (4.1.23), let PV be the projection from TE onto π∗E via the
decomposition (4.1.23). For X,Y ∈ C∞(M,TM), set

T (XH , Y H) = −PV [XH , Y H ].

Verify that T (XH , Y H)(x,u) depends only on Xx, Yx ∈ TxM and u ∈ Ex. Thus T ∈ C∞(E,
π∗(Λ2(T ∗M) ⊗E)). Prove that

T (XH , Y H)(x,u) = REx (Xx, Yx)u i.e., T(x,u) = (π∗REx )u.

Exercise 4.1.4. Let U be an open ball in Rm with center 0 and let E be a trivial vector bundle
over U with connection ∇E and curvature RE . Let xi be the coordinates on U and let ∂i be the
corresponding partial derivatives. Then the radial vector field on U is defined by

R =
∑
i

xi∂i.
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1. Verify that the parallel transport along the curve t→ tZ, Z ∈ U with respect to ∇E , gives
a smooth trivialization of E on U . We denote this new trivialization by ψ : E → U × E0

and by ϑ ∈ Ω1(U,End(E0)) the associated connection form of (E,∇E).

2. Verify that iRϑ = 0. Conclude that LRϑ = iRR
E .

3. Verify that LRxi = xi and LRdxi = dxi. Conclude that

ϑx =
1

2
RE0 (R, ·) + O(|x|2).

Exercise 4.1.5. Let (M,ω) be a symplectic manifold. A connection ∇M on TM is called a
symplectic connection if it is torsion free and preserves the symplectic form ω. We will show
that the space of symplectic connections is an infinite dimensional affine space.

1. Let ε : T ∗M ⊗Λ•(T ∗M) → Λ•+1(T ∗M) be the exterior product map. Let ∇0 be a torsion
free connection on TM , we denote still by ∇0 the induced connection on Λ•(T ∗M) via

∇0
X(α ∧ β) = (∇0

Xα) ∧ β) + α ∧∇0
Xβ for any X ∈ C∞(M,TM), α, β ∈ Ω(M).

Prove that d = ε ◦ ∇0.

2. For X,Y, Z ∈ C∞(M,TM), we define

(∇0
Xω)(Y,Z) = ω(N(X,Y ), Z).

Prove that

ω(N(X,Y ), Z) + ω(N(Y, Z), X) + ω(N(Z,X), Y ) = 0.

3. Prove that

∇XY = ∇0
XY +

1

3
N(X,Y ) +

1

3
N(Y,X)

is a symplectic connection on TM .

4. Let ∇1 be another connection on TM . Set A = ∇1 −∇ ∈ Ω1(M,End(TM)). Prove that
∇1 is a symplectic connection if and only if the 3-tensor ω(A(·)·, ·) is symmetric.

4.2 Localizations and equivariant cohomology

In this section, we explain first the zero sets of a Killing vector field are totally geodesic subman-
ifolds, then we introduce equivariant Euler classes which will appear in the main result of this
section: the localization formula of Berline-Vergne, Theorem 4.2.18. Finally, we explain briefly
the context of the localization formula: the equivariant cohomology.

4.2.1 Killing vector fields and Levi-Civita connections

Let M be a smooth manifold and gTM be a Riemannian metric on M , as usual, we denote
also gTM by ⟨ , ⟩. Let ∇TM be the Levi-Civita connection on (M, gTM ). Then the Levi-Civita
connection ∇TM is characterized by: for X,Y, Z,W ∈ C∞(M,TM),

torsion free : ∇TM
X Y −∇TM

Y X = [X,Y ] ,

preserving metric : ⟨∇TM
X Y,Z⟩+ ⟨Y,∇TM

X Z⟩ = X⟨Y,Z⟩ .
(4.2.1)


