
Chapter 5

Symplectic reductions and
prequantizations

In classical Hamiltonian mechanic, the classical phase space is a symplectic manifold, and in
quantum mechanic, the quantum phase space is a Hilbert space. In the mathematical theory of
quantization, one attempts to associate to a symplectic manifold (X,ω) a Hilbert space H and a
mapping from the space of functions onX into the space of operators onH, and this in a canonical
way. The mapping should give some reasonable relationship between the Poisson bracket on the
function side and the commutator on the operator side. It is generally acknowledged that there
is no canonical way to construct a quantization of X without making use of certain additional
structures. In the theory of the geometric quantization of Kostant and Souriau, (X,ω) is assumed
to be prequantizable, that is, there exists a prequantum line bundle.

This chapter is organized as follows. In Section 5.1, we discuss first the problem on the
existence of a prequantum line bundle on a symplectic manifold, and for a symplectic group
action, when we can lift the action on the prequantum line bundle. An important fact is the
Kostant formula which says that if the group action lifts on the prequantum line bundle, then
automatically, it is a Hamiltonian action. In Section 5.2, we review some facts on maximal torus
and roots of a compact Lie group. Then in Section 5.3, we discuss how the geometric objects
can be inherited from the original manifold after the symplectic reduction, and we specify the
Kähler situation in Section 5.4, in particular, the reduction space is still Kähler and the induced
line bundle is holomorphic.

5.1 Prequantizations

5.1.1 Prequantized symplectic manifolds

Let M be a manifold. Let (L, hL,∇L) be a Hermitian line bundle on M with Hermitian connec-
tion ∇L and curvature RL = (∇L)2. The first Chern form of (L, hL,∇L) is defined by

c1(L,∇L) =

√
−1

2π
RL. (5.1.1)

Proposition 5.1.1. The first Chern form c1(L,∇L) is a real closed 2-form. Its cohomology
class [c1(L,∇L)] ∈ H2(M,R) does not depend on ∇L, hL, we denote it by c1(L) and call it as
the first Chern class of L.
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Proof. As ∇L is Hermitian, then by (4.1.18), RL ∈ Ω2(M,Endanti(L)) is a 2-form with coefficient
in Endanti(L), the skew-symmetric endomorphism of L. Since rk(L) = 1, we have an isomorphism

End(L) = C, Endanti(L) =
√
−1R. (5.1.2)

Thus c1(L,∇L) ∈ Ω2(M,R).
Let ϕ : L|U → U × C be a trivialization of L on an open set U ⊂ M . Then there exists

α ∈ Ω1(U,C) such that

∇L|U = d+ α. (5.1.3)

By (5.1.3), on U we have

RL = dα. (5.1.4)

Thus c1(L,∇L) is closed.
If ∇L

1 is another Hermitian connection (Hermitian with respect to another Hermitian metric
on L), then there exists β ∈ Ω1(M,C) such that

∇L
1 = ∇L + β. (5.1.5)

By (5.1.5), we get

RL1 =
(
∇L

1

)2
= RL + dβ. (5.1.6)

As RL1 , R
L ∈ Ω2(M,

√
−1R), by (5.1.6), we get RL1 = RL +

√
−1d Im(β). This means that the

class [c1(L,∇L)] ∈ H2(M,R) does not depend on ∇L, hL.

Remark 5.1.2. In fact, we can lift c1(L) as an element of H2(M,Z). By the sheaf theory, we can
prove that the map c1 from Pic(M), the group of isomorphism classes of complex line bundles
on M , to H2(M,Z), is an isomorphism of groups. In particular, the integration of c1(L,∇L) on
any closed surface is an integer.

Definition 5.1.3 (Kostant, Souriau). Let (M,ω) be a symplectic manifold, if there is a Hermi-
tian line bundle (L, hL,∇L) on M with Hermitian connection ∇L such that

ω = c1(L,∇L), (5.1.7)

then we say that (M,ω) is prequantized by (L, hL,∇L), and (L, hL,∇L) is called a prequantum
line bundle on (M,ω).

Let G be a compact Lie group acting on M and let E be a complex vector bundle on M .
We say that the G-action on M lifts on E if G acts smoothly on E, and for x ∈ M , g ∈ G,

we have g(Ex) = Egx and the map g : Ex ∋ v → g · v ∈ Egx is C-linear.
Assume now the G-action on M lifts on E. We define the G-action on C∞(M,E) by: for

s ∈ C∞(M,E), g ∈ G, x ∈M ,

(g · s)(x) := g
(
s(g−1x)

)
. (5.1.8)

We verify easily from (5.1.8) that g1 · (g2 · s) = (g1g2) · s for any g1, g2 ∈ G, thus this defines a
G-action on C∞(M,E). We say s ∈ C∞(M,E) is G-invariant if g · s = s for any g ∈ G.
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For g ∈ G, a Hermitian metric hE on E, we define another Hermitian metric g · hE on E by:
for x ∈M , u, v ∈ Ex,(

g · hE
)
(u, v)x :=

(
(g−1)∗hE

)
(u, v)x := hE(g−1u, g−1v)g−1x. (5.1.9)

Then (g, hE) → g·hE defines aG-action on the space of Hermitian metrics on E, i.e., g1·(g2·hE) =
(g1g2) · hE . We say hE is G-invariant if g · hE = hE for any g ∈ G.

The G-action on the space of connections on E is defined as follows: For g ∈ G, a connection
∇E on E, the connection ∇E,g

X s := g · ∇E is defined by: for X ∈ C∞(M,TM), s ∈ C∞(M,E),

∇E,g
X s := (g · ∇E)Xs := g ·

(
∇E
g−1
∗ X

(g−1s)
)
. (5.1.10)

We claim that ∇E,g is a connection on E. In fact, for any f ∈ C∞(M), we have

∇E,g
X (fs) = g ·

(
∇E
g−1
∗ X

(g−1(fs))
)
= g ·

(
∇E
g−1
∗ X

(g−1 · f)(g−1s)
)
= (Xf)s+ f∇E,g

X s,

∇E,g
fX (s) = g ·

(
∇E
g−1
∗ (fX)

(g−1(s))
)
= g ·

(
(g−1 · f)∇E

g−1
∗ X

(g−1s)
)
= f∇E,g

X s.
(5.1.11)

We call a connection ∇E is G-invariant if ∇E,g = ∇E for any g ∈ G.

Theorem 5.1.4. Let (M,ω) be a symplectic manifold with a complex line bundle L such that

c1(L) = [ω] ∈ H2(M,R). (5.1.12)

Let G be a compact Lie group. We assume that G acts symplectically on M and that this action
lifts on L. Then there is a G-invariant Hermitian metric hL on L and a G-invariant Hermitian
connection ∇L on (L, hL) such that

ω = c1(L,∇L). (5.1.13)

In particular, the existence of hL,∇L on L such that (5.1.7) holds is equivalent to the topological
condition (5.1.12).

A naturel question for a symplectic manifold (M,ω) is whether there exists a prequantum line
bundle. By Remark 5.1.2 and Theorem 5.1.4, the obstruction is that the class [ω] ∈ H2(M,R)
can be lifted to H2(M,Z). The lifting from R to Z explains more or less the terminology of
quantization.

Proof of Theorem 5.1.4. Let dµ be the Haar measure on G. Let hL0 be a Hermitian metric on L
and ∇L

0 be a Hermitian connection on (L, hL0 ). We define

hL =

∫
g∈G

g · hL0 dµ(g), ∇L
1 =

∫
g∈G

(g · ∇L
0 ) dµ(g). (5.1.14)

Then hL is a G-invariant Hermitian metric on L, as for g1 ∈ G,

g1 · hL =

∫
g∈G

L∗
g1(g · h

L
0 L∗

g−1
1
dµ(g)) =

∫
g∈G

g · hL0 L∗
g−1
1
dµ(g) = hL, (5.1.15)

here as in (2.1.67), we understand g → g ·hL0 as a function on G. As the total mass of dµ is 1, ∇L
1

is a connection on L, and it is G-invariant as in (5.1.15). But in general, ∇L
1 is not Hermitian

with respect to hL.
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Let ∇L∗
1 be the adjoint connection on L of ∇L

1 with respect to hL. Then

∇L
2 =

1

2
(∇L

1 +∇L∗
1 ) (5.1.16)

is a Hermitian connection with respect to hL. Since hL,∇L
1 are G-invariant, by (4.1.17), ∇L∗

1

and ∇L
2 are G-invariant.

By Proposition 5.1.1, there exists α ∈ Ω1(M,R) such that

√
−1
(
∇L

2

)2
+ dα = 2πω. (5.1.17)

Set

α2 =

∫
g∈G

(g−1)∗αdµ(g),

∇L =∇L
2 −

√
−1α2.

(5.1.18)

Then as α2 is a real 1-form, ∇L is a G-invariant Hermitian connection on (L, hL). As ∇L
2 and ω

are G-invariant, by (5.1.17) and (5.1.18), we get

√
−1(∇L)2 =

√
−1
(
∇L

2

)2
+ dα2 = 2πω. (5.1.19)

Thus (5.1.13) holds. Now we apply (5.1.13) for G = {e} the trivial group, we get the last part
of Theorem 5.1.4.

Example 5.1.5. Let X be a manifold. Let λ be the Liouville form defined by (1.2.42), and
ωT

∗X = −dλ. Then (T ∗X,ωT
∗X) is a symplectic manifold. Let L = C be the trivial line bundle

on T ∗X with the trivial Hermitian metric hL, i.e., |1|hL(x) = 1 for the canonical section 1 ∈ C.
Let ∇L be the Hermitian connection on (L, hL) defined by

∇L = d+ 2iπλ. (5.1.20)

By (5.1.20), we get

RL = 2iπdλ = −2iπωT
∗X . (5.1.21)

Hence (T ∗X,ωT
∗X) is prequantized by (L, hL,∇L).

For φ ∈ Diff(X), we define φ · 1 = 1, then it defines the lifting of Diff(X) on L. As λ is
Diff(X)-invariant, we know the Diff(X)–action on L preserves hL,∇L.

In the sequel, we suppose that the symplectic manifold (M,ω) is prequantized by (L, hL,∇L),
and the compact Lie group G with Lie algebra g, acts on M symplectically, which lifts on L such
that ω, hL,∇L are G-invariant.

We recall that for K ∈ g, the vector field KM ∈ C∞(M,TM) induced by K is given by, for
x ∈M

KM
x =

d

dt

∣∣∣
t=0

etKx. (5.1.22)

The Lie derivation LK : C∞(M,L) → C∞(M,L) is given by: for s ∈ C∞(M,L),

(LKs) (x) =
d

dt

∣∣∣
t=0

(
e−tKs

)
(x) =

d

dt

∣∣∣
t=0

e−tK · s(etKx). (5.1.23)
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Theorem 5.1.6 (Kostant). For K ∈ g, set

2
√
−1π(µ,K) = ∇L

KM − LK . (5.1.24)

Then (µ,K) is a smooth function on M which is linear on K, thus it defines a smooth map
µ :M → g∗. Finally µ is a moment map for the G-action on (M,ω).

Proof. By (4.1.1) and (5.1.23), for any f ∈ C∞(M), s ∈ C∞(M,L), we have

(∇L
KM − LK)(fs) = f(∇L

KM − LK)s. (5.1.25)

Moreover, as LK ,∇L
KM preserve hL, we have

∇L
KM − LK ∈ C∞(M,

√
−1R). (5.1.26)

Finally both ∇L
KM , LK are linear on K, thus we get the first part of Theorem 5.1.6.

We verify now µ :M → g∗ is a moment map. By (5.1.10), ∇L is G-invariant is equivalent to

g · (∇L
Y s) = ∇L

g∗Y (g · s) for any Y ∈ C∞(M,TM), s ∈ C∞(M,L), g ∈ G. (5.1.27)

By taking g = e−tK for K ∈ g and differential at t = 0 in (5.1.27), we get

LK∇L
Y s = ∇L

LKM Y s+∇L
Y LKs, i.e., [LK ,∇L] = 0. (5.1.28)

By (5.1.24), (5.1.28) is equivalent to(
− 2

√
−1π(µ,K) +∇L

KM

)
∇L
Y s = ∇L

LKM Y s+∇L
Y

(
− 2

√
−1π(µ,K) +∇L

KM

)
s. (5.1.29)

By (5.1.7), (5.1.29) is equivalent to

Y (µ,K) =

√
−1

2π
RL(KM , Y ) = ω(KM , Y ), (5.1.30)

which is equivalent to d(µ,K) = iKMω.
Note that by (2.2.2), for x ∈M , (AdgK)Mx =

(
g∗K

M
)
x
. Thus from (5.1.23) and (5.1.27), we

get g · (∇L
KM s) = ∇L

(AdgK)M (g · s), and

g · (LKs)x =
d

dt

∣∣∣
t=0

ge−tK(s(etKg−1x)) = LAdgK(g · s)x. (5.1.31)

Thus 2
√
−1πg · ((µ,K)s) = (∇L

(AdgK)M − LAdgK)(g · s), combining with (5.1.24), we get(
µ(g−1x),K

)
=
(
µ(x),AdgK

)
=
(
Ad∗g−1µ(x),K

)
. (5.1.32)

By (5.1.30) and (5.1.32), µ is a moment map. The proof of Theorem 5.1.6 is completed.

Now we turn to the problem when a symplectic action on (M,ω) can be lifted on L. By
Theorem 5.1.6, such an action is always Hamiltonian. In fact, we shall prove that this is a
sufficient condition provided G is compact, connected and simply connected.
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Theorem 5.1.7. Let (M,ω) be a connected compact symplectic manifold prequantized by (L, hL,
∇L). Let G be a compact, connected and simply connected Lie group. We suppose that there is a
Hamiltonian G-action on M with moment map µ :M → g∗. Then the G-action can be lifted on
L such that it preserves (hL,∇L), and for K ∈ g, the Lie derivation LK on C∞(M,L) is given
by

LK = ∇L
KM − 2

√
−1π(µ,K). (5.1.33)

Proof. Let J be a G-invariant, compatible almost complex structure on (M,ω). Then gTM =
ω(·, J ·) is a G-invariant Riemannian metric on M .

LetH be a subgroup of the bundle maps of L consisting the elements which preserves (hL,∇L)
and which induces an isometry on (M, gTM ). We denote this natural map by ϕ : H → Isom(M),
the isometry group of (M, gTM ). Then for σ ∈ kerϕ, σ : Lx → Lx is an isometry for any x ∈M .
Hence, there is a ∈ C∞(M,S1) such that

σ : u ∈ Lx → a(x)u ∈ Lx. (5.1.34)

As σ preserves ∇L, we have da = [∇L, σ] = 0. As M is connected, a is a constant map. Hence
we have an exact sequence

1 // S1 // H
ϕ // Isom(M). (5.1.35)

Since M is compact, Isom(M) is a compact Lie group. By (5.1.35), H is also a compact Lie
group. We denote by H0 the connected component of the identity in H, and h its Lie algebra.

Let THL be the horizontal subbundle of TL induced by ∇L (cf. (4.1.22)), and we identify
M as a submanifold of L by sending M ∋ x → (x, 0) ∈ Lx. Let π : L → M be the natural
projection.

We claim that h is the space of vector fields on L which can be written as

XL = XH + 2πa(X)tLR , (5.1.36)

here XH ∈ THL is the lift of a Killing vector field X on M , and tLR is the real vector field on L
induced by the rotation along the fiber u→ eiθu. Note that

tLR(x, u) = iu
∂

∂u
− iu

∂

∂u
. (5.1.37)

By (4.1.28), for s ∈ C∞(M,L), we have

π∗LXs = LXLπ∗s = [XL, π∗s], π∗(∇L
Xs) = [XH , π∗s]. (5.1.38)

Thus the condition (5.1.36) is equivalent to

LX = ∇L
X − 2π

√
−1a(X). (5.1.39)

From (5.1.28)–(5.1.30) and (5.1.39), the condition (5.1.36) is equivalent that :

X is Killing, a(X) is real and da(X) = iXω. (5.1.40)

We verify now (5.1.36). At first, if XL ∈ h, then X = dπ(XL) defines a Killing vector field on
M by the definition of H. As H(M) ⊂ M , we get X = XL|M . Thus there exists b(x, u) such
that

XL −XH = b(x, u)
∂

∂u
+ b(x, u)

∂

∂u
∈ π∗L, and b(x, 0) = 0. (5.1.41)
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As LX−∇L
X is a skew-symmetric zero order differential operator acting on L, there is f ∈ C∞(M)

such that for s ∈ C∞(M,L), we have

(LX −∇L
X)s = −

√
−1fs. (5.1.42)

Note that as a vector field on L, (π∗s)(x, u) = s(x) ∂∂u . By (5.1.38) and (5.1.42), we have

−
√
−1π∗(fs) = [XL −XH , π∗s] = −s(x) ∂b

∂u

∂

∂u
− s(x)

∂b

∂u

∂

∂u
. (5.1.43)

Thus ∂b
∂u =

√
−1f(x) and ∂b

∂u = 0, (5.1.41) and (5.1.43) imply that b(x, u) =
√
−1f(x)u.

Inversely, if (5.1.36) holds, then the flow ψt associated with XL is a diffeomorphism of L
verifying our condition, thus ψt ∈ H for any t ∈ R.

For any K ∈ g, as ∇L is Hermitian, and (µ,K) is real, from (5.1.33), LK preserves hL. By
(5.1.28)–(5.1.30), LK preserves ∇L. Moreover, KM is a Killing vector field on (M, gTM ). Thus
LK ∈ h.

Now we claim that K ∈ g → −LK ∈ h is a morphism of Lie algebras. In fact, by Proposition
2.2.3, (2.3.7), (2.3.8) and (5.1.33), we have

L[K1,K2] = ∇L
[K1,K2]M

− 2iπ(µ, [K1,K2]) = −∇L
[KM

1 ,KM
2 ] − 2iπ(µ, [K1,K2])

= −[∇L
KM

1
,∇L

KM
2
] +RL(KM

1 ,KM
2 )− 2iπ(µ, [K1,K2])

= −[∇L
KM

1
,∇L

KM
2
]− 4iπ(µ, [K1,K2]) = −[LKM

1
, LKM

2
]. (5.1.44)

As G is connected, and simply connected, by the second theorem of Lie, Theorem 2.1.15,
there exists a morphism of Lie groups G → H which is equivalent to the fact that the G-action
on M can be lifted on L. The proof of Theorem 5.1.7 is completed.

5.1.2 Prequantized Kähler manifolds

In the remainder of this section, we will explain the holomorphic version of Theorem 5.1.4. Let’s
start to explain the ∂∂-Lemma for compact Kähler mnifolds.

Lemma 5.1.8 (∂∂-Lemma for (1, 1)-forms). Let α be a smooth, d-exact, (1, 1)-form on a compact
Kähler manifold M , then there exists a smooth function ρ on M such that

α =
√
−1∂∂ρ. (5.1.45)

Moreover, if φ is real, then ρ is real.

Proof. Let ∂
∗
, ∂∗, d∗ be the adjoint of ∂, ∂, d associated to the Kähler metric gTM .

As α is d-exact, there is a 1-form β on M such that

α = dβ. (5.1.46)

Let β0,1 (resp. β1,0) be the (0, 1) (resp. (1, 0))-component of β. As α is a (1, 1)-form, we get

φ = ∂ψ0,1 + ∂ψ1,0, ∂ψ0,1 = 0, ∂ψ1,0 = 0. (5.1.47)

We claim that if θ is a (0, 1)-form and ∂θ = 0, then there exists a function η such that

∂θ = ∂∂η. (5.1.48)
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By Hodge Theory, there exists a smooth function η such that

∂
∗
θ = (∂

∗
∂ + ∂ ∂

∗
)η = ∂

∗
∂η. (5.1.49)

But from ∂(θ − ∂η) = ∂θ = 0, we know (NEED to explain more)

θ − ∂η ∈ ker(∂) ∩ ker(∂
∗
) = ker(□) = ker(∂) ∩ ker(∂∗). (5.1.50)

Thus we get (5.1.48) for θ and η.
For β1,0, we will apply (5.1.48) for β1,0. Thus there exists ρ such that (5.1.45) holds. If α is

real, we can take ρ is real.

Theorem 5.1.9. Let F be a holomorphic line bundle on a connected compact Kähler manifold
M . If Ω is a real, closed (1, 1)-form on M with

[Ω] = c1(F ) ∈ H2(M,R), (5.1.51)

then, up to multiplication by positive constants, there exists a unique Hermitian metric hF on F

such that Ω =
√
−1
2π RF , where RF is the curvature associated to hF .

If a Lie group G acts holomorphically on M such that Ω is G-invariant and that the G-action
can be lifted on a holomorphic action on F , then the above hF is G-invariant.

Proof. For any holomorphic local frame s of F on an open set U , we have

RF (x) = ∂∂ log |s(x)|2hF on U. (5.1.52)

Let hF0 be a Hermitian metric on F and let RF0 be the curvature associated to hF0 . Then by

(5.1.51), Ω −
√
−1
2π RF0 is a real, d-exact, (1, 1)-form on M . By Lemma 5.1.8, there exists a real

function ρ on M such that

Ω =

√
−1

2π
RF0 +

√
−1

2π
∂∂ρ. (5.1.53)

From (5.1.52) and (5.1.53), we know −2π
√
−1Ω is the curvature associated to the metric eρhF0

on F .
Let hF1 be another metric on F such that Ω =

√
−1
2π RF1 . Then there is a real function ρ1 such

that hF1 = eρ1hF . By (5.1.52), we have

∂∂ρ1 = 0. (5.1.54)

Taking the trace of both sides in (5.1.54) we get ∆ρ1 = 0 (NEED to explain more). Thus ρ1 is
a constant function on X.

We establish now the last part of Theorem. For any g ∈ G, g · ∇F is a Hermitian connection

on (F, g∗hF ), we know that the g-action commutes with ∂
F
, thus g ·∇F is the Chern connection

on (F, g∗hF ) and
√
−1

2π
(g · ∇F )2 = g∗Ω = Ω. (5.1.55)

By the first part of Theorem and (5.1.55),

g∗hF = γ(g)hF with γ(g) ∈ R>0, (5.1.56)

and γ(g) is smooth on g. Thus the image γ(G) is a compact subgroup of R>0. But the only
compact subgroup of R>0 is {1}. Thus γ(G) = {1}, i.e., hF is G-invariant.
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As a corollary of Theorem 5.1.9, we get

Theorem 5.1.10. (M,J, ω) be a connected compact Kähler manifold and let L be a holomorphic
line bundle over M such that c1(L) = [ω] ∈ H2(M,R). If a Lie group G acts holomorphically
and symplectically on M , and the G-action can be lifted on a holomorphic action on L, then up
to multiplication by positive constants, there exists a unique G-invariant Hermitian metric hL

on L such that ω =
√
−1
2π RL, here RL is the curvautre of the Chern connection on (L, hL).

Exercise 5.1.1. Let (L, hL,∇L) be a prequantum line bundle on a symplectic manifold (M,ω).
We define

Q : C∞(M) ∋ f −→ Q(f) = −∇L
Xf

+ 2πif ∈ End(C∞(M,L))

here Xf is the Hamiltonian vector field associated with f . Prove that the map Q is a mor-
phism from the Poisson algebra (C∞(M), { }) of (M,ω) into the algebra of derivatives on
End(C∞(M,L)), i.e.,

Q({f, g}) = [Q(f), Q(g)].

5.2 Some facts on compact Lie groups

In this section, we review the structure theory of compact Lie groups, in particular, some facts on
maximal torus and root system of a compact connected Lie group which will be used in Section
5.3.2 and Chapter 6.

5.2.1 Maximal torus

Let G be a compact connected Lie group with Lie algebra g. Let Z(G) be the center of G. Let
T be a maximal torus of G (i.e., if T′ ⊂ G is a torus and T ⊂ T′, then T = T′), with Lie algebra
t. Certainly, for any g ∈ G, gTg−1 is a maximal torus of G.

We explain here some facts on maximal torus and the structure theory of compact Lie groups
without proofs.

Theorem 5.2.1. The T is unique up to conjugation, i.e., if T′ is another maximal torus then
there exists g ∈ G such that T′ = gTg−1. We have

G =
⋃
g∈G

gTg−1, Z(G) =
⋂
g∈G

gTg−1. (5.2.1)

Let N(T) be the normalizer of T in G, i.e.,

N(T) = {g ∈ G : gTg−1 = T}. (5.2.2)

Let W = N(T)/T be the Weyl group. By the maximality of T, the Lie algebra of N(T) coincides
with t. Thus W is a finite group.

An interesting corollary of the conjugation theorem 5.2.1 is

Corollary 5.2.2. [16, Lemma 4.2.5] Two elements of the maximal torus are conjugate in G if
and only if they lie in the same orbit under the action of the Weyl group.

Theorem 5.2.3. If f : G→ H is a surjective homomorphism of compact connected Lie groups.
If T ⊂ G is a maximal torus, so is f(T) ⊂ H. Furthermore ker(f) ⊂ T if and only if ker(f) ⊂
Z(G).
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Theorem 5.2.4. If f : G → H is a surjective homomorphism of compact connected Lie groups
and dimG = dimH, then ker(f) ⊂ Z(G) and if S ⊂ H is a maximal torus, then f−1(S) ⊂ G is
a maximal torus. In particular, f−1(S) is connected and G/f−1(S) ≃ H/S.

Proof. For k ∈ ker(f), g ∈ G, we have

f(kgk−1) = f(k)f(g)f(k−1) = f(g). (5.2.3)

But f : G→ H is local diffeomorphism, thus on a neighborhood U of e ∈ G, we have kgk−1 = g
for any g ∈ U . Thus for any g ∈ G, we get

kgk−1 = g, i.e., k ∈ Z(G). (5.2.4)

Now assume that S ⊂ H is a maximal torus with generating element x. Let y ∈ f−1(x).
Then y is contained in some maximal torus T in G, and since f(T ) is compact abelian and
connected, f(T ) is a torus in H. But S ⊂ f(T ) because x ∈ f(T ). Thus S = f(T ).

Since ker(f) ⊂ Z(G), by (5.2.1), Z(G) is the intersection of all maximal tori in G, so ker(f) ⊂
T . Thus f−1(S) ⊂ T (In fact, for any z ∈ S, there is y1 ∈ T , such that f(y1) = z, thus f−1(z) ⊂ T
as ker(f) ⊂ T ). Thus f−1(S) = T . The projection f |T : T → S of maximal tori is also a covering
map with the same group K = ker(f) of covering transformation.

Certainly, f : G/f−1(S) → H/S is surjective, but if f(y1f
−1(S)) = f(y2f

−1(S)), then
there exists z ∈ S such that f(y1) = f(y2)z, i.e., y−1

2 y1 ∈ f−1(z) ⊂ f−1(S) = T . Thus
f : G/f−1(S) → H/S is bijective.

Theorem 5.2.5. A compact connected Lie group G possesses a finite cover which is isomorphic
to the direct product of a simply connected Lie group G̃ and a torus S. In particular G̃ is compact.

Let T be a maximal torus of G. For the map f : G̃× S → G, the maximal torus f−1(T) has
the form f−1(T) = T̃× S, and T̃ is a maximal torus of G̃, and by Theorem 5.2.4, G̃/T̃ ≃ G/T.

For same Lie algebra g, we can associate many connected Lie groups. However the following
result says that for a compact connected semi-simple Lie group, its universal covering is compact
and its fundamental group is finite.

Theorem 5.2.6. If g is semi-simple which is the Lie algebra of certain compact Lie group, then
we can associate only one simply connected Lie group G which is compact and {G/Z : Z ⊂
Z(G) a subgroup} are all compact connected Lie groups associated with g.

5.2.2 Roots and Weyl chambers

Let G be a compact connected Lie group with Lie algebra g. Let T be a maximum torus of G
with Lie algebra t. Let g∗, t∗ be the dual of g, t.

Let Λ ⊂ t be the integral lattice, and Λ∗ ⊂ t∗ be the lattice of integral forms (or real weight
lattice) defined by

Λ = {a ∈ t : exp(a) = 1}, Λ∗ = {β ∈ t∗ : β|Λ ∈ 2πZ}. (5.2.5)

Then T = t/Λ.
For α ∈ Λ∗, let (gC)α be the subspace of gC := g⊗R C, the complexification of g, defined by

(gC)α = {X ∈ g⊗R C : [H,X] = iα(H)X for all H ∈ t}. (5.2.6)

We call α a root, if (gC)α ̸= 0 and α ̸= 0. Let R be the set of roots, i.e.,

R = {α ∈ Λ∗\{0} : (gC)α ̸= 0}. (5.2.7)
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As for any α ∈ R, (gC)α = (gC)α, we get

α ∈ R if and only if − α ∈ R. (5.2.8)

We denote also (gC)0 = t⊗R C. Clearly, we have (cf. the argument in Corollary 3.3.1)

g⊗R C = t⊗R C⊕
⊕
α∈R

(gC)α, [(gC)α, (gC)β ] ⊂ (gC)α+β . (5.2.9)

We can reformulate (5.2.9) as

g = t⊕ r, with r = [t, g] so that g∗ = t∗ ⊕ r∗. (5.2.10)

Let B be a negative AdG-invariant bilinear form on g which we extend C-bilinearly on gC. If
G is semi-simple, we can take B as the Killing form on g. We denote ⟨ , ⟩ the scalar product on
g and g∗ induced by −B. Let κ : g → g∗ be the isomorphism defined by

κ : g → g∗, x→ −B(x, ·) = ⟨x, ·⟩. (5.2.11)

As t, r are orthogonal with respect to ⟨ , ⟩, we know

κ(t) = t∗, κ(r) = r∗. (5.2.12)

For α ∈ R, set

α∗ = 2κ−1α/ ⟨α, α⟩ ∈ t. (5.2.13)

Then {α∗}α∈R are called inverse roots.

Theorem 5.2.7. For any α ∈ R, (gC)α is an one dimensional complex vector space, and
[(gC)α, (gC)−α] ⊂ t ⊗R C is one dimensional, and there exist unique Hα ∈ [(gC)α, (gC)−α] ∩ it
and Xα ∈ (gC)α such that

(iα,Hα) = 2, −2B(Xα, Xα) = B(Hα, Hα) =
4

⟨α, α⟩
> 0. (5.2.14)

Finally

Hα = [Xα, Xα] = −i α∗. (5.2.15)

Proof. It is standard that (gC)α is an one dimensional complex vector space.
Take 0 ̸= Xα ∈ (gC)α, then Xα ∈ (gC)−α and [Xα, Xα] ∈ it ⊂ t⊗R C. For H ∈ t, by (5.2.6),

we have

B([Xα, Xα], H) = B(Xα, [Xα, H]) = −B(Xα, Xα) (iα,H) . (5.2.16)

From −B(Xα, Xα) > 0 and (5.2.16), we know that [Xα, Xα] is non-zero, thus [(gC)α, (gC)−α] ⊂
t⊗R C is one dimensional.

From (5.2.16), (α, [Xα, Xα]) ̸= 0. Let Hα ∈ [(gC)α, (gC)−α] such that (iα,Hα) = 2. Then
Hα ∈ it. We normalize Xα such that −2B(Xα, Xα) = B(Hα, Hα) > 0.

By taking H = Hα in (5.2.16), we know that the first equality of (5.2.15) holds.
From (5.2.14), the first equality of (5.2.15), and (5.2.16), we get

B(Hα, H) =
1

2
B(Hα, Hα) (iα,H) = −1

2
B(Hα, Hα)B(κ−1(iα), H). (5.2.17)
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Then from (5.2.17), we know

Hα = − i

2
B(Hα, Hα)κ

−1α. (5.2.18)

Finally, by the first equation of (5.2.14) and (5.2.18), we get

⟨α, α⟩ = −B(κ−1α, κ−1α) = (α, κ−1α) =
2(iα,Hα)

B(Hα, Hα)
=

4

B(Hα, Hα)
. (5.2.19)

From (5.2.13), (5.2.18) and (5.2.19), we get the second equality of (5.2.15).

For each α ∈ R, let Hα be the hyperplane orthogonal to α. The hyperplanes {Hα}α∈R devide
t∗ into finitely many convex regions, these are called the Weyl chambers of the root system. A
subset S ⊂ R is called a system of simple roots if S is linearly independent and every root β ∈ R
may be written as

β =
∑
α∈S

mαα, (5.2.20)

with integers mα such that either all mα ≥ 0 or all mα ≤ 0. The elements of S are called simple
roots with respect to S. The associated set R+ of positive roots consists of those roots β whose
coefficients in (5.2.20) are all nonnegative.

In general, an element in a subset R′ ⊂ R is called decomposable in R′ if it can be expressed
as the sum of at least two elements of R′. Otherwise, it is called indecomposable.

Theorem 5.2.8. [16, Theorem 5.4.5] For every Weyl chamber A, we assign the set S as the
indecomposable elements in

R+(A) = {α ∈ R : ⟨α, u⟩ > 0 for all u ∈ A}. (5.2.21)

This map defines a bijection between the set of Weyl chambers and the set of system of simple
roots.

By choosing a system of simple roots S ⊂ R, let R+ be the set of positive roots (then
R = R+ ∪ (−R+) and R+ ∩ (−R+) = ∅). The associated positive Weyl chamber t∗+ ⊂ t∗ is
defined as

t∗+ := {β ∈ t∗ : (β, iHα) = (β, α∗) > 0 for any α ∈ R+} . (5.2.22)

Then for γ ∈ t∗+, we have Gγ = T. Note that if R = ∅, then t∗+ = t∗. By (5.2.9), as real vector
spaces, we have

g = t⊕
⊕
α∈R+

(gC)α. (5.2.23)

Let Γ =
∑
α∈R 2πZα∗ be the free abelian group generated by the inverse roots. Set

ϱ =
1

2

∑
α∈R+

α. (5.2.24)
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Theorem 5.2.9. The Weyl group W acts on t by (5.2.2), and

w · t∗+ ∩ w′ · t∗+ = ∅ if w,w′ ∈W,w ̸= w′, and t∗ = ∪w∈Ww · t∗+. (5.2.25)

For every γ ∈ t∗+, W · γ ∩ t∗+ = {γ}. We have

a) ϱ ∈ t∗+, (ϱ, α
∗) ∈ Z for any α ∈ R.

b) R ⊂ Λ∗, and 2πα∗ ∈ Λ for any α ∈ R, thus Γ ⊂ Λ.
c) The fundamental group π1(G) of G is always abelian, and π1(G) ≃ Λ/Γ.

Note that Γ depends only on the structure of the Lie algebra g, not the group G. But Λ
depends really on the group G.

Set

Λ∗
+ = Λ∗ ∩ t∗+. (5.2.26)

Then the set of the finite dimensional G-irreducible representations is parametrized by the set of
dominant weights Λ∗

+. For γ ∈ Λ∗
+, we denote by V

G
γ the irreducible (finite dimensional complex)

G-representation with highest weight γ. Then V Gγ , γ ∈ Λ∗
+, form a Z-basis of the representation

ring R(G).

5.3 Reductions and prequantizations

For a group action on a prequantum line bundle, we like to know whether the reduced space
is still prequantizable. Due to the topological constraint Theorem 5.1.4, it is not possible in
general. In this section, we explain these data induce naturally a prequantum line bundle on
reduced space at 0 or more generally at a real weight.

5.3.1 Reduction at 0

Let (M,ω) be a symplectic manifold which is prequantized by (L, hL,∇L). Let G be a compact
Lie group with Lie algebra g, which acts symplectically on M and can be lifted on L such that
the G-action preserves (hL,∇L). Let µ : M → g∗ be the moment map defined by (5.1.24).
Moreover, we suppose that G acts freely on µ−1(0).

We recall that by Lemma 2.3.13, 0 is a regular value of µ. Thus µ−1(0) is a submanifold ofM .
By Theorem 2.3.14, there is a natural symplectic form ωG on the reduced spaceMG = G\µ−1(0)
induced by ω. Moreover π : µ−1(0) →MG is a principal G-bundle.

The aim of this section is to construct a Hermitian line bundle (LG, hG,∇LG) over MG such
that (MG, ωG) is prequantized by (LG, hG,∇LG).

For y ∈ MG, let LG,y = C∞(π−1(y), L)G be the space of G-invariant sections of L over
π−1(y). Since G acts freely on µ−1(0), for x ∈ π−1(y), we have π−1(y) = G ·x, and thus we have
an isomorphism

Lx ∋ v −→ {s(gx) := gv} ∈ LG,y = C∞(π−1(y), L)G. (5.3.1)

Thus dimLG,y = 1. Moreover, as π : µ−1(0) →MG is locally trivial, LG is a complex line bundle
over MG. By (5.3.1), we have

C∞(MG, LG) = C∞(µ−1(0), L)G. (5.3.2)

For y ∈MG, s ∈ C∞(MG, LG), x ∈ π−1(y), U ∈ TyMG, we define

hLG(s, s)y := hLx (s(x), s(x)),

∇LG

U s := ∇L
V s, with V ∈ C∞(π−1(y), Tµ−1(0)) such that dπ(V ) = U.

(5.3.3)
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Theorem 5.3.1. The metric hLG on LG is well-defined and ∇LG is a well-defined Hermitian
connection on (LG, h

LG). The symplectic manifold (MG, ωG) is prequantized by (LG, h
LG ,∇LG).

Proof. For s ∈ LG,y, if x
′ ∈ π−1(y), then there exists g ∈ G such that x′ = gx. By (5.3.1),

s(x′) = g · s(x) and as hL is G-invariant, we get

hLx′(s(x′), s(x′)) = hLgx(g · s(x), g · s(x)) = hLx (s(x), s(x)). (5.3.4)

Thus the first equation of (5.3.3) does not depend on the choice of x ∈ π−1(y), and as π :
µ−1(0) →MG is locally trivial, we know hLG is a well-defined C∞ metric on LG.

We verify now ∇LG is well-defined. In fact, if V ′ ∈ C∞(π−1(y), Tµ−1(0)) such that dπ(V ) =
dπ(V ′), then for x ∈ π−1(y), there is K ∈ g such that KM

x = Vx − V ′
x. Hence at x ∈ µ−1(0),

∇L
V s−∇L

V ′s = LKs+ 2iπ(µ,K)s = 0. (5.3.5)

By (5.1.10), (5.3.5) and ∇L, s are G-invariant and dπ(dgV ) = dπ(V ), we get at x ∈ µ−1(0),

(g · (∇L
V s))x = (∇L

dgV s)x = (∇L
V s)x. (5.3.6)

Thus ∇L
V s ∈ C∞(π−1(y), L)G and does not depend on the choice of V .

As ∇L is Hermitian, by (5.3.3) and π : µ−1(0) →MG is locally trivial, ∇LG is also Hermitian
with respect to hLG .

Let U, V be the vector fields defined on some local chart U of MG. Let U
′, V ′ ∈ C∞(π−1(U),

Tµ−1(0)) be their lift. Then we have

[U ′, V ′] ∈ C∞(π−1(U), Tµ−1(0)) and dπ[U ′, V ′] = [dπ(U ′), dπ(V ′)] = [U, V ]. (5.3.7)

By Lemma 2.3.16, (5.3.3) and (5.3.7), we have

RLG(U, V )s = ∇LG

U ∇LG

V s−∇LG

V ∇LG

U s−∇LG

[U,V ]s = ∇L
U ′∇L

V ′s−∇L
V ′∇L

U ′s−∇L
[U ′,V ′]s

= RL(U ′, V ′)s = −2iπω(U ′, V ′)s = −2iπωG(U, V )s. (5.3.8)

The proof of Theorem 5.3.1 is completed.

5.3.2 Reduction at γ ∈ g∗

We recall that for γ ∈ g∗, Oγ := G · γ ⊂ g∗ is the coadjoint orbit, and Gγ is the stabilizer of γ
for Ad∗G-action on g∗.

Assume that Gγ acts freely on µ−1(γ). By Lemmas 2.3.13 and 2.3.17, µ−1(γ) is a manifold.
The reduced space Mγ at γ is defined by

Mγ := G\µ−1(Oγ) = Gγ\µ−1(γ). (5.3.9)

By Theorem 2.3.18, there is a canonical symplectic form ωγ on Mγ , and π : µ−1(γ) → Mγ is a
principal Gγ-bundle.

The aim of this section is, for some particular γ ∈ g∗, to construct a Hermitian line bundle
(Lγ , hLγ ,∇Lγ ) over (Mγ , ωγ) such that (Mγ , ωγ) is prequantized by (Lγ , h

Lγ ,∇Lγ ).
Now we return to our situation where (M,ω) is a symplectic manifold prequantized by

(L, hL,∇L), and G is a compact connected Lie group which acts on M symplectically and the
G-action can be lifted on L such that it preserves hL,∇L. Let µ :M → g∗ be the moment map
defined by the Kostant formula (5.1.24).
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Let 2πγ ∈ Λ∗ ∩ t∗+, then Gγ = T. We suppose that T acts freely on µ−1(γ).
As 2πγ ∈ Λ∗,

T ∋ g = exp(τ) → ργ(g) = exp(2iπ⟨γ, τ⟩) ∈ S1 (5.3.10)

is a well-defined morphism from T to S1. For y ∈Mγ , set

Lγ,y = {s ∈ C∞(π−1(y), L) : g · s = ργ(g)s, for all g ∈ T}. (5.3.11)

Then as in (5.3.1), for x ∈ π−1(y), we have the isomorphism

Lx ∋ v → {sγ,v(gx) = ργ(g
−1)g · v} ∈ Lγ,y , (5.3.12)

thus Lγ is a complex line bundle over Mγ , and

C∞(Mγ , Lγ) = {s ∈ C∞(µ−1(γ), L) : g · s = ργ(g)s, for all g ∈ T}. (5.3.13)

As (5.3.3), we define the metric and connection on Lγ by: for s ∈ C∞(Mγ , Lγ), x ∈ π−1(y),
U ∈ TyMγ ,

hLγ (s, s)y := hLx (s(x), s(x)),

∇Lγ

U s := ∇L
V s, with V ∈ C∞(π−1(y), Tµ−1(γ)) such that dπ(V ) = U.

(5.3.14)

Theorem 5.3.2. The metric hLγ on Lγ is well-defined and ∇Lγ is a well-defined Hermitian
connection on (Lγ , h

Lγ ). The symplectic manifold (Mγ , ωγ) is prequantized by (Lγ , h
Lγ ,∇Lγ ).

Proof. By (5.3.11), hLx (s(x), s(x)) does not depend on the choice of x ∈ π−1(y).
We need to verify ∇Lγ is a well-defined connection. In fact, by (5.1.24), (5.3.13) and (5.3.14),

for s ∈ C∞(Mγ , Lγ),K ∈ t, we have

∇L
KM s = LKs+ 2iπ(µ,K)s = 0. (5.3.15)

Thus by the same argument as in (5.3.5), ∇Lγ is well-defined. Moreover ∇Lγ is Hermitian with
respect to hLγ . By (5.3.14), the analogue of (5.3.8) holds for ∇Lγ .

The proof of Theorem 5.3.2 is completed.

Remark 5.3.3. If 2πγ ∈ Λ∗
+ \Λ∗ ∩ t∗+, then T is a strictly subgroup of Gγ , but γ defines a unique

morphism ργ : Gγ → S1 such that its restriction to T is given by (5.3.10) (cf. Chapter 6). Thus
the construction here also works in this situation.

As the second proof of Theorem 2.3.18, we will give another construction based on the
coadjoint orbit. We give first some examples.

Example 5.3.4. Let G be a compact connected Lie group. The left action Lh for h ∈ G induces
a left action Lh on T ∗G. For h, g ∈ G, β ∈ g∗, Y ∈ TgG, set

Lh · (g, β) = (hg, β), (L∗
g−1β, Y ) := (β, dLg−1Y ). (5.3.16)

Then Lh defines the left action of G on G× g∗ and the map

ΦL : G× g∗ ∋ (g, β) → (g, L∗
g−1β) ∈ T ∗G, (5.3.17)

is a G-equivariant diffeomorphism for the left action. We apply now the construction of Example
5.1.5 to G× g∗.


