Let $\theta \in \Omega^1(G, \mathfrak{g})$ be the canonical 1-form with values in \mathfrak{g} , that is for $g \in G, X \in T_gG$, we have

$$\theta_g(X) = dL_{g^{-1}}X \in T_eG = \mathfrak{g}.$$
(5.3.18)

We denote also $\theta = g^{-1}dg$. We identify $X, Y \in \mathfrak{g}$ to the left invariant vector fields X, Y on G, then $\theta(X), \theta(Y)$ are constant on G, and

$$(d\theta)(X,Y) = X\theta(Y) - Y\theta(X) - \theta([X,Y]) = -[X,Y].$$
 (5.3.19)

For $\vartheta_1, \vartheta_2 \in \Omega^{\bullet}(G), u, v \in \mathfrak{g}$, we define

$$[\vartheta_1 \otimes u, \vartheta_2 \otimes v] = \vartheta_1 \wedge \vartheta_2 \otimes [u, v].$$
(5.3.20)

Then we can reformulate (5.3.19) as

$$d\theta = -\frac{1}{2}[\theta, \theta]. \tag{5.3.21}$$

Let $\pi_L : G \times \mathfrak{g}^* \to G$ and $\pi : T^*G \to G$ be the natural projections, then $\pi \circ \Phi_L = \pi_L$ and $L_g \circ \pi_L = \pi_L \circ L_g$. We denote by p the tautological section of \mathfrak{g}^* . By (1.2.42), for $(g, p) \in G \times \mathfrak{g}^*$, $X \in T_{(g,p)}(G \times \mathfrak{g}^*)$, we have

$$(\Phi_L^*\lambda)_{(g,p)}(X) = \langle L_{g^{-1}}^*p, d\pi d\Phi_L(X) \rangle = \langle p, dL_{g^{-1}}d\pi_L(X) \rangle = \langle p, (\pi_L^*\theta)(X) \rangle.$$
(5.3.22)

We note that λ is invariant under diffeomorphisms of G. In particular λ is left and right invariant. By (5.3.21) and (5.3.22), the symplectic form ω on $G \times \mathfrak{g}^*$ ($\simeq T^*G$) is given by

$$\omega = -d(\Phi_L^*\lambda) = -\langle dp, \pi_L^*\theta \rangle - \langle p, \pi_L^*d\theta \rangle = -\langle dp, \pi_L^*\theta \rangle + \frac{1}{2}\langle p, \pi_L^*[\theta, \theta] \rangle.$$
(5.3.23)

We will call the G-action on M = G defined by $G \times M \ni (h,g) \to gh^{-1} \in M$ as R^{-1} -action of G on G. We define the $G \times G$ -action on G by

$$I_{g_1,g_2}g = g_1gg_2^{-1} \quad \text{for } g_1,g_2,g \in G.$$
(5.3.24)

It induces a $G \times G$ -action on T^*G , and under the identification (5.3.17), we know by (2.3.42), for $(g, \beta) \in G \times \mathfrak{g}^*$,

$$I_{g_1,g_2}(g,\beta) = (I_{g_1,g_2}g, L^*_{g_1gg_2^{-1}}(d(I_{g_1,g_2})^{-1})^*L^*_{g^{-1}}\beta) = (I_{g_1,g_2}g, \operatorname{Ad}^*_{g_2}\beta),$$
(5.3.25)

as for $X \in \mathfrak{g}$, by (5.3.16) and (5.3.24), we have

$$(L_{g_1gg_2^{-1}}^*(d(I_{g_1,g_2})^{-1})^*L_{g^{-1}}^*\beta, X) = (\beta, dL_{g^{-1}}dL_{g_1^{-1}}dR_{g_2}dL_{g_1gg_2^{-1}}X) = (\beta, \operatorname{Ad}_{g_2}\beta, X) = (\operatorname{Ad}_{g_2}^*\beta, X). \quad (5.3.26)$$

For $X \in \mathfrak{g}$, as in (2.2.1), let X^L , X^R be the vector fields on $G \times \mathfrak{g}^*$ induced by X for the left action (5.3.16) and by X for the right action on G. By (5.3.25), for $g \in G, \beta \in \mathfrak{g}^*$,

$$X_{(g,\beta)}^{L} = (dR_g(X), 0), \quad X_{(g,\beta)}^{R} = (dL_g(X), -\mathrm{ad}_X^*\beta) \in T_g G \times \mathfrak{g}^*.$$
(5.3.27)

Thus the vector field on $G \times \mathfrak{g}^*$ induced by $(X, Y) \in T_{(e,e)}(G \times G) = \mathfrak{g} \oplus \mathfrak{g}$, for the action (5.3.25) is

$$(X,Y)_{(g,\beta)}^{G \times \mathfrak{g}^*} = X_{(g,\beta)}^L - X_{(g,\beta)}^R.$$
(5.3.28)

Let $\mu_L: G \times \mathfrak{g}^* \to \mathfrak{g}^*, \ \mu_R: G \times \mathfrak{g}^* \to \mathfrak{g}^*$ be defined by

$$\mu_L(g,\beta) = \operatorname{Ad}_a^*\beta, \quad \mu_R(g,\beta) = -\beta.$$
(5.3.29)

By (2.3.46), (5.3.27)–(5.3.29), the moment map $\mu : G \times \mathfrak{g}^* \to (\mathfrak{g} \oplus \mathfrak{g})^*$ for the $G \times G$ -action (5.3.25) on T^*G is given by

$$\left(\mu, (X, Y)\right)_{(g,\beta)} = (L_{g^{-1}}^*\beta, d\pi(X, Y)^{T^*G}) = (\beta, dL_{g^{-1}}d\pi_L(X, Y)^{G \times \mathfrak{g}^*})$$
$$= (\beta, \operatorname{Ad}_{g^{-1}}X - Y) = (\mu_L, X)_{(g,\beta)} + (\mu_R, Y)_{(g,\beta)}.$$
(5.3.30)

Thus the moment map μ is given by

$$\mu = (\mu_L, \mu_R) : G \times \mathfrak{g}^* \to (\mathfrak{g} \oplus \mathfrak{g})^*.$$
(5.3.31)

By Proposition 2.3.19 and (5.3.24), we know μ_L (resp. μ_R) is the moment map of the left (resp. R^{-1}) action of G on T^*G .

Now we consider the symplectic reduction with respect to μ_R . For $\gamma \in \mathfrak{g}^*$, by (5.3.29),

$$\mu_R^{-1}(-\gamma) = G \times \{\gamma\} \subset G \times \mathfrak{g}^* \quad \text{and} \ R_h^{-1}(g,\gamma) = (gh^{-1},\gamma) \text{ for } h \in G_\gamma.$$
(5.3.32)

Let $\pi_R : \mu_R^{-1}(-\gamma) \to M_{-\gamma} = \mu_R^{-1}(-\gamma)/G_{\gamma}$ be the natural projection with R^{-1} -action of G_{γ} on $\mu_R^{-1}(-\gamma)$. Then we can identify $M_{-\gamma}$ with the coadjoint orbit by

$$\varphi_1: M_{-\gamma} \ni [g, \gamma] \to \operatorname{Ad}_g^* \gamma \in \mathcal{O}_\gamma = G \cdot \gamma.$$
(5.3.33)

Now by (5.3.33), the left action on G induces the Ad^{*}-action on \mathcal{O}_{γ} , thus from (2.2.3),

$$d(\varphi_1 \circ \pi_R) X_{(g,\gamma)}^L = \frac{\partial}{\partial t} |_{t=0} \varphi_1 \circ \pi_R(e^{tX}g, -\gamma) = \frac{\partial}{\partial t} |_{t=0} \mathrm{Ad}_{e^{tX}}^* \mathrm{Ad}_g^* \gamma$$
$$= \mathrm{ad}_X^* \mathrm{Ad}_g^* \gamma = X_{\mathrm{Ad}_g^* \gamma}^{\mathcal{O}_\gamma}. \quad (5.3.34)$$

By Theorem 2.3.18, (2.1.20), (5.3.18), (5.3.23) and (5.3.27), we get for $X, Y \in \mathfrak{g}$,

$$\omega_{\gamma}(X^{\mathcal{O}_{\gamma}}, Y^{\mathcal{O}_{\gamma}})_{\mathrm{Ad}_{g}^{*}\gamma} = \omega(X^{L}, Y^{L})_{(g,\gamma)}$$

= $(\gamma, [\theta(dR_{g}X), \theta(dR_{g}Y)]) = (\gamma, [\mathrm{Ad}_{g^{-1}}X, \mathrm{Ad}_{g^{-1}}Y])$
= $(\mathrm{Ad}_{g}^{*}\gamma, [X, Y]).$ (5.3.35)

From (5.3.35), ω_{γ} is exactly the symplectic form on \mathcal{O}_{γ} defined in (2.3.51). By Theorem 2.3.18, the associated moment map on $(\mathcal{O}_{\gamma}, \omega_{\gamma})$ is induced by μ_L :

$$(\mu^{\mathcal{O}_{\gamma}}, X)_{\mathrm{Ad}_{g}^{*}\gamma} = (\mu_{L}, X)_{(g,\gamma)} = (\mathrm{Ad}_{g}^{*}\gamma, X).$$
(5.3.36)

Thus we recover Proposition 2.3.9 by using the reduction from $G \times \mathfrak{g}^*$.

Now we suppose that $2\pi\gamma \in \Lambda^* \cap \mathfrak{t}_+^*$. Then $G_\gamma = \mathbb{T}$. Let ρ_γ be the representation of \mathbb{T} defined by

$$\rho_{\gamma}: \mathbb{T} \ni g = \exp(\tau) \to e^{2i\pi\langle\gamma,\tau\rangle} \in \mathbb{S}^1.$$
(5.3.37)

The $G \times G$ -action on $L = \mathbb{C}$ is defined by $I_{g_1,g_2} \cdot \mathbf{1} = \mathbf{1}$ as explained after (5.1.21). Thus $s \in L_{\gamma,y}$ means that $s \in \mathscr{C}^{\infty}(\pi^{-1}(y), \mathbb{C})$ and $s(xh^{-1}) = \rho_{\gamma}(h^{-1})s(x)$ for $x \in \pi^{-1}(y), h \in \mathbb{T}$. In other words, L_{γ} is the quotient space of $G \times \mathbb{C}$ by the \mathbb{T} -action defined by: for $h \in \mathbb{T}, (g, v) \in G \times \mathbb{C}$,

$$h(g,v) = (gh, \rho_{\gamma}(h)v).$$
 (5.3.38)

Thus L_{γ} is the line bundle $G \times_{\rho_{\gamma}} \mathbb{C}$ on G/\mathbb{T} associated with the principal \mathbb{T} -bundle $G \to G/\mathbb{T}$ and the representation ρ_{γ} . Let $\nabla^{L_{\gamma}}$ be the connection constructed in (5.3.14). By Theorem 5.3.2, we have

$$c_1(L_\gamma, \nabla^{L_\gamma}) = \omega_\gamma. \tag{5.3.39}$$

In fact, we will show in Chapter 6 that $(\mathcal{O}_{\gamma}, \omega_{\gamma})$ is a Kähler manifold, and L_{γ} is a holomorphic line bundle on \mathcal{O}_{γ} .

Theorem 5.3.5 (Borel-Weil-Bott). If $2\pi\gamma \in \Lambda_+^*$, we have

$$H^{0,j}(\mathcal{O}_{\gamma}, L_{\gamma}) = 0, \quad for \ j \ge 1,$$
 (5.3.40)

and $H^{0,0}(\mathcal{O}_{\gamma}, L_{\gamma})$, the space of holomorphic sections of L_{γ} on \mathcal{O}_{γ} , is the irreducible representation associated with highest weight $2\pi\gamma$.

We know that $(M \times \mathcal{O}_{\gamma}, \omega + \omega_{\gamma})$ is prequantized by $L \otimes L_{\gamma}$, the tensor product of the natural lifts of L and L_{γ} on $M \times \mathcal{O}_{\gamma}$. By applying Theorem 5.3.1 for $M \times \mathcal{O}_{\gamma}$, we then recover the symplectic reduction at $-\gamma$ and its prequantization line bundle.

5.4Kähler prequantizations and reductions

Let (M, ω) be a symplectic manifold, and let G be a compact Lie group with Lie algebra \mathfrak{g} . We suppose that G acts on M Hamiltonianly with moment map $\mu: M \to \mathfrak{g}^*$.

We assume that G acts freely on $Y = \mu^{-1}(0)$. For $x \in M$, set

$$\mathfrak{g}_x^M = \{ K_x^M \in T_x M : K \in \mathfrak{g} \}.$$
(5.4.1)

Then it forms a vector bundle \mathfrak{g}^M on Y. For simplify, we denote $\mathfrak{g}^Y = \mathfrak{g}^M|_Y$.

Let J be a G-invariant, compatible almost complex structure on (M, ω) . Then $g^{TM} = \omega(\cdot, J \cdot)$ is a G-invariant metric on TM, and we denote by \perp to mean the orthogonality with respect to q^{TM} . Let $T^H Y$ be the orthogonal complement of \mathfrak{g}^Y in TY with respect to q^{TM} .

Proposition 5.4.1. The following G-invariant orthogonal decomposition of vector bundles on Y with respect to q^{TM} holds:

$$TM|_Y = T^H Y \oplus \mathfrak{g}^Y \oplus J\mathfrak{g}^Y.$$
(5.4.2)

Moreover, $T^H Y$ is J-invariant, and $T^H Y \perp_{\omega} (\mathfrak{g}^Y \oplus J \mathfrak{g}^Y)$.

Proof. By (2.3.76), we get

$$\mathfrak{g}^Y \subset TY,$$
 $(TY)^{\perp_\omega} = \mathfrak{g}^Y.$ (5.4.3)

By (5.4.3), $g^{TM} = \omega(\cdot, J \cdot)$ and $\mathfrak{g}^Y \perp T^H Y$, we get

$$J\mathfrak{g}^Y = (TY)^{\perp}, \quad \mathfrak{g}^Y \perp T^H Y, \quad \text{i.e., } \mathfrak{g}^Y \perp_{\omega} TY, \quad J\mathfrak{g}^Y \perp_{\omega} T^H Y.$$
 (5.4.4)

As \mathfrak{g}^Y is *G*-invariant, thus $T^H Y$ and $J\mathfrak{g}^Y$ are *G*-invariant. From (5.4.4) and $TY = T^H Y \oplus \mathfrak{g}^Y$, we get the G-invariant orthogonal decomposition (5.4.2).

If $u \in T^H Y$, then $u \perp (\mathfrak{g}^Y \oplus J\mathfrak{g}^Y)$, thus $Ju \perp (\mathfrak{g}^Y \oplus J\mathfrak{g}^Y)$. This and (5.4.2) imply $J(T^H Y) \subset$ $T^H Y$. By (5.4.4), we know $T^H Y \perp_{\omega} (\mathfrak{g}^Y \oplus J \mathfrak{g}^Y)$.

The proof of Proposition 5.4.1 is completed.

For a G-vector bundle E on Y, set

$$E_{G,y} = \{ s \in \mathscr{C}^{\infty}(\pi^{-1}(y), E) : g \cdot s = s \text{ for any } g \in G \}, \text{ for } y \in M_G,$$

$$F = Y \times_G \mathfrak{g}.$$
(5.4.5)

Let $x \in Y$, $y \in M_G$ such that $\pi(x) = y$, for $U \in T_y M_G$, let $U^H \in T_x^H Y$ be the lifting of U, i.e., the unique $U^H \in T_x^H Y$ such that $d\pi(U^H) = U$, then automatically, $U^H \in \mathscr{C}^{\infty}(Y, T^H Y)^G$. This gives the canonical isomorphism $(T^H Y)_G \to TM_G$. From (5.4.2), we get on M_G ,

$$(TM|_Y)_G \simeq TM_G \oplus (F \oplus F^*). \tag{5.4.6}$$

Let $J_{G,y}: T_yM_G \to T_yM_G$ be defined by

$$J_G U = d\pi (J U^H). \tag{5.4.7}$$

As $JU^H \in \mathscr{C}^{\infty}(Y, T^HY)^G$, we know that $d\pi (JU^H)_x$ does not depend on the choice of $x \in \pi^{-1}(y)$, thus J_GU is well-defined.

Theorem 5.4.2. The J_G in (5.4.7) is a compatible almost complex structure on (M_G, ω_G) . Moreover, if J is integrable, J_G is also integrable. In particular, if (M, J, ω) is a Kähler manifold, then (M_G, J_G, ω_G) is also a Kähler manifold.

Proof. For $y \in M_G$, $U \in T_y M_G$, since J preserves $T^H Y$, $JU^H \in T_x^H Y$ for $x \in \pi^{-1}(y)$. Thus $JU^H = (d\pi(JU^H))^H = (J_G U)^H$. Then by (5.4.7), we have

$$J_G^2 U = J_G \, d\pi (J U^H) = d\pi (J^2 U^H) = -U.$$
(5.4.8)

This means J_G is an almost complex structure on M_G .

On the other hand, for $U, V \in T_y M_G$, we have

$$\omega_G(J_GU, J_GV) = \omega(JU^H, JV^H) = \omega(U^H, V^H) = \omega_G(U, V),$$

$$\omega_G(U, J_GU) = \omega(U^H, JU^H) > 0 \quad \text{if } U \neq 0.$$
(5.4.9)

Thus, J_G is a compatible almost complex structure on (M_G, ω_G) .

We suppose now J is integrable. If $u, v \in \mathscr{C}^{\infty}(M_G, T^{(1,0)}M_G)$, then there exist $U, V \in \mathscr{C}^{\infty}(M_G, TM_G)$ such that

$$u = U - \sqrt{-1}J_G U, \quad v = V - \sqrt{-1}J_G V.$$
 (5.4.10)

By (5.4.7), $(J_G U)^H = J U^H$, thus

$$u^{H} = U^{H} - \sqrt{-1}JU^{H}, \quad v^{H} = V^{H} - \sqrt{-1}JV^{H} \in T^{(1,0)}M \cap (TY \otimes_{\mathbb{R}} \mathbb{C}).$$
(5.4.11)

As both $T^{(1,0)}M$, $TY \otimes_{\mathbb{R}} \mathbb{C}$ are integrable, we get

$$[u^H, v^H] \in T^{(1,0)} M \cap (TY \otimes_{\mathbb{R}} \mathbb{C}), \tag{5.4.12}$$

i.e., there exists $W \in TM$ such that $[u^H, v^H] = W - \sqrt{-1}JW$. Let P^{TY} be the orthogonal projection from TM onto TY via (5.4.2). Then from (5.4.2),

$$[u,v] = d\pi [u^H, v^H] = d\pi P^{TY} W - \sqrt{-1} d\pi P^{TY} J W$$

= $d\pi P^{TY} W - \sqrt{-1} J_G d\pi P^{TY} W \in T^{(1,0)} M_G.$ (5.4.13)

From the Newlander-Nirenberg theorem, (5.4.13) means J_G is integrable. The proof of Theorem 5.4.2 is completed.

In the rest of this section, let (M, J, ω) be a Kähler manifold prequantized by a holomorphic Hermitian line bundle (L, h^L) with the Chern connection ∇^L . Let a compact Lie group G act holomorphically and symplectically on M, and the G-action can be lifted on a holomorphic action on L. Then by Theorem 5.1.10, the G-action preserves the metric h^L . Let $\mu : M \to \mathfrak{g}^*$ be the associated moment map.

Theorem 5.4.3. If G acts freely on $\mu^{-1}(0)$, then (L_G, h^{L_G}) in Theorem 5.3.1 is a holomorphic Hermitian line bundle over M_G and ∇^{L_G} is the Chern connection on (L_G, h^{L_G}) .

Proof. We decompose ∇^{L_G} into holomorphic part and anti-holomorphic part,

$$\nabla^{L_G} = (\nabla^{L_G})^{1,0} + (\nabla^{L_G})^{0,1}.$$
(5.4.14)

From Theorem 5.4.2, ω_G , and so R^{L_G} is a (1, 1)-form, thus

$$((\nabla^{L_G})^{0,1})^2 = 0. (5.4.15)$$

Now, for $s \in \mathscr{C}^{\infty}(M_G, L_G)$, we define

$$\overline{\partial}^{L_G}s := (\nabla^{L_G})^{0,1}s. \tag{5.4.16}$$

Let s_0 be a local frame of L_G near $x_0 \in M_G$. Then there is a (0, 1)-form a near x_0 such that $(\nabla^{L_G})^{0,1}s_0 = as_0$. From (5.4.15),

$$0 = ((\nabla^{L_G})^{0,1})^2 s_0 = (\overline{\partial}a) s_0.$$
(5.4.17)

Thus $\overline{\partial}a = 0$ near x_0 . By the $\overline{\partial}$ -Lemma, there exists a function b near x_0 such that $\overline{\partial}b = -a$, i.e., $(\overline{\partial}b)s_0 + (\nabla^{L_G})^{0,1}s_0 = 0$. This means that (5.4.16) defines a holomorphic structure on L_G and $e^b s_0$ is a holomorphic frame of L_G .

The proof of Theorem 5.4.3 is completed.

As the G-action commutes with the Dolbeault operator $\overline{\partial}^L$, we know for $j \ge 0$, the *j*-th Dolbeault cohomology group $H^{0,j}(M,L)$ (cf. (4.1.38)) is a G-representation. As in (4.2.80), we denote by V^G the G-invariant part of a G-representation V.

Now we can state the "quantization commutes with reduction" in the holomorphic case which was established by Guillemin-Sternberg for j = 0, and Teleman, Zhang for j > 0.

Theorem 5.4.4. If M is compact and if G acts freely on $\mu^{-1}(0)$, then the map $\psi : \Omega^{0,\bullet}(M,L)^G \to \Omega^{0,\bullet}(M_G, L_G)$, by the restriction first on $\mu^{-1}(0)$, then using (5.3.2) and (5.4.6) to induce a section on M_G , induces an isomorphism

$$H^{0,j}(M,L)^G \simeq H^{0,j}(M_G,L_G) \quad \text{for any } j \ge 0.$$
 (5.4.18)

Exercise 5.4.1. Let G be a compact Lie group with Lie algebra \mathfrak{g} . Let $\pi: Y \to G \setminus Y = B$ be a G-principal bundle with fiberwise tangent bundle TZ. Let (E, h^E, ∇^E) be a Hermitian vector bundle with Hermitian connection ∇^E and curvature R^E . Let $T^H Y$ be a horizontal subbundle of TY such that

$$TY = T^H Y \oplus TZ. \tag{5.4.19}$$

Let $P^{TZ}: TY = T^H Y \oplus TZ \to TZ$ be the projection. Let $\theta \in \Omega^1(Y, \mathfrak{g})$ be defined as $\theta(T^H Y) = 0$, and $\theta(K^Y) = K$ for $K \in \mathfrak{g}$. We suppose that all geometric objects are G-equivariant. Then the horizontal bundle $T^H X$ defines a connection θ of the principal G-bundle $\pi : Y \to B$. The curvature of the fibration $\pi : Y \to B$ associated with θ is defined by: for $U, V \in \mathscr{C}^{\infty}(B, TB)$,

$$\Omega(U^{H}, V^{H}) = -\theta([U^{H}, V^{H}]), \qquad (5.4.20)$$

here $U^H \in \mathscr{C}^{\infty}(Y, T^H Y)$ is the unique lift of U such that $d\pi(U^H) = U$. As in (5.1.24), we define $\mu^E \in \mathscr{C}^{\infty}(Y, \mathfrak{g}^* \otimes \operatorname{End}(E))$ by: for $K \in \mathfrak{g}$,

$$2\pi\sqrt{-1}\mu^{E}(K) = \nabla^{E}_{K^{X}} - L_{K}.$$
(5.4.21)

We still call μ^E the moment map associated to the *G*-action on *E*.

- 1. Verify that E_G in (5.4.5) defines a vector bundle on B, and h^E induces a Hermitian metric h^{E_G} on E_G .
- 2. For $s \in \mathscr{C}^{\infty}(B, E_G) = \mathscr{C}^{\infty}(Y, E)^G$, $U \in \mathscr{C}^{\infty}(B, TB)$, we define $\nabla_U^{E_G} s := \nabla_U^E s.$ (5.4.22)

Verify that ∇^{E_G} is a Hermitian connection on (E_G, h^{E_G}) . Its curvature R^{E_G} is given by

$$R^{E_G}(U,V) = R^E(U^H, V^H) - 2\pi\sqrt{-1}\mu^E(\Omega(U^H, V^H)).$$
(5.4.23)

Exercise 5.4.2. We put in the context of Theorem 5.4.3. Let E be a holomorphic vector bundle on M.

- 1. For the fibration $\pi : \mu^{-1}(0) \to M_G$, (5.4.5) defines a holomorphic vector vector bundle E_G on M_G . (Hint: We only need to verify $(\overline{\partial}^{E_G})^2 = 0$ by the Koszul-Malgrange integrability theorem.)
- 2. Let h^E be a *G*-invariant metric on *E*, and ∇^E be the Chern connection on (E, h^E) . Then (5.4.22) induces the Chern connection on (E_G, h^{E_G}) .
- 3. Verify that $(T^{(1,0)}M)_G$ is a holomorphic vector bundle on M_G , and the map $d\pi : (T^{(1,0)}M)_G \to T^{(1,0)}M_G$ is holomorphic and surjective.
- *Exercise* 5.4.3 (Symplectic cut). 1. In Section 5.3.1, if $G \times H$ acts Hamiltonianly on (M, ω) and (L, ∇^L) , then H acts Hamiltonianly on $(M_G, \omega_G, L_G, \nabla^{L_G})$.
 - 2. Assume the Hamiltonian S¹-manifold (M, ω) is prequantizable by the prequantum line bundle (L, h^L, ∇^L) .

Let **1** be the canonical section of the trivial line bundle $F = \mathbb{C}$ on \mathbb{C} . We define \mathbb{S}^1 action on (\mathbb{C}, F) by $g \cdot \mathbf{1}_y = \mathbf{1}_{g \cdot y}$. Then $G = \mathbb{S}^1$ -acts on $L \otimes F$ on $M \times \mathbb{C}$ by $g \cdot (\sigma_x \otimes \mathbf{1}_y) = (g \cdot \sigma_x) \otimes \mathbf{1}_{g \cdot y}$ and the $H = \mathbb{S}^1$ -action on $L \otimes F$ on $M \times \mathbb{C}$ by $g \cdot (\sigma_x \otimes \mathbf{1}_y) = (g \cdot \sigma_x) \otimes \mathbf{1}_y$ for $g \in \mathbb{S}^1$, $x \in M, y \in \mathbb{C}, \sigma_x \in L_x$.

Conclude that $M_{\geq 0}$ as defined in Section 2.4 is prequantized by $(L_{\geq 0}, h^{L_{\geq 0}}, \nabla^{L_{\geq 0}})$ such that

$$(L_{\geq 0}, h^{L_{\geq 0}}, \nabla^{L_{\geq 0}})|_{M_{\mathbb{S}^1}} = (L_{\mathbb{S}^1}, h^{L_{\mathbb{S}^1}}, \nabla^{L_{\mathbb{S}^1}}).$$
(5.4.24)

3. We can define $(M_{\geq n}, L_{\geq n})$ by using the prequantum line $L \otimes \mathbb{C}_{[-n]}$, here $\mathbb{C}_{[-n]}$ is the trivial line bundle with trivial connection and it's a \mathbb{S}^1 -representation \mathbb{C} with weight -n. Then normal bundle $N_{M_{\mathbb{S}^1}/M_{\geq 0}}$ of $M_{\mathbb{S}^1}$ in $M_{\geq 0}$ is given by $\mu^{-1}(0) \times_{\mathbb{S}^1} \mathbb{C}_{[-1]}$, and $H = \mathbb{S}^1$ acts on $N_{M_{\mathbb{S}^1}/M_{\geq 0}}$ by $g \cdot [x, y] = [g \cdot x, y]$ for $x \in \mu^{-1}(0), y \in \mathbb{C}$, thus $H = \mathbb{S}^1$ acts as identity on M_n and L_n as the fiberwise representation with weight n.

5.5 An infinite dimensional example: moduli spaces of flat connections

Let Σ be a compact oriented surface, and let (E, h^E) be a Hermitian vector bundle on Σ . Let \mathcal{A} be the affine space of all Hermitian connection on (E, h^E) . Note that \mathcal{A} is of infinite dimension. For a fixed Hermitian connection ∇_0^E on (E, h^E) , \mathcal{A} can be expressed as

$$\mathcal{A} = \nabla_0^E + \Omega^1(\Sigma, \operatorname{End}^{\operatorname{anti}}(E)).$$
(5.5.1)

Formally, the tangent space $T\mathcal{A}$ takes the form

$$T_{\nabla_0^E} \mathcal{A} = \Omega^1(\Sigma, \operatorname{End}^{\operatorname{anti}}(E)).$$
(5.5.2)

For $X, Y \in \Omega^1(\Sigma, \operatorname{End}^{\operatorname{anti}}(E))$, we define a 2-form ω by

$$\omega(X,Y) = \int_{\Sigma} \operatorname{Tr}^{E}[X \wedge Y], \qquad (5.5.3)$$

where $\operatorname{Tr}^{E}[X \wedge Y]$ is understood as follows: if $X = \alpha \otimes A$, $Y = \beta \otimes B$ with $\alpha, \beta \in \Omega^{1}(\Sigma)$ and $A, B \in \operatorname{End}(E)$, then $X \wedge Y = \alpha \wedge \beta \otimes AB$ and

$$\operatorname{Tr}^{E}[X \wedge Y] = \alpha \wedge \beta \ \operatorname{Tr}^{E}[AB].$$
(5.5.4)

One verifies directly that ω defines a symplectic form on \mathcal{A} .

Set G = U(n) and $E = P(U(n)) \times_{\rho} \mathbb{C}^n$ with P(U(n)) the principle U(n)-bundle on Σ . Let ΣG be the space of all smooth maps from Σ to G. Then ΣG is an infinite dimensional Lie group which we call the gauge group of E, and it acts smoothly on \mathcal{A} by: for $g \in \Sigma G$ and $\nabla^A \in \mathcal{A}$,

$$g \cdot \nabla^{A} := g \nabla^{A} g^{-1} = \nabla^{A} - (\nabla^{A} g) g^{-1}.$$
(5.5.5)

For $g \in \Sigma G$ and $X, Y \in \Omega^1(\Sigma, \operatorname{End}^{\operatorname{anti}}(E))$, we have

$$\omega(g \cdot X, g \cdot Y) = \omega(gXg^{-1}, gYg^{-1}) = \int_{\Sigma} \operatorname{Tr}^{E}[gXg^{-1} \wedge gYg^{-1}]$$
$$= \int_{\Sigma} \operatorname{Tr}^{E}[X \wedge Y] = \omega(X, Y).$$
(5.5.6)

That is, ΣG preserves the symplectic form ω . Denote \mathfrak{g} by the Lie algebra of G. Then the Lie algebra of ΣG is $\Sigma \mathfrak{g} = C^{\infty}(\Sigma, \mathfrak{g})$. Take $X \in \Sigma \mathfrak{g}$, by (5.5.5), the induced vector field $X^{\mathcal{A}} \in C^{\infty}(\mathcal{A}, T\mathcal{A})$ is given by

$$X_{\nabla^A}^{\mathcal{A}} = \frac{d}{dt}\Big|_{t=0} e^{tX} \cdot \nabla^A = -\nabla^A X \in \Omega^1(\Sigma, \operatorname{End}^{\operatorname{anti}}(E)).$$
(5.5.7)

Denote by F^A the curvature of ∇^A , i.e.,

$$F^{A} = (\nabla^{A})^{2} \in \Omega^{2}(\Sigma, \operatorname{End}^{\operatorname{anti}}(E)).$$
(5.5.8)

We can identify $\Omega^2(\Sigma, \operatorname{End}^{\operatorname{anti}}(E))$ with $(\Sigma \mathfrak{g})^*$ as follows:

$$\Omega^{2}(\Sigma, \operatorname{End}^{\operatorname{anti}}(E)) \simeq (\Sigma \mathfrak{g})^{*}$$
$$\alpha \otimes A \longmapsto \langle \alpha \otimes A, B \rangle = \int_{\Sigma} \alpha \operatorname{Tr}^{E}[AB] \quad \text{for } B \in \Sigma \mathfrak{g}.$$
(5.5.9)

Under the identification, the curvature F^A can be viewed as an element of $(\Sigma \mathfrak{g})^*$. We now define

$$\mu: \mathcal{A} \to (\Sigma \mathfrak{g})^*, \ \nabla^A \longmapsto F^A.$$
(5.5.10)

That is,

$$\langle \mu(\nabla^A), X \rangle = \int_{\Sigma} \operatorname{Tr}^E[F^A X] \text{ for } X \in \Sigma \mathfrak{g}.$$
 (5.5.11)

Theorem 5.5.1. μ is a moment map for the ΣG -action on (\mathcal{A}, ω) . *Proof.* Denote by $F^{g \cdot A}$ the curvature of the connection $g \cdot \nabla^A$, i.e.,

$$F^{g \cdot A} = (g \nabla^A g^{-1})^2 = g (\nabla^A)^2 g^{-1} = g F^A g^{-1}.$$
 (5.5.12)

Then

$$\langle \mu(g \cdot \nabla^A), X \rangle = \langle F^{g \cdot A}, X \rangle = \int_{\Sigma} \operatorname{Tr}^E[F^{g \cdot A} \wedge X] = \int_{\Sigma} \operatorname{Tr}^E[F^A \wedge g^{-1}Xg]$$
$$= \langle \mu(\nabla^A), \operatorname{Ad}_{g^{-1}}X \rangle = \langle \operatorname{Ad}_g^* \mu(\nabla^A), X \rangle.$$
(5.5.13)

That is

$$\mu(g \cdot \nabla^A) = \mathrm{Ad}_g^* \mu(\nabla^A). \tag{5.5.14}$$

For $Y \in T_{\nabla^A} \mathcal{A} = \Omega^1(\Sigma, \operatorname{End}^{\operatorname{anti}}(E))$, we have

$$(Y \cdot F^A)_{\nabla^A} = \frac{\partial}{\partial t} \Big|_{t=0} (\nabla^A + tY)^2 = \nabla^A_{\bullet} Y.$$
(5.5.15)

By (5.5.7) and (5.5.15),

$$Y\langle\mu,X\rangle = \int_{\Sigma} \operatorname{Tr}^{E}[\nabla_{\bullet}^{A}Y \wedge X] = \int_{\Sigma} \operatorname{Tr}^{E}[Y \wedge \nabla_{\bullet}^{A}X]$$
$$= -\int_{\Sigma} \operatorname{Tr}^{E}[\nabla_{\bullet}^{A}X \wedge Y] = \omega(X^{\mathcal{A}},Y) = (i_{X^{\mathcal{A}}}\omega)(Y).$$
(5.5.16)

That is

$$d\langle \mu, X \rangle = i_{X^{\mathcal{A}}} \omega. \tag{5.5.17}$$

By (5.5.14) and (5.5.17), we know that μ is a moment map. The proof of Theorem 5.5.1 is completed. $\hfill \Box$

 Set

$$\mathcal{A}_0 := \mu^{-1}(0) = \left\{ A \in \mathcal{A} : \ \mu(A) = 0 \right\} = \left\{ A \in \mathcal{A} : \ F^A = 0 \right\}.$$
(5.5.18)

Theorem 5.5.2. The quotient space $A_0/\Sigma G$ is isomorphic to the space of equivariant class of flat Hermitian connections on E.

Fix $x_0 \in \Sigma$, set

$$\Sigma_0 G = \{ g \in \Sigma G : g(x_0) = e \in G \}.$$
 (5.5.19)

Then $\Sigma_0 G$ acts freely on $\mu^{-1}(0)$. Clearly,

$$\Sigma G / \Sigma_0 G = G, \quad \mu^{-1}(0) / \Sigma G = \left(\mu^{-1}(0) / \Sigma_0 G \right) / G.$$
 (5.5.20)

Take $A \in \mathcal{A}_0$, then

$$\nabla^A = d + A, \ (\nabla^A)^2 = 0.$$
 (5.5.21)

We have the following complex with the differential operator ∇^A :

$$0 \longrightarrow \Omega^{0}(\Sigma, \operatorname{End}(E)) \longrightarrow \Omega^{1}(\Sigma, \operatorname{End}^{\operatorname{anti}}(E)) \longrightarrow \Omega^{2}(\Sigma, \operatorname{End}^{\operatorname{anti}}(E)) \longrightarrow 0.$$
 (5.5.22)

For $X \in \Omega^0(\Sigma, \operatorname{End}(E)) = \Sigma \mathfrak{g}$, we have $\nabla^A X = -X^A$.

Definition 5.5.3. The *j*-th cohomology of the complex $(\Omega^{\bullet}(\Sigma, \operatorname{End}^{\operatorname{anti}}(E)), \nabla^{A})$ is defined by

$$H^{j}_{\nabla^{A}}(\Sigma, \operatorname{End}^{\operatorname{anti}}(E)) = \frac{\ker |\nabla^{A}|_{\Omega^{j}(\Sigma, \operatorname{End}^{\operatorname{anti}}(E))}}{\operatorname{Im} |\nabla^{A}|_{\Omega^{j-1}(\Sigma, \operatorname{End}^{\operatorname{anti}}(E))}}.$$
(5.5.23)

If G acts locally freely on $\mathcal{A}_0/\Sigma_0 G$, then $X \to X^{\mathcal{A}}$ is injective, i.e.,

$$H^0_{\nabla^A}(\Sigma, \operatorname{End}^{\operatorname{anti}}(E)) = 0.$$
(5.5.24)

By (5.5.15),

$$d\mu_{\nabla^A}: T_{\nabla^A}\mathcal{A} \to (\Sigma \mathfrak{g})^*, \ X \longmapsto \nabla^A X.$$
 (5.5.25)

Then

$$T_{\nabla^A} \mathcal{A}_0 = \ker \ d\mu_{\nabla^A} = \left\{ X \in \Omega^1(\Sigma, \operatorname{End}^{\operatorname{anti}}(E)) : \nabla^A X = 0 \right\}.$$
(5.5.26)

Moreover,

$$T(\mu^{-1}(0)/\Sigma G) = \frac{T_{\nabla^A} \mathcal{A}_0}{\Sigma \mathfrak{g} \cdot \nabla^A} = \frac{\ker |\nabla^A|_{\Omega^1(\Sigma, \operatorname{End}^{\operatorname{anti}}(E))}}{\operatorname{Im} |\nabla^A|_{\Omega^0(\Sigma, \operatorname{End}^{\operatorname{anti}}(E))}} = H^1_{\nabla^A}(\Sigma, \operatorname{End}^{\operatorname{anti}}(E)).$$
(5.5.27)

If $X, Y \in H^1_{\nabla^A}(\Sigma, \operatorname{End}^{\operatorname{anti}}(E))$, then

$$\omega_{\mathcal{A}_0/\Sigma G}(X^0, Y^0) = \int_{\Sigma} \operatorname{Tr}^E[X \wedge Y]$$
(5.5.28)

defines a symplectic form on $\mathcal{A}_0/\Sigma G$.

Remark 5.5.4. The distinct flat vector bundles on Σ are in one-to-one correspondence to the equivariant class of the conjugate representation of $\pi_1(\Sigma) \to U(n)$, here $\pi_1(\Sigma)$, the fundamental group of Σ , is the group with 2r generators with r the genus of Σ satisfying

$$\prod_{j=1}^{\prime} u_j v_j u_j^{-1} v_j^{-1} = 1.$$
(5.5.29)

Moreover, the space of equivariant classes of flat connection on Σ is isomorphic to the following space:

$$\left\{ (u_j, v_j) \in U(n) \times \dots \times U(n) : \prod_{j=1}^r u_j v_j u_j^{-1} v_j^{-1} = I \right\} / U(n)$$
 (5.5.30)

175

5.6 Bibliographic notes

For Remark 5.1.2, cf. [28], [41, Example A.5].

Basic reference for Section 5.2 is [16]. Corollary 5.2.2 is [16, Lemma 4.2.5], Theorem 5.2.3 is [16, Theorem 4.2.9]. Theorem 5.2.5 is [16, Theorem 5.8.1]. Theorem 5.2.6 is a combination of Theorem 2.1.15 and [16, $\S5.7$]. Theorem 5.2.8 is [16, Theorem 5.4.5]. Theorem 5.2.9: first part is [16, Lemma 5.4.3, Prop. 5.4.12], b) is [16, Prop. 5.2.16], c) is [16, Prop. 5.7.1].

About the Koszul-Malgrange integrability theorem in Exercise 5.4.2, we can deduce it from Newlander-Nirenberg theorem for integrable almost complex structure as in [40, Proposition 1.3.7], also a direct proof in [24, Theorem 2.1.53, §2.2.2].