Let $\theta \in \Omega^{1}(G, \mathfrak{g})$ be the canonical 1-form with values in \mathfrak{g}, that is for $g \in G, X \in T_{g} G$, we have

$$
\begin{equation*}
\theta_{g}(X)=d L_{g^{-1}} X \in T_{e} G=\mathfrak{g} \tag{5.3.18}
\end{equation*}
$$

We denote also $\theta=g^{-1} d g$. We identify $X, Y \in \mathfrak{g}$ to the left invariant vector fields X, Y on G, then $\theta(X), \theta(Y)$ are constant on G, and

$$
\begin{equation*}
(d \theta)(X, Y)=X \theta(Y)-Y \theta(X)-\theta([X, Y])=-[X, Y] \tag{5.3.19}
\end{equation*}
$$

For $\vartheta_{1}, \vartheta_{2} \in \Omega^{\bullet}(G), u, v \in \mathfrak{g}$, we define

$$
\begin{equation*}
\left[\vartheta_{1} \otimes u, \vartheta_{2} \otimes v\right]=\vartheta_{1} \wedge \vartheta_{2} \otimes[u, v] . \tag{5.3.20}
\end{equation*}
$$

Then we can reformulate (5.3.19) as

$$
\begin{equation*}
d \theta=-\frac{1}{2}[\theta, \theta] . \tag{5.3.21}
\end{equation*}
$$

Let $\pi_{L}: G \times \mathfrak{g}^{*} \rightarrow G$ and $\pi: T^{*} G \rightarrow G$ be the natural projections, then $\pi \circ \Phi_{L}=\pi_{L}$ and $L_{g} \circ \pi_{L}=\pi_{L} \circ L_{g}$. We denote by p the tautological section of \mathfrak{g}^{*}. By (1.2.42), for $(g, p) \in G \times \mathfrak{g}^{*}$, $X \in T_{(g, p)}\left(G \times \mathfrak{g}^{*}\right)$, we have

$$
\begin{equation*}
\left(\Phi_{L}^{*} \lambda\right)_{(g, p)}(X)=\left\langle L_{g^{-1}}^{*} p, d \pi d \Phi_{L}(X)\right\rangle=\left\langle p, d L_{g^{-1}} d \pi_{L}(X)\right\rangle=\left\langle p,\left(\pi_{L}^{*} \theta\right)(X)\right\rangle \tag{5.3.22}
\end{equation*}
$$

We note that λ is invariant under diffeomorphisms of G. In particular λ is left and right invariant. By (5.3.21) and (5.3.22), the symplectic form ω on $G \times \mathfrak{g}^{*}\left(\simeq T^{*} G\right)$ is given by

$$
\begin{equation*}
\omega=-d\left(\Phi_{L}^{*} \lambda\right)=-\left\langle d p, \pi_{L}^{*} \theta\right\rangle-\left\langle p, \pi_{L}^{*} d \theta\right\rangle=-\left\langle d p, \pi_{L}^{*} \theta\right\rangle+\frac{1}{2}\left\langle p, \pi_{L}^{*}[\theta, \theta]\right\rangle \tag{5.3.23}
\end{equation*}
$$

We will call the G-action on $M=G$ defined by $G \times M \ni(h, g) \rightarrow g h^{-1} \in M$ as R^{-1}-action of G on G. We define the $G \times G$-action on G by

$$
\begin{equation*}
I_{g_{1}, g_{2}} g=g_{1} g g_{2}^{-1} \quad \text { for } g_{1}, g_{2}, g \in G \tag{5.3.24}
\end{equation*}
$$

It induces a $G \times G$-action on $T^{*} G$, and under the identification (5.3.17), we know by (2.3.42), for $(g, \beta) \in G \times \mathfrak{g}^{*}$,

$$
\begin{equation*}
I_{g_{1}, g_{2}}(g, \beta)=\left(I_{g_{1}, g_{2}} g, L_{g_{1} g g_{2}^{-1}}^{*}\left(d\left(I_{g_{1}, g_{2}}\right)^{-1}\right)^{*} L_{g^{-1}}^{*} \beta\right)=\left(I_{g_{1}, g_{2}} g, \operatorname{Ad}_{g_{2}}^{*} \beta\right) \tag{5.3.25}
\end{equation*}
$$

as for $X \in \mathfrak{g}$, by (5.3.16) and (5.3.24), we have

$$
\begin{align*}
&\left(L_{g_{1} g g_{2}^{-1}}^{*}\left(d\left(I_{g_{1}, g_{2}}\right)^{-1}\right)^{*} L_{g^{-1}}^{*} \beta, X\right)=\left(\beta, d L_{g^{-1}} d L_{g_{1}^{-1}} d R_{g_{2}} d L_{g_{1} g g_{2}^{-1}} X\right) \\
&=\left(\beta, \operatorname{Ad}_{g_{2}^{-1}} X\right)=\left(\operatorname{Ad}_{g_{2}}^{*} \beta, X\right) \tag{5.3.26}
\end{align*}
$$

For $X \in \mathfrak{g}$, as in (2.2.1), let X^{L}, X^{R} be the vector fields on $G \times \mathfrak{g}^{*}$ induced by X for the left action (5.3.16) and by X for the right action on G. By (5.3.25), for $g \in G, \beta \in \mathfrak{g}^{*}$,

$$
\begin{equation*}
X_{(g, \beta)}^{L}=\left(d R_{g}(X), 0\right), \quad X_{(g, \beta)}^{R}=\left(d L_{g}(X),-\operatorname{ad}_{X}^{*} \beta\right) \in T_{g} G \times \mathfrak{g}^{*} \tag{5.3.27}
\end{equation*}
$$

Thus the vector field on $G \times \mathfrak{g}^{*}$ induced by $(X, Y) \in T_{(e, e)}(G \times G)=\mathfrak{g} \oplus \mathfrak{g}$, for the action (5.3.25) is

$$
\begin{equation*}
(X, Y)_{(g, \beta)}^{G \times \mathfrak{g}^{*}}=X_{(g, \beta)}^{L}-X_{(g, \beta)}^{R} . \tag{5.3.28}
\end{equation*}
$$

Let $\mu_{L}: G \times \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}, \mu_{R}: G \times \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ be defined by

$$
\begin{equation*}
\mu_{L}(g, \beta)=\operatorname{Ad}_{g}^{*} \beta, \quad \mu_{R}(g, \beta)=-\beta \tag{5.3.29}
\end{equation*}
$$

By (2.3.46), (5.3.27)-(5.3.29), the moment map $\mu: G \times \mathfrak{g}^{*} \rightarrow(\mathfrak{g} \oplus \mathfrak{g})^{*}$ for the $G \times G$-action (5.3.25) on $T^{*} G$ is given by

$$
\begin{align*}
&(\mu,(X, Y))_{(g, \beta)}=\left(L_{g^{-1}}^{*} \beta, d \pi(X, Y)^{T^{*} G}\right)=\left(\beta, d L_{g^{-1}} d \pi_{L}(X, Y)^{G \times \mathfrak{g}^{*}}\right) \\
&=\left(\beta, \operatorname{Ad}_{g^{-1}} X-Y\right)=\left(\mu_{L}, X\right)_{(g, \beta)}+\left(\mu_{R}, Y\right)_{(g, \beta)} \tag{5.3.30}
\end{align*}
$$

Thus the moment map μ is given by

$$
\begin{equation*}
\mu=\left(\mu_{L}, \mu_{R}\right): G \times \mathfrak{g}^{*} \rightarrow(\mathfrak{g} \oplus \mathfrak{g})^{*} \tag{5.3.31}
\end{equation*}
$$

By Proposition 2.3 .19 and (5.3.24), we know μ_{L} (resp. μ_{R}) is the moment map of the left (resp. R^{-1}) action of G on $T^{*} G$.

Now we consider the symplectic reduction with respect to μ_{R}. For $\gamma \in \mathfrak{g}^{*}$, by (5.3.29),

$$
\begin{equation*}
\mu_{R}^{-1}(-\gamma)=G \times\{\gamma\} \subset G \times \mathfrak{g}^{*} \quad \text { and } \quad R_{h}^{-1}(g, \gamma)=\left(g h^{-1}, \gamma\right) \text { for } h \in G_{\gamma} \tag{5.3.32}
\end{equation*}
$$

Let $\pi_{R}: \mu_{R}^{-1}(-\gamma) \rightarrow M_{-\gamma}=\mu_{R}^{-1}(-\gamma) / G_{\gamma}$ be the natural projection with R^{-1}-action of G_{γ} on $\mu_{R}^{-1}(-\gamma)$. Then we can identify $M_{-\gamma}$ with the coadjoint orbit by

$$
\begin{equation*}
\varphi_{1}: M_{-\gamma} \ni[g, \gamma] \rightarrow \operatorname{Ad}_{g}^{*} \gamma \in \mathcal{O}_{\gamma}=G \cdot \gamma \tag{5.3.33}
\end{equation*}
$$

Now by (5.3.33), the left action on G induces the Ad^{*}-action on \mathcal{O}_{γ}, thus from (2.2.3),

$$
\begin{align*}
& d\left(\varphi_{1} \circ \pi_{R}\right) X_{(g, \gamma)}^{L}=\left.\frac{\partial}{\partial t}\right|_{t=0} \varphi_{1} \circ \pi_{R}\left(e^{t X} g,-\gamma\right)=\left.\frac{\partial}{\partial t}\right|_{t=0} \operatorname{Ad}_{e^{t X}}^{*} \operatorname{Ad}_{g}^{*} \gamma \\
&=\operatorname{ad}_{X}^{*} \operatorname{Ad}_{g}^{*} \gamma=X_{\operatorname{Ad}_{g}^{*} \gamma}^{\mathcal{O}^{*}} \tag{5.3.34}
\end{align*}
$$

By Theorem 2.3.18, (2.1.20), (5.3.18), (5.3.23) and (5.3.27), we get for $X, Y \in \mathfrak{g}$,

$$
\begin{align*}
\omega_{\gamma}\left(X^{\mathcal{O}_{\gamma}}, Y^{\mathcal{O}_{\gamma}}\right)_{\operatorname{Ad}_{g}^{*} \gamma} & =\omega\left(X^{L}, Y^{L}\right)_{(g, \gamma)} \\
& =\left(\gamma,\left[\theta\left(d R_{g} X\right), \theta\left(d R_{g} Y\right)\right]\right)=\left(\gamma,\left[\operatorname{Ad}_{g^{-1}} X, \operatorname{Ad}_{g^{-1}} Y\right]\right) \\
& =\left(\operatorname{Ad}_{g}^{*} \gamma,[X, Y]\right) . \tag{5.3.35}
\end{align*}
$$

From (5.3.35), ω_{γ} is exactly the symplectic form on \mathcal{O}_{γ} defined in (2.3.51). By Theorem 2.3.18, the associated moment map on $\left(\mathcal{O}_{\gamma}, \omega_{\gamma}\right)$ is induced by μ_{L} :

$$
\begin{equation*}
\left(\mu^{\mathcal{O}}, X\right)_{\operatorname{Ad}_{g}^{*} \gamma}=\left(\mu_{L}, X\right)_{(g, \gamma)}=\left(\operatorname{Ad}_{g}^{*} \gamma, X\right) \tag{5.3.36}
\end{equation*}
$$

Thus we recover Proposition 2.3 .9 by using the reduction from $G \times \mathfrak{g}^{*}$.
Now we suppose that $2 \pi \gamma \in \Lambda^{*} \cap \mathfrak{t}_{+}^{*}$. Then $G_{\gamma}=\mathbb{T}$. Let ρ_{γ} be the representation of \mathbb{T} defined by

$$
\begin{equation*}
\rho_{\gamma}: \mathbb{T} \ni g=\exp (\tau) \rightarrow e^{2 i \pi\langle\gamma, \tau\rangle} \in \mathbb{S}^{1} \tag{5.3.37}
\end{equation*}
$$

The $G \times G$-action on $L=\mathbb{C}$ is defined by $I_{g_{1}, g_{2}} \cdot \mathbf{1}=\mathbf{1}$ as explained after (5.1.21). Thus $s \in L_{\gamma, y}$ means that $s \in \mathscr{C}^{\infty}\left(\pi^{-1}(y), \mathbb{C}\right)$ and $s\left(x h^{-1}\right)=\rho_{\gamma}\left(h^{-1}\right) s(x)$ for $x \in \pi^{-1}(y), h \in \mathbb{T}$. In other words, L_{γ} is the quotient space of $G \times \mathbb{C}$ by the \mathbb{T}-action defined by: for $h \in \mathbb{T},(g, v) \in G \times \mathbb{C}$,

$$
\begin{equation*}
h(g, v)=\left(g h, \rho_{\gamma}(h) v\right) . \tag{5.3.38}
\end{equation*}
$$

Thus L_{γ} is the line bundle $G \times \rho_{\gamma} \mathbb{C}$ on G / \mathbb{T} associated with the principal \mathbb{T}-bundle $G \rightarrow G / \mathbb{T}$ and the representation ρ_{γ}. Let $\nabla^{L_{\gamma}}$ be the connection constructed in (5.3.14). By Theorem 5.3.2, we have

$$
\begin{equation*}
c_{1}\left(L_{\gamma}, \nabla^{L_{\gamma}}\right)=\omega_{\gamma} \tag{5.3.39}
\end{equation*}
$$

In fact, we will show in Chapter 6 that $\left(\mathcal{O}_{\gamma}, \omega_{\gamma}\right)$ is a Kähler manifold, and L_{γ} is a holomorphic line bundle on \mathcal{O}_{γ}.
Theorem 5.3.5 (Borel-Weil-Bott). If $2 \pi \gamma \in \Lambda_{+}^{*}$, we have

$$
\begin{equation*}
H^{0, j}\left(\mathcal{O}_{\gamma}, L_{\gamma}\right)=0, \quad \text { for } j \geq 1 \tag{5.3.40}
\end{equation*}
$$

and $H^{0,0}\left(\mathcal{O}_{\gamma}, L_{\gamma}\right)$, the space of holomorphic sections of L_{γ} on \mathcal{O}_{γ}, is the irreducible representation associated with highest weight $2 \pi \gamma$.

We know that ($M \times \mathcal{O}_{\gamma}, \omega+\omega_{\gamma}$) is prequantized by $L \otimes L_{\gamma}$, the tensor product of the natural lifts of L and L_{γ} on $M \times \mathcal{O}_{\gamma}$. By applying Theorem 5.3.1 for $M \times \mathcal{O}_{\gamma}$, we then recover the symplectic reduction at $-\gamma$ and its prequantization line bundle.

5.4 Kähler prequantizations and reductions

Let (M, ω) be a symplectic manifold, and let G be a compact Lie group with Lie algebra \mathfrak{g}. We suppose that G acts on M Hamiltonianly with moment map $\mu: M \rightarrow \mathfrak{g}^{*}$.

We assume that G acts freely on $Y=\mu^{-1}(0)$. For $x \in M$, set

$$
\begin{equation*}
\mathfrak{g}_{x}^{M}=\left\{K_{x}^{M} \in T_{x} M: K \in \mathfrak{g}\right\} . \tag{5.4.1}
\end{equation*}
$$

Then it forms a vector bundle \mathfrak{g}^{M} on Y. For simplify, we denote $\mathfrak{g}^{Y}=\left.\mathfrak{g}^{M}\right|_{Y}$.
Let J be a G-invariant, compatible almost complex structure on (M, ω). Then $g^{T M}=\omega(\cdot, J \cdot)$ is a G-invariant metric on $T M$, and we denote by \perp to mean the orthogonality with respect to $g^{T M}$. Let $T^{H} Y$ be the orthogonal complement of \mathfrak{g}^{Y} in $T Y$ with respect to $g^{T M}$.

Proposition 5.4.1. The following G-invariant orthogonal decomposition of vector bundles on Y with respect to $g^{T M}$ holds:

$$
\begin{equation*}
\left.T M\right|_{Y}=T^{H} Y \oplus \mathfrak{g}^{Y} \oplus J \mathfrak{g}^{Y} \tag{5.4.2}
\end{equation*}
$$

Moreover, $T^{H} Y$ is J-invariant, and $T^{H} Y \perp_{\omega}\left(\mathfrak{g}^{Y} \oplus J \mathfrak{g}^{Y}\right)$.
Proof. By (2.3.76), we get

$$
\mathfrak{g}^{Y} \subset T Y, \quad(T Y)^{\perp_{\omega}}=\mathfrak{g}^{Y}
$$

By (5.4.3), $g^{T M}=\omega(\cdot, J \cdot)$ and $\mathfrak{g}^{Y} \perp T^{H} Y$, we get

$$
\begin{equation*}
J \mathfrak{g}^{Y}=(T Y)^{\perp}, \quad \mathfrak{g}^{Y} \perp T^{H} Y, \quad \text { i.e., } \mathfrak{g}^{Y} \perp_{\omega} T Y, \quad J \mathfrak{g}^{Y} \perp_{\omega} T^{H} Y . \tag{5.4.4}
\end{equation*}
$$

As \mathfrak{g}^{Y} is G-invariant, thus $T^{H} Y$ and $J \mathfrak{g}^{Y}$ are G-invariant. From (5.4.4) and $T Y=T^{H} Y \oplus \mathfrak{g}^{Y}$, we get the G-invariant orthogonal decomposition (5.4.2).

If $u \in T^{H} Y$, then $u \perp\left(\mathfrak{g}^{Y} \oplus J \mathfrak{g}^{Y}\right)$, thus $J u \perp\left(\mathfrak{g}^{Y} \oplus J \mathfrak{g}^{Y}\right)$. This and (5.4.2) imply $J\left(T^{H} Y\right) \subset$ $T^{H} Y$. By (5.4.4), we know $T^{H} Y \perp_{\omega}\left(\mathfrak{g}^{Y} \oplus J \mathfrak{g}^{Y}\right)$.

The proof of Proposition 5.4.1 is completed.

For a G-vector bundle E on Y, set

$$
\begin{align*}
E_{G, y} & =\left\{s \in \mathscr{C}^{\infty}\left(\pi^{-1}(y), E\right): g \cdot s=s \quad \text { for any } g \in G\right\}, \quad \text { for } y \in M_{G} \\
F & =Y \times_{G} \mathfrak{g} \tag{5.4.5}
\end{align*}
$$

Let $x \in Y, y \in M_{G}$ such that $\pi(x)=y$, for $U \in T_{y} M_{G}$, let $U^{H} \in T_{x}^{H} Y$ be the lifting of U, i.e., the unique $U^{H} \in T_{x}^{H} Y$ such that $d \pi\left(U^{H}\right)=U$, then automatically, $U^{H} \in \mathscr{C}^{\infty}\left(Y, T^{H} Y\right)^{G}$. This gives the canonical isomorphism $\left(T^{H} Y\right)_{G} \rightarrow T M_{G}$. From (5.4.2), we get on M_{G},

$$
\begin{equation*}
\left(\left.T M\right|_{Y}\right)_{G} \simeq T M_{G} \oplus\left(F \oplus F^{*}\right) \tag{5.4.6}
\end{equation*}
$$

Let $J_{G, y}: T_{y} M_{G} \rightarrow T_{y} M_{G}$ be defined by

$$
\begin{equation*}
J_{G} U=d \pi\left(J U^{H}\right) \tag{5.4.7}
\end{equation*}
$$

As $J U^{H} \in \mathscr{C}^{\infty}\left(Y, T^{H} Y\right)^{G}$, we know that $d \pi\left(J U^{H}\right)_{x}$ does not depend on the choice of $x \in \pi^{-1}(y)$, thus $J_{G} U$ is well-defined.

Theorem 5.4.2. The J_{G} in (5.4.7) is a compatible almost complex structure on $\left(M_{G}, \omega_{G}\right)$. Moreover, if J is integrable, J_{G} is also integrable. In particular, if (M, J, ω) is a Kähler manifold, then $\left(M_{G}, J_{G}, \omega_{G}\right)$ is also a Kähler manifold.
Proof. For $y \in M_{G}, U \in T_{y} M_{G}$, since J preserves $T^{H} Y, J U^{H} \in T_{x}^{H} Y$ for $x \in \pi^{-1}(y)$. Thus $J U^{H}=\left(d \pi\left(J U^{H}\right)\right)^{H}=\left(J_{G} U\right)^{H}$. Then by (5.4.7), we have

$$
\begin{equation*}
J_{G}^{2} U=J_{G} d \pi\left(J U^{H}\right)=d \pi\left(J^{2} U^{H}\right)=-U \tag{5.4.8}
\end{equation*}
$$

This means J_{G} is an almost complex structure on M_{G}.
On the other hand, for $U, V \in T_{y} M_{G}$, we have

$$
\begin{align*}
& \omega_{G}\left(J_{G} U, J_{G} V\right)=\omega\left(J U^{H}, J V^{H}\right)=\omega\left(U^{H}, V^{H}\right)=\omega_{G}(U, V) \\
& \omega_{G}\left(U, J_{G} U\right)=\omega\left(U^{H}, J U^{H}\right)>0 \quad \text { if } U \neq 0 \tag{5.4.9}
\end{align*}
$$

Thus, J_{G} is a compatible almost complex structure on $\left(M_{G}, \omega_{G}\right)$.
We suppose now J is integrable. If $u, v \in \mathscr{C}^{\infty}\left(M_{G}, T^{(1,0)} M_{G}\right)$, then there exist $U, V \in$ $\mathscr{C}^{\infty}\left(M_{G}, T M_{G}\right)$ such that

$$
\begin{equation*}
u=U-\sqrt{-1} J_{G} U, \quad v=V-\sqrt{-1} J_{G} V \tag{5.4.10}
\end{equation*}
$$

By (5.4.7), $\left(J_{G} U\right)^{H}=J U^{H}$, thus

$$
\begin{equation*}
u^{H}=U^{H}-\sqrt{-1} J U^{H}, \quad v^{H}=V^{H}-\sqrt{-1} J V^{H} \in T^{(1,0)} M \cap\left(T Y \otimes_{\mathbb{R}} \mathbb{C}\right) \tag{5.4.11}
\end{equation*}
$$

As both $T^{(1,0)} M, T Y \otimes_{\mathbb{R}} \mathbb{C}$ are integrable, we get

$$
\begin{equation*}
\left[u^{H}, v^{H}\right] \in T^{(1,0)} M \cap\left(T Y \otimes_{\mathbb{R}} \mathbb{C}\right) \tag{5.4.12}
\end{equation*}
$$

i.e., there exists $W \in T M$ such that $\left[u^{H}, v^{H}\right]=W-\sqrt{-1} J W$. Let $P^{T Y}$ be the orthogonal projection from $T M$ onto $T Y$ via (5.4.2). Then from (5.4.2),

$$
\begin{align*}
& {[u, v]=d \pi\left[u^{H}, v^{H}\right]=d \pi P^{T Y} W-\sqrt{-1} d \pi P^{T Y} J W} \\
& \quad=d \pi P^{T Y} W-\sqrt{-1} J_{G} d \pi P^{T Y} W \in T^{(1,0)} M_{G} \tag{5.4.13}
\end{align*}
$$

From the Newlander-Nirenberg theorem, (5.4.13) means J_{G} is integrable. The proof of Theorem 5.4.2 is completed.

In the rest of this section, let (M, J, ω) be a Kähler manifold prequantized by a holomorphic Hermitian line bundle (L, h^{L}) with the Chern connection ∇^{L}. Let a compact Lie group G act holomorphically and symplectically on M, and the G-action can be lifted on a holomorphic action on L. Then by Theorem 5.1.10, the G-action preserves the metric h^{L}. Let $\mu: M \rightarrow \mathfrak{g}^{*}$ be the associated moment map.

Theorem 5.4.3. If G acts freely on $\mu^{-1}(0)$, then $\left(L_{G}, h^{L_{G}}\right)$ in Theorem 5.3.1 is a holomorphic Hermitian line bundle over M_{G} and $\nabla^{L_{G}}$ is the Chern connection on $\left(L_{G}, h^{L_{G}}\right)$.
Proof. We decompose $\nabla^{L_{G}}$ into holomorphic part and anti-holomorphic part,

$$
\begin{equation*}
\nabla^{L_{G}}=\left(\nabla^{L_{G}}\right)^{1,0}+\left(\nabla^{L_{G}}\right)^{0,1} . \tag{5.4.14}
\end{equation*}
$$

From Theorem 5.4.2, ω_{G}, and so $R^{L_{G}}$ is a (1,1)-form, thus

$$
\begin{equation*}
\left(\left(\nabla^{L_{G}}\right)^{0,1}\right)^{2}=0 \tag{5.4.15}
\end{equation*}
$$

Now, for $s \in \mathscr{C}^{\infty}\left(M_{G}, L_{G}\right)$, we define

$$
\begin{equation*}
\bar{\partial}^{L_{G}} s:=\left(\nabla^{L_{G}}\right)^{0,1} s \tag{5.4.16}
\end{equation*}
$$

Let s_{0} be a local frame of L_{G} near $x_{0} \in M_{G}$. Then there is a $(0,1)$-form a near x_{0} such that $\left(\nabla^{L_{G}}\right)^{0,1} s_{0}=a s_{0}$. From (5.4.15),

$$
\begin{equation*}
0=\left(\left(\nabla^{L_{G}}\right)^{0,1}\right)^{2} s_{0}=(\bar{\partial} a) s_{0} \tag{5.4.17}
\end{equation*}
$$

Thus $\bar{\partial} a=0$ near x_{0}. By the $\bar{\partial}$-Lemma, there exists a function b near x_{0} such that $\bar{\partial} b=-a$, i.e., $(\bar{\partial} b) s_{0}+\left(\nabla^{L_{G}}\right)^{0,1} s_{0}=0$. This means that (5.4.16) defines a holomorphic structure on L_{G} and $e^{b} s_{0}$ is a holomorphic frame of L_{G}.

The proof of Theorem 5.4.3 is completed.
As the G-action commutes with the Dolbeault operator $\bar{\partial}^{L}$, we know for $j \geq 0$, the j-th Dolbeault cohomology group $H^{0, j}(M, L)($ cf. (4.1.38)) is a G-representation. As in (4.2.80), we denote by V^{G} the G-invariant part of a G-representation V.

Now we can state the "quantization commutes with reduction" in the holomorphic case which was established by Guillemin-Sternberg for $j=0$, and Teleman, Zhang for $j>0$.

Theorem 5.4.4. If M is compact and if G acts freely on $\mu^{-1}(0)$, then the map $\psi: \Omega^{0} \bullet \bullet(M, L)^{G}$ $\rightarrow \Omega^{0, \bullet}\left(M_{G}, L_{G}\right)$, by the restriction first on $\mu^{-1}(0)$, then using (5.3.2) and (5.4.6) to induce a section on M_{G}, induces an isomorphism

$$
\begin{equation*}
H^{0, j}(M, L)^{G} \simeq H^{0, j}\left(M_{G}, L_{G}\right) \quad \text { for any } j \geq 0 \tag{5.4.18}
\end{equation*}
$$

Exercise 5.4.1. Let G be a compact Lie group with Lie algebra \mathfrak{g}. Let $\pi: Y \rightarrow G \backslash Y=B$ be a G-principal bundle with fiberwise tangent bundle $T Z$. Let $\left(E, h^{E}, \nabla^{E}\right)$ be a Hermitian vector bundle with Hermitian connection ∇^{E} and curvature R^{E}. Let $T^{H} Y$ be a horizontal subbundle of $T Y$ such that

$$
\begin{equation*}
T Y=T^{H} Y \oplus T Z \tag{5.4.19}
\end{equation*}
$$

Let $P^{T Z}: T Y=T^{H} Y \oplus T Z \rightarrow T Z$ be the projection. Let $\theta \in \Omega^{1}(Y, \mathfrak{g})$ be defined as $\theta\left(T^{H} Y\right)=0$, and $\theta\left(K^{Y}\right)=K$ for $K \in \mathfrak{g}$.

We suppose that all geometric objects are G-equivariant. Then the horizontal bundle $T^{H} X$ defines a connection θ of the principal G-bundle $\pi: Y \rightarrow B$. The curvature of the fibration $\pi: Y \rightarrow B$ associated with θ is defined by: for $U, V \in \mathscr{C}^{\infty}(B, T B)$,

$$
\begin{equation*}
\Omega\left(U^{H}, V^{H}\right)=-\theta\left(\left[U^{H}, V^{H}\right]\right) \tag{5.4.20}
\end{equation*}
$$

here $U^{H} \in \mathscr{C}^{\infty}\left(Y, T^{H} Y\right)$ is the unique lift of U such that $d \pi\left(U^{H}\right)=U$.
As in (5.1.24), we define $\mu^{E} \in \mathscr{C}^{\infty}\left(Y, \mathfrak{g}^{*} \otimes \operatorname{End}(E)\right)$ by: for $K \in \mathfrak{g}$,

$$
\begin{equation*}
2 \pi \sqrt{-1} \mu^{E}(K)=\nabla_{K^{X}}^{E}-L_{K} \tag{5.4.21}
\end{equation*}
$$

We still call μ^{E} the moment map associated to the G-action on E.

1. Verify that E_{G} in (5.4.5) defines a vector bundle on B, and h^{E} induces a Hermitian metric $h^{E_{G}}$ on E_{G}.
2. For $s \in \mathscr{C}^{\infty}\left(B, E_{G}\right)=\mathscr{C}^{\infty}(Y, E)^{G}, U \in \mathscr{C}^{\infty}(B, T B)$, we define

$$
\begin{equation*}
\nabla_{U}^{E_{G}} s:=\nabla_{U^{H}}^{E} s \tag{5.4.22}
\end{equation*}
$$

Verify that $\nabla^{E_{G}}$ is a Hermitian connection on $\left(E_{G}, h^{E_{G}}\right)$. Its curvature $R^{E_{G}}$ is given by

$$
\begin{equation*}
R^{E_{G}}(U, V)=R^{E}\left(U^{H}, V^{H}\right)-2 \pi \sqrt{-1} \mu^{E}\left(\Omega\left(U^{H}, V^{H}\right)\right) \tag{5.4.23}
\end{equation*}
$$

Exercise 5.4.2. We put in the context of Theorem 5.4.3. Let E be a holomorphic vector bundle on M.

1. For the fibration $\pi: \mu^{-1}(0) \rightarrow M_{G}$, (5.4.5) defines a holomorphic vector vector bundle E_{G} on M_{G}. (Hint: We only need to verify $\left(\bar{\partial}^{E_{G}}\right)^{2}=0$ by the Koszul-Malgrange integrability theorem.)
2. Let h^{E} be a G-invariant metric on E, and ∇^{E} be the Chern connection on $\left(E, h^{E}\right)$. Then (5.4.22) induces the Chern connection on $\left(E_{G}, h^{E_{G}}\right)$.
3. Verify that $\left(T^{(1,0)} M\right)_{G}$ is a holomorphic vector bundle on M_{G}, and the map $d \pi:\left(T^{(1,0)} M\right)_{G}$ $\rightarrow T^{(1,0)} M_{G}$ is holomorphic and surjective.

Exercise 5.4.3 (Symplectic cut). 1. In Section 5.3.1, if $G \times H$ acts Hamiltonianly on (M, ω) and $\left(L, \nabla^{L}\right)$, then H acts Hamiltonianly on $\left(M_{G}, \omega_{G}, L_{G}, \nabla^{L_{G}}\right)$.
2. Assume the Hamiltonian \mathbb{S}^{1}-manifold (M, ω) is prequantizable by the prequantum line bundle $\left(L, h^{L}, \nabla^{L}\right)$.
Let $\mathbf{1}$ be the canonical section of the trivial line bundle $F=\mathbb{C}$ on \mathbb{C}. We define \mathbb{S}^{1} action on (\mathbb{C}, F) by $g \cdot \mathbf{1}_{y}=\mathbf{1}_{g \cdot y}$. Then $G=\mathbb{S}^{1}$-acts on $L \otimes F$ on $M \times \mathbb{C}$ by $g \cdot\left(\sigma_{x} \otimes \mathbf{1}_{y}\right)=\left(g \cdot \sigma_{x}\right) \otimes \mathbf{1}_{g \cdot y}$ and the $H=\mathbb{S}^{1}$-action on $L \otimes F$ on $M \times \mathbb{C}$ by $g \cdot\left(\sigma_{x} \otimes \mathbf{1}_{y}\right)=\left(g \cdot \sigma_{x}\right) \otimes \mathbf{1}_{y}$ for $g \in \mathbb{S}^{1}$, $x \in M, y \in \mathbb{C}, \sigma_{x} \in L_{x}$.
Conclude that $M_{\geq 0}$ as defined in Section 2.4 is prequantized by ($L_{\geq 0}, h^{L \geq 0}, \nabla^{L \geq 0}$) such that

$$
\begin{equation*}
\left.\left(L_{\geq 0}, h^{L_{\geq 0}}, \nabla^{L_{\geq 0}}\right)\right|_{M_{\mathbb{S}^{1}}}=\left(L_{\mathbb{S}^{1}}, h^{L_{\mathbb{S}^{1}}}, \nabla^{L_{\mathrm{S}^{1}}}\right) . \tag{5.4.24}
\end{equation*}
$$

3. We can define $\left(M_{\geq n}, L_{\geq n}\right)$ by using the prequantum line $L \otimes \mathbb{C}_{[-n]}$, here $\mathbb{C}_{[-n]}$ is the trivial line bundle with trivial connection and it's a \mathbb{S}^{1}-representation \mathbb{C} with weight $-n$. Then normal bundle $N_{M_{\mathbb{S}^{1}} / M_{\geq 0}}$ of $M_{\mathbb{S}^{1}}$ in $M_{\geq 0}$ is given by $\mu^{-1}(0) \times_{\mathbb{S}^{1}} \mathbb{C}_{[-1]}$, and $H=\mathbb{S}^{1}$ acts on $N_{M_{\mathbb{S}^{1}} / M_{\geq 0}}$ by $g \cdot[x, y]=[g \cdot x, y]$ for $x \in \mu^{-1}(0), y \in \mathbb{C}$, thus $H=\mathbb{S}^{1}$ acts as identity on M_{n} and L_{n} as the fiberwise representation with weight n.

5.5 An infinite dimensional example: moduli spaces of flat connections

Let Σ be a compact oriented surface, and let $\left(E, h^{E}\right)$ be a Hermitian vector bundle on Σ. Let \mathcal{A} be the affine space of all Hermitian connection on $\left(E, h^{E}\right)$. Note that \mathcal{A} is of infinite dimension. For a fixed Hermitian connection ∇_{0}^{E} on $\left(E, h^{E}\right), \mathcal{A}$ can be expressed as

$$
\begin{equation*}
\mathcal{A}=\nabla_{0}^{E}+\Omega^{1}\left(\Sigma, \operatorname{End}^{\mathrm{anti}}(E)\right) \tag{5.5.1}
\end{equation*}
$$

Formally, the tangent space $T \mathcal{A}$ takes the form

$$
\begin{equation*}
T_{\nabla_{0}^{E}} \mathcal{A}=\Omega^{1}\left(\Sigma, \operatorname{End}^{\mathrm{anti}}(E)\right) \tag{5.5.2}
\end{equation*}
$$

For $X, Y \in \Omega^{1}\left(\Sigma, \operatorname{End}^{\text {anti }}(E)\right)$, we define a 2-form ω by

$$
\begin{equation*}
\omega(X, Y)=\int_{\Sigma} \operatorname{Tr}^{E}[X \wedge Y] \tag{5.5.3}
\end{equation*}
$$

where $\operatorname{Tr}^{E}[X \wedge Y]$ is understood as follows: if $X=\alpha \otimes A, Y=\beta \otimes B$ with $\alpha, \beta \in \Omega^{1}(\Sigma)$ and $A, B \in \operatorname{End}(E)$, then $X \wedge Y=\alpha \wedge \beta \otimes A B$ and

$$
\begin{equation*}
\operatorname{Tr}^{E}[X \wedge Y]=\alpha \wedge \beta \operatorname{Tr}^{E}[A B] \tag{5.5.4}
\end{equation*}
$$

One verifies directly that ω defines a symplectic form on \mathcal{A}.
Set $G=U(n)$ and $E=P(U(n)) \times{ }_{\rho} \mathbb{C}^{n}$ with $P(U(n))$ the principle $U(n)$-bundle on Σ. Let ΣG be the space of all smooth maps from Σ to G. Then ΣG is an infinite dimensional Lie group which we call the gauge group of E, and it acts smoothly on \mathcal{A} by: for $g \in \Sigma G$ and $\nabla^{A} \in \mathcal{A}$,

$$
\begin{equation*}
g \cdot \nabla^{A}:=g \nabla^{A} g^{-1}=\nabla^{A}-\left(\nabla^{A} g\right) g^{-1} \tag{5.5.5}
\end{equation*}
$$

For $g \in \Sigma G$ and $X, Y \in \Omega^{1}\left(\Sigma, \operatorname{End}^{\text {anti }}(E)\right)$, we have

$$
\begin{align*}
\omega(g \cdot X, g \cdot Y) & =\omega\left(g X g^{-1}, g Y g^{-1}\right)=\int_{\Sigma} \operatorname{Tr}^{E}\left[g X g^{-1} \wedge g Y g^{-1}\right] \\
& =\int_{\Sigma} \operatorname{Tr}^{E}[X \wedge Y]=\omega(X, Y) \tag{5.5.6}
\end{align*}
$$

That is, ΣG preserves the symplectic form ω. Denote \mathfrak{g} by the Lie algebra of G. Then the Lie algebra of ΣG is $\Sigma \mathfrak{g}=C^{\infty}(\Sigma \mathfrak{g})$. Take $X \in \Sigma \mathfrak{g}$, by (5.5.5), the induced vector field $X^{\mathcal{A}} \in$ $C^{\infty}(\mathcal{A}, T \mathcal{A})$ is given by

$$
\begin{equation*}
X_{\nabla^{A}}^{\mathcal{A}}=\left.\frac{d}{d t}\right|_{t=0} e^{t X} \cdot \nabla^{A}=-\nabla^{A} X \in \Omega^{1}\left(\Sigma, \operatorname{End}^{\mathrm{anti}}(E)\right) \tag{5.5.7}
\end{equation*}
$$

Denote by F^{A} the curvature of ∇^{A}, i.e.,

$$
\begin{equation*}
F^{A}=\left(\nabla^{A}\right)^{2} \in \Omega^{2}\left(\Sigma, \operatorname{End}^{\mathrm{anti}}(E)\right) \tag{5.5.8}
\end{equation*}
$$

We can identify $\Omega^{2}\left(\Sigma, \operatorname{End}^{\text {anti }}(E)\right)$ with $(\Sigma \mathfrak{g})^{*}$ as follows:

$$
\begin{align*}
& \Omega^{2}\left(\Sigma, \operatorname{End}^{\mathrm{anti}}(E)\right) \simeq(\Sigma \mathfrak{g})^{*} \\
& \alpha \otimes A \longmapsto\langle\alpha \otimes A, B\rangle=\int_{\Sigma} \alpha \operatorname{Tr}^{E}[A B] \quad \text { for } B \in \Sigma \mathfrak{g} \tag{5.5.9}
\end{align*}
$$

Under the identification, the curvature F^{A} can be viewed as an element of $(\Sigma \mathfrak{g})^{*}$. We now define

$$
\begin{equation*}
\mu: \mathcal{A} \rightarrow(\Sigma \mathfrak{g})^{*}, \nabla^{A} \longmapsto F^{A} \tag{5.5.10}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\left\langle\mu\left(\nabla^{A}\right), X\right\rangle=\int_{\Sigma} \operatorname{Tr}^{E}\left[F^{A} X\right] \text { for } X \in \Sigma \mathfrak{g} \tag{5.5.11}
\end{equation*}
$$

Theorem 5.5.1. μ is a moment map for the ΣG-action on (\mathcal{A}, ω).
Proof. Denote by $F^{g \cdot A}$ the curvature of the connection $g \cdot \nabla^{A}$, i.e.,

$$
\begin{equation*}
F^{g \cdot A}=\left(g \nabla^{A} g^{-1}\right)^{2}=g\left(\nabla^{A}\right)^{2} g^{-1}=g F^{A} g^{-1} \tag{5.5.12}
\end{equation*}
$$

Then

$$
\begin{align*}
\left\langle\mu\left(g \cdot \nabla^{A}\right), X\right\rangle & =\left\langle F^{g \cdot A}, X\right\rangle=\int_{\Sigma} \operatorname{Tr}^{E}\left[F^{g \cdot A} \wedge X\right]=\int_{\Sigma} \operatorname{Tr}^{E}\left[F^{A} \wedge g^{-1} X g\right] \\
& =\left\langle\mu\left(\nabla^{A}\right), \operatorname{Ad}_{g^{-1}} X\right\rangle=\left\langle\operatorname{Ad}_{g}^{*} \mu\left(\nabla^{A}\right), X\right\rangle \tag{5.5.13}
\end{align*}
$$

That is

$$
\begin{equation*}
\mu\left(g \cdot \nabla^{A}\right)=\operatorname{Ad}_{g}^{*} \mu\left(\nabla^{A}\right) \tag{5.5.14}
\end{equation*}
$$

For $Y \in T_{\nabla^{A}} \mathcal{A}=\Omega^{1}\left(\Sigma, \operatorname{End}^{\mathrm{anti}}(E)\right)$, we have

$$
\begin{equation*}
\left(Y \cdot F^{A}\right)_{\nabla^{A}}=\left.\frac{\partial}{\partial t}\right|_{t=0}\left(\nabla^{A}+t Y\right)^{2}=\nabla_{\bullet}^{A} Y \tag{5.5.15}
\end{equation*}
$$

By (5.5.7) and (5.5.15),

$$
\begin{align*}
Y\langle\mu, X\rangle & =\int_{\Sigma} \operatorname{Tr}^{E}\left[\nabla_{\bullet}^{A} Y \wedge X\right]=\int_{\Sigma} \operatorname{Tr}^{E}\left[Y \wedge \nabla_{\bullet}^{A} X\right] \\
& =-\int_{\Sigma} \operatorname{Tr}^{E}\left[\nabla_{\bullet}^{A} X \wedge Y\right] .=\omega\left(X^{\mathcal{A}}, Y\right)=\left(i_{X \mathcal{A}} \omega\right)(Y) \tag{5.5.16}
\end{align*}
$$

That is

$$
\begin{equation*}
d\langle\mu, X\rangle=i_{X \mathcal{A}} \omega \tag{5.5.17}
\end{equation*}
$$

By (5.5.14) and (5.5.17), we know that μ is a moment map. The proof of Theorem $5 \cdot 5.1$ is completed.

Set

$$
\begin{equation*}
\mathcal{A}_{0}:=\mu^{-1}(0)=\{A \in \mathcal{A}: \mu(A)=0\}=\left\{A \in \mathcal{A}: F^{A}=0\right\} . \tag{5.5.18}
\end{equation*}
$$

Theorem 5.5.2. The quotient space $\mathcal{A}_{0} / \Sigma G$ is isomorphic to the space of equivariant class of flat Hermitian connections on E.

Fix $x_{0} \in \Sigma$, set

$$
\begin{equation*}
\Sigma_{0} G=\left\{g \in \Sigma G: g\left(x_{0}\right)=e \in G\right\} \tag{5.5.19}
\end{equation*}
$$

Then $\Sigma_{0} G$ acts freely on $\mu^{-1}(0)$. Clearly,

$$
\begin{equation*}
\Sigma G / \Sigma_{0} G=G, \quad \mu^{-1}(0) / \Sigma G=\left(\mu^{-1}(0) / \Sigma_{0} G\right) / G \tag{5.5.20}
\end{equation*}
$$

Take $A \in \mathcal{A}_{0}$, then

$$
\begin{equation*}
\nabla^{A}=d+A, \quad\left(\nabla^{A}\right)^{2}=0 \tag{5.5.21}
\end{equation*}
$$

We have the following complex with the differential operator ∇^{A} :

$$
\begin{equation*}
0 \longrightarrow \Omega^{0}(\Sigma, \operatorname{End}(E)) \longrightarrow \Omega^{1}\left(\Sigma, \operatorname{End}^{\text {anti }}(E)\right) \longrightarrow \Omega^{2}\left(\Sigma, \operatorname{End}^{\text {anti }}(E)\right) \longrightarrow 0 \tag{5.5.22}
\end{equation*}
$$

For $X \in \Omega^{0}(\Sigma, \operatorname{End}(E))=\Sigma \mathfrak{g}$, we have $\nabla^{A} X=-X^{\mathcal{A}}$.
Definition 5.5.3. The j-th cohomology of the complex $\left(\Omega^{\bullet}\left(\Sigma, \operatorname{End}^{\text {anti }}(E)\right), \nabla^{A}\right)$ is defined by

$$
\begin{equation*}
H_{\nabla^{A}}^{j}\left(\Sigma, \operatorname{End}^{\mathrm{anti}}(E)\right)=\frac{\left.\operatorname{ker} \nabla^{A}\right|_{\Omega^{j}\left(\Sigma, \operatorname{End}^{\mathrm{anti}}(E)\right)}}{\left.\operatorname{Im} \nabla^{A}\right|_{\Omega^{j-1}\left(\Sigma, \operatorname{End}^{\mathrm{anti}}(E)\right)}} \tag{5.5.23}
\end{equation*}
$$

If G acts locally freely on $\mathcal{A}_{0} / \Sigma_{0} G$, then $X \rightarrow X^{\mathcal{A}}$ is injective, i.e.,

$$
\begin{equation*}
H_{\nabla_{A}}^{0}\left(\Sigma, \operatorname{End}^{\operatorname{anti}}(E)\right)=0 \tag{5.5.24}
\end{equation*}
$$

By (5.5.15),

$$
\begin{equation*}
d \mu_{\nabla^{A}}: T_{\nabla^{A}} \mathcal{A} \rightarrow(\Sigma \mathfrak{g})^{*}, \quad X \longmapsto \nabla^{A} X \tag{5.5.25}
\end{equation*}
$$

Then

$$
\begin{equation*}
T_{\nabla^{A}} \mathcal{A}_{0}=\operatorname{ker} d \mu_{\nabla^{A}}=\left\{X \in \Omega^{1}\left(\Sigma, \operatorname{End}^{\text {anti }}(E)\right): \nabla^{A} X=0\right\} \tag{5.5.26}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
T\left(\mu^{-1}(0) / \Sigma G\right)=\frac{T_{\nabla^{A}} \mathcal{A}_{0}}{\Sigma \mathfrak{g} \cdot \nabla^{A}}=\frac{\left.\operatorname{ker} \nabla^{A}\right|_{\Omega^{1}\left(\Sigma, \text { Endananid }^{\text {anti }}(E)\right)}}{\left.\operatorname{Im} \nabla^{A}\right|_{\Omega^{0}\left(\Sigma, \text { End }^{\text {anti }}(E)\right)}}=H_{\nabla^{A}}^{1}\left(\Sigma, \operatorname{End}^{\text {anti }}(E)\right) \tag{5.5.27}
\end{equation*}
$$

If $X, Y \in H_{\nabla A}^{1}\left(\Sigma, \operatorname{End}^{\text {anti }}(E)\right)$, then

$$
\begin{equation*}
\omega_{\mathcal{A}_{0} / \Sigma G}\left(X^{0}, Y^{0}\right)=\int_{\Sigma} \operatorname{Tr}^{E}[X \wedge Y] \tag{5.5.28}
\end{equation*}
$$

defines a symplectic form on $\mathcal{A}_{0} / \Sigma G$.
Remark 5.5.4. The distinct flat vector bundles on Σ are in one-to-one correspondence to the equivariant class of the conjugate representation of $\pi_{1}(\Sigma) \rightarrow U(n)$, here $\pi_{1}(\Sigma)$, the fundamental group of Σ, is the group with $2 r$ generators with r the genus of Σ satisfying

$$
\begin{equation*}
\prod_{j=1}^{r} u_{j} v_{j} u_{j}^{-1} v_{j}^{-1}=1 \tag{5.5.29}
\end{equation*}
$$

Moreover, the space of equivariant classes of flat connection on Σ is isomorphic to the following space:

$$
\begin{equation*}
\left\{\left(u_{j}, v_{j}\right) \in U(n) \times \cdots \times U(n): \prod_{j=1}^{r} u_{j} v_{j} u_{j}^{-1} v_{j}^{-1}=I\right\} / U(n) \tag{5.5.30}
\end{equation*}
$$

5.6 Bibliographic notes

For Remark 5.1.2, cf. [28], [41, Example A.5].
Basic reference for Section 5.2 is [16]. Corollary 5.2.2 is [16, Lemma 4.2.5], Theorem 5.2.3 is [16, Theorem 4.2.9]. Theorem 5.2.5 is [16, Theorem 5.8.1]. Theorem 5.2.6 is a combination of Theorem 2.1.15 and [16, §5.7]. Theorem 5.2.8 is [16, Theorem 5.4.5]. Theorem 5.2.9: first part is [16, Lemma 5.4.3, Prop. 5.4.12], b) is [16, Prop. 5.2.16], c) is [16, Prop. 5.7.1].

About the Koszul-Malgrange integrability theorem in Exercise 5.4.2, we can deduce it from Newlander-Nirenberg theorem for integrable almost complex structure as in [40, Proposition 1.3.7], also a direct proof in [24, Theorem 2.1.53, §2.2.2].

