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Let θ ∈ Ω1(G, g) be the canonical 1-form with values in g, that is for g ∈ G,X ∈ TgG, we
have

θg(X) = dLg−1X ∈ TeG = g. (5.3.18)

We denote also θ = g−1dg. We identify X,Y ∈ g to the left invariant vector fields X,Y on G,
then θ(X), θ(Y ) are constant on G, and

(dθ)(X,Y ) = Xθ(Y )− Y θ(X)− θ([X,Y ]) = −[X,Y ]. (5.3.19)

For ϑ1, ϑ2 ∈ Ω•(G), u, v ∈ g, we define

[ϑ1 ⊗ u, ϑ2 ⊗ v] = ϑ1 ∧ ϑ2 ⊗ [u, v]. (5.3.20)

Then we can reformulate (5.3.19) as

dθ = −1

2
[θ, θ]. (5.3.21)

Let πL : G × g∗ → G and π : T ∗G → G be the natural projections, then π ◦ ΦL = πL and
Lg ◦πL = πL ◦Lg. We denote by p the tautological section of g∗. By (1.2.42), for (g, p) ∈ G×g∗,
X ∈ T(g,p)(G× g∗), we have

(Φ∗
Lλ)(g,p)(X) = ⟨L∗

g−1p, dπdΦL(X)⟩ = ⟨p, dLg−1dπL(X)⟩ = ⟨p, (π∗
Lθ)(X)⟩. (5.3.22)

We note that λ is invariant under diffeomorphisms of G. In particular λ is left and right invariant.
By (5.3.21) and (5.3.22), the symplectic form ω on G× g∗ (≃ T ∗G) is given by

ω = −d(Φ∗
Lλ) = −⟨dp, π∗

Lθ⟩ − ⟨p, π∗
Ldθ⟩ = −⟨dp, π∗

Lθ⟩+
1

2
⟨p, π∗

L[θ, θ]⟩. (5.3.23)

We will call the G-action on M = G defined by G ×M ∋ (h, g) → gh−1 ∈ M as R−1-action of
G on G. We define the G×G-action on G by

Ig1,g2g = g1gg
−1
2 for g1, g2, g ∈ G. (5.3.24)

It induces a G × G-action on T ∗G, and under the identification (5.3.17), we know by (2.3.42),
for (g, β) ∈ G× g∗,

Ig1,g2(g, β) = (Ig1,g2g, L
∗
g1gg

−1
2

(d(Ig1,g2)
−1)∗L∗

g−1β) = (Ig1,g2g,Ad∗g2β), (5.3.25)

as for X ∈ g, by (5.3.16) and (5.3.24), we have

(L∗
g1gg

−1
2

(d(Ig1,g2)
−1)∗L∗

g−1β,X) = (β, dLg−1dLg−1
1
dRg2dLg1gg−1

2
X)

= (β,Adg−1
2
X) = (Ad∗g2β,X). (5.3.26)

For X ∈ g, as in (2.2.1), let XL, XR be the vector fields on G × g∗ induced by X for the left
action (5.3.16) and by X for the right action on G. By (5.3.25), for g ∈ G, β ∈ g∗,

XL
(g,β) = (dRg(X), 0), XR

(g,β) = (dLg(X),−ad∗Xβ) ∈ TgG× g∗. (5.3.27)

Thus the vector field on G×g∗ induced by (X,Y ) ∈ T(e,e)(G×G) = g⊕g, for the action (5.3.25)
is

(X,Y )G×g∗

(g,β) = XL
(g,β) −XR

(g,β). (5.3.28)
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Let µL : G× g∗ → g∗, µR : G× g∗ → g∗ be defined by

µL(g, β) = Ad∗gβ, µR(g, β) = −β. (5.3.29)

By (2.3.46), (5.3.27)–(5.3.29), the moment map µ : G × g∗ → (g ⊕ g)∗ for the G × G-action
(5.3.25) on T ∗G is given by(

µ, (X,Y )
)
(g,β)

= (L∗
g−1β, dπ(X,Y )T

∗G) = (β, dLg−1dπL(X,Y )G×g∗
)

= (β,Adg−1X − Y ) = (µL, X)(g,β) + (µR, Y )(g,β). (5.3.30)

Thus the moment map µ is given by

µ = (µL, µR) : G× g∗ → (g⊕ g)∗. (5.3.31)

By Proposition 2.3.19 and (5.3.24), we know µL (resp. µR) is the moment map of the left (resp.
R−1) action of G on T ∗G.

Now we consider the symplectic reduction with respect to µR. For γ ∈ g∗, by (5.3.29),

µ−1
R (−γ) = G× {γ} ⊂ G× g∗ and R−1

h (g, γ) = (gh−1, γ) for h ∈ Gγ . (5.3.32)

Let πR : µ−1
R (−γ) → M−γ = µ−1

R (−γ)/Gγ be the natural projection with R−1-action of Gγ on
µ−1
R (−γ). Then we can identify M−γ with the coadjoint orbit by

φ1 :M−γ ∋ [g, γ] → Ad∗gγ ∈ Oγ = G · γ. (5.3.33)

Now by (5.3.33), the left action on G induces the Ad∗-action on Oγ , thus from (2.2.3),

d(φ1 ◦ πR)XL
(g,γ) =

∂

∂t
|t=0φ1 ◦ πR(etXg,−γ) =

∂

∂t
|t=0Ad∗etXAd∗gγ

= ad∗XAd∗gγ = X
Oγ

Ad∗
gγ
. (5.3.34)

By Theorem 2.3.18, (2.1.20), (5.3.18), (5.3.23) and (5.3.27), we get for X,Y ∈ g,

ωγ(X
Oγ , Y Oγ )Ad∗

gγ
= ω(XL, Y L)(g,γ)

= (γ, [θ(dRgX), θ(dRgY )]) = (γ, [Adg−1X,Adg−1Y ])

= (Ad∗gγ, [X,Y ]). (5.3.35)

From (5.3.35), ωγ is exactly the symplectic form on Oγ defined in (2.3.51). By Theorem 2.3.18,
the associated moment map on (Oγ , ωγ) is induced by µL :

(µOγ , X)Ad∗
gγ

= (µL, X)(g,γ) = (Ad∗gγ,X). (5.3.36)

Thus we recover Proposition 2.3.9 by using the reduction from G× g∗.
Now we suppose that 2πγ ∈ Λ∗∩ t∗+. Then Gγ = T. Let ργ be the representation of T defined

by

ργ : T ∋ g = exp(τ) → e2iπ⟨γ,τ⟩ ∈ S1. (5.3.37)

The G × G-action on L = C is defined by Ig1,g2 · 1 = 1 as explained after (5.1.21). Thus
s ∈ Lγ,y means that s ∈ C∞(π−1(y),C) and s(xh−1) = ργ(h

−1)s(x) for x ∈ π−1(y), h ∈ T. In
other words, Lγ is the quotient space ofG×C by the T-action defined by: for h ∈ T, (g, v) ∈ G×C,

h(g, v) = (gh, ργ(h)v). (5.3.38)
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Thus Lγ is the line bundle G ×ργ C on G/T associated with the principal T-bundle G → G/T
and the representation ργ . Let ∇Lγ be the connection constructed in (5.3.14). By Theorem
5.3.2, we have

c1(Lγ ,∇Lγ ) = ωγ . (5.3.39)

In fact, we will show in Chapter 6 that (Oγ , ωγ) is a Kähler manifold, and Lγ is a holomorphic
line bundle on Oγ .

Theorem 5.3.5 (Borel-Weil-Bott). If 2πγ ∈ Λ∗
+, we have

H0,j(Oγ , Lγ) = 0, for j ≥ 1, (5.3.40)

and H0,0(Oγ , Lγ), the space of holomorphic sections of Lγ on Oγ , is the irreducible representation
associated with highest weight 2πγ.

We know that (M ×Oγ , ω+ωγ) is prequantized by L⊗Lγ , the tensor product of the natural
lifts of L and Lγ on M × Oγ . By applying Theorem 5.3.1 for M × Oγ , we then recover the
symplectic reduction at −γ and its prequantization line bundle.

5.4 Kähler prequantizations and reductions

Let (M,ω) be a symplectic manifold, and let G be a compact Lie group with Lie algebra g. We
suppose that G acts on M Hamiltonianly with moment map µ :M → g∗.

We assume that G acts freely on Y = µ−1(0). For x ∈M , set

gMx = {KM
x ∈ TxM : K ∈ g}. (5.4.1)

Then it forms a vector bundle gM on Y . For simplify, we denote gY = gM |Y .
Let J be a G-invariant, compatible almost complex structure on (M,ω). Then gTM = ω(·, J ·)

is a G-invariant metric on TM , and we denote by ⊥ to mean the orthogonality with respect to
gTM . Let THY be the orthogonal complement of gY in TY with respect to gTM .

Proposition 5.4.1. The following G-invariant orthogonal decomposition of vector bundles on
Y with respect to gTM holds:

TM |Y = THY ⊕ gY ⊕ JgY . (5.4.2)

Moreover, THY is J-invariant, and THY⊥ω(gY ⊕ JgY ).

Proof. By (2.3.76), we get

gY ⊂ TY, (TY )⊥ω = gY . (5.4.3)

By (5.4.3), gTM = ω(·, J ·) and gY⊥THY , we get

JgY = (TY )⊥, gY⊥THY, i.e., gY⊥ωTY, JgY⊥ωTHY. (5.4.4)

As gY is G-invariant, thus THY and JgY are G-invariant. From (5.4.4) and TY = THY ⊕ gY ,
we get the G-invariant orthogonal decomposition (5.4.2).

If u ∈ THY , then u⊥(gY ⊕ JgY ), thus Ju⊥(gY ⊕ JgY ). This and (5.4.2) imply J(THY ) ⊂
THY . By (5.4.4), we know THY⊥ω(gY ⊕ JgY ).

The proof of Proposition 5.4.1 is completed.



CHAPTER 5. SYMPLECTIC REDUCTIONS AND PREQUANTIZATIONS 170

For a G-vector bundle E on Y , set

EG,y = {s ∈ C∞(π−1(y), E) : g · s = s for any g ∈ G}, for y ∈MG,

F = Y ×G g.
(5.4.5)

Let x ∈ Y , y ∈ MG such that π(x) = y, for U ∈ TyMG, let U
H ∈ THx Y be the lifting of U , i.e.,

the unique UH ∈ THx Y such that dπ(UH) = U , then automatically, UH ∈ C∞(Y, THY )G. This
gives the canonical isomorphism (THY )G → TMG. From (5.4.2), we get on MG,

(TM |Y )G ≃ TMG ⊕ (F ⊕ F ∗). (5.4.6)

Let JG,y : TyMG → TyMG be defined by

JGU = dπ(JUH). (5.4.7)

As JUH ∈ C∞(Y, THY )G, we know that dπ(JUH)x does not depend on the choice of x ∈ π−1(y),
thus JGU is well-defined.

Theorem 5.4.2. The JG in (5.4.7) is a compatible almost complex structure on (MG, ωG).
Moreover, if J is integrable, JG is also integrable. In particular, if (M,J, ω) is a Kähler manifold,
then (MG, JG, ωG) is also a Kähler manifold.

Proof. For y ∈ MG, U ∈ TyMG, since J preserves THY , JUH ∈ THx Y for x ∈ π−1(y). Thus

JUH =
(
dπ(JUH)

)H
= (JGU)H . Then by (5.4.7), we have

J2
GU = JG dπ(JU

H) = dπ(J2UH) = −U. (5.4.8)

This means JG is an almost complex structure on MG.
On the other hand, for U, V ∈ TyMG, we have

ωG(JGU, JGV ) = ω(JUH , JV H) = ω(UH , V H) = ωG(U, V ),

ωG(U, JGU) = ω(UH , JUH) > 0 if U ̸= 0.
(5.4.9)

Thus, JG is a compatible almost complex structure on (MG, ωG).
We suppose now J is integrable. If u, v ∈ C∞(MG, T

(1,0)MG), then there exist U, V ∈
C∞(MG, TMG) such that

u = U −
√
−1JGU, v = V −

√
−1JGV. (5.4.10)

By (5.4.7), (JGU)H = JUH , thus

uH = UH −
√
−1JUH , vH = V H −

√
−1JV H ∈ T (1,0)M ∩ (TY ⊗R C). (5.4.11)

As both T (1,0)M , TY ⊗R C are integrable, we get

[uH , vH ] ∈ T (1,0)M ∩ (TY ⊗R C), (5.4.12)

i.e., there exists W ∈ TM such that [uH , vH ] = W −
√
−1JW . Let PTY be the orthogonal

projection from TM onto TY via (5.4.2). Then from (5.4.2),

[u, v] = dπ[uH , vH ] = dπPTYW −
√
−1dπPTY JW

= dπPTYW −
√
−1JGdπP

TYW ∈ T (1,0)MG. (5.4.13)

From the Newlander-Nirenberg theorem, (5.4.13) means JG is integrable. The proof of Theorem
5.4.2 is completed.
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In the rest of this section, let (M,J, ω) be a Kähler manifold prequantized by a holomorphic
Hermitian line bundle (L, hL) with the Chern connection ∇L. Let a compact Lie group G act
holomorphically and symplectically onM , and the G-action can be lifted on a holomorphic action
on L. Then by Theorem 5.1.10, the G-action preserves the metric hL. Let µ : M → g∗ be the
associated moment map.

Theorem 5.4.3. If G acts freely on µ−1(0), then (LG, h
LG) in Theorem 5.3.1 is a holomorphic

Hermitian line bundle over MG and ∇LG is the Chern connection on (LG, h
LG).

Proof. We decompose ∇LG into holomorphic part and anti-holomorphic part,

∇LG = (∇LG)1,0 + (∇LG)0,1. (5.4.14)

From Theorem 5.4.2, ωG, and so RLG is a (1, 1)-form, thus

((∇LG)0,1)2 = 0. (5.4.15)

Now, for s ∈ C∞(MG, LG), we define

∂
LG
s := (∇LG)0,1s. (5.4.16)

Let s0 be a local frame of LG near x0 ∈ MG. Then there is a (0, 1)-form a near x0 such that
(∇LG)0,1s0 = as0. From (5.4.15),

0 = ((∇LG)0,1)2s0 = (∂a)s0. (5.4.17)

Thus ∂a = 0 near x0. By the ∂-Lemma, there exists a function b near x0 such that ∂b = −a,
i.e., (∂b)s0 + (∇LG)0,1s0 = 0. This means that (5.4.16) defines a holomorphic structure on LG
and ebs0 is a holomorphic frame of LG.

The proof of Theorem 5.4.3 is completed.

As the G-action commutes with the Dolbeault operator ∂
L
, we know for j ≥ 0, the j-th

Dolbeault cohomology group H0,j(M,L) (cf. (4.1.38)) is a G-representation. As in (4.2.80), we
denote by V G the G-invariant part of a G-representation V .

Now we can state the “quantization commutes with reduction” in the holomorphic case which
was established by Guillemin-Sternberg for j = 0, and Teleman, Zhang for j > 0.

Theorem 5.4.4. If M is compact and if G acts freely on µ−1(0), then the map ψ : Ω0,•(M,L)G

→ Ω0,•(MG, LG), by the restriction first on µ−1(0), then using (5.3.2) and (5.4.6) to induce a
section on MG, induces an isomorphism

H0,j(M,L)G ≃ H0,j(MG, LG) for any j ≥ 0. (5.4.18)

Exercise 5.4.1. Let G be a compact Lie group with Lie algebra g. Let π : Y → G\Y = B be a
G-principal bundle with fiberwise tangent bundle TZ. Let (E, hE ,∇E) be a Hermitian vector
bundle with Hermitian connection ∇E and curvature RE . Let THY be a horizontal subbundle
of TY such that

TY = THY ⊕ TZ. (5.4.19)

Let PTZ : TY = THY ⊕TZ → TZ be the projection. Let θ ∈ Ω1(Y, g) be defined as θ(THY ) = 0,
and θ(KY ) = K for K ∈ g.
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We suppose that all geometric objects are G-equivariant. Then the horizontal bundle THX
defines a connection θ of the principal G-bundle π : Y → B. The curvature of the fibration
π : Y → B associated with θ is defined by: for U, V ∈ C∞(B, TB),

Ω(UH , V H) = −θ([UH , V H ]), (5.4.20)

here UH ∈ C∞(Y, THY ) is the unique lift of U such that dπ(UH) = U .
As in (5.1.24), we define µE ∈ C∞(Y, g∗ ⊗ End(E)) by: for K ∈ g,

2π
√
−1µE(K) = ∇E

KX − LK . (5.4.21)

We still call µE the moment map associated to the G-action on E.

1. Verify that EG in (5.4.5) defines a vector bundle on B, and hE induces a Hermitian metric
hEG on EG.

2. For s ∈ C∞(B,EG) = C∞(Y,E)G, U ∈ C∞(B, TB), we define

∇EG

U s := ∇E
UHs. (5.4.22)

Verify that ∇EG is a Hermitian connection on (EG, h
EG). Its curvature REG is given by

REG(U, V ) = RE(UH , V H)− 2π
√
−1µE(Ω(UH , V H)). (5.4.23)

Exercise 5.4.2. We put in the context of Theorem 5.4.3. Let E be a holomorphic vector bundle
on M .

1. For the fibration π : µ−1(0) →MG, (5.4.5) defines a holomorphic vector vector bundle EG

on MG. (Hint: We only need to verify (∂
EG

)2 = 0 by the Koszul-Malgrange integrability
theorem.)

2. Let hE be a G-invariant metric on E, and ∇E be the Chern connection on (E, hE). Then
(5.4.22) induces the Chern connection on (EG, h

EG).

3. Verify that (T (1,0)M)G is a holomorphic vector bundle onMG, and the map dπ : (T (1,0)M)G
→ T (1,0)MG is holomorphic and surjective.

Exercise 5.4.3 (Symplectic cut). 1. In Section 5.3.1, if G ×H acts Hamiltonianly on (M,ω)
and (L,∇L), then H acts Hamiltonianly on (MG, ωG, LG,∇LG).

2. Assume the Hamiltonian S1-manifold (M,ω) is prequantizable by the prequantum line
bundle (L, hL,∇L).

Let 1 be the canonical section of the trivial line bundle F = C on C. We define S1 action on
(C, F ) by g ·1y = 1g·y. Then G = S1-acts on L⊗F onM×C by g ·(σx⊗1y) = (g ·σx)⊗1g·y
and the H = S1-action on L ⊗ F on M × C by g · (σx ⊗ 1y) = (g · σx) ⊗ 1y for g ∈ S1,
x ∈M,y ∈ C, σx ∈ Lx.

Conclude that M≥0 as defined in Section 2.4 is prequantized by (L≥0, h
L≥0 ,∇L≥0) such

that

(L≥0, h
L≥0 ,∇L≥0)|MS1

= (LS1 , h
LS1 ,∇LS1 ). (5.4.24)

3. We can define (M≥n, L≥n) by using the prequantum line L⊗C[−n], here C[−n] is the trivial
line bundle with trivial connection and it’s a S1-representation C with weight −n. Then
normal bundle NMS1/M≥0

of MS1 in M≥0 is given by µ−1(0)×S1 C[−1], and H = S1 acts on

NMS1/M≥0
by g · [x, y] = [g · x, y] for x ∈ µ−1(0), y ∈ C, thus H = S1 acts as identity on

Mn and Ln as the fiberwise representation with weight n.
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5.5 An infinite dimensional example: moduli spaces of flat
connections

Let Σ be a compact oriented surface, and let (E, hE) be a Hermitian vector bundle on Σ. Let A
be the affine space of all Hermitian connection on (E, hE). Note that A is of infinite dimension.
For a fixed Hermitian connection ∇E

0 on (E, hE), A can be expressed as

A = ∇E
0 +Ω1(Σ,Endanti(E)). (5.5.1)

Formally, the tangent space TA takes the form

T∇E
0
A = Ω1(Σ,Endanti(E)). (5.5.2)

For X,Y ∈ Ω1(Σ,Endanti(E)), we define a 2-form ω by

ω(X,Y ) =

∫
Σ

TrE [X ∧ Y ], (5.5.3)

where TrE [X ∧ Y ] is understood as follows: if X = α ⊗ A, Y = β ⊗ B with α, β ∈ Ω1(Σ) and
A,B ∈ End(E), then X ∧ Y = α ∧ β ⊗AB and

TrE [X ∧ Y ] = α ∧ β TrE [AB]. (5.5.4)

One verifies directly that ω defines a symplectic form on A.
Set G = U(n) and E = P (U(n)) ×ρ Cn with P (U(n)) the principle U(n)-bundle on Σ. Let

ΣG be the space of all smooth maps from Σ to G. Then ΣG is an infinite dimensional Lie group
which we call the gauge group of E, and it acts smoothly on A by: for g ∈ ΣG and ∇A ∈ A,

g · ∇A := g∇Ag−1 = ∇A − (∇Ag)g−1. (5.5.5)

For g ∈ ΣG and X,Y ∈ Ω1(Σ,Endanti(E)), we have

ω(g ·X, g · Y ) =ω(gXg−1, gY g−1) =

∫
Σ

TrE [gXg−1 ∧ gY g−1]

=

∫
Σ

TrE [X ∧ Y ] = ω(X,Y ). (5.5.6)

That is, ΣG preserves the symplectic form ω. Denote g by the Lie algebra of G. Then the
Lie algebra of ΣG is Σg = C∞(Σ, g). Take X ∈ Σg, by (5.5.5), the induced vector field XA ∈
C∞(A, TA) is given by

XA
∇A =

d

dt

∣∣∣
t=0

etX · ∇A = −∇AX ∈ Ω1(Σ,Endanti(E)). (5.5.7)

Denote by FA the curvature of ∇A, i.e.,

FA = (∇A)2 ∈ Ω2(Σ,Endanti(E)). (5.5.8)

We can identify Ω2(Σ,Endanti(E)) with (Σg)∗ as follows:

Ω2(Σ,Endanti(E)) ≃(Σg)∗

α⊗A 7−→
〈
α⊗A,B

〉
=

∫
Σ

α TrE [AB] for B ∈ Σg. (5.5.9)
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Under the identification, the curvature FA can be viewed as an element of (Σg)∗. We now define

µ : A →(Σg)∗, ∇A 7−→ FA. (5.5.10)

That is, 〈
µ(∇A), X

〉
=

∫
Σ

TrE [FAX] for X ∈ Σg. (5.5.11)

Theorem 5.5.1. µ is a moment map for the ΣG-action on (A, ω).

Proof. Denote by F g·A the curvature of the connection g · ∇A, i.e.,

F g·A = (g∇Ag−1)2 = g
(
∇A
)2
g−1 = gFAg−1. (5.5.12)

Then 〈
µ(g · ∇A), X

〉
=
〈
F g·A, X

〉
=

∫
Σ

TrE [F g·A ∧X] =

∫
Σ

TrE [FA ∧ g−1Xg]

=
〈
µ(∇A),Adg−1X

〉
=
〈
Ad∗gµ(∇A), X

〉
. (5.5.13)

That is

µ(g · ∇A) = Ad∗gµ(∇A). (5.5.14)

For Y ∈ T∇AA = Ω1(Σ,Endanti(E)), we have

(Y · FA)∇A =
∂

∂t

∣∣∣
t=0

(∇A + tY )2 = ∇A
• Y. (5.5.15)

By (5.5.7) and (5.5.15),

Y
〈
µ,X

〉
=

∫
Σ

TrE [∇A
• Y ∧X] =

∫
Σ

TrE [Y ∧∇A
•X]

=−
∫
Σ

TrE [∇A
•X ∧ Y ]. = ω(XA, Y ) = (iXAω)(Y ). (5.5.16)

That is

d
〈
µ,X

〉
= iXAω. (5.5.17)

By (5.5.14) and (5.5.17), we know that µ is a moment map. The proof of Theorem 5.5.1 is
completed.

Set

A0 := µ−1(0) =
{
A ∈ A : µ(A) = 0

}
=
{
A ∈ A : FA = 0

}
. (5.5.18)

Theorem 5.5.2. The quotient space A0/ΣG is isomorphic to the space of equivariant class of
flat Hermitian connections on E.
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Fix x0 ∈ Σ, set

Σ0G =
{
g ∈ ΣG : g(x0) = e ∈ G

}
. (5.5.19)

Then Σ0G acts freely on µ−1(0). Clearly,

ΣG/Σ0G = G, µ−1(0)/ΣG =
(
µ−1(0)/Σ0G

)/
G. (5.5.20)

Take A ∈ A0, then

∇A = d+A, (∇A)2 = 0. (5.5.21)

We have the following complex with the differential operator ∇A:

0 −→ Ω0(Σ,End(E)) −→ Ω1(Σ,Endanti(E)) −→ Ω2(Σ,Endanti(E)) −→ 0. (5.5.22)

For X ∈ Ω0(Σ,End(E)) = Σg, we have ∇AX = −XA.

Definition 5.5.3. The j-th cohomology of the complex
(
Ω•(Σ,Endanti(E)),∇A

)
is defined by

Hj
∇A(Σ,End

anti(E)) =
ker ∇A

∣∣
Ωj(Σ,Endanti(E))

Im ∇A
∣∣
Ωj−1(Σ,Endanti(E))

. (5.5.23)

If G acts locally freely on A0/Σ0G, then X → XA is injective, i.e.,

H0
∇A(Σ,End

anti(E)) = 0. (5.5.24)

By (5.5.15),

dµ∇A : T∇AA → (Σg)∗, X 7−→ ∇AX. (5.5.25)

Then

T∇AA0 = ker dµ∇A =
{
X ∈ Ω1(Σ,Endanti(E)) : ∇AX = 0

}
. (5.5.26)

Moreover,

T
(
µ−1(0)/ΣG

)
=

T∇AA0

Σg · ∇A
=

ker ∇A
∣∣
Ω1(Σ,Endanti(E))

Im ∇A
∣∣
Ω0(Σ,Endanti(E))

= H1
∇A(Σ,End

anti(E)). (5.5.27)

If X,Y ∈ H1
∇A(Σ,End

anti(E)), then

ωA0/ΣG(X
0, Y 0) =

∫
Σ

TrE [X ∧ Y ] (5.5.28)

defines a symplectic form on A0/ΣG.

Remark 5.5.4. The distinct flat vector bundles on Σ are in one-to-one correspondence to the
equivariant class of the conjugate representation of π1(Σ) → U(n), here π1(Σ), the fundamental
group of Σ, is the group with 2r generators with r the genus of Σ satisfying

r∏
j=1

ujvju
−1
j v−1

j = 1. (5.5.29)

Moreover, the space of equivariant classes of flat connection on Σ is isomorphic to the following
space: (uj , vj) ∈ U(n)× · · · × U(n) :

r∏
j=1

ujvju
−1
j v−1

j = I

/U(n) (5.5.30)
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5.6 Bibliographic notes

For Remark 5.1.2, cf. [28], [41, Example A.5].
Basic reference for Section 5.2 is [16]. Corollary 5.2.2 is [16, Lemma 4.2.5], Theorem 5.2.3 is

[16, Theorem 4.2.9]. Theorem 5.2.5 is [16, Theorem 5.8.1]. Theorem 5.2.6 is a combination of
Theorem 2.1.15 and [16, §5.7]. Theorem 5.2.8 is [16, Theorem 5.4.5]. Theorem 5.2.9: first part
is [16, Lemma 5.4.3, Prop. 5.4.12], b) is [16, Prop. 5.2.16], c) is [16, Prop. 5.7.1].

About the Koszul-Malgrange integrability theorem in Exercise 5.4.2, we can deduce it from
Newlander-Nirenberg theorem for integrable almost complex structure as in [40, Proposition
1.3.7], also a direct proof in [24, Theorem 2.1.53, §2.2.2].


