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Let § € Q'(G,g) be the canonical 1-form with values in g, that is for g € G, X € T,G, we
have

0,(X)=dL, X € T.G = g. (5.3.18)

We denote also § = g~ 'dg. We identify X,Y € g to the left invariant vector fields X,Y on G,
then 6(X),0(Y) are constant on G, and

(dO)(X,Y)=X0(Y)-YO(X)-0(X,Y]) = —-[X,Y]. (5.3.19)
For 91,92 € Q*(G), u,v € g, we define
[191 R u, ¥ ® ’U] =" AP ® [u, 1}]. (5320)

Then we can reformulate (5.3.19) as
1
df = —5[9, g]. (5.3.21)

Let 7, : G x g* = G and 7 : T*G — G be the natural projections, then 7 o ®; = 7y, and
Lyomy =g oLy We denote by p the tautological section of g*. By (1.2.42), for (¢9,p) € G x g*,
X € Tiyp)(G x g*), we have

(@50 (g.p) (X) = (L 1p, dmd® (X)) = (p,dLy1drp (X)) = (p, (7}0)(X)). (5.3.22)

We note that A is invariant under diffeomorphisms of G. In particular A is left and right invariant.
By (5.3.21) and (5.3.22), the symplectic form w on G x g* (~ T*G) is given by

* * * * 1 *
w=—d(®;\) = —(dp, 7} 0) — (p,m;df) = —(dp, 7} 0) + §<p, 71 [0, 6]). (5.3.23)

We will call the G-action on M = G defined by G x M > (h,g) — gh™' € M as R™!-action of
G on G. We define the G x G-action on G by

Iy29 = 91995+ for gi,g2,9 € G. (5.3.24)

It induces a G x G-action on T*G, and under the identification (5.3.17), we know by (2.3.42),
for (9,8) € G x g,

(d(Ig1792)71)*L;—1B) = (Igl,gg_% Ad;,ﬂ)7 (5325)

as for X € g, by (5.3.16) and (5.3.24), we have

Igl,gg (gvﬂ) = (19179297 Lzlgggl

(L2 i(d(lgy,0) ") Ly 2B, X) = (B,dLy1dL,1dRy,dL, -+ X)

91995 ! 91992

= (B.Ad,1X) = (A}, 8, X). (5.3.26)

For X € g, as in (2.2.1), let X~ X be the vector fields on G x g* induced by X for the left
action (5.3.16) and by X for the right action on G. By (5.3.25), for g € G, 8 € g*,

X 5 = (dRg(X),0), XI5 = (dLy(X), —adx ) € T,G x g". (5.3.27)

Thus the vector field on G x g* induced by (X,Y) € T(. (G x G) = gP g, for the action (5.3.25)
is

Gxg" _ yL R
XY) g5 = Xig.0) ~ X(a.0)- (5.3.28)



CHAPTER 5. SYMPLECTIC REDUCTIONS AND PREQUANTIZATIONS 168

Let up, : G x g = g%, ug : G x g* — g* be defined by
By (2.3.46), (5.3.27)—(5.3.29), the moment map p : G X g* — (g ® g)* for the G x G-action
(5.3.25) on T*G is given by
(,h (ny))( )= (LB, dr(X,Y)T ) = (B,dLy 1dmy (X, Y)99)
g,
= (,6, Adgf1X - Y) = (MLaX)(g,B) + (,uR,Y>(g,5). (5.3.30)

Thus the moment map g is given by

i= (o) G x " = (3@ 9)" (5.3.31)

By Proposition 2.3.19 and (5.3.24), we know uy, (resp. pg) is the moment map of the left (resp.
R~1) action of G on T*G.
Now we consider the symplectic reduction with respect to ugr. For v € g*, by (5.3.29),

pp (=) =G x{y} CGxg* and R;'(g,7) = (gh~ ') for h € G,. (5.3.32)

Let mg : ug' (=) = M_., = up'(—7)/G, be the natural projection with R~'-action of G, on
u;cl(—’y). Then we can identify M_, with the coadjoint orbit by

p1: M 3[g,7] = Adjy € O, =G 7. (5.3.33)
Now by (5.3.33), the left action on G induces the Ad*-action on O,, thus from (2.2.3),

0 9 " .
d(promr)X(; ) = :li=op1 0 mR(€¥ g, —7) = - li=oAdfix Adgy

= adfAd)y = X1, (5.3.34)
By Theorem 2.3.18, (2.1.20), (5.3.18), (5.3.23) and (5.3.27), we get for X,Y € g,
WW(XOW’YOW)A%W = w(X" Y )y

= (7, [0(dRyX),0(dRyY)]) = (7, [Ady-1 X, Ady-1Y])
= (Ad}7,[X,Y]). (5.3.35)

From (5.3.35), w, is exactly the symplectic form on O. defined in (2.3.51). By Theorem 2.3.18,
the associated moment map on (O, w) is induced by pr,

(197, X)adzy = (11, X) (g, = (Adj7, X). (5.3.36)

Thus we recover Proposition 2.3.9 by using the reduction from G x g*.
Now we suppose that 2y € A*Nt. Then G, = T. Let p, be the representation of T defined
by

py:T > g=exp(r) = e e st (5.3.37)

The G x G-action on L = C is defined by I, 4, - 1 = 1 as explained after (5.1.21). Thus
s € L., means that s € €>(7~(y),C) and s(zh™!) = p,(h~!)s(x) for z € 771 (y), h € T. In
other words, L is the quotient space of G xC by the T-action defined by: for h € T, (g,v) € GxC,

h(g,v) = (gh, py(R)v). (5.3.38)
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Thus L., is the line bundle G x, C on G/T associated with the principal T-bundle G — G/T
and the representation p,. Let V7 be the connection constructed in (5.3.14). By Theorem
5.3.2, we have

(L, VE) = w,. (5.3.39)

In fact, we will show in Chapter 6 that (O, w. ) is a Kéhler manifold, and L., is a holomorphic
line bundle on O,.

Theorem 5.3.5 (Borel-Weil-Bott). If 2my € A%, we have
H%(0,,L,) =0, for j>1, (5.3.40)

and HO’O(O,Y, L.,), the space of holomorphic sections of L, on O.,, is the irreducible representation
associated with highest weight 2m-y.

We know that (M x O, w +w,) is prequantized by L ® L.,, the tensor product of the natural
lifts of L and L, on M x O,. By applying Theorem 5.3.1 for M x O,, we then recover the
symplectic reduction at —v and its prequantization line bundle.

v

5.4 Kahler prequantizations and reductions

Let (M,w) be a symplectic manifold, and let G be a compact Lie group with Lie algebra g. We
suppose that G acts on M Hamiltonianly with moment map p: M — g*.
We assume that G acts freely on Y = p=1(0). For x € M, set

oM = (KM e T,M: K € g}. (5.4.1)

Then it forms a vector bundle g* on Y. For simplify, we denote g¥" = g™|y.

Let J be a G-invariant, compatible almost complex structure on (M, w). Then g7 = w(-, J-)
is a G-invariant metric on T'M, and we denote by L to mean the orthogonality with respect to
g™ Let THY be the orthogonal complement of g¥ in TY with respect to g7 ™.

Proposition 5.4.1. The following G-invariant orthogonal decomposition of vector bundles on
Y with respect to gTM holds:

TM|y =T?Y @ g* @ Jg¥. (5.4.2)
Moreover, THY is J-invariant, and THY 1, (g¥ @ Jg¥).
Proof. By (2.3.76), we get
g” CTY, (TY)* =g". (5.4.3)
By (5.4.3), ¢*™ = w(-,J-) and g¥ LTHY, we get
Jg¥ = (1Y), ¢"1TY, e, g" L, TY, Jg¥l,THY. (5.4.4)

As g¥ is G-invariant, thus THY and Jg¥ are G-invariant. From (5.4.4) and TY = THY @ ¢V,
we get the G-invariant orthogonal decomposition (5.4.2).

If ue THY, then ul(gY & Jg¥), thus Jul(g¥ & Jg¥). This and (5.4.2) imply J(THY) C
THY . By (5.4.4), we know THY 1 ,(g¥ @ Jg¥).

The proof of Proposition 5.4.1 is completed. O
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For a G-vector bundle F on Y, set

Eq,={se ‘goo(ﬂfl(y),E) :g-s=s forany g€ G}, forye Mg,

(5.4.5)
F=Y Xa g-

Let x € Y, y € Mg such that m(x) =y, for U € T,Mg, let U € THY be the lifting of U, i.e.,
the unique UH € THY such that dr(U) = U, then automatically, U¥ € (Y, THY)%. This
gives the canonical isomorphism (TY)g — TMg. From (5.4.2), we get on Mg,

(TMly)g =~ TMg @ (F @ F"). (5.4.6)
Let Jg,y : TyMg — T, M¢ be defined by
JoU = dr(JUH), (5.4.7)

As JUH € (Y, THY )Y, we know that dr(JU™), does not depend on the choice of z € 771(y),
thus JgU is well-defined.

Theorem 5.4.2. The Jg in (5.4.7) is a compatible almost complex structure on (Mg, wg).
Moreover, if J is integrable, Jg is also integrable. In particular, if (M, J,w) is a Kdhler manifold,
then (Mg, Ja,wq) is also a Kdhler manifold.

Proof. For y € Mg, U € T,Mg, since J preserves T?Y, JUH € THY for x € n~1(y). Thus
JUH = (dW(JUH))H = (JgU)™. Then by (5.4.7), we have

JEU = Jgdr(JUM) = dr(J?UH) = —U. (5.4.8)

This means Jg is an almost complex structure on Mq.
On the other hand, for U,V € Ty Mg, we have

wa(JaU, JgV) = w(JUT, JVH) = w0 V) = wa(U, V), (5.4.9)
we(U,JoU) = w(Uf JuH)y >0 if U #0. o

Thus, Jg is a compatible almost complex structure on (Mg, wg).
We suppose now J is integrable. If u,v € %W(Mg,T(l’O)Mg), then there exist U,V €
€ (Mg, TMc) such that

u=U—-1JgU, v=V —/-1J5V. (5.4.10)
By (5.4.7), (JgU)® = JU¥, thus
uf =U" —/=1gut, o =vH — 2V e TOOM N (TY @R C). (5.4.11)
As both TOM | TY ®@g C are integrable, we get
W vH) e TOOM N (TY @ C), (5.4.12)

i.e., there exists W € TM such that [uff,vf] = W — \/=1JW. Let PTY be the orthogonal
projection from TM onto TY via (5.4.2). Then from (5.4.2),

[u,v] = dn[uf? o] = dnPTYW — /=1dzPTY JW
= dnPTYW — V=1JadnPTYW e TOO Mg, (5.4.13)

From the Newlander-Nirenberg theorem, (5.4.13) means Jg is integrable. The proof of Theorem
5.4.2 is completed. O



CHAPTER 5. SYMPLECTIC REDUCTIONS AND PREQUANTIZATIONS 171

In the rest of this section, let (M, J,w) be a Kéahler manifold prequantized by a holomorphic
Hermitian line bundle (L, k%) with the Chern connection VZ. Let a compact Lie group G act
holomorphically and symplectically on M, and the G-action can be lifted on a holomorphic action
on L. Then by Theorem 5.1.10, the G-action preserves the metric h”. Let u: M — g* be the
associated moment map.

Theorem 5.4.3. If G acts freely on p=1(0), then (Lg, ht¢) in Theorem 5.3.1 is a holomorphic
Hermitian line bundle over Mg and V¢ is the Chern connection on (Lg, h*¢).

Proof. We decompose V¢ into holomorphic part and anti-holomorphic part,
vie = (vie)ho 4 (yle)ol, (5.4.14)
From Theorem 5.4.2, wg, and so RY¢ is a (1,1)-form, thus
(VEe)PhH2 = 0. (5.4.15)

Now, for s € €°°(Mg, Lg), we define

9" = (Ve )Ols, (5.4.16)

Let sg be a local frame of Lg near g € Mg. Then there is a (0,1)-form a near xg such that
(VEe)01sy = asg. From (5.4.15),

0= ((VEe)O1)250 = (Da)so. (5.4.17)

Thus da = 0 near xy. By the d-Lemma, there exists a function b near zq such that 0b = —a,
ie., (Ob)sg + (VEG)%1sy = 0. This means that (5.4.16) defines a holomorphic structure on Lg
and e’sg is a holomorphic frame of Lg.

The proof of Theorem 5.4.3 is completed. O

As the G-action commutes with the Dolbeault operator EL, we know for j > 0, the j-th
Dolbeault cohomology group H%J (M, L) (cf. (4.1.38)) is a G-representation. As in (4.2.80), we
denote by V& the G-invariant part of a G-representation V.

Now we can state the “quantization commutes with reduction” in the holomorphic case which
was established by Guillemin-Sternberg for j = 0, and Teleman, Zhang for j > 0.

Theorem 5.4.4. If M is compact and if G acts freely on u='(0), then the map v : Q**(M, L)%
— Q%*(Mg, Lg), by the restriction first on p=*(0), then using (5.5.2) and (5.4.6) to induce a
section on Mq, induces an isomorphism

H%(M,L)Y ~ H* (Mg, Lg)  for any j > 0. (5.4.18)

Ezercise 5.4.1. Let G be a compact Lie group with Lie algebra g. Let 7 : Y — G\Y = B be a
G-principal bundle with fiberwise tangent bundle TZ. Let (E,h¥,VF) be a Hermitian vector
bundle with Hermitian connection V¥ and curvature R¥. Let THY be a horizontal subbundle
of TY such that

TY =Ty 0 TZ. (5.4.19)

Let P72 . TY = THY®TZ — TZ be the projection. Let 6 € Q!(Y, g) be defined as §(THY) = 0,
and O(KY) = K for K € g.
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We suppose that all geometric objects are G-equivariant. Then the horizontal bundle T# X
defines a connection 6 of the principal G-bundle w : Y — B. The curvature of the fibration
m:Y — B associated with 6 is defined by: for U,V € €*°(B,TB),

QUHE, VHEY = —g(UH,VH)), (5.4.20)
here UH € €°°(Y,THY) is the unique lift of U such that dr(U) = U.
As in (5.1.24), we define u € €(Y, g* ® End(E)) by: for K € g,
2mv/—1pP(K) = VEx — Lg. (5.4.21)
We still call ¥ the moment map associated to the G-action on E.

1. Verify that Eg in (5.4.5) defines a vector bundle on B, and h” induces a Hermitian metric
hEG on Eg.

2. For s € (B, Eg) = €< (Y,E)%, U € ¢=(B,TB), we define
Vs = VEus. (5.4.22)

Verify that V¢ is a Hermitian connection on (Eg, h¢). Its curvature RF¢ is given by
REc (U, V) = RE(UH VH) — 2ny/ =15 (QUT, V). (5.4.23)

Ezercise 5.4.2. We put in the context of Theorem 5.4.3. Let E be a holomorphic vector bundle
on M.

1. For the fibration 7 : u=1(0) = Mg, (5.4.5) defines a holomorphic vector vector bundle Eg

on Mg. (Hint: We only need to verify (EEG)2 = 0 by the Koszul-Malgrange integrability
theorem.)

2. Let h¥ be a G-invariant metric on E, and V¥ be the Chern connection on (E,h¥). Then
(5.4.22) induces the Chern connection on (Eg, h¢).

3. Verify that (79 M) is a holomorphic vector bundle on Mg, and the map dr : (T M) g
— T M is holomorphic and surjective.

Ezercise 5.4.3 (Symplectic cut). 1. In Section 5.3.1, if G x H acts Hamiltonianly on (M,w)
and (L, V%), then H acts Hamiltonianly on (Mg,wg, Lg, VE€).

2. Assume the Hamiltonian S!'-manifold (M,w) is prequantizable by the prequantum line
bundle (L, ht, VE).
Let 1 be the canonical section of the trivial line bundle F = C on C. We define S' action on
(C,F)byg-1, =14,. Then G =S'-actson L&F on M xC by g-(0,®1,) = (9:0,)®14.,
and the H = S'-actionon L& F on M x Cby g- (0, ®1,) = (9-0,) ® 1, for g € S,
reMyeC, o, € L.
Conclude that M>q as defined in Section 2.4 is prequantized by (LZO,hLZO,VLZO) such
that

(Lo, h*20,VF20)| )y = (Lgi, bt Vlat). (5.4.24)

3. We can define (M>,,, L>,) by using the prequantum line L ® C_,, here C[_, is the trivial
line bundle with trivial connection and it’s a S'-representation C with weight —n. Then
normal bundle Ny, /ar.., of Mg in M is given by u(0) xg1 Ci—1), and H = S! acts on
Nary mso by g- [7,y] = [g-z,y] for z € u=1(0), y € C, thus H = S' acts as identity on
M,, and L,, as the fiberwise representation with weight n.
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5.5 An infinite dimensional example: moduli spaces of flat
connections

Let ¥ be a compact oriented surface, and let (E, h) be a Hermitian vector bundle on ¥. Let A
be the affine space of all Hermitian connection on (E, h¥). Note that A is of infinite dimension.
For a fixed Hermitian connection V¥ on (E,hf), A can be expressed as

A =VE + 042, End®™ (E)). (5.5.1)
Formally, the tangent space T'A takes the form

Tv(I)EA = Q}(%, End™(E)). (5.5.2)
For X,Y € Q'(%,End™(E)), we define a 2-form w by

w(X,Y) = /ZTrE[X AY], (5.5.3)

where Tr”[X A Y] is understood as follows: if X = a® A, Y = 3® B with o, 8 € Q'(Z) and
A,B € End(E), then X A\Y =aAB® AB and

T X AY]=aAp TrF[AB]. (5.5.4)

One verifies directly that w defines a symplectic form on A.

Set G = U(n) and E = P(U(n)) x, C" with P(U(n)) the principle U(n)-bundle on X. Let
3G be the space of all smooth maps from ¥ to G. Then XG is an infinite dimensional Lie group
which we call the gauge group of E, and it acts smoothly on A by: for g € ©G and V4 € A,

g- VA= gVAgTt = v4A — (VAg)g L. (5.5.5)

For g € ¥G and X,Y € Q'(%, End*™"(E)), we have

w(g-X,g-Y) :w(ngfl,ng’l):/TrE[ng”Ang’l]
>

:/ T[X A Y] = w(X,Y). (5.5.6)
b

That is, ¥G preserves the symplectic form w. Denote g by the Lie algebra of G. Then the
Lie algebra of G is ¥g = C™(%,g). Take X € Xg, by (5.5.5), the induced vector field X+ €
C>(A,TA) is given by

d

A
XVA:%

X . vA = —VAX € QY(Z, End™(E)). (5.5.7)
t=0

Denote by F4 the curvature of V4, i.e.,
FA = (Vh? € (2, End™(E)). (5.5.8)
We can identify Q2(%, End®™(E)) with (3g)* as follows:
0*(2, End™(E)) ~(Sg)*

a®Ar—{a®A,B) = / a TrP[AB] for B € %g. (5.5.9)
b
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Under the identification, the curvature F4 can be viewed as an element of (Xg)*. We now define
w: A—(Sg), VA — FA, (5.5.10)

That is,
(v, X) = / TP [FAX] for X € Xg. (5.5.11)
b

Theorem 5.5.1. u is a moment map for the XG-action on (A,w).

Proof. Denote by F94 the curvature of the connection g - V4, i.e.,

F94 = (gVig™)?2 = g(VA)2g_1 =gF4gL. (5.5.12)
Then
(lg - 94),) =(F74,%) = [ 1P aax) = [ PR A
2 2
=(u(V*),Ady1 X) = (Ad;u(V?), X). (5.5.13)
That is
(g - VA = Adu(VH). (5.5.14)

For Y € Tga A = QY(3, End®™(E)), we have

0
(Y- Fh)ga = =

=5 (VA +1tY)2 = VY. (5.5.15)

t=0

By (5.5.7) and (5.5.15),

Y<M,X>:/ETrE[Vf‘Y/\X] :/ETrE[YAvf‘X]

=- /ETrE [VAX AY]. = w(XAY) = (ixaw)(Y). (5.5.16)
That is
d{p, X) = iyaw. (5.5.17)
By (5.5.14) and (5.5.17), we know that p is a moment map. The proof of Theorem 5.5.1 is
completed. O
Set
Ao =pt(0)={AcA: p(A)=0}={Ac A: FA=0}. (5.5.18)

Theorem 5.5.2. The quotient space Ag/EG is isomorphic to the space of equivariant class of
flat Hermitian connections on E.
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Fix xg € X, set

500G = {g € BG : g(x0) = e € G}. (5.5.19)
Then oG acts freely on p~1(0). Clearly,
EG/EG =G, pH0)/2G = (1 1(0)/%0G) /G. (5.5.20)
Take A € Ap, then
VA=d+ A, (VH2=0. (5.5.21)

We have the following complex with the differential operator V4:

0 — Q°%2,End(E)) — QL(Z, End™(E)) — Q*(%, End*™(E)) — 0. (5.5.22)
For X € Q°(3,End(E)) = Xg, we have VAX = — X4,
Definition 5.5.3. The j-th cohomology of the complex (Q°(%, End*(E)), V4) is defined by

HL (S, End™(E)) = IljerT|?j(E’E“(laft‘FE>> . (5.5.23)
Qi—1(Z,End>"ti(E))
If G acts locally freely on Ag/LoG, then X — XA is injective, i.e.,
HA (%, End™™(E)) = 0. (5.5.24)
By (5.5.15),
dpga : ToaAd = (2g)*, X — VAX. (5.5.25)
Then
TyaAy =ker duya = {X € Q'(X, End™(E)) : VAX = 0}. (5.5.26)
Moreover,

A
_ Toady ker'V |Ql(2 End@"ti () 1 ti
T(u'(0)/26G) = >y = ’ = HL A (%, End™(E)). (5.5.27)
Zg -V Im VA’QO(E’Endanti(E))

If X,Y € HL (2, End*"(E)), then

WAO/ZG(XO,YO) = / TrH[X A Y] (5.5.28)
b

defines a symplectic form on Ay/XG.

Remark 5.5.4. The distinct flat vector bundles on ¥ are in one-to-one correspondence to the
equivariant class of the conjugate representation of 7 (X) — U(n), here m1(X), the fundamental
group of X, is the group with 2r generators with r the genus of ¥ satisfying

[T wiviu; vyt =1 (5.5.29)
j=1

Moreover, the space of equivariant classes of flat connection on ¥ is isomorphic to the following
space:

J

(uj,v;) € U(n) x --- x U(n) : Hujvjuj—lu.—l =1} /U(n) (5.5.30)
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5.6 Bibliographic notes

For Remark 5.1.2, cf. [28], [41, Example A.5].

Basic reference for Section 5.2 is [16]. Corollary 5.2.2 is [16, Lemma 4.2.5], Theorem 5.2.3 is
[16, Theorem 4.2.9]. Theorem 5.2.5 is [16, Theorem 5.8.1]. Theorem 5.2.6 is a combination of
Theorem 2.1.15 and [16, §5.7]. Theorem 5.2.8 is [16, Theorem 5.4.5]. Theorem 5.2.9: first part
is [16, Lemma 5.4.3, Prop. 5.4.12], b) is [16, Prop. 5.2.16], c) is [16, Prop. 5.7.1].

About the Koszul-Malgrange integrability theorem in Exercise 5.4.2, we can deduce it from
Newlander-Nirenberg theorem for integrable almost complex structure as in [40, Proposition
1.3.7], also a direct proof in [24, Theorem 2.1.53, §2.2.2].



