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Abstract
In this paper we consider a punctured Riemann surface endowed with a Hermitian
metric that equals the Poincaré metric near the punctures, and a holomorphic line
bundle that polarizes the metric. We show that the Bergman kernel can be localized
around the singularities and its local model is the Bergman kernel of the punctured
unit disc endowed with the standard Poincaré metric. One of the technical tools is a
new weighted elliptic estimate near the punctures, which is uniform with respect to
the tensor power. As a consequence, we obtain an optimal uniform estimate of the
supremum norm of the Bergman kernel, involving a fractional growth order of the
tensor power. This holds in particular for the Bergman kernel of cusp forms of high
weight of non-cocompact geometrically finite Fuchsian groups of first kind without
elliptic elements.
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1 Introduction

In this paper we study the Bergman kernels of a singular Hermitian line bundle over a
Riemann surface under the assumption that the curvature has singularities of Poincaré
type at a finite set. Our first result shows that the Bergman kernel can be localized
around the singularities and its local model is the Bergman kernel of the punctured
disc endowed with the standard Poincaré metric. The proof follows the principle that
the spectral gap of the Kodaira Laplacian and uniformly elliptic estimates near the
singularities imply the localization of the Bergman kernel [27]. By a detailed analysis
of the local model we deduce a sharp uniform estimate of the supremum norm of the
Bergman kernels.

Let us describe our setting. Let � be a compact Riemann surface and let D =
{a1, . . . , aN } ⊂ � be a finite set. We consider the punctured Riemann surface � =
�� D and a Hermitian form ω� on�. Let L be a holomorphic line bundle on�, and
let h be a singular Hermitian metric on L such that:

(α) h is smooth over �, and for all j = 1, . . . , N , there is a trivialization of L in
the complex neighborhood Vj of a j in�, with associated coordinate z j such that
|1|2h(z j ) = |log(|z j |2)|.

(β) There exists ε > 0 such that the (smooth) curvature RL of h satisfies i RL ≥ εω�
over � and moreover, i RL = ω� on Vj := Vj � {a j }; in particular, ω� = ωD∗
in the local coordinate z j on Vj and (�, ω�) is complete.

Here ωD∗ denotes the Poincaré metric on the punctured unit disc D
∗, normalized as

follows:

ωD∗ := idz ∧ dz

|z|2 log2(|z|2) · (1.1)

For p ≥ 1, let h p := h⊗p be the metric induced by h on L p|� , where L p := L⊗p.
We denote by H0

(2)(�, L
p) the space of L2-holomorphic sections of L p relative to the

metrics h p and ω� ,
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Bergman kernels on punctured Riemann surfaces 953

H0
(2)(�, L

p) =
{
S ∈ H0(�, L p) : ‖S‖2

L2 :=
∫
�

|S|2h p ω� <∞
}
, (1.2)

endowed with the obvious inner product. The sections from H0
(2)(�, L

p) extend to

holomorphic sections of L p over �, i.e., (see [27, (6.2.17)])

H0
(2)(�, L

p) ⊂ H0 (
�, L p) . (1.3)

In particular, the dimension dp of H0
(2)(�, L

p) is finite.
We denote by respectively by Bp(·, ·) and by Bp(·) the (Schwartz-)Bergman kernel

and the Bergman kernel function of the space H0
(2)(�, L

p), defined as follows: if

{S p
� }�≥1 is an orthonormal basis of H0

(2)(�, L
p), then

Bp(x, y) =
dp∑
�=1

S p
� (x)⊗ (Sp(y))

∗ and Bp(x) =
dp∑
�=1

|S p
� (x)|2h p . (1.4)

Note that these are independent of the choice of basis (see [27, (6.1.10)] or [13, Lemma
3.1]). Similarly, let BD

∗
p (x, y) and BD

∗
p (x) be the Bergman kernel and Bergman kernel

function of (D∗, ωD∗ ,C, h
p
D∗

)
, and hD∗ =

∣∣log(|z|2)∣∣h0 with h0 the flat Hermitian
metric on the trivial line bundle C.

The main result of this paper is a weighted estimate in the Cm-norm near the
punctures for the global Bergman kernel Bp compared to the Bergman kernel BD

∗
p of

the punctured disc, uniformly in the tensor powers of the given bundle.
Note that for k ∈ N, the Ck-norm at x ∈ � is defined for σ ∈ C∞(�, L p) as

|σ |Ck (h p)(x) =
(
|σ |h p + ∣∣∇ p,�σ

∣∣
h p,ω�

+ · · · +
∣∣∣(∇ p,�)kσ

∣∣∣
h p,ω�

)
(x), (1.5)

with ∇ p,� is the connection on (T�)⊗�⊗ L p induced by the Levi-Civita connection
on (T�,ω�) and the Chern connection on (L p, h p), and the pointwise norm | · |h p,ω�

is induced by ω� and h p. In the same way, for f ∈ C∞(�,C), its Ck-norm | f |Ck (x)
at x ∈ � is defined by using the Levi-Civita connection on (T�,ω�).

Let us fix a point a ∈ D and work in coordinates centered at a. Let e be the
holomorphic frame of L near a corresponding to the trivialization in the condition
(α). Let 0 < r < e−1 and let D∗

r be the punctured disc of radius r centered at a. By the
assumptions (α), (β), under our trivialization e of L on the coordinate z onD

∗
r , we have

the identification of the geometric data (�, ω�, L, h)|D∗r = (D∗, ωD∗ ,C, hD∗)|D∗r .
Theorem 1.1 Assume that (�, ω�, L, h) fulfill conditions (α) and (β). Let a ∈ D, and
0 < r < e−1 as above. Then for any k ∈ N, � > 0, α ≥ 0, there exists a constant
Ck,�,α such that for p � 1, we have on D

∗
r/2 × D

∗
r/2

∣∣∣BD
∗

p (x, y)− Bp(x, y)
∣∣∣
Ck (h p)

≤ Ck,�,α p
−�∣∣log(|x |2)∣∣−α∣∣log(|y|2)∣∣−α, (1.6)
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954 H. Auvray et al.

with norms computed with help of (double copies of) ω� , h, and the associated Levi-
Civita and Chern connections on D

∗
r/2 × D

∗
r/2.

As a consequence of the proof of Theorem 1.1, we obtain in Corollary 6.1 uniform esti-
mates for the Bergman kernel Bp(x, y) away from the diagonal. Another consequence
of Theorem 1.1 is the weighted diagonal expansion of the Bergman kernel:

Theorem 1.2 Assume that (�, ω�, L, h) fulfill conditions (α) and (β). Then the fol-
lowing estimate holds: for any �,m ∈ N, and every δ > 0, there exists a constant
C = C(�,m, δ) such that for all p ∈ N

∗, and z ∈ V1 ∪ . . . ∪ VN with the local
coordinate z j ,

∣∣∣Bp − BD
∗

p

∣∣∣
Cm

(z j ) ≤ Cp−�
∣∣log(|z j |2)∣∣−δ, (1.7)

with norms computed with help of ω� and the associated Levi-Civita connection on
D
∗
r/2.

Remark 1.3 Theorems 1.1 and 1.2 admit a generalization to orbifold Riemann sur-
faces. Assume that � is a compact orbifold Riemann surface, and the finite set
D = {a1, . . . , aN } ⊂ � does not meet the (orbifold) singular set of �. Assume
moreover that L is a holomorphic orbifold line bundle on �. Let ω� be an orbifold
Hermitian formon� and h an orbifoldHermitianmetric on L in the sense of [27, §5.4].
The proof of Theorems 1.1 and 1.2 can be modified to show: If conditions (α), (β)
hold in this context, then (1.7) holds. In fact, the elliptic estimate [15, (4.14)] and the
finite propagation speed of wave operators hold on orbifolds as observed by [26, §6],
so the arguments used in this paper go through for orbifolds to get the conclusion.

By [27, Theorems6.1.1, 6.2.3], for any compact set K ⊂ � we have the following
expansion on K in any Cm-topology (see Theorem 2.1),

1

p
Bp(x) = 1

2π
+

∞∑
j=1

b j (x)p
− j as p →+∞. (1.8)

By contrast, Theorem 1.2 gives a precise description of Bp up to the punctures, in
terms of the Bergman kernel function of the Poincaré metric on the local model
of the punctured unit disc in C. Note that in the case of smooth Hermitian metrics
with positive curvature the Bergman kernel can be localized and its local model is
the Euclidean space endowed with a trivial bundle of positive curvature, see [27,
Sections 4.1.2–3]. This kind of localization is inspired from the analytic localization
technique of Bismut–Lebeau [7] in local index theory. For the problem at hand we
have to overcome difficulties linked to the presence of singularities. For this purpose
we prove a new weighted elliptic estimate near the punctures, which is uniform in the
tensor powers p. Then, combining with a revisited, singularity-centered localization
principle and a weighted Sobolev embedding, we can reach (1.7) for some negative δ
however. Using the fact that square integrable holomorphic sections of L p vanish on
D, we finally establish (1.7) for any positive δ.
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Bergman kernels on punctured Riemann surfaces 955

Froma study of themodelBergman kernel functions BD
∗

p on the punctured unit disc,
we get the following ratio estimate as a corollary of Theorem 1.2 and Corollary 3.6:

Corollary 1.4 Let (�, ω�, L, h) be as in Theorem 1.2. Then

sup
x∈�

Bp(x) = sup
x∈�

σ∈H0
(2)(�,L

p)\{0}

|σ(x)|2h p

‖σ‖2
L2

=
( p

2π

)3/2 +O(p) as p →+∞. (1.9)

This collection of results represents, to our knowledge, the first example of auniform
L∞ asymptotic description of the Bergman kernel function of a singular polarization.
This is of particular interest in arithmetic situations. Note that the work of Burgos
Gil et al. [10,11] developed the arithmetic intersection theory for log-singular Hermi-
tian metrics, showing in particular that Arakelov heights can be defined, and applied
successfully the theory for the Hilbert modular surfaces. Our results provide some
possible applications in this direction. For example, the classical arithmetic Hilbert–
Samuel theorem [21] for positive Hermitian line bundles is usually used to produce
global integral sectionswith small sup-norm; a combination of the recentwork [5]with
the distortion estimate of our Corollary 1.4 should give some interesting arithmetic
consequence for cusp forms on arithmetic surfaces and Hilbert modular surfaces.

Corollary 1.4 is also quite striking from a Kähler geometry point of view, as
the supremum of the Bergman kernel is equivalent to

( p
2π

)n on compact polarized
manifolds of complex dimension n (cf. Corollary 2.3), compared to the non-integer
exponent 3

2 in (1.9). In Kähler geometry moreover, a central problem is the relation
between the existence of special complete/singular metrics and the stability of the pair
(X , D)where D is a smooth divisor of a compact Kähler manifold X ; see e.g. the sug-
gestions of [31, §3.1.2] for the case of “asymptotically hyperbolic Kähler metrics”,
which naturally generalize to higher dimensions the complete metrics ω� studied
here. In this respect, Theorem 1.2 is an initial step towards the application of Bergman
kernels to this problem and the first instance in which the behavior of the Bergman
kernel at infinity is fully understood. Moreover, the technique developed here can be
extended to the higher dimensional situation; more precisely, in the case of Poincaré
type Kähler metrics with reasonably fine asymptotics on complement of divisors, see
the construction of [2, §1.1] and [3, Theorem 4], we expect uniform elliptic estimates
and localization techniques to transpose in a straightforward way.1

Besides, we remark that the Bergman kernel of smooth approximations of a singular
metric can change dramatically near the limit, cf. [17]. In the same circle of ideas, note
that the Bergman kernel Bp provides information on holomorphic sections of L p over
the whole � that vanish at order ≥ 1 at the punctures a1, . . . , aN , whereas, for some
fixed α ∈ (0, 1) smooth metrics and “partial Bergman kernels” can be used to derive
information on holomorphic sections of L p on� with higher vanishing order≥ �α p�
at the a j ’s. (see [14]). With this in mind, one might roughly observe three different

1 As for the higher-dimensional local reference metric, which has to be taken as a perturbation of the
product of the one-dimensional Poincaré cusp metric with some smooth metric on the divisor, its Bergman
kernel can surely be properly understood as well, but with other approaches than the explicit description of
this paper.
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regimes in the asymptotics of BD
∗

p , hence of Bp (Poincaré type case), corresponding to
sections with vanishing order at least 1 and� p1/2,∼ p1/2, and� p1/2, respectively;
see Sect. 3, in particular Fig. 1.2 Note also that the behavior of the Bergman kernel on
singular Riemann surfaces is relevant for the theory of quantum Hall effect [25] and
attracted attention recently.

We give an important example where Theorem 1.2 applies. Let � be a compact
Riemann surface of genus g and consider a finite set D = {a1, . . . , aN } ⊂ �. We also
denote by D the divisor

∑N
j=1 a j and let O�(D) be the associated line bundle. The

following conditions are equivalent:

(i) � = � � D admits a complete Kähler-Einstein metric ω� with Ricω� = −ω� ,
(ii) 2g − 2+ N > 0,
(iii) the universal cover of � is the upper-half plane H,
(iv) L = K� ⊗ O�(D) is ample.

This follows from the Uniformization Theorem [18, Chapter IV] and the fact that
the Euler characteristic of � equals χ(�) = 2 − 2g − N and the degree of L is
2g − 2+ N = −χ(�). If one of these equivalent conditions is satisfied, the Kähler-
Einstein metric ω� is induced by the Poincaré metric on H; (�, ω�) and the formal
square root of (L, h) satisfy conditions (α) and (β), see Lemma 6.2. Theorem 1.2
hence applies to this context. Let � be the Fuchsian group associated with the above
Riemann surface �, that is, � ∼= �\H. Then � is a geometrically finite Fuchsian
group of the first kind, without elliptic elements. Conversely, if � is such a group,
then � := �\H can by compactified by finitely many points D = {a1, . . . , aN }
into a compact Riemann surface � such that the equivalent conditions (i)-(iv) above
are fulfilled. Let S�2p be the space of cusp forms (Spitzenformen) of weight 2p of �
endowed with the Petersson inner product. We can form the Bergman kernel function
of S�p as in (1.4), denoted by B�

p . We deduce from Corollary 1.4:

Corollary 1.5 Let � ⊂ PSL(2,R) be a geometrically finite Fuchsian group of the first
kind without elliptic elements. Let B�

p be the Bergman kernel function of cusp forms
of weight 2p. If � is cocompact then uniformly on �\H,

B�
p (x) =

p

π
+O(1), as p →+∞. (1.10)

If � is not cocompact then

sup
x∈�\H

B�
p (x) =

( p

π

)3/2 +O(p), as p →+∞. (1.11)

Uniform estimates for supx∈�\H B�
p (x) are relevant in arithmetic geometry and

were proved in various degrees of generality and sharpness in [1,20,24,29]. In [20] it

2 Conversely, one might imagine the parameter α mentioned above (smooth case) go to 0 at speed 1/p,
possibly together with the approximation of some Poincaré type metric by carefully chosen smooth metrics,
to try and understand how the partial Bergman kernels approximate Bp ; for sure, some subtleties will occur
along this double limit process, of which the wild transition region observed in Fig. 1 might be an artefact.
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Bergman kernels on punctured Riemann surfaces 957

is proved that in the cofinite but non-cocompact case supx∈�\H B�
p (x) = O(p3/2) and

the result is optimal, at least up to an additive term in the exponent of the form−ε for
any ε > 0. Estimate (1.11) gives the precise coefficient of the leading term p3/2 and
is sharp (by killing the “ε from below” from [20]). Estimate (1.10) is the consequence
of the general expansion of the Bergman kernel on compact manifolds [9,12,32,34]
(cf. also [15,27] and Theorem 2.1).

It turns out that Corollary 1.5 can be formulated so as to underline a certain unifor-
mity in �, in the same fashion as in [20]:

Theorem 1.6 Let �0 ⊂ PSL(2,R) be a fixed Fuchsian subgroup of the first kind
without elliptic elements and let � ⊂ �0 be any subgroup of finite index. If �0 is
cocompact, then

B�
p (x) =

p

π
+O�0(1), as p →+∞. (1.12)

If �0 is not cocompact then

sup
x∈�\H

B�
p (x) =

( p

π

)3/2 +O�0(p), as p →+∞. (1.13)

Here the implied constants in O�0(1), O�0(p) depend solely on �0.

Note that (1.12) is a special case of a more general result, which is implied in [27,
§6.1.2] and that we state as Theorem 2.5 in Sect. 2.

We consider further an extension of Theorem 1.6 to the case when the group �0 has
elliptic elements. Then the quotients �\H are in general orbifolds. By using the result
of Dai–Liu–Ma [15, (5.25)] on the Bergman kernel asymptotics on orbifolds and the
orbifold version of Theorem 1.2 we obtain the following.

Theorem 1.7 Let �0 ⊂ PSL(2,R) be a fixed Fuchsian subgroup of the first kind. Let
{x j }qj=1 be the orbifold points of �0\H and Ux j be a small neighborhood of x j in
�0\H. Let � ⊂ �0 be any subgroup of finite index and π� : �\H → �0\H be the
natural projection. If �0 is cocompact, then as p →+∞

B�
p (x) =

p

π
+O�0(1), uniformly on (�\H) �

q⋃
j=1

π−1� (Ux j ). (1.14)

On each π−1� (Ux j ) we have as p →+∞,

B�
p (x) =

⎛
⎜⎜⎝1+

∑
γ∈�

x�j
�{1}

exp
(
i pθγ − p(1− eiθγ )|z|2

)
⎞
⎟⎟⎠ p

π
+O�0(1),

(1.15)
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where x�j ∈ π−1� (x j ) is in the same component of π
−1
� (Ux j ) as x, e

iθγ is the action of

γ on the fiber of K�\H at x�j , and z = z(x) is the coordinate of x in normal coordinates

z centered at x�j in H, and �y = {γ ∈ � : γ y = y} the stabilizer of y.
In particular, if q0 = lcm{|�0,x j | : j = 1, . . . , q}, n� = max{|�y | : y ∈

π−1� (x j ), j = 1, . . . , q}, then

sup
x∈�\H

B�
q0 p(x) = n�

q0 p

π
+O�0(1). (1.16)

If �0 is not cocompact then as p →+∞

sup
x∈�\H

B�
p (x) =

( p

π

)3/2 +O�0(p). (1.17)

Here again the implied constants in O�0(1), O�0(p) depend solely on �0.

Theorems 1.6, 1.7 sharpen in an optimal way the main result of [20] that states that

sup
x∈�\H

B�
p (x) =

{O�0(p) if �0 is cocompact,
O�0(p

3/2) if �0 is not cocompact.
(1.18)

We obtain in this way the precise leading terms in (1.18).
The results of this paper were announced in [4].
This paper is organized as follows. InSect. 2we recall theBergmankernel expansion

of complete Kähler manifolds and introduce the functional space we need further. In
Sect. 3, we study our model situation: the Bergman kernel on the punctured unit disc
with Poincaré metric. In Sect. 4, we establish the basic weighted elliptic estimate on
the punctured unit disc with Poincaré metric uniformly with respect to the p-th power
of the trivial line bundle with Poincaré metric. In Sect. 5, we develop the spectral
gap properties of the Kodaira Laplacian and give a rough uniform estimate of an
approximation of the Bergman kernel. In Sect. 6, by combining the finite propagation
speed of the wave operator and Sect. 5, we establish finally the main results stated in
the Introduction. In the Appendix A, we prove a technical result, Lemma 3.4.

2 Preliminaries

In Sect. 2.1 we recall by following [27] the asymptotics of the Bergman kernels
on complete manifolds and prove some results of independent interest about this
expansion on Riemann surfaces with locally constant curvature and also about its
behavior with respect to coverings. In Sect. 2.2 we introduce some functional and
section spaces that will be used throughout the paper.
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Bergman kernels on punctured Riemann surfaces 959

2.1 Expansion of Bergman kernels on complete manifolds

For a Hermitian holomorphic line bundle (L, h) on a complex manifold we denote by
RL its Chern curvature and by c1(L, h) = i

2π RL its Chern form.
Let (M, ωM ) be a complete Kähler manifold of dimension n and (L, h) be a Her-

mitian holomorphic line bundle on M and KM be the canonical line bundle on M .
Then the L2-norm on C∞0 (M, L p), the space of smooth sections of L p with compact
support, is defined for any s ∈ C∞0 (M, L p) by

‖s‖2
L2 =

∫
M
|s(x)|2h p

ωn
M

n! · (2.1)

Let L2(M, L p) be the L2-completion of (C∞0 (M, L p), ‖·‖L2). We denote by 〈·, ·〉
the inner product on L2(M, L p) induced by this L2-norm. Then the Bergman kernel
function Bp(x) ∈ C∞(M,R) is still defined by (1.4) with {S p

� }�≥1 an orthonormal
basis of H0

(2)(M, L p), the spaceof L2-holomorphic sections of L p onM with respect to
(2.1). The Bergman kernel Bp(x, y) is the smooth kernel of the orthonormal projection
from (L2(M, L p), ‖·‖L2) onto H0

(2)(M, L p). We have

Bp(x, y) =
∑
�≥1

S p
� (x)⊗ (S p

� (y))
∗ ∈ L p

x ⊗ (L p
y )
∗, and Bp(x, x) = Bp(x).

(2.2)

Here (S p
� (y))

∗ ∈ (L p
y )
∗ is the metric dual of S p

� (y) with respect to h p.
The Bergman kernel function (1.4) has the following variational characterization

(see [13, Lemma 3.1]):

Bp(x) = max
{
|S(x)|2h p : S ∈ H0

(2)(M, L p), ‖S‖L2 = 1
}
. (2.3)

We recall the expansion theorem for the Bergman kernel on a complete manifold [27,
Theorem 6.1.1].

Theorem 2.1 Let (M, ωM ) be a complete Kähler manifold of dimension n and (L, h)
be a Hermitian holomorphic line bundle on M. We assume there exist ε > 0, C > 0
such that i RL ≥ εωM and RicωM ≥ −CωM, where RicωM = i RK ∗

M is the Ricci
curvature of ωM. Then there exist coefficients b j ∈ C∞(M), j ∈ N, such that for any
compact set K ⊂ M, any k,m ∈ N, there exists Ck,m,K > 0 such that for p ∈ N

∗,
∥∥∥∥∥∥
1

pn
Bp(x)−

k∑
j=0

b j (x)p
− j

∥∥∥∥∥∥
Cm (K )

≤ Ck,m,K p−k−1, (2.4)

where

b0 = c1(L, h)n

ωn
M

, b1 = b0
8π

(rω − 2�ω log b0), (2.5)
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and rω, �ω, are the scalar curvature, respectively the (positive) Laplacian, of the
Riemannian metric associated to ω := c1(L, h).

We write (2.4) shortly as

Bp(x) =
k∑
j=0

b j (x)p
n− j +O(pn−k−1). (2.6)

For compact or certain complete Kähler-Einstein manifolds the expansion was
obtained by Tian [32] for k = 0 and m = 2. For general k, m and compact man-
ifolds the existence of the expansion was first obtained in [12,34].

The proof of [27, Theorem 6.1.1] crucially relies on the following localization
principle for Bergman kernels, that we use in the proof of Corollary 2.4 below.Namely,
as illustrated by the formulas for b0 and b1 in (2.5), the asymptotics of Bp(x) depend
only on the geometric data in any neighborhood of x ∈ M . Hence, the Bergman
kernel function asymptotics are the same on two open sets (in two possibly different
manifolds) over which the geometric data are isometric.

Theorem 2.2 Let (M1, ωM1), (M2, ωM2) be complete Kähler manifolds of dimension
n and (L1, h1) → M1, (L2, h2) → M2 be Hermitian holomorphic line bundles. We
assume there exist ε > 0, C > 0 such that for j = 1, 2 we have i RL j ≥ εωMj and
RicωM j

≥ −CωMj . Assume moreover that there are open sets U j ⊂ Mj , j = 1, 2,
and biholomorphic isometries � : U1 → U2, � : (L1|U1, h1) → �∗((L2|U2 , h2)),
where � is also a bundle isomorphism. Let us denote by B j,p the Bergman kernel
functions of H0

(2)(Mj , L
p
j ), j = 1, 2. Then for any k,m ∈ N and any compact set

K ⊂ U1, we have

B1,p − B2,p ◦� = O(p−k) in Cm(K ) as p →+∞.

In particular, if b1, j and b2, j denote the coefficients of the expansion (2.6) of B1,p and
B2,p, then b1, j = b2, j ◦� on U1 for all j ∈ N.

Note that in [23], Hsiao and Marinescu got also a localization principe on any non-
compact manifold for the kernel for lower energy forms.

We immediately obtain from Theorem 2.1 uniform sup-norm bounds for the
Bergman kernel on compact subsets.

Corollary 2.3 Under the hypotheses of Theorem 2.1, let K ⊂ M be a compact subset
such that i RL = ωM on K . Then uniformly on K ,

Bp(x) =
( p

2π

)n +O(pn−1), as p →+∞. (2.7)

In the case of dimension one and constant curvature we can state the following.
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Corollary 2.4 Assume that M in Theorem 2.1 is a Riemann surface and there exists an
open set V such that ωM has scalar curvature−4 and i RL = ωM on V . Then for any
k,m ∈ N and any compact set K ⊂ V ,

Bp(x) = 1

2π
p − 1

2π
+O(p−k) in Cm(K ) as p →+∞. (2.8)

Proof From (2.5) follows that b0 = 1
2π and b1 = − 1

2π (note that rω = −8π ), thus
the task is to prove that the coefficients b j of the expansions (1.8), (2.6) vanish on V
for j ≥ 2. We divide the proof in three steps.

Firstly, it is easy to observe that b j are constant functions on V for all j ∈ N. Indeed,
by [27, Theorem 4.1.1] we know that b j , j ∈ N, are polynomials in the curvatures RL

and RT (1,0)M and their derivatives. On V we have i RL = ωM and i RT (1,0)M = −2ωM .
Thus all the derivatives alluded to above vanish on V , hence b j are polynomials just

in RL and RT (1,0)M , hence constant functions on V , for all j ∈ N.
Secondly, we prove the assertion of the Corollary for a compact Riemann surface

�1 with genus g ≥ 2, such that �1 ∼ �1\H, with �1 a cocompact Fuchsian group.
We endow �1 with the metric ω�1 induced from the Poincaré metric of H with scalar
curvature −4. We consider the line bundle L1 = T ∗(1,0)�1 = K�1 endowed with
the metric h1 induced by ω�1 . Thus i RL1 = 2ω�1 . Let B1,p(x) be the Bergman
kernel function of H0(�1, L

p
1 ). By our observation above, the coefficients b1, j of the

expansion (2.6) are constant functions on �1 for all j ∈ N. Thus

B1,p(x) =
k∑
j=0

b1, j p1− j +O(p−k−1). (2.9)

By the Riemann–Roch theorem, for p > 1,∫
�1

B1,p(x)ω�1 = dim H0(�1, L
p
1 ) =

∫
�1

(
p − 1

2

)
c1(K�1 , h1), (2.10)

and c1(K�1 , h1) = 1
π
ω�1 . By plugging the expansion (2.9) into (2.10), identifying

the coefficients of the powers of p and taking into account that b1, j are constants we
get

b1,0 = 1

π
, b1,1 = − 1

2π
, b1, j = 0 for j ≥ 2. (2.11)

Thirdly, we use the localization principle for Bergman kernels formulated in Theo-
rem 2.2. We now identify holomorphically and isometrically L2 on a neighborhood
of x ∈ V to L1 on an open set of �1. Indeed, by [33, Theorem 2.5.17 and Corollary
2.5.18], near x , the surface is locally isometric to the Poincaré upper half-plane H,
and the holomorphic structure of the surface is determined by the conformal structure
fixed by the metric, thus we obtain a holomorphic and isometric identification � of
a convex neighborhood U of x ∈ V to an open set of �1. Then the curvature of the
Chern connection on the line bundle L2⊗�∗K−1

�1
with the induced metric h is zero on
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U . If σ is a holomorphic frame of L2⊗�∗K−1
�1

onU , this means that ∂∂ log |σ |2h = 0,

so there is a holomorphic function f onU such that log |σ |2h = 2Im f (which holds in
any dimension. For example, from the Poincaré Lemma, there exists g ∈ C∞(U ,R)

such that (∂−∂) log |σ |2h = idg, this implies that g+ i log |σ |2h is holomorphic). Now
e− f σ is a holomorphic frame of L2 ⊗�∗K−1

�1
such that |e− f σ |2h = 1 on U , and this

yields a holomorphic and isometric identification of L2 to �∗K�1 .
By Theorem 2.2, we know the asymptotics of Bp(x) is as same as of B1,p, thus

from (2.9) and (2.11), we get that (2.8) holds uniformly on K ⊂ V . ��
Observe that if (�, ω�, L, h) fulfill conditions (α) and (β), the hypotheses of Corol-

lary 2.4 are satisfied forV = V1∪· · ·∪VN (note that the scalar curvature of thePoincaré
metric (1.1) equals −4), thus (2.8) holds on any compact set K ⊂ V1 ∪ . . . ∪ VN .

The following result is a direct consequence of the proof of [27, Theorem 6.1.4],
and for completeness, we include the proof in Sect. 6.

Theorem 2.5 Let (M, ωM , L, h) be in Theorem 2.1 and assume moreover that M is
compact. Let π1(M) be the fundamental group of Mand M̃ be the universal covering
of M. For any subgroup � ⊂ π1(M) with finite index, we define the Bergman kernel
B�
p (x, y) on M̃/� with the pull-back objects from π� : M̃/� → M. Then for any

k,m ∈ N, there exists Ck,m > 0 such that for any � as above we have

∥∥∥∥∥∥
1

pn
B�
p (x)−

k∑
j=0

(π∗�b j )(x)p
− j

∥∥∥∥∥∥
Cm (M̃/�)

≤ Ck,m p−k−1, (2.12)

where b j are the coefficients of the expansion (2.4) on M.

2.2 Functional spaces, section spaces

We define a few functional spaces, that will be much helpful in what follows.

(i) C0(D∗, ωD∗) is merely the space of bounded continuous functions on D
∗,

endowed with the sup norm; notice that the reference to the metric, needed
when considering bounds on derivatives, is superfluous here.

(ii) Let U ⊂ � be an open set. The space Ck(U , ω�) is defined as the set of Ck

functions on U bounded up to order k on U with respect to the metric ω� , and
endowed with the natural norm:

Ck(U , ω�) =
{
f ∈ Ck(U ) : ‖ f ‖Ck (U ,ω�)

<∞
}
,

with

‖ f ‖Ck (U ,ω�)
= sup

x∈U
| f |Ck (x),

| f |Ck (x) =
(
| f | + |∇� f |ω� + · · · + |(∇�)k f |ω�

)
(x), (2.13)
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∇� being the Levi-Civita connection attached to ω� .
In the same vein, Ck(U , ω�, L p, h p) is the space of Ck sections of L p on U

such that the following norm is bounded for σ ∈ Ck(U , ω�, L p, h p):

|σ |Ck (h p)(x) =
(
|σ |h p + ∣∣∇ p,�σ

∣∣
h p,ω�

+ · · · +
∣∣∣(∇ p,�)kσ

∣∣∣
h p,ω�

)
(x),

‖σ‖Ck (U ,ω�)
:= sup

x∈U
|σ |Ck (h p)(x) <∞,

(2.14)

with ∇ p,� is the connection on (T�)⊗� ⊗ L p induced by the Levi-Civita con-
nection associated with ω� and the Chern connection relative to h p.

(iii) For k ≥ 1, the space L2,k(�, ω�, L p, h p) is the Sobolev space of sections of the
line bundle L p endowed with the Hermitian metric h p over � that are L2 up to
order k, with respect to ω� and h p. This way, elements of L2,k(�, ω�, L p, h p)

are sections σ of L p with L2,k
loc regularity on �, such that:

‖σ‖2
L2,k
p (h)

:=
∫
�

(
|σ |2h p +

∣∣∣∇ p,�σ
∣∣∣2
h p,ω�

+ · · · +
∣∣∣(∇ p,�)kσ

∣∣∣2
h p,ω�

)
ω� <∞.

(2.15)

Alternatively, L2,k(�, ω�, L p, h p) is the ‖·‖L2,k
p (h)-completion of the space

of smooth and compactly supported sections of L p over �, with ‖·‖2
L2,k
p (h)

defined in (2.15). For k = 0 we simply denote ‖·‖L2,0
p (h) by ‖·‖L2

p(h)
and the

corresponding inner product by 〈·, ·〉p.
When we apply this definition for the trivial line bundle C endowed with the

non-trivial Hermitian metric |log(|z|2)|ph0 (the trivial Hermitian metric being
h0), we get the space L2,k(D∗, ωD∗ ,C, |log(|z|2)|ph0) and the norm ‖·‖L2,k

p (D∗).

(iv) We also need in the localization procedure below someweighted Sobolev spaces
on (�, ω�) (resp. on a double copy of (�, ω�)). We first define the weight
function ρ on � as a smooth function, equal to 1 far from the punctures, to
|log(|z j |2)| near the puncture a j , and everywhere ≥ 1. Let now k ∈ N, and

q ≥ 1; the weighted Sobolev space Lq,k
wtd(�, ω�) is defined as the space of L

q,k
loc

functions f on � such that:

‖ f ‖q
Lq,k
wtd

:=
∫
�

ρ
(
| f |q + · · · + |(∇�)k f |qω�

)
ω� <∞. (2.16)

Notice moreover that � × � is the complement of a simple normal crossing

divisor in a compact Kähler manifold, namely � × � = (�
2
) � D with D =

(D × �) + (� × D). This way, the natural product metric ω�×� is a Kähler
metric of Poincaré type on � × � (see e.g. [2, Definition 0.1]). Analogously,
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Lq,k
wtd(�×�,ω�×�) is the space of Lq,k

loc functions f on�×�, endowed with
the product metric ω�×�(x, y) = ω�(x)+ ω�(y) such that

‖ f ‖q
Lq,k
wtd

:=
∫

(x,y)∈�×�
ρ(x)ρ(y)

(
| f (x, y)|q + . . .+ |(∇�×�)k f (x, y)|qω�×�

)
ω�(x)ω�(y)

(2.17)

is finite.

Lemma 2.6 (a) We have L1,3
wtd(�, ω�) ↪−→ C0(�), i.e., there exists c0 > 0 such that

for all f ∈ L1,3
wtd(�, ω�) we have

‖ f ‖C0(�,ω�)
≤ c0‖ f ‖L1,3

wtd
. (2.18)

(b) There are continuous embeddings

L2,k
wtd(� ×�,ω�×�) ↪−→ Cm(� ×�,ω�×�) (2.19)

for all k, m such that k > m + 2.

Proof (a) is from [6, §4.A and Lemme 4.5]. For (b), after noticing that the proof of [6,
Lemme 4.5] remains valid close to the divisor D ⊂ � ×� but far from the crossings
(a j1 , a j2) ∈ � × �, we work around one of these, just as in the proof of [2, Lemma
4.4]. More precisely, we choose two small punctured discs D

∗
r1 and D

∗
r2 around a j1

and a j2 in each � respectively, and cover the product D
∗
r1 × D

∗
r2 in � × � with help

of (self-overlapping) holomorphic polydiscs:

��1,�2 : Dε × Dε −→ D
∗
r1 × D

∗
r2

(u, v) �−→
(
e−2

�1 1+u
1−u , e−2

�2 1+v
1−v

)
,

with �1, �2 ≥ 0, and 0 < ε < 1 fixed independently of �1 and �2. This way,
D
∗
r1 × D

∗
r2 ⊂

⋃∞
�1,�2=0��1,�2(Dε × Dε), and we can even assume that D

∗
r1 × D

∗
r2 ⊂⋃∞

�1,�2=0��1,�2(Dε/2 × Dε/2). Moreover, for any (�1, �2),

(��1,�2)
∗ω�×� = idu ∧ du

(1− |u|2)2 +
idv ∧ dv

(1− |v|2)2 =: �, (2.20)

which does not depend on (�1, �2). On the other hand, (��1,�2)
∗ρ(x) = 2�1+1

∣∣ 1+u
1−u

∣∣,
which is of size 2�1+1 for |u| ≤ ε, with derivatives (at every order) of the same size
for� , and similarly for (��1,�2)

∗ρ(y) with 2�2+1.
Set U = Dr1 × Dr2 ⊂ � × �, so that D

∗
r1 × D

∗
r2 = U � D. Take w ∈ Lq,k

wtd(� ×
�,ω�×�), q ≥ 1, k ≥ 0, and pick m ≥ 0, m < k− 2

q , so thatw ∈ Cm(U �D); what
precedes thus yields:
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‖w‖qCm (U�D) ≤ sup
�1,�2≥0

‖(��1,�2)
∗w‖qCm (Dε/2×Dε/2,�)

≤
∞∑

�1,�2=0
‖(��1,�2)

∗w‖qCm (Dε/2×Dε/2,�)

=
∞∑

�1,�2=0

1

2�1+�2+2
2�1+�2+2‖(��1,�2)

∗w‖qCm (Dε/2×Dε/2,�)

�
∞∑

�1,�2=0

1

2�1+�2+2
∥∥∥(��1,�2)

∗ (ρ(x) 1
q ρ(y)

1
q w

)∥∥∥q
Cm (Dε/2×Dε/2,�)

≤ c
∞∑

�1,�2=0

1

2�1+�2
∥∥∥(��1,�2)

∗ (ρ(x) 1
q ρ(y)

1
q w

)∥∥∥q
Lq,k (Dε×Dε ,�)

(2.21)

by the fixed usual Sobolev embedding (or, more exactly, continuous restriction)

Lq,k(Dε × Dε,�) ↪−→ Cm(Dε/2 × Dε/2,�)

applied to all the (��1,�2)
∗(ρ(x) 1

q ρ(y)
1
q w

)
. Now, observe that our choices provide

∞∑
�1,�2=0

1

2�1+�2
∥∥∥(��1,�2)

∗ (ρ(x) 1
q ρ(y)

1
q w

)∥∥∥q
Lq,k (Dε×Dε ,�)

≤ C(q)
∥∥∥(ρ(x) 1

q ρ(y)
1
q w

)∥∥∥q
Lq,k (�×�,ω�×�)

, (2.22)

since the number of self-overlaps of ��1,�2(Dε × Dε) is of order 2�1+�2 , and since
each ��1,�2(Dε × Dε) overlaps only a finite number of other ��′1,�′2(Dε × Dε), this
number being bounded independently of �1 and �2. Hence

‖w‖qCm (U�D) ≤ C
∥∥∥(ρ(x) 1

q ρ(y)
1
q w

)∥∥∥q
Lq,k (�×�,ω�×�)

� C‖w‖q
Lq,k
wtd

,

and one concludes by specializing to q = 2, and gathering such estimates around the
crossings (a j1 , a j2) with analogous estimates along the divisor D ⊂ � × � and far
from the crossings, and estimates far from the divisor. ��

3 Bergman kernels on the punctured unit disc

In this section we give a detailed description of the Bergman kernel on the punctured
unit disc. We first obtain an explicit formula in Sect. 3.1 and then in Sect. 3.2 we get
precise asymptotics near the puncture by using a natural rescaling.
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3.1 Expression of the Bergman kernels on the punctured unit disc

Let p ∈ N
∗ and let

H p
(2)(D

∗) := H0
(2)

(
D
∗, ωD∗ ,C,

∣∣log(|z|2)∣∣ph0
)
, (3.1)

be the space of holomorphic functions S onD
∗ with finite L2-norm defined in Sect. 2.2

(iii) for k = 0. The purpose here is to study of the Bergman kernel of H p
(2)(D

∗), as
p →∞.

Lemma 3.1 For p ≥ 2, the set

{(
�p−1

2π(p − 2)!
)1/2

z� : � ∈ N, � ≥ 1

}
(3.2)

forms an orthonormal basis of H p
(2)(D

∗).

Proof Let H0(D,C) be the space of holomorphic functions on D. By [27, (6.2.17)],
we know

H p
(2)(D

∗) ⊂ H0(D,C). (3.3)

Note that for p ≥ 2, � ≥ 1,

∫
D∗

∣∣log(|z|2)∣∣pωD∗ =
∫

D∗

∣∣log(|z|2)∣∣p−2 idz ∧ dz

|z|2

=
∫

S1
2p−1 dθ

∫ 1

0
| log r |p−2 dr

r
= ∞,

(3.4)

and
∫

D∗
|z�|2∣∣log(|z|2)∣∣pωD∗ =

∫
D∗

∣∣log(|z|2)∣∣p−2|z|2� idz ∧ dz

|z|2

=
∫

S1
2p−1 dθ

∫ 1

0
r2�−1| log r |p−2 dr

= 2pπ · (2�)1−p · �(p − 1) = 2π(p − 2)!
�p−1

<∞.

(3.5)

By (3.4), (3.5) and the circle invariance of ωD∗ and |log(|z|2)|ph0, the set (3.2) forms
an orthonormal basis of H p

(2)(D
∗). ��

Remark 3.2 Notice that a similar computation shows that the elements of H0
(2)(�, L

p)

are, for p ≥ 2, exactly the sections of L p over the whole� vanishing on the puncture
divisor D = {a1, . . . , aN }.
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Back to D
∗ and according to Lemma 3.1, the Bergman kernel of H p

(2)(D
∗), for any

p ≥ 2, is thus

BD
∗

p (x, y) =
∣∣log(|y|2)∣∣p
2π(p − 2)!

∞∑
�=1

�p−1x�y�. (3.6)

Here the metric dual of the canonical section 1 with respect to h0 is identified to 1,
hence the metric dual of 1 with respect to |log(|z|2)|ph0 is 1∗(z) = |log(|z|2)|p1.
Specializing to the diagonal, we get in particular the Bergman kernel function of
H p
(2)(D

∗) for all p ≥ 2,

BD
∗

p (z) =
∣∣log(|z|2)∣∣p
2π(p − 2)!

∞∑
�=1

�p−1|z|2�. (3.7)

This readily provides the behavior of BD
∗

p far from 0 ∈ D.

Proposition 3.3 For any 0 < a < 1 and any m ≥ 0, there exists c = c(a) > 0 such
that

∥∥∥∥BD
∗

p (z)− p − 1

2π

∥∥∥∥
Cm ({a≤|z|<1},ωD∗ )

= O(e−cp) as p →+∞. (3.8)

More generally, for any 0 < a < 1 and 0 < γ < 1
2 , there exists c = c(a, γ ) > 0 such

that
∥∥∥∥BD

∗
p (z)− p − 1

2π

∥∥∥∥
Cm ({ae−pγ ≤|z|<1},ωD∗ )

= O
(
e−cp1−2γ

)
as p →+∞, (3.9)

and if b ∈ (0, 1),

∥∥∥∥BD
∗

p (z)− p − 1

2π

∥∥∥∥
Cm ({b e−p1/2(log p)−1≤|z|≤a e−pγ },ωD∗ )

= O (
p−∞

)
as p →+∞.

(3.10)

Proof Let us recall the celebrated formula from complex analysis:

1

sin2 w
=

∑
k∈Z

1

(w − kπ)2
on C � πZ.

Thus for t > 0,

∑
k∈Z

1

(2kiπ + t)2
= (et/2 − e−t/2)−2 =

∞∑
�=1

�e−�t . (3.11)
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Combining (3.7), (3.11) with an easy induction on p ≥ 2, one gets the identity

BD
∗

p (z) = (p − 1)

2π

∑
k∈Z

∣∣log(|z|2)∣∣p
(2ikπ + |log(|z|2)|)p

= (p − 1)

2π

⎛
⎝1+

∑
k∈Z, k �=0

∣∣log(|z|2)∣∣p
(2ikπ + |log(|z|2)|)p

⎞
⎠ .

(3.12)

To obtain (3.8) for m = 0, from (3.12), for p ≥ 2, we use

∑
k∈Z, k �=0

∣∣log(|z|2)∣∣p
|2ikπ + |log(|z|2)||p

< 2

(
1+ (2π)2∣∣log(|z|2)∣∣2

)− p−2
2 ∞∑

k=1

∣∣log(|z|2)∣∣2
(2kπ)2 + |log(|z|2)|2 for 0 < |z| ≤ e−1/2,

∑
k∈Z, k �=0

∣∣log(|z|2)∣∣p
|2ikπ + |log(|z|2)||p ≤ 2

∣∣ log(|z|2)∣∣p
∞∑
k=1

(2kπ)−p for e−1/2 ≤ |z| < 1.

(3.13)

For m ≥ 1, by considering separately a < |z| ≤ e−1/2 and e−1/2 ≤ |z| < 1 as above,
we get again (3.8) from (3.12).

For ae−pγ ≤ |z| ≤ e−1/2, from

log

(
1+ (2π)2∣∣log(|z|2)∣∣2

)
≥ C

| log(|z|2)|2 ≥ Cp−2γ ,

∞∑
k=1

∣∣log(|z|2)∣∣2
(2kπ)2 + |log(|z|2)|2 ≤

∞∑
k=1

Cp2γ

(2kπ)2 + 1
,

and (3.13), we get also (3.9).
Note that log(1 + x) ≥ x − x2

2 for x ∈ [0, 1]. From this we know that for

be−p1/2(log p)−1 ≤ |z| ≤ ae−pγ , the analogue of the above equation is

log

(
1+ (2π)2∣∣log(|z|2)∣∣2

)
≥ C

| log(|z|2)|2 ≥
C

p
(log p)2,

∞∑
k=1

∣∣log(|z|2)∣∣2
(2kπ)2 + ∣∣log(|z|2)∣∣2 ≤

∞∑
k=1

C p (log p)−2

(2kπ)2 + 1
.

From the above equation and (3.13) we get (3.10). ��
Observe that the expected behavior for an Einstein metric of scalar curvature −4

such as ωD∗ , at least on compact subsets of D
∗, according to (1.8), Theorem 2.1 and
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Corollary 2.4, is BD
∗

p (z)− p−1
2π = O(p−∞). From our explicit description of BD

∗
p , we

hence benefit an improvement, namely the existence of regions of exponential decay
of the remainder, such regions extending up to the exterior boundary ∂D of D

∗ on one
side, and exponentially close to the singularity 0 ∈ D on the other side; we also get a
first estimate on how close to 0 the usual O(p−∞) remains valid.

3.2 Asymptotics of the density functions near the puncture

We are also interested in a global description of BD
∗

p up to the singularity 0 ∈ D,
especially in the geometric context of Theorem 1.2, and such a description requires
another angle of attack. Let us simplify notations: for p ∈ N

∗, set

bp(y) =
∣∣log y∣∣p+1
2π(p − 1)!

∞∑
�=1

�p y� for y ∈ (0, 1),

ϕ(ξ) = e ξ |log ξ | for ξ ∈ (0, 1), (3.14)

ν(p) = (2π p)1/2 ppe−p(p!)−1 − 1.

Note that by Stirling’s formula and (3.14),

ν(p) = O(p−1) as p →+∞. (3.15)

By (3.7) and (3.14), we have

BD
∗

p+1(z) = bp(|z|2) for z ∈ D
∗. (3.16)

Motivated by the observation that at fixed y, the index of the largest term of the
sum

∑∞
�=1 �p y� is determined by y1/p, we further proceed to the change of variable

x = y1/p, and focus on the function f p : (0, 1)→ R given by:

f p(x) := bp(x
p) =

∣∣log(x p)
∣∣p+1

2π(p − 1)!
∞∑
�=1

�px p�

= pp+2e−p

2π p! |log x |
∞∑
�=1

(
ex�

∣∣log(x�)∣∣)p
(3.17)

=
( p

2π

)3/2
(1+ ν(p)) |log x |

∞∑
�=1

(
ϕ(x�)

)p
.

The smooth function ϕ maps (0, 1) to (0, 1], with ϕ(ξ) = 1 iff ξ = e−1. Thus, for �
fixed, x �→ (ϕ(x�))p heuristically converges to a thinner and thinner Gaussian-shaped
bump of height 1 centered at e−1/�, and |log x |∑∞

�=1(ϕ(x�))p can thus be thought
of as a series of these bumps centered at e−1, e−1/2, e−1/3, of respective heights
1, 1

2 ,
1
3 (because of the factor |log x |) and so on; this actually holds for x in “low

regime” (x ≤ e−p−δ , δ > 1/2, say), the “tail” (x ≥ e−p−δ , 0 < δ < 1/2) consisting
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Fig. 1 The scaled functions
( 2π

p
)3/2 f p on (0, 1)

in an agglomeration of such bumps mixing up with one another to follow an almost
constant behavior near x = 1: see Fig. 1 below.

We develop in the following lines some elementary analysis that justifies these
heuristic considerations. First, set

ψp(ζ ) =
(
ϕ(e−ζ )

)p = ep(1−ζ+log ζ ) for ζ > 0,

G0(η) = e−η2/2, G1(η) = η3e−η2/2 for η ∈ R.
(3.18)

We prove in the Appendix A the following estimate, linking ψp to the Gaussian-type
functions G0 and G1:
Lemma 3.4 There exists C > 0 such that for all ζ > 0 and all p ≥ 1,

∣∣∣∣ψp(ζ )− G0
(√

p(1− ζ )
)+ 1

3
√
p
G1

(√
p(1− ζ )

)∣∣∣∣ ≤ C

p(1+ p(1− ζ )2)
.

For p ≥ 1 and x ∈ (0, 1), set

Gp(x) = |log x |
( ∞∑
�=1

G0
(√

p[1+ log(x�)]
)
− 1

3
√
p

∞∑
�=1

G1
(√

p[1+ log(x�)]
))

.

(3.19)

Remembering that we are looking for an approximation of |log x |∑∞
�=1(ϕ(x�))p and

keeping in mind the relation (3.18) between ϕ, p and ψp, we state:

Proposition 3.5 There exists C > 0 such that for all p ≥ 1 and x ∈ (0, 1),

∣∣∣∣∣|log x |
∞∑
�=1

(
ϕ(x�)

)p −Gp(x)

∣∣∣∣∣ ≤
C

p + p|log x | . (3.20)
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Corollary 3.6 There exists C > 0 such that for all p ≥ 1 and z ∈ D
∗,

∣∣∣∣∣
(
2π

p

)3/2

(1+ ν(p))−1 BD
∗

p+1(z)−Gp(|z|2/p)
∣∣∣∣∣ ≤

C

p + 2|log |z|| . (3.21)

In particular,

sup
z∈D∗

BD
∗

p (z) =
( p

2π

)3/2 +O(p). (3.22)

Proof of Proposition 3.5 We set:

δp(ζ ) = ψp(ζ )− G0
(√

p(1− ζ )
)+ 1

3
√
p
G1

(√
p(1− ζ )

)
. (3.23)

For all p ≥ 1 and x ∈ (0, 1), by (3.18), (3.19) and (3.23),

∣∣∣∣∣|log x |
∞∑
�=1

(
ϕ(x�)

)p −Gp(x)

∣∣∣∣∣ = |log x |
∣∣∣∣∣
∞∑
�=1

δp

(
− log(x�)

)∣∣∣∣∣
≤ |log x |

∞∑
�=1, � �=|log x |−1

∣∣∣δp
(
− log(x�)

)∣∣∣ ; (3.24)

this takes into account the vanishing of δp(ζ ) at ζ = 1. By Lemma 3.4, the latter is
bounded above by

C

p
|log x |

∞∑
�=1,� �=|log x |−1

1

1+ p(� log x + 1)2
; (3.25)

we can thus conclude if we bound this quantity above by an expression of type
C

p(1+|log x |) .
If 0 < |log x | ≤ 2, by bounding the terms associated with � = �−(log x)−1�,

�−(log x)−1� + 1 by 1, where we note �u� the integer part of u ∈ R, we get

∞∑
�=1

� �=|log x |−1

1

1+ p(� log x + 1)2
≤ 2+ 1

| log x |
∫ ∞

0

dα

1+ p(α − 1)2

≤ 2+ 1

| log x |
∫ ∞

−∞
dα

1+ p(α − 1)2

= 2+ π√
p| log x | ,
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Thus by (3.24) and (3.25), for 0 < |log x | ≤ 2,

∣∣∣∣∣|log x |
∞∑
�=1

(
ϕ(x�)

)p −Gp(x)

∣∣∣∣∣ ≤
C |log x |

p
+ C

p3/2
≤ C

p
, (3.26)

and this yields the upper bound
C

p(1+ |log x |) as
1

1+ |log x | ≥
1

3
. This way, the

estimate (3.20) is proved on the region {0 < |log x | ≤ 2}.
Let us assume now that |log x | ≥ 2. Then for all � ≥ 1, �|log x | − 1 ≥ �|log x |

2
,

thus

(� log x + 1)2 = (�|log x | − 1)2 ≥ �2|log x |2
4

,

and

∞∑
�=1

� �=|log x |−1

|log x |2
1+ p(� log x + 1)2

≤
∞∑
�=1

|log x |2
p
(
�2|log x |2

4

) = 2π2

3p
. (3.27)

In other words, by (3.24), (3.25) and (3.27), on the region {|log x | ≥ 2},
∣∣∣∣∣|log x |

∞∑
�=1

(
ϕ(x�)

)p −Gp(x)

∣∣∣∣∣ ≤
C

p2|log x | , (3.28)

and this upper bound yields here again an upper bound
C

p(1+ |log x |) , since
1

|log x | ≤
3

2(1+ |log x |) when |log x | ≥ 2. By (3.26) and (3.28), we get (3.20). ��

Proof of Corollary 3.6 The first part of the corollary follows at once from Proposition
3.5. The second part is an immediate consequence of the estimate

sup
x∈(0,1)

Gp(x) = 1+O(p−1/2). (3.29)

To establish this estimate, let us prove first that

1 ≤ sup
x∈(0,1)

|log x |
∞∑
�=1

G0
(√

p[1+ log(x�)]
)
= 1+O(p−1/2). (3.30)

As putting x = e−1 in |log x |∑∞
�=1 G0

(√
p[1+ log(x�)]) gives 1 + ∑∞

�=2
G0

(√
p[1+ log(x�)]) ≥ 1, we get already that the sup in (3.30) is bounded below by

1.
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Now we have

�−(log x)−1�+1∑
�=�−(log x)−1�

e−p(1+� log x)2 ≤ 1+ e−p(log x)2/4 if | log x | ≤ 1, (3.31)

and as a function of s > 0, e−p(1+s log x)2 increases when s < �−(log x)−1� and
decreases when s > �−(log x)−1� + 1, thus

⎛
⎝�−(log x)−1�−1∑

�=1
+

∞∑
�=�−(log x)−1�+2

⎞
⎠G0

(√
p
[
1+ log(x�)

])

≤
∫

R

G0
(√

p
[
1− s|log(x)|]) ds (3.32)

=
∫

R

G0
(−√ps|log(x)|) ds = C√

p |log x | ,

where we just omit the sum
∑�−(log x)−1�−1

�=1 , if |log x | ≥ 1; the transition from the
second to the third line simply comes from the translation s ← s + | log x |−1.

Now | log x |e−p(1+log x)2 = (| log x | − 1)e−p(| log x |−1)2 + e−p(| log x |−1)2 . By using
that the function η �→ ηe−η2/2 is bounded on R, we get from (3.31), (3.32) that for
x ∈ (0, 1),

|log x |
∞∑
�=1

G0
(√

p[1+ log(x�)]
)
= inf{1, | log x |} +O(p−1/2), p →+∞.

(3.33)

With similar methods, one proves that

sup
x∈(0,1)

|log x |
∞∑
�=1

G1
(√

p[1+ log(x�)]
)
= O(1), p →+∞. (3.34)

From (3.30) and (3.34) we get (3.29). ��

4 Elliptic estimates for Kodaira Laplacians on D
∗ and 6

In this section we establish a weighted elliptic estimate for Kodaira Laplacians on
(D∗, ωD∗) with weight |log(|z|2)|p such that the estimate is uniform on p, and along
D
∗. This is a major analytic input in comparison with the compact situation.
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Let ∂
L p∗

be the adjoint of the Dolbeault operator ∂
L p

on (L p, h p) over (�, ω�).
Then the Kodaira Laplacian is defined as

�p := (∂
L p + ∂

L p∗
)2 = ∂

L p

∂
L p∗ + ∂

L p∗
∂
L p : �(0,•)(�, L p)→ �(0,•)(�, L p).

(4.1)

We denote by �D
∗

p the above operator when (�, ω�, L p, h p) is replaced by
(D∗, ωD∗ ,C, |log(|z|2)|ph0) (recall that h0 denotes the standard flat Hermitian metric
on the trivial line bundle C).

4.1 Estimate on the punctured discD
∗: degree 0

Note that the Poincaré metric (1.1) on the punctured disc can be written as

ωD∗ = −i∂∂ log
(
− log(|z|2)

)
. (4.2)

Recall that the norm ‖·‖L2,2
p (D∗) was defined in Sect. 2.2 (iii). In what follows, we

adopt the notation L for the trivial line bundle C over the open unit disc D, thought
of as endowed with the singular Hermitian metric hD∗ := |log(|z|2)|h0; similarly, for
p ≥ 1, Lp will implicitly refer to (C, |log(|z|2)|ph0) = (C, h p

D∗). Notice that with
these conventions, (4.2) can be interpreted as:

−iωD∗ is the curvature of (L, hD∗) (and thus − i pωD∗ is that of(L
p, h p

D∗)). (4.3)

We prove in this section the following basic elliptic estimate on the Kodaira Lapla-
cians �D

∗
p , associated to the data (D∗, ωD∗ , Lp, h

p
D∗).

Proposition 4.1 Let s ≥ 1. Then there exists C = C(s, hD∗) such that for all p ≥ 1,
and all σ ∈ L2,2s

p (D∗),

‖σ‖2
L2,2s
p (D∗) ≤ C

s∑
j=0

p4(s− j)
∥∥∥(�D

∗
p ) jσ

∥∥∥2
L2
p(D

∗)
. (4.4)

Our strategy is as follows. We will write the detailed proof for s = 1 and the proof
follows then by induction on s ∈ N

∗ we get it for s ≥ 2.
For s = 1 we first establish an estimate analogous to (4.4) for the Laplace–

Beltrami operator �0 of ωD∗ , instead of the Kodaira Laplacian �D
∗

p associated to
(D∗, ωD∗ , Lp, h

p
D∗). Then we deduce (4.4) by Kähler identities.

To facilitate the computation, we introduce first new coordinates on D
∗ and explain

some basic geometric facts.
For z ∈ D

∗, we will use the coordinates (t, θ) ∈ R× (R/2πZ) with

t := log(− log(|z|2)), z = |z|eiθ . (4.5)
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We denote also ∂
∂t by ∂t , and

∂
∂θ

by ∂θ . Then we compute

z log(|z|2) ∂
∂z

= ∂t − i

2
et∂θ , (z log(|z|2))−1dz = 1

2
dt + i e−t dθ. (4.6)

Thus we have

∂ = dz ∧ ∂

∂z
=

(
1

2
dt + i e−t dθ

)(
∂t − i

2
et∂θ

)
, ∂t = 1

2
dt − i e−t dθ. (4.7)

From (4.7) we obtain the following useful relation

ωD∗ = −e−t dt ∧ dθ,
∣∣log(|z|2)∣∣pωD∗ = −e(p−1)t dt ∧ dθ, (4.8)

and the metric associated with ωD∗ in the coordinates (t, θ) is

1

2
(dt)2 + 2e−2t (dθ)2, (4.9)

thus (
√
2∂t , 1√

2
et∂θ ) is an orthonormal frame of ωD∗ .

Let ∇D
∗
be the Levi-Civita connection on (D∗, ωD∗). Using (4.9) and the equality

∇D
∗

∂t
∂θ −∇D

∗
∂θ
∂t = [∂t , ∂θ ] = 0,

we compute that

〈
∇D

∗
∂θ
∂θ , ∂t

〉
= −

〈
∇D

∗
∂t
∂θ , ∂θ

〉
= −1

2
∂t 〈∂θ , ∂θ 〉 = 2e−2t . (4.10)

From (4.10) we get

∇D
∗

∂t
∂t = 0, ∇D

∗
∂θ
∂θ = 4e−2t∂t ,

∇D
∗

∂t
∂θ = ∇D

∗
∂θ
∂t = −∂θ .

(4.11)

From (4.11) we get

∇D
∗
dθ = dθ ⊗ dt + dt ⊗ dθ, ∇D

∗
dt = −4e−2t dθ ⊗ dθ,

�0 = −2(∂t∂t − ∂t )− 1

2
e2t∂θ∂θ . (4.12)

Let ∂
∗
(resp. ∂

Lp∗
) be the adjoint of ∂ on the trivial line bundle (C, h0) (resp.

on (C, |log(|z|2)|ph0)) over (D∗, ωD∗). By (4.6) and (4.8), we have the following
expressions in the coordinates (t, θ),

∂
Lp∗ = ∂

∗ − p(∂t∧)∗ and (∂t∧)∗dz = 〈
dz, ∂t

〉 = z log(|z|2). (4.13)
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By (4.6) and (4.8), we get for f ∈ C∞(D∗),

∂
Lp∗

( f ∂t) = −z log(|z|2) ∂
∂z

f + (1− p) f .

∂
∗
( f dz) = −|z|2 log2(|z|2) ∂

∂z
f . (4.14)

Thus the Kodaira Laplacian associated with (C, |log(|z|2)|ph0) has the form

�D
∗

p = ∂
Lp∗

∂ + ∂ ∂
Lp∗ = ∂

∗
∂ + ∂ ∂

∗ − p(∂(∂t∧)∗ + (∂t∧)∗∂)
= 1

2
�0 − p

(
∂(∂t∧)∗ + (∂t∧)∗∂ )

,
(4.15)

where we used the Kähler identity ∂
∗
∂ + ∂ ∂

∗ = 1
2�0 for the last equality.

Proof of Proposition 4.1 Notice that since the Hermitian line bundles Lp we consider
here are powers of the line bundle (C, |log(|z|2)|h0), the Chern connections∇ p acting
on the sections of these bundles, which are functions, are given by

∇ p f = d f + p f ∂t, f ∈ C∞(D∗, L p). (4.16)

Therefore, for these f and p > 1,

‖ f ‖2
L2,1
p (D∗) =

∫
D∗

(
| f |2 + |∇ p√

2∂t
f |2 + |∇ p

(1/
√
2)et∂θ

f |2
) ∣∣log(|z|2)∣∣pωD∗

≤ 2
∫

D∗

(
(p2 + 1)| f |2 + 2|∂t f |2 + 1

2 |et∂θ f |2
) ∣∣log(|z|2)∣∣pωD∗ ,

(4.17)

and, similarly

‖ f ‖2
L2,2
p (D∗) �

∫
D∗

(
p4| f |2 + p2(|∂t f |2 + |et∂θ f |2)

+ |∂2t f |2 + |et∂t∂θ f |2 + |e2t∂2θ f |2
) ∣∣log(|z|2)∣∣pωD∗ ,

(4.18)

with the constants understood in � independent of p.
Wewill compute everythingbyusing the coordinate (t, θ), then

∫
means

∫
R×(R/2πZ)

and sometimeswe identify S1 toR/2πZ.Wewill work separately the real and imagine
part of f , thus we assume now f is real. Thus by (4.8) and simple integrations by
parts, we get

∫
D∗
|et∂θ f |2

∣∣log(|z|2)∣∣pωD∗ =
∫
|et∂θ f |2e(p−1)t dtdθ

=
∫
(e2t∂2θ f ) f e(p−1)t dtdθ, (4.19)
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and

∫
D∗
|∂t f |2

∣∣log(|z|2)∣∣pωD∗ = −
∫
(∂2t f ) f e(p−1)t dtdθ

+ (p − 1)2

2

∫
f 2e(p−1)t dtdθ. (4.20)

This way, by Young inequality, we obtain for every ε > 0,

∫
D∗
(|∂t f |2 + |et∂θ f |2)

∣∣log(|z|2)∣∣pωD∗

≤
(
ε−1 + (p − 1)2

2

)∫
f 2e(p−1)t dtdθ

+ ε

2

∫ (
|∂2t f |2 + |e2t∂2θ f |2

)
e(p−1)t dtdθ.

(4.21)

Taking ε = p−2 we get
∫

D∗
p2(|∂t f |2 + |et∂θ f |2)

∣∣log(|z|2)∣∣pωD∗

≤ 2
∫ (

p4| f |2 + (|∂2t f |2 + |e2t∂2θ f |2)
)
e(p−1)t dtdθ. (4.22)

Thus, from (4.18) for f ∈ L2,2
p (D∗),

‖ f ‖2
L2,2
p (D∗) �

∫
D∗

(
p4| f |2 + |∂2t f |2 + |et∂t∂θ f |2 + |e2t∂2θ f |2

)
e(p−1)t dtdθ,

(4.23)

with the implied constant independent of p.
By (4.12),

∫
D∗
(�0 f )

2
∣∣log(|z|2)∣∣pωD∗

= 4
∫ (

(∂2t f )2 + (∂t f )
2 + ( e

2t

4 ∂2θ f )2
)
e(p−1)t dtdθ − 8

∫
(∂2t f )(∂t f )e

(p−1)t dtdθ

+ 8
∫
(∂2t f )( e

2t

4 ∂2θ f )e(p−1)t dtdθ − 8
∫
(∂t f )(

e2t
4 ∂2θ f )e(p−1)t dtdθ. (4.24)

We deal with the mixed terms as follows:

• −8 ∫
(∂2t f )(∂t f )e(p−1)t dtdθ : an integration by parts yields:

− 8
∫
(∂2t f )(∂t f )e

(p−1)t dtdθ = 4(p − 1)
∫
(∂t f )

2e(p−1)t dtdθ, (4.25)
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and we do not provide more efforts, as this quantity has the favorable sign already
– remember we want a bound below on the L2

p(D
∗)-norm of �0 f ;

• 8
∫
(∂2t f )( e

2t

4 ∂
2
θ f )e(p−1)t dtdθ : exchanging ∂t and ∂θ via integrations by parts, we

get:

8
∫
(∂2t f )( e

2t

4 ∂
2
θ f )e(p−1)t dtdθ

= 8
∫
( e

t

2 ∂t∂θ f )
2e(p−1)t dtdθ − 8(p + 1)

∫
(∂t f )(

e2t
4 ∂

2
θ f )e(p−1)t dtdθ,

(4.26)

and collect the extra term −8(p + 1)
∫
(∂t f )(

e2t
4 ∂

2
θ f )e(p−1)t dtdθ together with

the left over right-hand-side mixed term in (4.24), i.e. we deal with:
• −8(p + 2)

∫
(∂t f )(

e2t
4 ∂

2
θ f )e(p−1)t dtdθ :

−8(p + 2)
∫
(∂t f )(

e2t
4 ∂

2
θ f )e(p−1)t dtdθ

≥ −2
∫
( e

2t

4 ∂
2
θ f )2e(p−1)t dtdθ − 8(p + 2)2

∫
(∂t f )

2e(p−1)t dtdθ,

(4.27)

By Cauchy–Schwarz inequalities and (4.20), we get

−8(p + 2)2
∫
(∂t f )

2e(p−1)t dtdθ

≥ −2
∫
(∂2t f )2e(p−1)t dtdθ

−
(
8(p + 2)4 + 4(p − 1)2(p + 2)2

) ∫
f 2e(p−1)t dtdθ.

We sum up what precedes as:
∫

D∗
(�0 f )

2
∣∣∣log(|z|2)∣∣∣p ωD∗ ≥ 2

∫ (
(∂2t f )2 + ( e

t

2 ∂t∂
2
θ f )2 + ( e

2t

4 ∂2θ f )2
)
e(p−1)t dtdθ

−
(
8(p + 2)4 + 4(p − 1)2(p + 2)2

) ∫
f 2e(p−1)t dtdθ,

(4.28)

By (4.23) and (4.28), we get

‖ f ‖2
L2,2
p (D∗) ≤ C

(
‖�0 f ‖2L2

p(D
∗) + p4‖ f ‖2

L2
p(D

∗)

)
, (4.29)

for some C > 0 independent of both p ≥ 1 and f ∈ C∞0 (D∗) with real values; by
density, this readily generalizes to f ∈ L2,2

p (D∗) with complex values, as�0 is a real
operator.
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Wenowcarry out the replacement of�0 by�D
∗

p in (4.29), to get the desired estimate
(4.4). By (4.13) and (4.15) we have the following identities for operators action on
functions defined on D

∗,

�D
∗

p = 1

2
�0 − p∂̃ with ∂̃ = z log(|z|2) ∂

∂z
= ∂

∂t
− i

2
et

∂

∂θ
· (4.30)

Let f ∈ L2,2
p (D∗). Using inequality (4.21) with ε > 0 to be adjusted, (4.23) and

(4.29), we have:

∫ ∣∣̃∂ f ∣∣2 e(p−1)t dtdθ ≤ 2
∫
(|∂t f |2 + | et2 ∂θ f |2)e(p−1)t dtdθ

≤
(
2ε−1 + p2 + εCp4

)
‖ f ‖2

L2
p(D

∗) + εC‖�0 f ‖2L2
p(D

∗).

(4.31)

From (4.30) and (4.31) we are led to:

‖�0 f ‖2L2
p(D

∗) =
∥∥∥2 (

�D
∗

p + p∂̃
)
f
∥∥∥2
L2
p(D

∗)
≤ 8‖�D

∗
p f ‖2

L2
p(D

∗) + 8p2
∥∥̃∂ f ∥∥2L2

p(D
∗)

≤ 8‖�D
∗

p f ‖2
L2
p(D

∗) + 8p2
(
2ε−1 + p2 + εCp4

)
‖ f ‖2

L2
p(D

∗)

+ 8p2εC‖�0 f ‖2L2
p(D

∗). (4.32)

Take ε = 1

16Cp2
to conclude that:

‖�0 f ‖2L2
p(D

∗) ≤ 16‖�p f ‖2L2
p(D

∗) + 2Ap4‖ f ‖2
L2
p(D

∗) (4.33)

with A = 256C + 9, say. Plugged back into (4.29), this estimate gives exactly (4.4),
with a (new) constant C > 0, uniform for p ≥ 1 and f ∈ L2,2

p (D∗).
The proof of Proposition 4.1 for s = 1 is completed. Continuing by induction on

s ∈ N
∗ we obtain the assertion for all s ∈ N

∗. ��

4.2 Estimate on the punctured Riemann surface6 : degree 0

We now consider the geometric situation of a punctured polarized Riemann surface
(�, ω�, L, h), satisfying moreover conditions (α) and (β) of the Introduction. Let
a ∈ D. By assumption the following holds: there exists a trivialization of L around a
such that in the associated local complex coordinate z ∈ D,we have h = |log(|z|2)|h0
on some coordinate disc Dr centered at a and of radius r ∈ (0, e−1). This way, the
curvature RL of h coincides with −iωD∗ on D

∗
r := Dr � {0}.
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Proposition 4.2 For every s ∈ N
∗ there exists C = C(s, h) such that for all p � 1,

and all σ ∈ L2,2s
p (h) = L2,2s(�, ω�, L p, h p),

‖σ‖2
L2,2s
p (h)

≤ C
s∑

j=0
p4(s− j)‖(�p)

jσ‖2
L2
p(h)

, (4.34)

where �p is the Kodaira Laplacian on � associated to ω� and h p.

Proof Again, we do it for s = 1.
In the situation of the Proposition, we denote by h a smooth Hermitian metric on

L on the whole � such that it coincides with h on � � Dr/2. It is an easy exercise
to construct h so that i× its curvature, ω say, is Kähler over the whole (compact) �,
which we take for granted until the end of this proof. Notice that ω� and ω coincide
on � � Dr/2.

Now the principle of the proof is to glue estimate (4.4) to the analogous estimate
for (�, L, h), that states the existence of C > 0 such that for all p � 1, and all
σ ∈ L2,2

p (h) := L2,2(�, ω, L p, h
p
),

‖σ‖2
L2,2
p (h)

≤ C

(∥∥∥��
p σ

∥∥∥2
L2
p(h)

+ p4‖σ‖2
L2
p(h)

)
. (4.35)

This estimate, as well as its generalization for σ ∈ L2,2s
p (h), s ≥ 1, can be found for

instance in [15, (4.14)] or [27, §1.6.2].
We denote ∇ p,�∗ the formal adjoint of ∇ p,� acting on �(T ∗(0,1)�) ⊗ L p. By

Lichnerowicz formula [27, Remark 1.4.8],

2�p = ∇ p,�∗∇ p,� − pRL(w,w)+ (2pRL + RT (1,0)�)(w,w)w∗ ∧ iw, (4.36)

and w is an orthonormal frame of T (1,0)�. By (4.3),

RL(w,w) = 1, RT (1,0)�(w,w) = −2 on V = V1 ∪ . . . ∪ VN . (4.37)

From (4.36) and (4.37) we have for any σ ∈ L2,2
p (h),

∣∣∣∣‖∇ p,�σ‖2
L2
p(h)

− 2
〈
�pσ, σ

〉
p

∣∣∣∣ ≤ Cp‖σ‖2
L2
p(h)

. (4.38)

Let χ be a cut-off function supported near a; assume, more precisely, that

χ ∈ C∞
(
�

)
, 0 ≤ χ ≤ 1, χ |

Dr/2
≡ 1, χ |��D2r/3≡ 0. (4.39)

Let p ≥ 1, and σ ∈ L2,2
p (h) = L2,2(�, ω�, L p, h p). Then (1− χ)σ ∈ L2,2

p (h) and

on its support, h coincides with h; likewise, χσ can be interpreted as an element of
L2,2
p (D∗) and on its support, h can be regarded as hD∗ . Therefore,
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‖σ‖2
L2,2
p (h)

= ‖χσ + (1− χ)σ‖2
L2,2
p (h)

≤ 2

(
‖χσ‖2

L2,2
p (D∗) + ‖(1− χ)σ‖2

L2,2
p (h)

)

≤ 2C

(∥∥∥�D
∗

p (χσ)

∥∥∥2
L2
p(D

∗)
+

∥∥∥��
p [(1− χ)σ ]

∥∥∥2
L2
p(h)

)

+ 2Cp4
(
‖χσ‖2

L2
p(D

∗) + ‖(1− χ)σ‖2
L2
p(h)

)
(4.40)

where C = max(C(hD∗),C(h)), with C(hD∗), resp. C(h), the constant from (4.4),
resp. from its analogue for (�, L, h). Thus defined, C is independent of σ and p.

Now ‖χσ‖2
L2
p(hD∗ )

= ‖χσ‖2
L2
p(h)

≤ ‖σ‖2
L2
p(h)

, and ‖(1−χ)σ‖2
L2
p(h)

≤ ‖σ‖2
L2
p(h)

as

well. The treatments of ‖�D
∗

p (χσ)‖2
L2
p(hD∗ )

and ‖��
p [(1−χ)σ ]‖2

L2
p(h)

are done in the

same spirit, but require a little extra work. For instance, we have on D2r/3, by (4.15)
and (4.16),

�D
∗

p (χσ) = χ�D
∗

p σ −
(
∂χ, (∇ p)1,0σ

)
T ∗D∗

− (
∂σ, ∂χ

)
T ∗D∗ +

(
1

2
�0χ

)
σ,

(4.41)

hence

∥∥∥�D
∗

p (χσ)

∥∥∥2
L2
p(hD∗ )

≤ 4

(∥∥∥χ�D
∗

p σ

∥∥∥2
L2
p(hD∗ )

+ ∥∥|∂χ |∂σ∥∥2
L2
p(hD∗ )

+
∥∥∥|∂χ |(∇ p)1,0σ

∥∥∥2
L2
p(hD∗ )

+ ∥∥( 12�0χ)σ
∥∥2
L2
p(hD∗ )

)

= 4
(∥∥χ�pσ

∥∥2
L2
p(h)

+ ∥∥|∂χ |∂σ∥∥2
L2
p(h)

+
∥∥∥|∂χ |(∇ p,�)1,0σ

∥∥∥2
L2
p(h)

+ ∥∥( 12�0χ)σ
∥∥2
L2
p(h)

)
, (4.42)

with the L2
p(hD∗)-norms, resp. L2

p(h)-norms, for 1-forms, resp. 1-forms with value in
L p, computed with ωD∗ ⊗ h p

D∗ on D
∗, resp. with ω� ⊗ h p.

Consequently,

∥∥∥�D
∗

p (χσ)

∥∥∥2
L2
p(hD∗ )

≤ 4C

(∥∥�pσ
∥∥2
L2
p(h)

+ ∥∥∇ p,�σ
∥∥2
L2
p(h)

+ ‖σ‖2
L2
p(h)

)
(4.43)

with C = 1+max
{∥∥ 1

2�0χ
∥∥2
C0(D∗,ωD∗ )

,
∥∥∂χ∥∥2

C0(D∗,ωD∗ )
}
, that does not depend on p.

From (4.38) and (4.42) we get

∥∥∥�D
∗

p (χσ)

∥∥∥2
L2
p(hD∗ )

≤ C

(
‖�pσ‖2L2

p(h)
+ p‖σ‖2

L2
p(h)

)
(4.44)
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for some C independent of p and σ . Similarly,

∥∥∥��
p ((1− χ)σ)

∥∥∥2
L2
p(h)

≤ C

(∥∥�pσ
∥∥2
L2
p(h)

+ p‖σ‖2
L2
p(h)

)
(4.45)

with C again independent of p and σ .
In conclusion, it follows from (4.40), (4.44) and (4.45), that there exists C > 0

such that for any p � 1 and σ ∈ L2,2
p (h), we have

‖σ‖2
L2,2
p (h)

≤ C

(∥∥�pσ
∥∥2
L2
p(h)

+ p4‖σ‖2
L2
p(h)

)
. (4.46)

The proof of Proposition 4.2 for s = 1 is completed. The proof for general s ∈ N
∗

follows by induction with the help of Proposition 4.1. ��
Remark 4.3 We made the assumption that h polarizes ω� on the whole� to fix ideas.
It is actually superfluous here, provided that h polarizes ω� near the puncture(s), and
has curvature bounded below by εω� on the whole�; both of these are automatically
implied by conditions (α) and (β).

4.3 Bidegree (0, 1)

This subsection will not be used in the rest of this paper, we include it here only for
completeness and its independent interest.

To prove that Propositions 4.1 and 4.2 still hold in bidegree (0, 1), or, namely, for
σ a section of T ∗(0,1)D∗ ⊗ Lp or T ∗(0,1)� ⊗ L p, an easy procedure is to observe that
the following diagram:

C∞0 (D∗)
·⊗ dz

z log(|z|2)

�p−iet∂θ

C∞0 (D∗, T ∗(0,1)D∗)

�p

C∞0 (D∗) ·⊗ dz
z log(|z|2)

C∞0 (D∗, T ∗(0,1)D∗)

(4.47)

commutes, where the horizontal arrows are isometries under h p
D∗ and (hD∗)p ⊗ ωD∗ .

Indeed, by (4.6) and (4.7), dz
z log(|z|2) = ∂t , and by (4.7) and (4.14), for g ∈ C∞(D∗),

we have

∂ ∂
L p∗

(g∂t) =
[
∂
L p∗

∂g + z log(|z|2) ∂
∂z

g − z log(|z|2) ∂
∂z

g

]
∂t

= (�pg − iet∂θg)∂t .

(4.48)
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Proposition 4.4 Let s ∈ N
∗. Then there exists C = C(s, hD∗) such that for all p ≥ 1,

and all σ ∈ L2,2s
p (D∗) = L2,2s(D∗, ωD∗ , T ∗(0,1)D∗ ⊗ Lp, ωD∗ ⊗ h p

D∗),

‖σ‖2
L2,2s
p (D∗) ≤ C

s∑
j=0

p4(s− j)
∥∥∥(�D

∗
p ) jσ

∥∥∥2
L2
p(D

∗)
. (4.49)

Proof Indeed, take σ = f dz
z log(|z|2) = f ∂t ∈ C∞(D∗, T ∗(0,1)D∗). Then for instance,

(∇ p)2σ = (∇ p)2 f ⊗ ∂t + 2∇ p f ⊗∇D
∗
∂t + f ⊗ (∇D

∗
)2∂t

where ∇D
∗
is the Levi-Civita connection of ωD∗ . By (4.7), (4.9) and (4.11), ∂t is

uniformly bounded at any order with respect to ωD∗ on D
∗, we get that

∫
D∗

∣∣∣(∇ p)2σ

∣∣∣2
p
ωD∗ �

∫
D∗

(∣∣∣(∇ p)2 f
∣∣∣2
p
+ |∇ p f |2p + | f |2

)
ωD∗ = ‖ f ‖2

L2,2
p (D∗),

independently of p. By Proposition 4.1, we thus have

∫
D∗

∣∣∣(∇ p)2σ

∣∣∣2
p
ωD∗ ≤ C

∫
D∗

(∣∣�p f
∣∣2
p + p4| f |2

)
ωD∗ (4.50)

for p � 1, with C independent of p. By (4.47), we have

∫
D∗

∣∣�pσ
∣∣2
p ωD∗ =

∫
D∗

∣∣�p f − iet∂θ f
∣∣2
p ωD∗

≥ 1

2

∫
D∗
|�p f |2p ωD∗ −

∫
|et∂θ f |2e(p−1)t dtdθ.

(4.51)

By (4.21) with ε = 1

29 p2
, (4.28) and (4.33), we obtain as in (4.31),

∫ ∣∣et∂θ f ∣∣2 e(p−1)t dtdθ ≤ Cp2‖ f ‖2
L2
p(D

∗) +
1

4p2
‖�p f ‖2L2

p(D
∗). (4.52)

As
∫

D∗ |σ |2p ωD∗ =
∫

D∗ | f |2p ωD∗ , we get from (4.51) and (4.52),

∫
D∗

∣∣�p f
∣∣2
p ωD∗ ≤ 4

∫
D∗
|�pσ |2p ωD∗ + Cp2

∫
D∗
|σ |2p ωD∗ .

This yields, coming back to (4.50),

∫
D∗

∣∣∣(∇ p)2σ

∣∣∣2
p
ωD∗ ≤ C

∫
D∗

(∣∣�pσ
∣∣2
p + p4|σ |2

)
ωD∗ . (4.53)
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Consequently, we get for p � 1,

‖σ‖2
L2,2
p (D∗) ≤ C

(
‖�pσ‖2L2

p(D
∗) + p4‖σ‖2

L2
p(D

∗)

)
. (4.54)

Now by induction on s, the assertion of Proposition 4.4 follows for all s ∈ N
∗. ��

Usingmoreover the same gluing procedure as in proving Proposition 4.2, we obtain
the analogue of (4.49) on �, when ω� and h satisfy conditions (α) and (β):

Proposition 4.5 Let s ∈ N
∗. Then there exists C = C(s, h) such that for all p ≥ 1,

and all σ ∈ L2,2s
p (�) = L2,2s(�, ω�, T ∗(0,1)� ⊗ L p, ω� ⊗ h p),

‖σ‖2
L2,2s
p (�)

≤ C
s∑

j=0
p4(s− j)

∥∥∥(�p)
jσ

∥∥∥2
L2
p(�)

. (4.55)

5 Spectral gap and localization

We follow in this section the localization scheme based on the spectral gap and finite
propagation speed [27] and show that the Bergman kernel localizes near the singular-
ities. As a consequence we obtain a first rough estimate, which will be improved in
the next section.

Let (M, ωM ) be a complete Kähler manifold. We will denote by Rdet the curvature
of the anticanonical line bundle (K ∗

M , h
K ∗
M ), where hK

∗
M is induced by ωM .

Let (E, hE ) be a Hermitian holomorphic line bundle on M . Let ∂
∗
be the formal

adjoint of ∂ with respect to 〈·, ·〉 (cf. (2.1)). Let �E = ∂
∗
∂ be the Kodaira Laplace

operator. By [27, Corollary3.3.4] the operator �E : C∞0 (M, E) → C∞0 (M, E) is
essentially self-adjoint and we will denote its unique self-adjoint extension with the
same symbol �E . Note that the domain of this extension is Dom(�E ) = {σ ∈
L2(M, E) : �Eσ ∈ L2(M, E)}.

Consider now a Hermitian holomorphic line bundle (L, h) and denote by �p :=
�L p

the Kodaira Laplace operator corresponding to (L p, h p). By [27, Theorem6.1.1]
and its proof we have the following.

Proposition 5.1 (Spectral gap) Let (M, ωM ) be a complete Kähler manifold and
(E, hE ) be a Hermitian holomorphic line bundle on M. We assume there exist ε > 0,
C > 0 such that i RE ≥ εωM and i Rdet ≥ −CωM. Then there exists c = c(C, ε) > 0
such that for all p � 1 we have

Spec(�p) ⊂ {0} ∪ [cp,+∞). (5.1)

Corollary 5.2 The spectral gap (5.1) holds for the Laplacian �p in the following
situations:

(1) (M, ωM ) = (D∗, ωD∗), (E, hE ) = (C, |log(|z|2)|h0);
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(2) (M, ωM ) = (�, ω�), (E, hE ) = (L, h) as in Theorem 1.2.

Indeed, by (4.3) and i Rdet = −2ωD∗ , the hypotheses of Proposition 5.1 clearly hold
on D

∗. Combining moreover with the condition (β) on �, we know that i RL ≥ εω�
and i Rdet ≥ −Cω� on �, for some C > 0. We can thus apply Proposition 5.1 to get
Corollary 5.2 in both situations.

We assume here, without loss of generality, that the puncture divisor D in � is
reduced to one point a. Let e be the holomorphic frame of L near a corresponding to
the trivialization in the condition (α).

By the assumption (α), (β), under our trivialization e of L on the coordinate z on
D
∗
r for some 0 < r < e−1, we have the identification of the geometric data

(�, ω�, L, h)|D∗r = (D∗, ωD∗ ,C, hD∗)|D∗r . (5.2)

We set:

• F is the normalized Fourier transform of a smooth cut-off function as in [27, §4.1],
namely

F(u) =
(∫

R

f (v) dv

)−1 ∫
R

eivu f (v) dv (5.3)

with f : R → [0, 1] a smooth even function such that f (v) = 1 if |v| ≤ ε/2
and f (v) = 0 if |v| ≥ ε for ε > 0. Thus F is an even function in the Schwartz
space S (R) with F(0) = 1. Let F̃ be the function satisfying F̃(u2) = F(u) for
all u ∈ R. We consider the function

φp : R −→ R, u �−→ 1[cp,+∞)(|u|)F̃(u) (5.4)

where c > 0 is defined in (5.1); let Kp := φp(�p) and let Kp(·, ·) be the
associated kernel; we denote by f p(·, ·) the function associated to Kp(·, ·) via
the doubled trivialization around a used above; for x ∈ D

∗
r , we set f p,x for the

one-variable function y �→ f p(x, y); then

Kp(x, y) = f p(x, y)e
p(x)⊗ (ep(y))∗, (5.5)

and (ep(y))∗ is the metric dual of ep(y)with respect to h p, that is, ep(y)∗ ·ep(y) =
|ep(y)|2h p .

• χ a cut-off function as in (4.39);
• ρ : � → [1,+∞) is a smooth function such that ρ(z) = |log(|z|2)| on D

∗
r .

Proposition 5.3 For any �,m ≥ 0, γ > 1
2 , there exists C�,m,γ > 0 such that for any

p > 1, we have

∥∥ρ(x)−γ ρ(y)−γ Kp(x, y)
∥∥
Cm (h p)

≤ C�,m,γ p
−�, (5.6)

in the sense of (2.14).
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Proof We proceed as follows. Take p � 1, and pick a and b two real parameters to
be determined later; then by definition of f p and Kp :

∥∥∥ρ(x)aρ(y)bχ(x)χ(y) f p(x, y)
∥∥∥2
L2(�×�)

=
∫

x∈D∗
ρ(x)2aχ(x)2ω�(x)

∫
y∈D∗

ρ(y)2bχ(y)2| f p(x, y)|2 ω�(y)

=
∫

x∈D∗
ρ(x)2a−pχ(x)2

〈 ∫
y∈D∗

〈
Kp(x, y), ρ(y)

2b−pχ(y)2 f p(x, y)e
p(y)

〉
h p
D∗
ωD∗ (y), e

p(x)

〉

h p
D∗

ωD∗ (x)

=
∫

x∈D∗
ρ(x)2a−pχ(x)2

〈
Kp(ρ

2b−pχ2 f p,x e
p), ep

〉
h p
D∗
(x) ωD∗ (x).

(5.7)

As |ep|h p
D∗
= ρ p/2, we have from (5.7),

∥∥∥ρ(x)aρ(y)bχ(x)χ(y) f p(x, y)
∥∥∥2
L2(�×�)

=
∫
x∈D∗

ρ(x)2a−
p
2 χ(x)2

∣∣∣Kp(ρ
2b−pχ2 f p,xe

p)(x)
∣∣∣
h p

D∗
ωD∗(x).

(5.8)

Now for all x ∈ D
∗
2r/3,

∣∣∣Kp(ρ
2b−pχ2 f p,xe

p)(x)
∣∣∣
h p

D∗
≤ ρ(x)1/2

∥∥∥ρ−1/2Kp(ρ
2b−pχ2 f p,xe

p)

∥∥∥
C0(D∗2r/3)

= ρ(x)1/2
∥∥∥∥ρ−1|Kp(ρ

2b−pχ2 f p,xe
p)|2

h p
D∗

∥∥∥∥
1/2

C0(D∗2r/3)
,

(5.9)

and thus:

∥∥∥ρ(x)aρ(y)bχ(x)χ(y) f p(x, y)
∥∥∥2
L2(�×�)

≤
∫
x∈D∗

ρ(x)2a+
1−p
2 χ(x)2

∥∥∥∥ρ−1|Kp(ρ
2b−pχ2 f p,xe

p)|2
h p

D∗

∥∥∥∥
1/2

C0(D∗2r/3)
ωD∗(x).

(5.10)

We momentarily set g(z) = |Kp(ρ
2b−pχ2 f p,xep)|2h p

D∗
(z), and use the embedding

L1,3
wtd(�, ω�) ↪−→ C0(�, ω�) (cf. Lemma 2.6(a)), that gives, taking supports into

account:
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‖ρ−1g‖C0(D∗2r/3) ≤ c0

∫
D∗r

ρ
(∣∣∣ρ−1g∣∣∣+ · · · + ∣∣∣(∇�)3(ρ−1g)

∣∣∣)ω�
≤ A3c0

∫
D∗r

(
|g| + · · · + |(∇�)3g|

)
ω� (5.11)

with A = 1 + ‖d log ρ‖C2(D∗r ,ωD∗ ), which is finite by log ρ = log(− log(|z|2)) = t
and (4.12). Moreover,

|g| + · · · + |(∇�)3g|
≤ C

(
|Kp(ρ

2b−pχ2 fxe
p)|2

h p
D∗
+ · · · + |(∇ p,�)3Kp(ρ

2b−pχ2 f p,xe
p)|2

h p
D∗

)
.

(5.12)

We obtain from (5.11), (5.12),

‖ρ−1g‖C0(D∗2r/3) ≤ C
∥∥∥Kp(ρ

2b−pχ2 f p,xe
p)

∥∥∥2
L2,3
p (h)

. (5.13)

By Propositions 4.2 and since 5.1, (5.4) and since F̃ ∈ S (R), we have that for any
fixed �, there exists C� > 0 such that for any x ∈ D

∗
r , p ∈ N

∗,

∥∥∥Kp(ρ
2b−pχ2 f p,xe

p)

∥∥∥
L2,3
p (h)

≤ C� p
−�

∥∥∥ρ2b−pχ2 f p,xe
p
∥∥∥
L2
p(h)

, (5.14)

and thus (5.10), (5.13), (5.14) yield

∥∥∥ρ(x)aρ(y)bχ(x)χ(y) f p(x, y)
∥∥∥2
L2(�×�)

≤ C� p
−�

∫
x∈D∗

χ(x)2ρ(x)2a+
1−p
2

∥∥∥ρ2b−pχ2 f p,x e
p
∥∥∥
L2
p(h)

ωD∗ (x)

≤ C� p
−�

(∫
D∗

χ2ρ2a−p+1ωD∗
)1

2
(∫

x∈D∗
χ(x)2ρ(x)2a

∥∥∥ρ2b−pχ2 f p,x e
p
∥∥∥2
L2
p(h)

ωD∗ (x)

)1
2

≤ C� p
−�

(∫
D∗

χ2ρ2a−p+1ωD∗
)1

2 ∥∥∥ρ(x)aρ(y)2b− p
2 χ(x)χ(y) f p(x, y)

∥∥∥
L2(�×�) ,

(5.15)

since

∫
x∈D∗

χ(x)2ρ(x)2a
∥∥∥ρ2b−pχ2 f p,xe

p
∥∥∥2
L2
p(h)

ωD∗(x)

=
∫
x∈D∗

χ(x)2ρ(x)2aωD∗(x)
∫
y∈D∗

ρ(y)4b−pχ(y)4| f p(x, y)|2ωD∗(y)
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≤
∫
x∈D∗

χ(x)2ρ(x)2aωD∗(x)
∫
y∈D∗

ρ(y)4b−pχ(y)2| f p(x, y)|2ωD∗(y)

=
∥∥∥ρ(x)aρ(y)2b− p

2 χ(x)χ(y) f p(x, y)
∥∥∥2
L2(�×�) .

Moreover,
∫

D∗ χ
2ρ2a−p+1ωD∗ is finite as soon as a <

p
2 . Fixing a = p

2 − δ, δ > 0,∫
D∗ χ

2ρ2a−p+1ωD∗ =
∫

D∗ χ
2ρ1−2δωD∗ =

∫
D∗ χ

2e−2δt dt dθ <∞ is independent on
p, and consequently, the previous inequality reads:

∥∥∥ρ(x) p
2−δρ(y)bχ(x)χ(y) f p(x, y)

∥∥∥
L2(�×�) ≤ C�,δ p

−� (5.16)

for all b ≤ p
2 by using ρ(y)2b−

p
2 ≤ ρ(y)b, and with C�,δ independent of b, hence in

particular for p ≥ 1,

∥∥∥ρ(x) p
2−δρ(y)

p
2−δχ(x)χ(y) f p(x, y)

∥∥∥
L2(�×�) ≤ C�,δ p

−�. (5.17)

With the same techniques, we extend this estimate to higher orders, namely for any
k ≥ 0,

∥∥∥(ρ(x)ρ(y)) p
2−δ χ(x)χ(y) f p(x, y)

∥∥∥
L2,k (�×�) ≤ C�,k,δ p

−�, (5.18)

Observe that by (2.13) and (4.12), d log ρ = dt is Cm(�, ω�) bounded, and the
factor ρ in the definition of L2,k

wtd, thus (5.18) implies

∥∥∥(ρ(x)ρ(y)) p
2−γ χ(x)χ(y) f p(x, y)

∥∥∥
L2,k
wtd(�×�)

≤ C�,k,γ p
−�, (5.19)

with γ = δ + 1
2 > 1

2 .
By Lemma 2.6(b) and (5.19), for every �,m ≥ 0, γ > 1

2 there exists C�,m,γ > 0
such that for all p ≥ 1 we have

∥∥∥(ρ(x)ρ(y)) p
2−γ χ(x)χ(y) f p(x, y)

∥∥∥
Cm (�×�) ≤ C�,m,γ p

−�, (5.20)

which can be rewritten in the sense of (2.14) as

∥∥ρ(x)−γ ρ(y)−γ χ(x)χ(y)Kp(x, y)
∥∥
Cm (h p)

≤ C�,m,γ p
−�. (5.21)

Such an estimate is already well-known far from Da = ({a} ×�)+ (� × {a}) in
� × �, where the weights ρ can be omitted, cf. [27, §6.1]. We moreover prove the
analogous estimates on
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(
D
∗
r/2 × (� � Dr/3)

)
∪

(
(� � Dr/3)× D

∗
r/2

)

along the same lines. We thus come to the conclusion that (5.6) holds. ��
Estimates (5.6) might look a bit disappointing, as these are stated with negative

weights; so far, this does not even tell us that Kp(x, y) is bounded near the divisor
({a} × �) + (� × {a}) in � × � for the product Hermitian norm, which contrasts
with our knowledge that the Bergman kernels of L p do vanish along this divisor.

We see in next part that this rough estimate, together with the vanishing property,
suffice however to estimate sharply Bergman kernels on the whole � ×�.

Remark 5.4 The embedding L1,3
wtd ↪−→ C0 does not hold on the whole D

∗. Now
Proposition 5.3 still holds on D

∗ × D
∗ near {0} + {0} and, more generally, far from

∂D×∂D, as functionswith supports inD
∗
r orD

∗
2r/3 inD

∗ can be thought of as functions
around the punctures in�, to which Lemma 2.6 applies. More precisely, let KD

∗
p (x, y)

be the kernel of φp(�D
∗

p ) on D
∗ with respect to ωD∗ ; then for all 0 < r < 1 and all

�,m ≥ 0, and γ > 1
2 , there exists C�,m,γ = C�,m,γ (r) > 0 such that for all p ≥ 1,

∥∥∥ρ(x)−γ ρ(y)−γ χ(x)χ(y)KD
∗

p (x, y)
∥∥∥
Cm (D∗r×D∗r )

≤ C�,m,γ p
−�. (5.22)

6 Proofs of themain results

In this section, wewill establish the results stated in the Introduction.We first complete
the proofs of Theorems 1.1, 1.2 andCorollary 1.4, then that ofCorollary 1.5, and finally
give the details needed to establish Theorems 2.5 and 1.7.

Theorems 1.1, 1.2 and Corollary 1.4 will be a consequence of Proposition 5.3.
The principal idea is to combine Proposition 5.3 and the holomorphicity of sections
associated to Bergman kernels, together with the fact that for p ≥ 2, L2 holomorphic
sections of (L p, h p) over (�, ω�) vanish at D, and similarly for the holomorphic
sections in L2(D∗, ωD∗ ,C, h

p
D∗), which vanish at 0, as already noticed.

Let us fix a point a ∈ D and work around this point, in coordinates centered at a.
For x, y ∈ D

∗
r , under our identification (5.2) and convention after (3.6), we write

BD
∗

p (x, y) = ∣∣log(|y|2)∣∣pβD
∗

p (x, y);
Bp(x, y) =

∣∣log(|y|2)∣∣pβ�p (x, y), (6.1)

where, by (3.6), βD
∗

p is a holomorphic function of x and y, namely

βD
∗

p (x, y) = 1

2π(p − 2)!
∞∑
�=1

�p−1x�y�, (6.2)

which vanishes along {x = 0}+ {y = 0} = {xy = 0} ⊂ D×D. By Remark 3.2, (2.2)
and the convention after (3.6), β�p is a holomorphic function of x and y vanishing
along {x = 0} + {y = 0} ⊂ Dr × Dr , and
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Fig. 2 In (6.6), F̃(�p)(x, ·)
depends only on the restriction
of �p to a geodesic ball of
radius ε√

2
around x , and

vanishes outside this ball (the
circles {|z| = r/2} and {|z| = r}
are at Poincaré distance
1√
2
log

(
1− log 2

log r
)
from each

other)

∣∣∣(Bp − BD
∗

p )(x, y)
∣∣∣
h p
=

∣∣∣log(|x |2)
∣∣∣p/2

∣∣∣log(|y|2)
∣∣∣p/2

∣∣∣(βD
∗

p − β�p )(x, y)
∣∣∣ . (6.3)

Proof of Theorem 1.1 By (5.4), we have

F̃(�p)(x, y)− Bp(x, y) = φp(�p)(x, y) = Kp(x, y),

F̃
(
�D

∗
p

)
(x, y)− BD

∗
p (x, y) = φp

(
�D

∗
p

)
(x, y) = KD

∗
p (x, y).

(6.4)

By the finite propagation speed for the wave operators [27, Theorem D.2.1], we have

supp F̃(�p)(x, ·) ⊂ B

(
x,

ε√
2

)
and F̃(�p)(x, ·)

depends only on the restriction of �p to B

(
x,

ε√
2

)
.

(6.5)

Here B(x, ε√
2
) is the geodesic ball with center at x and radius of ε√

2
for ωD∗ .

Thus from (5.2) and (6.5) (here we fix ε > 0 such that ε ≤ dD∗(∂Dr , ∂Dr/2)), we
have

F̃(�p)(x, y) = F̃(�D
∗

p )(x, y) for all x, y ∈ D
∗
r/2. (6.6)

We have from (6.4) and (6.6),

Bp(x, y)− BD
∗

p (x, y) = KD
∗

p (x, y)− Kp(x, y) for all x, y ∈ D
∗
r/2. (6.7)
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Note that by (4.7) and (4.12),

∣∣∣| log |z|2|p
∣∣∣
Ck
= ∣∣etp∣∣Ck ≤ Ck p

ketp. (6.8)

By (2.13), (2.14), (4.7), (4.12), (4.16), (5.2) and (6.8), we infer that for any k ∈ N

there exists C > 0 such that for any p ∈ N
∗, x, y ∈ D

∗
r/2, we have

∣∣∣BD
∗

p − Bp

∣∣∣
Ck (h p)

(x, y) ≤ Cpk
∣∣log(|x |2)|p/2∣∣log(|y|2)∣∣p/2 ∣∣∣βD

∗
p − β�p

∣∣∣
Ck

(x, y),
∣∣∣βD

∗
p − β�p

∣∣∣
Ck

(x, y) ≤ Cpk
∣∣log(|x |2)∣∣−p/2∣∣log(|y|2)∣∣−p/2

∣∣∣BD
∗

p − Bp

∣∣∣
Ck (h p)

(x, y).

(6.9)

By Proposition 5.3, (6.7) and (6.9), we get for x, y ∈ D
∗
r/2,

∣∣∣βD
∗

p − β�p

∣∣∣
Ck

(x, y) ≤ C�,γ p
−�∣∣log(|x |2)∣∣γ−p/2∣∣log(|y|2)∣∣γ−p/2

. (6.10)

Our task is thus to refine estimate (6.10) by working directly on βD
∗

p − β�p . We set:

βD
∗,�

p = βD
∗

p − β�p . (6.11)

As βD
∗,�

p is a holomorphic function of x and y vanishing along {xy = 0}, one can
write

βD
∗,�

p (x, y) = x ygp(x, y) (6.12)

for some smooth gp, holomorphic in x and y. Now for ε > 0 small,

sup
|x |,|y|≤ε1/2

|gp(x, y)| = sup
|x |=|y|=ε1/2

|gp(x, y)| = ε−1 sup
|x |=|y|=ε1/2

∣∣∣βD
∗,�

p (x, y)
∣∣∣
(6.13)

by holomorphicity of gp.
From (6.10) and (6.13), we get:

sup
|x |,|y|≤ε1/2

|gp(x, y)| ≤ C�,γ p
−�ε−1| log ε|−p+2γ . (6.14)

From (6.12), (6.14), for |x |, |y| ≤ e−p, we have

∣∣∣βD
∗,�

p (x, y)
∣∣∣ ≤ |x ||y| sup

|x |,|y|≤e−p
|gp(x, y)|

≤ C�,γ p
−�e2p(2p)−p+2γ |x ||y|.

(6.15)
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Pick α ≥ 0. As the function u �→ u(− log(u2))
p
2+α is increasing on (0, e−

p
2−α],

hence on (0, e−p], thus

|x | ≤ e−p(2p)
p
2+α

∣∣log(|x |2)∣∣− p
2−α if |x | ≤ e−p. (6.16)

We thus convert (6.15) into:

∣∣∣βD
∗,�

p (x, y)
∣∣∣ ≤ 22(γ+α)C�,γ p

−�+2(γ+α)∣∣log(|x |2)∣∣− p
2−α∣∣log(|y|2)∣∣− p

2−α(6.17)

on |x |, |y| ≤ e−p; up to increasing � and adjusting the constant, we thus have

∣∣∣βD
∗,�

p (x, y)
∣∣∣ ≤ C�,α p

−�∣∣log(|x |2)∣∣− p
2−α∣∣log(|y|2)∣∣− p

2−α (6.18)

on {|x |, |y| ≤ e−p}. Notice that such an estimate holds on {e−p ≤ |x |, |y| ≤ r ≤ e−1}
as well, since then | log(|x |2)|, | log(|y|2)| ≤ 2p, and thus (6.10) gives for any β ≥ 0,

∣∣∣βD
∗,�

p (x, y)
∣∣∣ ≤ C�,γ p

−�(2p)2(γ+β)
∣∣log(|x |2)∣∣−β−p/2∣∣log(|y|2)∣∣−β−p/2

. (6.19)

We conclude by the case |x | ≤ e−p, e−p ≤ |y| ≤ r ≤ e−1; fixing y, by the holomor-
phicity of x and (6.10),

sup
|x |≤e−p

∣∣∣∣ 1x βD
∗,�

p (x, y)

∣∣∣∣ = sup
|x |=e−p

∣∣∣∣ 1x βD
∗,�

p (x, y)

∣∣∣∣
= ep sup

|x |=e−p

∣∣∣βD
∗,�

p (x, y)
∣∣∣

≤ epC�,γ p
−�(2p)−

p
2+γ

∣∣log(|y|2)∣∣− p
2+γ (6.20)

so that ∣∣∣βD
∗,�

p (x, y)
∣∣∣ ≤ epC�,γ p

−�(2p)−
p
2+γ |x |∣∣log(|y|2)∣∣− p

2+γ (6.21)

on {|x | ≤ e−p, e−p ≤ |y| ≤ r ≤ e−1}. Now on this set, |log(|y|2)| p2+γ ≤
(2p)α+γ |log(|y|2)|− p

2−α by (6.16) and (6.21), we get

∣∣∣βD
∗,�

p (x, y)
∣∣∣ ≤ 22(α+γ )C�,γ p

−�+2(α+γ )∣∣log(|x |2)∣∣− p
2−α∣∣log(|y|2)∣∣− p

2−α (6.22)

on {|x | ≤ e−p, e−p ≤ |y| ≤ r ≤ e−1}. This holds on {|y| ≤ e−p, e−p ≤ |x | ≤ r ≤
e−1} as well by symmetry.

We get from (6.18)–(6.22): For all � > 0, α ≥ 0, there exists C�,α > 0 such that
for p > 1, on D

∗
r/2 × D

∗
r/2,

∣∣∣(βD
∗

p − β�p )(x, y)
∣∣∣ ≤ C�,α p

−�∣∣log(|x |2)∣∣− p
2−α∣∣log(|y|2)∣∣− p

2−α. (6.23)
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From (6.3) and (6.23) we get (1.6) for k = 0.
Observe that by (4.5), (4.14), for any k ∈ N, there exists Ck > 0 such that on D

∗
r ,

∣∣∣log |z|2∣∣∣
Ck
≤ Ck

∣∣∣log |z|2∣∣∣ , |z|Ck ≤ Ck

∣∣∣log |z|2∣∣∣k |z|. (6.24)

From (6.12) and (6.24) we have

∣∣∣βD
∗,�

p (x, y)
∣∣∣
Ck
≤ Ck |x ||y|

∑
k1+k2+k3≤k

∣∣log(|x |2)∣∣k1 ∣∣log(|y|2)∣∣k2 ∣∣gp(x, y)∣∣Ck3 .

(6.25)

By (4.6) and (4.12) we get

∣∣gp(x, y)∣∣C j

≤ C
∑

j1+ j2≤ j

∣∣log(|x |2)∣∣ j1 ∣∣log(|y|2)∣∣ j2 |x |min(1, j1)|y|min(1, j2)
∣∣∣∣ ∂ j1+ j2

∂x j1∂ y j2
gp(x, y)

∣∣∣∣ .
(6.26)

Thus from (6.25) and (6.26), for any k ∈ N, there existsCk > 0 such that for x, y ∈ D
∗
r ,

∣∣∣βD
∗,�

p (x, y)
∣∣∣
Ck
≤ Ck |x ||y|

∣∣log(|x |2)∣∣k∣∣log(|y|2)∣∣k ∑
j1+ j2≤k

∣∣∣∣ ∂ j1+ j2

∂x j1∂ y j2
gp(x, y)

∣∣∣∣ .
(6.27)

Now we can combine the argument for (6.23) and (6.27) to get (1.6) for k ≥ 1. The
proof of Theorem 1.1 is complete. ��
Corollary 6.1 For any �,m ∈ N, ε > 0, and δ > 0, there exists C = C(�,m, ε, δ) > 0
such that for all p ∈ N

∗, and x, y ∈ V1 ∪ · · · ∪ VN , d(x, y) > ε, with the local
coordinate xi , y j , in the sense of (2.14), we have

∣∣Bp(xi , y j )
∣∣
Cm (h p)

≤ Cp−�
∣∣log(|xi |2)∣∣−δ∣∣log(|y j |2)∣∣−δ. (6.28)

If x ∈ V1 ∪ · · · ∪ VN , with the local coordinate xi , y ∈ � � (V1 ∪ · · · ∪ VN ), and
d(x, y) > ε, then

∣∣Bp(xi , y)
∣∣
Cm (h p)

+ ∣∣Bp(y, xi )
∣∣
Cm (h p)

≤ Cp−�
∣∣log(|xi |2)∣∣−δ. (6.29)

If x, y ∈ � � (V1 ∪ . . . ∪ VN ), and d(x, y) > ε, then |Bp(x, y)|Cm (h p) ≤ Cp−�.

Proof Pick ε > 0 (small), and, if needed, replace the ε fixed in Sect. 5 by this new ε.
As d(x, y) > ε, by (6.4) and (6.5), we get

−Bp(x, y) = Kp(x, y). (6.30)
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We explain now in detail how to establish (6.28). The argument of (6.9) implies

|Bp|Ck (h p)(x, y) ≤ Cpk |log(|x |2)|p/2|log(|y|2)|p/2|β�p |Ck (x, y),

|β�p |Ck (x, y) ≤ Cpk |log(|x |2)|−p/2|log(|y|2)|−p/2|Bp|Ck (h p)(x, y).
(6.31)

By Proposition 5.3, and (6.30), we get the analogue of (6.10) in the situation of (6.28),
that is, for any γ > 1

2 ,

∣∣∣β�p
∣∣∣
Ck

(x, y) ≤ C�,γ p
−�∣∣log(|x |2)∣∣γ−p/2∣∣log(|y|2)∣∣γ−p/2

. (6.32)

By the argument of (6.19)–(6.27) and (6.31), we improve then (6.32) to (6.28). The
same argument as above works for the situation of (6.29). The last part of Corollary
is from (5.6), (6.4) and (6.5). ��
Proof of Theorem 1.2 This follows immediately by taking x = y in Theorem 1.1. ��
Proof of Corollary 1.4 By Theorem 1.2, Proposition 3.3 and (3.22), we get

sup
|x |≤r≤e−1

∣∣Bp(x, x)
∣∣
h p = p3/2

(2π)3/2
+O(p) as p →+∞. (6.33)

Combining (1.8), (2.3) and (6.33), we obtain the desired conclusion. ��
We turn now to the proof of Corollary 1.5. Let� be a compact Riemann surface of

genus g, let D = {a1, . . . , aN } ⊂ � be a finite set and � = � � D.
The Uniformization Theorem, see [18, Theorems IV.5.6, IV.6.3, IV.6.4, IV.8.6],

readily implies that conditions (i)-(iv) from the introduction are equivalent, taking
into account that χ(�) = 2 − 2g − N and the degree of L equals −χ(�): from
[18, Theorem IV.8.6] we see first that (i) and (iii) are equivalent, and combining [18,
Theorems IV.6.3, IV.6.4] we know that (iii) implies (ii), since the Riemann surfaces
with universal covering the sphere or C, are the sphere, C, C∗ or the tori. This means
that (ii) implies (iii). Finally, by [22, p. 214], (ii) and (iv) are equivalent.

Lemma 6.2 Let� be a compact Riemann surface of genus g and D = {a1, . . . , aN } ⊂
� a finite set such that 2g− 2+ N > 0. Denote� = � � D and L = K� ⊗O�(D).
There exists a metric ω� on � and a singular Hermitian metric h on L, such that
(�, ω�) and the formal square root of (L, h) satisfy the conditions (α) and (β).

Proof Since χ(�) = 2−2g−N < 0, the universal covering of� isH and� admits a
Kähler-Einstein metricω� of constant negative curvature−4, induced by the Poincaré
metric ωH = idz∧dz

4|Imz|2 on H. It is a classical fact that every a ∈ D has a coordinate

neighborhood (Ua, z) in� such that in this coordinate ω� is exactly given by ωD∗(z)
on Ua = Ua � {a}, see e.g. [8, p. 79, (6.7)].

Note that ω� extends to a closed strictly positive (1, 1)-current ω� on �. Let hK�

be the metric on K� induced by ω� . Then we have

|dz|2
hK�

= |z|2 log2(|z|2) in (
Ua, z

)
. (6.34)
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Let σ be the canonical section of O�(D). The singular metric hO�(D) on O�(D) is
defined by |σ |2

hO �
(D) = 1. The isomorphism

K� −→ K� ⊗ O�(D)|� = L|�, s �−→ s ⊗ σ

over� and the metrics hK� and hO�(D) induce the metric h on L|� . The curvature of
the line bundle (L|�, h) is given by−2iω� . Since σ

z is a holomorphic frame ofO�(D)

on Ua , dz ⊗ σ
z is a holomorphic frame of L on Ua . Then |dz ⊗ σ

z |2h = (log(|z|2))2,
and thus (�, ω�) and the (formal) square root of (L, h) satisfy conditions (α) and
(β). ��

Let � ∼= π1(�) be the group of deck transformations of the covering H → �.
Then �\H ∼= � has finite hyperbolic volume and � is a Fuchsian group of the first
kind without elliptic elements. We denote by π : H → �\H the canonical projection.

The space M�
2p of �-modular forms of weight 2p is by definition the space of

holomorphic functions f ∈ O(H) satisfying the functional equation

f (γ z) = (cz + d)2p f (z), z ∈ H, γ =
(
a b
c d

)
∈ �, (6.35)

and which extend holomorphically to the cusps of � (fixed points of the parabolic
elements). If f ∈ O(H) satisfies (6.35), then f dz⊗p ∈ H0(H, K p

H
)descends to a holo-

morphic section�( f )of H0(�, K p
�)
∼= H0(�, L p). By [30, Propositions3.3, 3.4(b)],

� induces an isomorphism � :M�
2p → H0(�, L p).

The subspace ofM�
2p consisting of modular forms vanishing at the cusps is called

the space of cusp forms (Spitzenformen) of weight 2p of�, denoted byS�2p. The space
of cusps forms is endowed with the Petersson scalar product

〈 f , g〉 :=
∫
U

f (z)g(z)(2y)2p dvH(z),

where U is a fundamental domain for � and dvH = 1
2 y

−2dx ∧ dy is the hyperbolic
volume form. The Bergman density function of (S�2p, 〈·, ·〉) is defined by taking any
orthonormal basis ( f j ) and setting

S�p (z) =
∑
j

| f j (z)|2(2y)2p, z ∈ U .

Under the above isomorphism,S�2p is identified to the space H0(�, L p⊗O�(D)
−1) =

H0(�, K p
�
⊗ O�(D)

p−1) of holomorphic sections of L p over � vanishing on D.
If we endow KH with the Hermitian metric induced by the Poincaré metric on

H, the scalar product of two elements udz⊗p, vdz⊗p ∈ K p
H,z is 〈udz⊗p, vdz⊗p〉 =

uv(2y)2p. Hence, the Petersson scalar product corresponds to the L2 scalar product
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996 H. Auvray et al.

of pluricanonical forms on �,

〈 f , g〉 =
∫
�

〈�( f ),�(g)〉ω�, f , g ∈ S�2p.

The isomorphism � gives thus an isometry (see also [13, Section6.4])

S�2p ∼= H0
(
�, L p ⊗ O�(D)

−1) ∼= H0
(2)(�, K

p
�)
∼= H0

(2)(�, L
p), (6.36)

where H0
(2)(�, L

p) is the space of holomorphic sections of L p that are square-
integrable with respect to the volume form ω� and the metric h p on L p, with h
introduced in Lemma 6.2. Moreover, H0

(2)(�, K
p
�) is the space of L

2-pluricanonical

sections with respect to the metric hK
p
� and the volume form ω� , where we denote

by hK� the Hermitian metric induced by ω� on K� . We let now B�
p be the Bergman

density function of H0
(2)(�, L

p), defined as in (1.4). We have

S�p (z) = B�
p (π(z)), z ∈ U . (6.37)

We thus identify the space of cusp forms S�2p to a subspace of holomorphic sections

of L p by (6.36) and its Bergman density function S�p to B�
p by (6.37).

Proof of Corollary 1.5 In view of Lemma 6.2, this follows immediately from Corol-
lary 1.4 applied for the even powers of the square root of L = K�⊗O�(D), and from
(6.37). Even if the square root of L is a formal line bundle we can apply Corollary 1.3
to its even powers, i.e., to L p, which has the effect of scaling p to 2p. This explains the
occurrence of p/π in the leading term of (1.10) and (1.11), as well as in Theorems 1.6
and 1.7. ��
Proof of Theorem 2.5 Since we have the same Sobolev constants for M̃/� and M (cf.
[27, TheoremA.1.6, (A.1.15)]), the proof of [15, Proposition 4.1] or of [27, Proposition
4.1.5] shows that for any l,m ∈ N, there existsCl,m > 0 (independent of� ⊂ π1(M))
such that for any p ∈ N

∗, x, y ∈ M̃/�

∣∣∣K�
p (x, y)− B�

p (x, y)
∣∣∣
Cm (M̃/�)

≤ Cl,m p−l . (6.38)

By the finite propagation speed for the wave operator, for d(x, y) ≤ ε, we have

K�
p (x, y) = π∗�Kp(π�(x), π�(y)). (6.39)

From (6.38) and (6.39) we conclude Theorem 2.5. ��
Proof of Theorem 1.6 For a subgroup � ⊂ �0 of finite index let π� : �\H → �0\H
be the canonical finite covering. We will add a superscript � for the various objects
living on �\H. We fix 0 < r < e−1 such that the ends V1, . . . , VN of �0\H are of
the form (D∗

r , ωD∗ ,C, hD∗). Now for any finite index subgroup � ⊂ �0, the ends of

123
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�\H are the connected components {V �
i }i of π−1� (Vj ), j = 1, . . . , N . Moreover, if

V �
i is a connected component of π−1� (Vj ), there exists n ∈ N

∗ such that the map
π� : V �

i → Vj is given by D
∗
r1/n

→ D
∗
r : z �→ zn (cf. [19, Theorem 5.10]). Let

V �
i,r = V �

i ∩ π−1� (D∗
rn )(= D

∗
r ). (6.40)

On (�\H) �
⋃

i V
�
i,r/4, the Sobolev constants are the same as the ones on (�0\H) �⋃

j V j,r/4, where Vj,r/4 = D
∗
r/4 under the identification of Vj and D

∗
r .

As the curvatures on �\H are pull-backs of the corresponding curvatures on �0\H,
we see from the proof of [27, Theorem 6.1.1] that the spectral gap property, Proposi-
tion 5.1, holds uniformly on the set of subgroups � ⊂ �0, i.e., there exists c�0 > 0,
p0 > 0 such that for all p ≥ p0, and all subgroups � ⊂ �0, we have

Spec(��
p) ⊂ {0} ∪ [c�0 p,+∞). (6.41)

Using (6.41) and arguing as in the proof of Theorem 2.5, we see that for any k ∈ N
∗,

there exists C�0,k > 0 (depending only on �0 and k) such that for any p ≥ 1,
x ∈ (�\H) �

⋃
i V

�
i,r/4,

∣∣∣∣B�
p (x)−

1

π
p + 1

2π

∣∣∣∣
Cm

≤ C�0,k p
−k . (6.42)

Now on V �
i,r we have

(
V �
i,r , ω�\H, L, h

) � (D∗
r , ωD∗ ,C, hD∗). (6.43)

From the proof of Proposition 5.3 and (6.43), by using (6.41) in (5.14), we get that
for any �,m ≥ 0, γ > 1

2 , there exists C�,m,γ > 0 such that for any p ≥ p0 and any
� ⊂ �0 with finite index, we have

∥∥∥ρ(x)−γ ρ(y)−γ K�
p (x, y)

∥∥∥
Cm (h p)

≤ C�,m,γ p
−�, for any x, y ∈ V �

i,r . (6.44)

Finally, from (6.44) and the proof of Theorem 1.1 we obtain that for any �,m ≥ 0,
and every δ > 0, there exists C�0 > 0 such that for all p ∈ N

∗ and any � ⊂ �0 with
finite index,

∥∥∥B�
p − BD

∗
p

∥∥∥
Cm

(z) ≤ C�0 p
−�∣∣log(|z|2)∣∣−δ for z ∈ ∪i V

�
i,r . (6.45)

Now it is clear from Proposition 3.3, (3.22), (6.42) and (6.45), that (1.13) holds. ��
Proof of Theorem 1.7 As in the proof of (6.38), there exists Cl,m > 0 (independent of
� ⊂ �0) such that for any p ∈ N

∗, x, y ∈ (�\H) � ∪i V �
i,r/4,

∣∣∣K�
p (x, y)− B�

p (x, y)
∣∣∣
Cm

≤ Cl,m p−l . (6.46)
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Note that the property of the finite propagation speed of solutions of hyperbolic
equations still holds on orbifolds, as shown in [26, §6.6]. Hence (6.46) implies that
(6.42) holds for x ∈ (�\H)� (

⋃
i V

�
i,r/4 ∪

⋃
j π

−1
� (Ux j )). Moreover, on each end the

argument (6.41)–(6.45) goes through, thus we get the uniform estimate (6.45) with
the constant C�0 depending only on �0 and independent of � ⊂ �0.

Now on each component of π−1� (Ux j ), observe that the stabilizer group �x�j
of x�j

acts in the normal coordinate around x�j in H by rotation, with x�j being the unique
fixed point. We denote by Z the (real) normal coordinates around a point x ∈ H. By
[15, (4.114), (5.21), (5.23)] (cf. [27, Theorem 5.4.11], [16, Theorem 0.2]) for the 2p-th
tensor power of (L|�\H)1/2 = K 1/2

�\H, there exists C0 > 0 such that for any k, l > 0,
there exists N > 0, Ck,l > 0, depending only on �0, k, l, such that in the normal
coordinates around x�j in H, we have when p →∞,

∣∣∣∣∣
1

2p
B�
p (Z , Z)−

k∑
ν=0

bν(Z)(2p)−ν

−
2k∑
ν=0

(2p)−
ν
2

∑
1 �=γ∈�

x�j

eiθγ pKν(
√
2pZ)e−p(1−eiθγ )|z|2

∣∣∣∣∣∣∣∣
Cl

≤ Ck,l

(
p−k−1 + p−k+

l−1
2

(
1+√p|Z |)N e−

√
C0 p |Z |) ,

(6.47)

where Kν(Z) are polynomials in the real coordinates Z . Note also that bν are given
by (2.11). By [15, (4.107), (4.105), (4.117), (5.4)] (or [27, Remark 4.1.26, (4.1.84),
(4.1.92)]), we have K0 = 1

2π ,K1 = 0. This implies in particular that (1.15) holds on

π−1� (Ux j ).
The above arguments yield (1.14), (1.15) and (1.17). To obtain (1.16), notice that

by our choice of q0, all factors eiθγ q0 p in (6.47) are 1. Thus (1.15) implies (1.16). ��
Acknowledgements H. A. is thankful to the University of Cologne where this paper was partly written;
he would also like to thank Michael Singer for inspiring conversations. G. M. acknowledges support from
Université Paris Diderot–Paris 7 (now Université de Paris) where this paper was partly written and warmly
thanks the project Analyse Complexe et Géométrie for hospitality over many years.

A Proof of Lemma 3.4

We prove in this appendix the existence of a constant C such that for all ζ > 0 and all
p ≥ 1,

p(1+ p(1− ζ )2)|δp(ζ )| ≤ C, (A.1)

where we recall the notation from (3.23):

δp(ζ ) = ep(1−ζ+log ζ ) − e−
p
2 (1−ζ )2

(
1− p

3
(1− ζ )3

)
.
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Clearly, (A.1) holds for any fixed p, that is: for any p ≥ 1, there exists Cp such that
for all ζ > 0, p(1+ p(1−ζ )2)|δp(ζ )| ≤ Cp. We thus want to show that theCp can be
chosen independent of p; this we do arguing by contradiction: we hence assume that
there exists a positive sequence (ζp)p≥1 such that, up to passing to a subsequence,

p(1+ p(1− ζp)
2)|δp(ζp)| p→∞−−−→∞. (A.2)

Up to passing to a subsequence, (ζp) converges in [0,∞]; we first distinguish the
three cases (ζp)→ 0, (ζp)→∞, and (ζp)→ � ∈ R>0.

1. (ζp) → 0: here, p(1 + p(1 − ζp)
2) ∼ p2, whereas ep(1−ζp+log ζp) ≤ e−p for p

large, hence

p(1+ p(1− ζp)
2)ep(1−ζp+log ζp) −→ 0;

likewise, e−
p
2 (1−ζ )2 ≤ e−

p
4 for p large, and

(
1− p

3 (1− ζ )3
) ∼ − p

3 , hence

p(1+ p(1− ζp)
2)e−

p
2 (1−ζp)2

(
1− p

3
(1− ζp)

3
)
−→ 0. (A.3)

This way, p(1+ p(1− ζp)
2)|δp(ζp)| → 0, which contradicts (A.2).

2. (ζp)→∞: one has p(1+ p(1− ζp)
2) ∼ p2ζ 2p and ep(1−ζp+log ζp) ≤ e−

pζp
2 for

p large, hence

p(1+ p(1− ζp)
2)ep(1−ζp+log ζp) � p2ζ 2pe

− pζp
2 −→ 0; (A.4)

moreover e−
p
2 (1−ζp)2 ≤ e−

pζp
4 for p large, and

(
1− p

3 (1− ζp)
3
) ∼ p

3 ζ
3
p , hence

p(1+ p(1− ζp)
2)e−

p
2 (1−ζp)2

(
1− p

3
(1− ζp)

3
)

� p

3
ζ 3pe

− pζp
4 = 1

3p2
(pζp)

3e−
pζp
4 −→ 0.

Here again, p(1+ p(1− ζp)
2)|δp(ζp)| → 0, and (A.2) is contradicted.

3. (ζp)→ �: one must deal here with the dichotomy � �= 1
/
� = 1.

(a) � �= 1: p(1+ p(1− ζp)
2) ∼ (1− �)2 p2, and as ζ �→ 1− ζ + log ζ is strictly

convex and attains 0 at ζ = 1, ep(1−ζp+log ζp) ≤ e−εp for p large, with some
ε > 0, hence

p(1+ p(1− ζp)
2)ep(1−ζp+log ζp) � (1− �)2 p2e−εp −→ 0;
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furthermore, e−
p
2 (1−ζp)2 ≤ e−

p(1−�)2
4 for p large, and

(
1 − p

3 (1 − ζp)
3
) ∼

p
3 (1− �)3, hence

p
(
1+ p(1− ζp)

2
)
e−

p
2 (1−ζp)2

∣∣∣1− p

3
(1− ζp)

3
∣∣∣

� p3

3
|1− �|5e− p(1−�)2

4 −→ 0. (A.5)

Once more, this yields p(1 + p(1 − ζp)
2)|δp(ζp)| → 0, and a contradiction

to (A.2).
(b) � = 1: setting z p = ζp − 1 → 0, we must one last time distinguish between

three different cases: |pz3p| → ∞, pz3p → μ = λ3 ∈ R
∗ and pz3p → 0 (up to

passing to a subsequence).
(i) |pz3p| → ∞: in particular, pz2p = |pz3p|2/3 p1/3 →∞. Here p(1+ p(1−

ζp)
2) ∼ p2z2p and 1 − ζp + log ζp = −z p + log(1 + z p) ≤ − z2p

3 for p
large, thus

p(1+ p(1− ζp)
2)ep(1−ζp+log ζp) � p2z2pe

− pz2p
3 = p2z2pe

− |pz3p |2/3 p1/3
3

≤ p2z2pe
−(|pz3p |2/3+p1/3) = p4/3e−p1/3 |pz3p|2/3e−|pz

3
p |2/3 −→ 0,

(A.6)

where the last inequality holds as soon as p1/3 and |pz3p|2/3 ≥ 6. As for
the other summand,

p(1+ p(1− ζp)
2)e−

pz2p
2

∣∣∣1− p

3
z3p

∣∣∣
∼ |p3z5p|e−

pz2p
2 = p4/3|pz3p|5/3e−

|pz3p |2/3 p1/3
2

≤ p4/3|pz3p|5/3e−(|pz
3
p |2/3+p1/3) = p4/3e−p1/3 |pz3p|5/3e−|pz

3
p |2/3 −→ 0,

(A.7)

(the last inequality holds as soon as p1/3 and |pz3p|2/3 ≥ 6). In conclusion,
p(1+ p(1− ζp)

2)|δp(ζp)| → 0, in contradiction with (A.2).
(ii) pz3p → μ = λ3 �= 0, that is: z p ∼ λp−1/3. First, p(1 + p(1 − ζp)

2) ∼
p2z2p ∼ λ2 p4/3; moreover 1 − ζp + log ζp = −z p + log(1 + z p) =
− z2p

2 +
z3p
3 +O(p−4/3), hence

p(1+ p(1− ζp)
2)|δp(ζp)| ∼ λ2 p4/3e−

pz2p
2

∣∣∣∣∣e
pz3p
3 +O(p−1/3) − 1+ pz3p

3

∣∣∣∣∣
� λ2 p4/3e−

λ2 p1/3

3

∣∣∣eμ/3 − 1− μ

3

∣∣∣ −→ 0,

(A.8)
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a contradiction with (A.2).
(iii) pz3p → 0: In this very last case, where again pz4p = pz3p · z p → 0,

δp(ζp) = e−
pz2p
2

(
ep(

z3p
3 +O(z4p)) − 1− p

3
z3p

)

= e−
pz2p
2

((
1+ pz3p

3
+O(p2z6p)

)(
1+O(pz4p)

)
− 1− p

3
z3p

)

= e−
pz2p
2

(
O(p2z6p)+O(pz4p)

)
, (A.9)

hence

(p + p2z2p)δp(ζp) =O
(
p3z6pe

− pz2p
2

)
+O

(
p2z4pe

− pz2p
2

)
+O

(
p4z8pe

− pz2p
2

)

=O(1) (A.10)

independently of the behavior of p2z2p, as z �→ zke− z2
2 , k = 2, 3, 4, are

bounded on R. In other words, p(1 + p(1 − ζp)
2)δp(ζp) = O(1), and

this final contradiction of (A.2) ends the proof of Lemma 3.4. ��
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