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1. Introduction and Statement of the Main Results

The famous geometric quantization conjecture of Guillemin and Sternberg [19]
states that for a compact pre-quantizable symplectic manifold admitting a
Hamiltonian action of a compact Lie group, the principle of “quantization com-
mutes with reduction” holds. This conjecture was first proved independently by
Meinrenken [43] and Vergne [53] for the case where the Lie group is abelian, and by
Meinrenken [44] in the general case, then Tian–Zhang [52] gave a purely analytic
proof in general case with various generalizations, see [54] for a survey and complete
references on this subject. In the case of a non-compact symplectic manifold M with
a compact Lie group action G, this question was solved by Ma–Zhang [39, 40] as
a solution to a conjecture of Vergne in her ICM 2006 plenary lecture [55], see [36]
for a survey. Paradan [47] gave a new proof, cf. also the recent work [24]. A natural
choice for the quantum spaces of a compact symplectic manifold is the kernel of
the Dirac operator.

In [38], Ma–Zhang established the asymptotic expansion of the G-invariant
Bergman kernel for a positive line bundle L over a compact symplectic manifold M

and by using the asymptotic expansion of G-invariant Bergman kernel, they could
establish the “quantization commutes with reduction” theorem when the power of
the line bundle L is high enough.

On a compact Kähler manifold M endowed with a prequantum line bundle L,
a natural choice for the Hilbert space of quantum states is the space H0(M, Lm)
of holomorphic sections of the tensor powers Lm. The family of quantum spaces
H0(M, Lm) indexed by m ∈ N plays an essential role in geometric quantization
and the semi-classical limit m → ∞ allows to recover the classical mechanics of the
phase space M .

One can wrap up the family of spaces H0(M, Lm), m ∈ N, as subspaces of
a single Hilbert space by considering the S1-bundle X ⊂ L∗, which is a strictly
pseudoconvex CR manifold and identifying H0(M, Lm) with the S1 isotypes of
m-equivariant CR functions on X . The Hilbert space sum ⊕̂m∈NH0(M, Lm) can
be identified to the space H0

b (X) of L2 CR functions on X and the sum of the
Bergman projections Bm on H0(M, Lm) can be identified to the Szegő projector S

on H0
b (X). A fundamental fact is that the asymptotic behavior of Bm is encoded in

the singularities of the Szegő kernel S(·, ·). We can thus think of X as the quantizing
principal bundle of M and of the space of L2 CR functions as the quantum space
of X . In the presence of a G-action on M , which lifts to an action on L, we have
an induced G-action on X and on H0

b (X).
The quantization of strictly pseudoconvex or more generally contact manifolds

via the Szegő projector or its generalizations was developed by Boutet de Monvel
and Guillemin [7] and can be applied to the Kähler quantization by using the above
construction. In this paper, we study the quantization of CR manifolds and the
principle of “quantization commutes with reduction”. For this purpose we develop
a G-invariant Fourier integral operator calculus which will be used to obtain the
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asymptotics of the G-invariant Szegő kernel. Our Theorem 1.2 is new even for com-
pact strictly pseudoconvex CR manifolds and our results pertain also to Sasakian
manifolds (see Theorem 1.3). Sasakian geometry is an important odd-dimensional
counterpart of Kähler geometry. It is known that irregular Sasakian manifolds admit
a compact CR torus action (see [23, Sec. 3] or Remark 2.2) and the study of G-
equivariant CR functions on a Sasakian manifold is important in Sasaki geometry.
We refer to [1, 9, 16, 17, 57] for the fundamentals of contact and Sasakian reduction
and examples.

An important difference between the CR setting and the Kähler/symplectic
setting is that the quantum spaces in the case of a compact Kähler/symplectic
manifolds are finite-dimensional, whereas for the compact strictly pseudoconvex
CR manifolds that we consider the quantum spaces consist of CR functions and are
infinite-dimensional. In [20, Theorem 3.6], Guillemin–Sternberg proposed a version
of quantization for symplectic cones associated with a homogeneous moment map.
Again, in contrast to our Theorem 1.2, their invariant spaces are finite-dimensional.

We now formulate the main results. We refer to Sec. 2 for some notations and
terminology used here. Let (X, T 1,0X) be a compact orientable CR manifold of
dimension 2n + 1, n ≥ 1, where T 1,0X denotes the CR structure of X . Let HX ⊂
TX be the associated Levi distribution with complex structure J ∈ End(HX)
and let ω0 ∈ C∞(X, T ∗X) be a non-vanishing real 1-form annihilating HX , called
characteristic 1-form.

Let G be a d-dimensional compact Lie group with Lie algebra g acting on X

by preserving J and ω0. Let μ : X → g∗ be the associated moment map μ : X → g∗

(cf. (2.27)). We will mainly work in the following setting.

Assumption 1.1. The G-action preserves the complex structure J on HX and
the characteristic 1-form ω0, it is free on μ−1(0), and one of the following conditions
are fulfilled:

(i) dimX ≥ 5 and the Levi form of X is positive definite near μ−1(0).
(ii) dimX = 3, the Levi form of X is positive definite everywhere and ∂b has closed

range in L2 on X .

Due to Lemma 2.5, Assumption 1.1 implies that 0 is a regular value of μ, hence
μ−1(0) is a d-codimensional submanifold of X . Let

Y := μ−1(0), XG := μ−1(0)/G. (1.1)

The space XG is called the CR reduction. Under our hypotheses, if dimXG ≥ 3,
XG is a strictly pseudoconvex CR manifold with characteristic 1-form (in this case
also contact form) ω0,G induced canonically by ω0, see (2.38). If dim XG = 1, then
each of the finitely many components of XG is diffeomorphic to a circle.
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Let ∂b : C ∞(X) → Ω0,1(X) and if dim XG ≥ 3, let ∂b,XG : C ∞(XG) → Ω0,1(XG)
be the tangential Cauchy–Riemann operators on X and XG, respectively. We extend
∂b and ∂b,XG to L2 spaces by taking their weak maximal extension, see (2.13). We
consider the spaces of L2 CR functions

H0
b (X) :=

{
u ∈ L2(X) : ∂bu = 0

}
, H0

b (XG) :=
{
u ∈ L2(XG) : ∂b,XGu = 0

}
.

(1.2)

If dimXG = 1, so XG is a finite union of circles, we set H0
b (XG) to be the direct sum

of the Hardy spaces of the components, that is, the L2 subspaces of functions with
vanishing Fourier coefficients of negative degree. The common feature of the spaces
H0

b (XG) for dim XG ≥ 3 and dimXG = 1 is the fact that they are boundary values
of holomorphic functions in a filling of XG by a complex manifold (see Sec. 2.4).

Then H0
b (X) is a (possible infinite-dimensional) G-representation, its G-

invariant part is the G-invariant L2 CR functions on X ,

H0
b (X)G :=

{
u ∈ H0

b (X) : h∗u = u, for any h ∈ G
}
. (1.3)

For every s ∈ R let Hs(X) and Hs(XG) denote the Sobolev spaces of X and XG of
order s and let ( · , · )s and ( · , · )XG,s be the inner products on Hs(X) and Hs(XG),
respectively (see (5.3)). For every s ∈ R put

H0
b (X)s :=

{
u ∈ Hs(X) : ∂bu = 0 in the sense of distributions

}
. (1.4)

We define H0
b (XG)s and H0

b (X)G
s in the same way. If dimXG = 1, we set H0

b (XG)s

to be the direct sum of the Hardy–Sobolev spaces of the components, that is, the
subspaces of Hs(S1) of distributions with vanishing Fourier coefficients of negative
degree.

Let ι : Y → X be the natural inclusion and let ι∗ : C ∞(X) → C∞(Y ) be the
pull-back by ι. Let ιG : C∞(Y )G → C∞(XG) be the natural identification. Let

σG : H0
b (X)G ∩ C ∞(X)G → H0

b (XG), σG = ιG ◦ ι∗. (1.5)

The map (1.5) is well defined, see the construction of the CR reduction in Sec. 2.3.
The map σG does not extend to a bounded operator on L2, so it is necessary to
consider its extension to Sobolev spaces. From Theorem 5.3, σG extends by density
to a bounded operator

σG = σG,s : H0
b (X)G

s → H0
b (XG)s− d

4
, for every s ∈ R. (1.6)

This operator can be thought as a Guillemin–Sternberg map in the CR setting.
It maps the “first quantize and then reduce” space (the space of G-invariant
Sobolev CR functions on X) to the “first reduce and then quantize” space (the
space of Sobolev CR functions on XG). Indeed, from the point of view of quan-
tum mechanics, the Hilbert space structures play an essential role. It is natural,
then, to investigate the extent to which the CR Guillemin–Sternberg map is Fred-
holm. The following main result of this work gives a CR analogue of the fact that
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the canonical reduction map in the symplectic context is an isomorphism for suf-
ficiently large tensor powers of the prequantum line bundle (cf. [38, Theorem 0.9]
and Theorem 1.4).

Theorem 1.2. Let X be a compact orientable CR manifold and let G be a com-
pact Lie group acting on X such that the G-action preserves J and ω0 and Assump-
tion 1.1 holds. Suppose that ∂b,XG has closed range in L2. Then, for every s ∈ R, the
CR Guillemin–Sternberg map (1.6) is Fredholm. Actually, KerσG,s and (Im σG,s)⊥

are finite-dimensional subspaces of C∞(X) ∩ H0
b (X)G and C∞(XG) ∩ H0

b (XG),
respectively, KerσG,s and the index dim KerσG,s −dim (ImσG,s)⊥ are independent
of s.

We note that (Im σG,s)⊥ is given by

(Im σG,s)⊥ :=
{

u ∈ H0
b (XG)s− d

4
: (σG,sv , u )XG,s− d

4
= 0, for every v ∈ H0

b (X)G
s

}
.

(1.7)

Under Assumption 1.1(i) the hypothesis that dimX ≥ 5 is used in order to have
local subelliptic Sobolev estimates on the set where the Levi form is positive definite
(Theorem 3.10) and leads to the fact that the G-invariant Kohn Laplacian (3.26)
has closed range in L2. Note also that the Kohn Laplacian on strictly pseudoconvex
CR manifolds of dimension greater than or equal to five has always closed range in
L2 but this is not true for all three-dimensional strictly pseudoconvex CR manifolds
(a detailed discussion about the closed range of ∂b in L2 can be found in Sec. 2.4).
In the case when dim X = 3 we will state in Theorem 5.7 a version of Theorem 1.2
under weaker hypotheses as Assumption 1.1(ii), namely that X is pseudoconvex of
finite type and ∂b,X has closed range in L2.

We turn now our attention to Sasakian manifolds. Let (X, T 1,0X) be a compact
connected Sasakian manifold (see Sec. 2.2), i.e. (X, T 1,0X) is a compact connected
strictly pseudoconvex CR manifold and we can fix a contact form ω0 and a Reeb
vector field R such that iRω0 = 1, iRdω0 = 0 and the flow associated with R

preserves T 1,0X (cf. Remarks 2.2 and 2.3). Assume that the action of the compact
Lie group G on X verifies Assumption 1.1. Moreover, we assume that

R is G-invariant. (1.8)

By Remark 2.2, the flow associated with R preserves HX , J and the natural metric
gω0 on TX , in particular, R is a Killing vector field. Since X is compact, this implies
the flow associated with R generates a compact torus T-action on X and this T-
action commutes with the G-action. Thus it naturally induces a T-action on XG and
the generator R induces the Reeb vector field R̂ on XG. Since the flow associated
with R preserves the CR structure T 1,0X and commutes with G, it follows that the
flow associated with R̂ preserves the CR structure T 1,0XG. Thus, (XG, T 1,0XG) is
a strictly pseudoconvex CR manifold with a CR Reeb vector field R̂. By (2.17) and
Remark 2.3, XG is also a compact Sasakian manifold.
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Now H0
b (X)G and H0

b (XG) are both T-Hilbert spaces, thus we have the decom-
position of Hilbert spaces via the weight α ∈ T

∗
(
 Zdim T) of T-action:

H0
b (X)G = ⊕α∈T

∗H0
b,α(X)G, H0

b (XG) = ⊕α∈T
∗H0

b,α(XG). (1.9)

We refer to [23] for further applications of this weight decomposition. Both
H0

b,α(X)G and H0
b,α(XG) are finite-dimensional subspaces of C∞(X)G and

C∞(XG), respectively, as subspaces of the eigenspaces of the elliptic operators
∂
∗
b,X∂b,X − R2, ∂

∗
b,XG

∂b,XG − R̂2, respectively, of eigenvalues |α(R)|2. From the
definition (1.5) of the map σG we see that

σGRu = R̂σGu, for any u ∈ H0
b (X)G, (1.10)

and hence σG maps H0
b,α(X)G to H0

b,α(XG). From this observation, Theorem 1.2
and the fact that ∂b has closed range in L2 on Sasakian manifolds (see [42], also
Sec. 2.4), we deduce:

Theorem 1.3 (quantization commutes with reduction for Sasakian man-
ifolds). Let X be a compact connected Sasakian manifold with a CR Reeb vector
field R. Suppose that X admits a compact Lie group action G which preserves the
complex structure J on HX and the characteristic 1-form ω0, it is free on μ−1(0),
and the Reeb vector field R is G-invariant. Then with the exception of finitely many
α ∈ T

∗
the map

σG : H0
b,α(X)G → H0

b,α(XG) (1.11)

is an isomorphism.

We now apply Theorem 1.2 to the case of complex manifolds. Let (L, hL) be
a Hermitian holomorphic line bundle over a connected compact complex manifold
(M, J) with dim CM = n, where J denotes the complex structure of TM and hL is a
Hermitian metric of L. We denote by RL the Chern curvature of (L, hL). We assume
that G acts holomorphically on (M, J), and that the action lifts to a holomorphic
action on L. We assume further that hL is preserved by the G-action. Then RL is
a G-invariant form. Let μ̃ : M → g∗ be the moment map defined by the Kostant
formula (6.1).

Assume that 0 ∈ g∗ is regular and the action of G on μ̃−1(0) is free. If iRL is
positive near μ̃−1(0), then the analogue of the Marsden–Weinstein reduction holds.
More precisely, the complex structure J on M induces a complex structure JG on
MG := μ̃−1(0)/G, for which the line bundle LG := L/G is a holomorphic line bundle
over MG. For m ∈ N, let H0(M, Lm)G denote the space of G-invariant holomorphic
sections with values in Lm.

Let X := {v ∈ L∗ : |v|2
hL∗ = 1} be the circle bundle of L∗, where hL∗

is the
Hermitian metric on L∗ induced by hL. Let eiθ be the natural S1-action on the
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fibers of X . The action of G on M lifts to a CR action on X . For every m ∈ N, put

H0
b,m(X)G :=

{
u ∈ H0

b (X)G : (eiθ)∗u = eimθu on X , for every eiθ ∈ S1
}
.

(1.12)

It is easy to check that for every m ∈ N there are canonical isomorphisms

H0
b,m(X)G ∼= H0(M, Lm)G, H0

b,m(XG) ∼= H0(MG, Lm
G ). (1.13)

On account of (1.13), Theorem 1.2 (under Assumption 1.1 (i)) and the correspon-
dence between the curvature iRL and the Levi form of X (cf. Section 2.2) we
deduce:

Theorem 1.4. Let M be a compact connected complex manifold, dimC M ≥ 2,

and (L, hL) be a Hermitian holomorphic line bundle over M . Let G be a compact
Lie group acting holomorphically on M and whose action lifts to (L, hL). Suppose
that iRL is positive near μ̃−1(0) and G acts freely on μ̃−1(0). Then for m large
enough, the canonical map between H0(M, Lm)G and H0(MG, Lm

G ) by restriction
is an isomorphism, in particular

dim H0(M, Lm)G = dimH0(MG, Lm
G ). (1.14)

If L is positive on the whole M , this canonical isomorphism between
H0(M, Lm)G and H0(MG, Lm

G ) was constructed in [19, 58] for m = 1 (see also
for the metric aspect of this isomorphism [38, (0.27), Corollary 4.13] for m large
enough). This implies that the map σG in Theorem 1.2 is actually an isomorphism
in the case of the circle bundle X of L∗. Thus we expect in many situations (in
particular, if additionally X is strictly pseudoconvex), that σG in Theorem 1.2 is
an isomorphism. Theorem 1.4 gives a version of the result of [19, 58] for large
enough powers of L by requiring the positivity of iRL only on μ̃−1(0). In the case
dimC M = 1, hence dim X = 3, Assumption 1.1(ii) corresponds to L being positive
everywhere on M , so an application of Theorem 1.2 does not bring anything new.
We will give in Theorem 6.1 a version for almost complex manifolds of Theorem 1.4.

In the rest of Introduction we explain some technical aspects, in particular some
results on the G-invariant Szegő projection, necessary to establish Theorem 1.2.

We introduce a G-invariant Hermitian metric g = gCTX on X as in Lemma 2.7
which fixes the L2 spaces on X . The G-invariant Szegő projection is the orthogonal
projection

SG : L2(X) → H0
b (X)G (1.15)

with respect to ( · , · ). The G-invariant Szegő kernel SG(x, y) ∈ D ′(X × X) is
the distribution kernel of SG. In Theorem 3.25, we will prove that SG is a complex
Fourier integral operator and in Theorem 3.27, we will show the regularity property

SG : C∞(X) → H0
b (X)G ∩ C ∞(X). (1.16)

From (1.16) we conclude that H0
b (X)G ∩ C∞(X) is dense in H0

b (X)G.
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Let SXG : L2(XG) → H0
b (XG) be the orthogonal projection with respect to

( · , · )XG (cf. Convention 2.8). It follows from general results [8, 27] that if ∂b,XG

has closed range in L2, then SXG is a Fourier integral operator with complex phase
and also a pseudodifferential operator on XG. In particular,

SXG : C∞(XG) → H0
b (XG) ∩ C ∞(XG) (1.17)

which implies that H0
b (XG)∩C ∞(XG) is dense in H0

b (XG) if ∂b,XG has closed range
in L2.

We consider the linear map

Rx : g
x
→ g

x
, u �→ Rxu, 〈Rxu, v 〉 = dω0(u, Jv)x. (1.18)

For x ∈ Y we denote by Yx = {h.x :h ∈ G} the G-orbit of Y ; then Yx is a
d-dimensional submanifold of X . The G-invariant Hermitian metric g induces a
volume form dvYx on Yx. Put

fG(x) = |detRx|− 1
4
√

Veff (x) ∈ C∞(Y )G with Veff (x) :=
∫

Yx

dvYx , (1.19)

where C∞(Y )G denotes the space of G-invariant smooth functions on Y = μ−1(0).
Let E : C ∞(XG) → C∞(XG) be a classical elliptic pseudodifferential operator

with principal symbol pE(x, ξ) = |ξ|−d/4. Let

σ : H0
b (X)G ∩ C∞(X)G → H0

b (XG), σ = SXG ◦ E ◦ ιG ◦ fG ◦ ι∗. (1.20)

It turns out that the operator σ in (1.20) is bounded, see Corollary 4.16, and thus
extends by density to a bounded operator

σ : H0
b (X)G → H0

b (XG). (1.21)

We have encoded in the definition (1.20) some corrections in order to obtain good
analytic properties of σ. One correction is the multiplication with the function fG

from (1.19); this reflects the need to reconcile the volume forms on μ−1(0) and on
XG . The multiplication by fG changes the CR character of the result, therefore
the need to project back to the CR space by SXG . Here comes the role of E, which
is more subtle (see also Remark 1.6). Ideally, the map σ should be unitary. But
we can content ourselves to require that σ ∗σ is “microlocally close” to SG, where
σ ∗ : H0

b (XG) → D ′(X) is the adjoint of σ. In other words, we want σ ∗σ to be a
complex Fourier integral operator with the same phase, the same order and the
same leading symbol as SG. To achieve this, we need to take E to be a classical
elliptic pseudodifferential operator with principal symbol pE(x, ξ) = |ξ|−d/4.

The main technical result of this work is the following.

Theorem 1.5. Under the assumption of Theorem 1.2, the map σ is Fredholm.
Actually, Kerσ and (Im σ)⊥ are finite-dimensional subspaces of C∞(X)∩H0

b (X)G

and C∞(XG) ∩ H0
b (XG), respectively.

2250074-8
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Remark 1.6. Note that the definition of σ depends on the choice of the elliptic
pseudodifferential operator E. We actually show that for any classical elliptic pseu-
dodifferential operator E with the same principal symbol pE(x, ξ) = |ξ|−d/4, the
map σ : H0

b (X)G → H0
b (XG) is Fredholm. Up to lower order terms of E, the map

σ is a canonical choice. The elliptic pseudodifferential operator E corresponds to
the power m−d/4 in the isomorphism map between H0(M, Lm)G and H0(MG, Lm

G )
in complex case. Here we use the same notations as in the discussion after Theo-
rem 1.3. More precisely, Ma–Zhang [38, Theorem 0.10] showed that the map

σm : H0(M, Lm)G → H0(MG, Lm
G ), σm = m−d/4Bm

MG
◦ ιG ◦ fG ◦ ι∗, (1.22)

is an asymptotic isometry if m is large enough, where ιG, ι∗ and fG ∈ C∞(M)G are
defined as in the discussion before (1.20) and Bm

MG
: L2(MG, Lm

G ) → H0(MG, Lm
G )

is the orthogonal projection. When we change m−d/4 in (1.22) to any m-depend
function with order m−d/4 + O(m− d

4−1), we still have an isomorphism between
H0(M, Lm)G and H0(MG, Lm

G ) for m large. Moreover, in view of Theorem 1.2, to
get L2 isomorphism it makes sense to take an elliptic pseudodifferential operator E

of order − d
4 .

Remark 1.7. (i) In this work, we do not assume that ∂b has closed range in L2

on X . We will show in Sec. 3.2 that under the assumption that the Levi form
is positive on Y = μ−1(0), the G-invariant Kohn Laplacian has closed range
in L2 and this is enough to obtain a full asymptotic expansion for the G-
invariant Szegő kernel SG(x, y) (see Theorem 3.25). In order to show that the
G-invariant Kohn Laplacian has closed range in L2 we need the hypothesis
that the dimension of X is greater than or equal to five.

(ii) The asymptotic expansion for SG is also a new result. In [28], Hsiao and Huang
obtained an asymptotic expansion for SG under the assumption that ∂b has
closed range in L2 on X . In [28], Hsiao and Huang established “quantization
commutes with reduction” results for CR manifolds with S1-action. The spaces
considered in [28] are finite-dimensional. To handle the infinite-dimensional
case, we need to develop a new kind of calculus of complex Fourier integral
operators.

(iii) In [19, Theorem A6], Guillemin and Sternberg showed that the underlying
canonical relation of SG is given by {(hx, x) : x ∈ μ−1(0), h ∈ G} under the
assumption that X is strictly pseudoconvex. From our result about SG we can
also deduce Guillemin and Sternberg’s result and also generalize this result to
some class of non-strictly pseudoconvex cases.

(iv) If we assume that the CR manifold X is strictly pseudoconvex of dimension
greater or equal to five, the proof is shorter. In this case, from the result of
Boutet de Monvel-Sjöstrand [8], we see that the Szegő projection is a complex
Fourier integral operator on X and by using integration by parts, we can easily
see that SG is smoothing away μ−1(0). Hence, we do not need Secs. 3.1–3.3.
For some class of CR manifolds, the Levi form is just positive near μ−1(0) (see
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Example (1) in Sec. 2.5), therefore it is natural to work with the assumption
that the Levi form is just positive near μ−1(0) since we cannot apply the result
of Boutet de Monvel–Sjöstrand directly.

This paper is organized as follows. In Sec. 2, we review some facts on CR and
Sasakian manifolds, CR reduction and Szegő kernel. In Sec. 3, we establish asymp-
totic expansion for the G-invariant Szegő kernel. In Sec. 4, we study the distribution
kernel of the map σ in (1.20) and establish Theorem 1.5. In Sec. 5, we establish
Theorem 1.2. In Sec. 6, we establish a version for almost complex manifolds of
Theorem 1.4.

Notations. We denote by N = {0, 1, 2, . . .} the set of natural numbers and set
N

∗ = N\{0}, R+ = [0,∞). We use standard notations about distributions and
Sobolev spaces on manifolds, as in [30, 37]. In this paper we will systematically use
the correspondence between operators A and their kernels A(·, ·) = A(x, y) via the
Schwartz kernel theorem [26, Theorems 5.2.1, 5.2.6], [37, Theorem B.2.7]. For two
distributions u, v we write u ≡ v if u−v is a smooth function. For two operators A,
B, we write A ≡ B if their Schwartz kernels satisfy A(·, ·) ≡ B(·, ·), equivalently, if
A − B is a smoothing operator.

In the whole paper we will denote by G a compact Lie group, by g its Lie
algebra, and by dμ the Haar measure on G with

∫
G

dμ(h) = 1. If E is a complex
representation of G, we denote by EG the G-trivial component of E.

We denote by Spec A the spectrum of an operator A. For a real vector
space/bundle V we denote by CV = V ⊗R C the associated complexified vector
space/bundle.

2. Preliminaries

In this section, we explain some basic facts on CR and Sasakian manifolds, CR
reduction and Szegő kernel.

2.1. CR manifolds and CR functions

Let (X, T 1,0X) be a compact, connected and orientable Cauchy–Riemann (CR)
manifold of dimension 2n + 1, n ≥ 1, where T 1,0X is a CR structure of X , that is,
T 1,0X is a complex vector sub-bundle of rank n of the complexified tangent bundle
CTX , satisfying

T 1,0X ∩ T 0,1X = {0}, [V ,V ] ⊂ V , with T 0,1X = T 1,0X,V = C∞(X, T 1,0X).

(2.1)

Denote by T ∗1,0X and T ∗0,1X the dual bundles of T 1,0X and T 0,1X , respectively.
Define the vector bundle of (0, q)-forms by

T ∗0,qX := Λq T ∗0,1X. (2.2)
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The Levi distribution (or holomorphic tangent space) HX of the CR manifold X

is the real part of T 1,0X ⊕ T 0,1X , i.e. the unique sub-bundle HX of TX such that

CHX = T 1,0X ⊕ T 0,1X. (2.3)

Let J : HX → HX be the complex structure given by J(u + u) = iu− iu, for every
u ∈ T 1,0X . If we extend J complex linearly to CHX we have

T 1,0X = {V ∈ CHX : JV = iV }. (2.4)

Thus the CR structure T 1,0X is determined by the Levi distribution and we shall
also write (X, HX, J) to denote the CR manifold (X, T 1,0X).

The annihilator (HX)0 ⊂ T ∗X of HX is called the characteristic conormal
bundle of the CR manifold. Since X is orientable, the characteristic bundle (HX)0

is a trivial real line sub-bundle. We fix a global frame of (HX)0, that is, a real non-
vanishing 1-form ω0 ∈ C ∞(X, T ∗X) such that (HX)0 = Rω0, called characteristic
1-form. We have

〈ω0(x), u 〉 = 0, for any u ∈ HxX, x ∈ X. (2.5)

Then by (2.1), the restriction of dω0 on HX is a (1, 1)-form. The Levi form Lx =
L ω0

x of X at x ∈ X associated to ω0 is the symmetric bilinear map

Lx :HxX × HxX → R, Lx(u, v) =
1
2
dω0(u, Jv), for u, v ∈ HxX. (2.6)

It induces a Hermitian symmetric map

Lx : T 1,0
x X × T 1,0

x X → C, Lx(U, V ) =
1
2i

dω0(U, V ), for U, V ∈ T 1,0
x X.

(2.7)

A CR manifold X is said to be strictly pseudoconvex if there exists a characteristic
1-form ω0 such that for every x ∈ X the Levi form L ω0

x is positive definite. In this
case ω0 is a contact form and the Levi distribution HX is a contact structure.

Back to the general case, given a characteristic 1-form ω0, let T ∈ C ∞(X, TX)
be a vector field, called characteristic vector field, such that

CTX = T 1,0X ⊕ T 0,1X ⊕ CT (2.8)

and

iT ω0 = 1. (2.9)

Let gCTX be a Hermitian metric on CTX such that the decomposition (2.8) is
orthogonal. For u, v ∈ CTX we denote by 〈u, v〉g the inner product given by gCTX

and for u ∈ CTX , we write |u|2g := 〈u, u〉g.
The determinant of the Levi form Lx at x ∈ X with respect to gCTX is

defined by

detLx = λ1(x) . . . λn(x), (2.10)

where λ1(x), . . . , λn(x), are the eigenvalues of Lx as Hermitian form on T 1,0
x X with

respect to the inner product 〈 · , · 〉g on T 1,0
x X .
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The Hermitian metric gCTX on CTX induces, by duality, a Hermitian metric
on CT ∗X and also on the bundles of (0, q) forms T ∗0,qX , q = 1, 2, . . . , n. We shall
also denote the inner product given by these metrics by 〈 · , · 〉g. The metric gCTX

induces a Riemannian metric gTX on TX and gTX induces in turn a Riemannian
volume form dv = dv(x) on X and a distance function d(·, ·) on X .

The natural global L2 inner product ( · , · ) on Ω0,q(X) induced by dv(x) and
〈 · , · 〉g is given by

(u, v ) :=
∫

X

〈u(x), v(x) 〉g dv(x), u, v ∈ Ω0,q(X). (2.11)

We denote by (L2
(0,q)(X), ( · , · )) the completion of Ω0,q(X) with respect to ( · , · )

and denote ‖ · ‖ the corresponding L2 norm. We set L2(X) := L2
(0,0)(X).

Let ∂b : Ω0,q(X) → Ω0,q+1(X) be the tangential CR operators on X which is the
composition of the exterior differential d and the projection π0,q+1 : Λq+1(CT ∗X) →
T ∗0,q+1X . We consider the weak maximal extension of ∂b to L2 spaces as follows:

Dom ∂b =
{

u ∈ L2
(0,q)(X) : ∂bu ∈ L2

(0,q+1)(X)
}
,

∂b : Dom ∂b � u �→ ∂bu ∈ L2
(0,q+1)(X),

(2.12)

where ∂bu is defined in the sense of distributions. The space of L2 CR functions on
X is given by

H0
b (X) :=

{
u ∈ L2(X) = L2

(0,0)(X) :∂bu = 0
}
. (2.13)

Since differential operators are continuous on distributions, H0
b (X) is a closed sub-

space of L2(X). The Szegő projection is the orthogonal projection

S : (L2(X), ( · , · )) → H0
b (X). (2.14)

The Szegő kernel S(x, y) ∈ D ′(X × X) is the distribution kernel of S.

2.2. Sasakian manifolds

We recall here some facts about Sasakian manifolds, cf. [9, 17]. Recently, the subject
of Sasakian geometry generated a great deal of interest due to the study of existence
of Sasaki–Einstein metrics, and more generally, Sasakian metrics of constant scalar
curvature, see for example [13].

Let (X, HX, J) be an orientable strictly pseudoconvex CR manifold of dimen-
sion 2n + 1 and let ω0 be a contact form whose Levi form (2.6) is positive definite,
hence gHX = dω0(·, J ·) defines a J-invariant metric on HX . The Reeb vector field
R associated to the contact form ω0 is the vector field on X defined by

iR ω0 = 1, iR dω0 = 0. (2.15)

From (2.15), 0 = dω0(R, u) = −ω0([R, u]) for any u ∈ C ∞(X, HX), thus we get

[R, C∞(X, HX)] ⊂ C ∞(X, HX). (2.16)
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We define a Riemannian metric gω0 on X by gω0(·, ·) = dω0(·, J ·)+ω0(·)ω0(·). Asso-
ciated to the data (X, ω0, R, J, gω0), called contact metric manifold, there is a canon-
ical connection ∇ on TX , called the Tanaka–Webster connection (see Tanaka [51]
and Webster [56]), that is the unique affine connection on TX such that

• ∇gω0 = 0, ∇J = 0, ∇dω0 = 0 and ∇ preserves the decomposition TX = HX ⊕
RR.

• For any u, v in the Levi distribution HX , the torsion T∇ of ∇ satisfies T∇(u, v) =
dω0(u, v)R and T∇(R, Ju) = −JT∇(R, u).

The torsion of the Tanaka–Webster connection in the direction of the Reeb vector
field, τ : u �→ T∇(R, u), is called pseudo-Hermitian torsion of ∇. We see that ∇R = 0
and thus ∇R = τ + LR, where L denotes the Lie derivative. By using ∇J = 0 we
deduce that (cf. [51, Lemma 3.2(3)])

2Jτu = (LRJ)u for any u ∈ HX. (2.17)

Definition 2.1. A contact metric manifold (X, ω0, R, J, gω0) is called a Sasakian
manifold if the pseudo-Hermitian torsion of its Tanaka–Webster connection van-
ishes: τ = T∇(R, ·) = 0.

By (2.17), τ = 0 is equivalent to LRJ = 0 and by [9, Corollary 6.5.11] this
is equivalent to the fact that the contact metric structure on X is normal. Thus
the definition above is equivalent to the definition of Sasaki manifolds given in [9,
Definition 6.5.13] (which in turn is equivalent to the metric cone (C(X) = R+ ×
X, dr2 + r2gω0) being a Kähler manifold [9, Definition 6.5.15]).

Sasakian manifolds can be classified in three categories based on the properties
of the Reeb foliation FR consisting of the orbits of the Reeb field (see [9, Definition
6.1.25]). If the orbits of the Reeb field are all closed, then the Reeb field R generates
a locally free, isometric S1-action on (X, gω0) and the Reeb foliation is called quasi-
regular. If this S1-action is free, then the Reeb foliation is said to be regular. If FR

is not quasi-regular, it is said to be irregular. In this case, the flow associated with
R generates a transversal CR R-action on X . We say that the R-action η on X is
CR transversal if HX ⊕ RηX = TX , where ηX denotes the infinitesimal generator
field of the R-action.

If FR is quasi-regular, then by the structure theorem [9, Theorem 7.1.3] the
quotient space M := X/FR = X/S1 is a Kähler orbifold and the quotient map
π : X → M an orbifold Riemannian submersion. Moreover, X is the total space of
a principal S1-bundle over M with connection 1-form ω0; there exists an integral
Kähler form ω on M such that the curvature dω0 of ω0 is the pullback by the
quotient map of ω: dω0 = π∗ω. If FR is regular, then (M, ω) is a Hodge manifold
and the assertions above are the content of the Boothby–Wang theorem [5] (cf.
also [22]).

Remark 2.2. For a Sasakian manifold (X, ω0, R, J, gω0), from (2.16), the flow asso-
ciated with R preserves HX . Moreover, it follows from Definition 2.1 and (2.17)
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that LRJ = 0. Combining with (2.15), we get LRgω0 = 0, i.e. the Reeb vector field
is a Killing vector field on (X, gω0).

Remark 2.3. Let (X, T 1,0X) be a strictly pseudoconvex CR manifold. Then X is
Sasakian if and only if there is a global vector field T ∈ C∞(X, TX) such that

[T, C∞(X, T 1,0X)] ⊂ C∞(X, T 1,0X) (2.18)

and T 1,0X⊕T 0,1X and T generate the complex tangent bundle of X (cf. [9, Proposi-
tion 6.4.8], [46, Theorem 1.2]). In fact, if X is Sasakian, we can take T = R by (2.17).
For the inverse direction, we define ω0 ∈ Ω1(X) by iT ω0 = 1, ω0|HX = 0. Now for
any V ∈ C∞(X, T 1,0X) we get by (2.18) that (iT dω0)(V ) = −ω0([T, V ]) = 0. Thus
ω0 verifies (2.15). Again by (2.18) we have LT J = 0, thus X is Sasakian by (2.17).

Related to Theorem 1.4 and motivated by the structure of quasi-regular Sasakian
manifolds let us consider now the case of a circle bundle associated to a Hermitian
holomorphic line bundle. Let (L, hL) be a Hermitian holomorphic line bundle over
a connected compact complex manifold (M, J). Let hL∗

be the Hermitian metric
on L∗ induced by hL. Let

X :=
{
v ∈ L∗ : |v|2hL∗ = 1

}
(2.19)

be the circle bundle of L∗ (Grauert tube); it is isomorphic to the S1 principal
bundle associated to L. Since X is a hypersurface in the complex manifold L∗, it
has a CR structure inherited from the complex structure of L∗ by setting T 1,0X =
TX ∩ T 1,0L∗.

In this situation, S1 acts on X by fiberwise multiplication, denoted (x, eiθ) �→
xeiθ. A point x ∈ X is a pair x = (p, λ), where λ is a linear functional on Lp, the
S1 action is xeiθ = (p, λ)eiθ = (p, eiθλ).

On X we have a globally defined vector field ∂θ, the generator of the S1 action.
The span of ∂θ defines a rank one subbundle T V X ∼= TS1 ⊂ TX , the vertical
subbundle of the fibration π : X → M . Moreover (2.8) holds for T = ∂θ.

For m ∈ Z the space C ∞(X, Lm) of smooth sections of Lm can be identified to
the space m-equivariant smooth functions

C ∞(X)m = {f ∈ C∞(X, C) : f(xeiθ) = eimθf(x), for eiθ ∈ S1, x ∈ X}.
by

C∞(M, Lm) � s �→ f ∈ C∞(X)m, f(x) = f(p, λ) = λ⊗m(s(p)), (2.20)

where λm = λ⊗m for m ≥ 0 and λm = (λ−1)⊗(−m) for m < 0. Through the
identification (2.20) holomorphic sections correspond to CR functions

H0(M, Lm) ∼= H0
b,m(X) := {f ∈ C∞(X)m : ∂bf = 0}. (2.21)

We construct now a Riemannian metric on X . Let gTM be a J-invariant metric
on M . The Chern connection ∇L on L induces a connection on the S1-principal
bundle π : X → M , and let T HX ⊂ TX be the corresponding horizontal bundle.
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Let gTX = π∗gTM ⊕ dθ2

4π2 be the metric on TX = T HX⊕TS1, with dθ2 the standard
metric on S1 = R/2πZ.

Pertaining to gTX we construct the L2 inner product (·, ·)X given by (2.11) on
X . The metric gTM induces a Riemannian volume form dvM on M , which together
with the fiber metric hLm

gives rise to an L2 inner product (·, ·)m on C∞(X, Lm).
Then the isomorphism (2.20) becomes an isometry (C ∞(M, Lm), (·, ·)m) ∼=
(C∞(X)m, (·, ·)X) and accordingly an isometry L2(M, Lm) ∼= L2(X)m, where the
latter space is the completion of (C ∞(X)m, (·, ·)X). Moreover, (2.20) induces an
isometry

(H0(M, Lm), (·, ·)m) ∼= (H0
b,m(X), (·, ·)X). (2.22)

The S1-action gives rise to a Fourier decomposition L2(X) ∼= ⊕̂
m∈Z

L2(X)m and
this induces the following decomposition at the level of CR functions:

H0
b (X) ∼=

⊕̂
m∈Z

H0
b,m(X) ∼=

⊕̂
m∈Z

H0(M, Lm). (2.23)

Let ω0 be the connection 1-form on X associated to the Chern connection ∇L. Then
ω0(∂θ) = 1, thus (2.8) and (2.9) are fulfilled and T = ∂θ is a characteristic vector
field on X and ω0 is a characteristic 1-form for the CR structure on X . Moreover,

dω0 = π∗(iRL), (2.24)

where RL is the curvature of ∇L. On account of (2.6) X is strictly pseudoconvex
at x ∈ X if and only if (L, hL) is positive at π(x) ∈ M . In particular, if (L, hL) is
positive on M , X is a strictly pseudoconvex CR manifold, ω0 is a contact form and
∂θ is the associated Reeb vector field.

Assume now (L, hL) is positive on M . We claim that X is a Sasakian manifold. In
fact, the S1-action is fiberwise multiplication on L∗, thus S1 acts holomorphically
on L∗ and preserves T 1,0L∗. This means that the S1-action preserves T 1,0X =
TX ∩ T 1,0L∗, i.e. L∂θ

J = 0, hence X is Sasakian by (2.17). Since the S1-action is
free, X is a regular Sasakian manifold. Conversely, any compact regular Sasakian
manifold is CR-isomorphic to a S1-fibration associated with a positive line bundle
on a projective manifold by the Boothby–Wang theorem [5], [9, Theorem 6.1.26],
[22].

Note also that if (L, hL) is positive on M then H0(X, Lm) = 0 for m < 0 by
the Kodaira vanishing theorem, so the decomposition (2.23) becomes

H0
b (X) ∼=

⊕̂
m∈N

H0
b,m(X) ∼=

⊕̂
m∈N

H0(M, Lm). (2.25)

Note further that X is (weakly) pseudoconvex, that is, the Levi form is positive
semidefinite on X if and only if the curvature iRL is semi-positive on M . More-
over, X has finite type if and only if RL vanishes to finite order at any point of
M , cf. [31], [41, Proposition 11]. A CR manifold X is said to be of finite type
if at each point p ∈ X if the space TpX is generated by vectors of the form
[V1, [V2, [ . . . [Vk−1, Vk] . . . ]]](p), where V1, . . . , Vk, k ≥ 2, are sections of HX .
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2.3. CR reduction

We refer to [1, 9, 17] for the fundamentals of contact geometry and examples. In
this subsection, we extend the well-known symplectic reduction of Kähler manifolds
to CR manifolds. We refer to [1, 9, 16, 17, 57] for constructions and examples of
contact and Sasakian reduction. Our construction is a CR analogue of [48, §2.1].

Let (X, HX, J) be a compact connected and orientable CR manifold of dimen-
sion 2n + 1, n ≥ 1, and let ω0 be a characteristic 1-form.

Let G be a d-dimensional compact Lie group with Lie algebra g. We assume
that G acts smoothly on X and that the G-action preserves J and ω0.

For any ξ ∈ g, we denote ξX(x) = ∂
∂t exp(−tξ)x

∣∣
t=0

the vector field on X

induced by ξ. For x ∈ X , set

g
x

= Span {ξX(x) : ξ ∈ g}. (2.26)

Definition 2.4. The moment map associated to the characteristic 1-form ω0 is the
map μ : X → g∗ defined by

〈μ(x), ξ〉 = ω0(ξX(x)), x ∈ X, ξ ∈ g. (2.27)

The moment map is G-equivariant, i.e. for x ∈ X , h ∈ G, we have

μ(h.x) = Ad∗
h μ(x). (2.28)

Relation (2.28) implies that G acts on μ−1(0). In fact, for any ξ ∈ g, we have

〈μ(h.x), ξ〉 = ω0(ξX(h.x))) = ω0(dh(Adh−1 ξ)X))h.x

= (h∗ω0)((Adh−1 ξ)X)x = ω0((Adh−1 ξ)X)x

= 〈μ(x), Adh−1 ξ〉 = 〈Ad∗
h μ(x), ξ〉. (2.29)

Lemma 2.5. If G acts freely on μ−1(0) and the Levi form is positive on μ−1(0),
then 0 is a regular value of μ.

Proof. Observe first that since ω0 is G-invariant, (2.5) yields that HX is an G-
equivariant sub-bundle of TX , thus

[ξX , U ] ∈ C ∞(X, HX) for any U ∈ C ∞(X, HX), ξ ∈ g. (2.30)

Now (2.5) and (2.27) entail

ξX(x) ∈ HX if x ∈ μ−1(0). (2.31)

Let Ux ∈ HxX that we extend to a section U of HX near x. Then (2.5) and (2.30)
yield

dω0(U, ξX)x = U(ω0(ξX)) − ξX(ω0(U)) − ω0([U, ξX ])

= Ux〈μ, ξ〉 = 〈U(μ)x, ξ〉. (2.32)
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If dμy : HX → g∗ were not surjective for some y ∈ μ−1(0), there would exist ξ ∈ g

such that 〈Y (μ)y , ξ〉 = 0 for any Y ∈ HyX . This is a contradiction since dω0 is
nondegenerate on HyX and 0 �= ξX,y ∈ HyX by (2.31). Thus dμy : HX → g∗ is
surjective for y ∈ μ−1(0).

Set as in (1.1) XG = Y/G with Y = μ−1(0). Let ι : Y → X be the natural
injection and let π : Y → XG = Y/G be the natural projection.

Theorem 2.6. If G acts freely on Y = μ−1(0) and the Levi form is positive on
μ−1(0), then the reduced space XG = Y/G is a strictly pseudoconvex manifold
with contact form ω0,G satisfying ι∗ω0 = π∗ω0,G. Moreover, we can choose the
characteristic vector field T (cf. (2.8), (2.9)) such that T |Y ∈ C ∞(Y, TY ) and T is
G-invariant.

Proof. By Lemma 2.5, μ−1(0) is a smooth manifold. Since G acts freely on Y , XG

is a compact manifold. The positivity of the Levi form on μ−1(0) means that

gHX = dω0(·, J ·) (2.33)

is a J-invariant and G-equivariant metric on HX on a neighborhood of Y = μ−1(0).
Since G acts freely on Y , the vector spaces g

x
defined in (2.26) form a vector

bundle g near μ−1(0). We denote g
Y

= g|Y . Then g
Y
⊂ TY ∩ HX by (2.31).

For x ∈ μ−1(0), by (2.31), (2.32), and the fact that dω0(·, J ·) is a metric on
HxX we have that dμ|TY = 0 and dμ|Jg

x
→ g∗ is surjective. Since dimY +dim g =

dim TX , we have

Jg|Y ⊕ TY = TX |Y . (2.34)

From (2.34) and Jg|Y ⊂ HX , we know ω0(TY ) �= 0. Thus TY ∩HX is a codimen-
sion 1 sub-bundle of TY , and

TY

TY ∩ HX
=

TX

HX

∣∣∣∣
Y

. (2.35)

From (2.35), we can choose the vector field T in (2.8) such that T |Y ∈ C∞(Y, TY )
and T is G-invariant.

Let T HY be the orthogonal complement of g
Y

in TY ∩ HX with respect to
gHX . By (2.32), (2.33), for any U ∈ TY ∩ HX , ξ ∈ g, as Jg

Y
⊂ HX , we have

gHX(U, JξX) = −dω0(U, ξX) = 0. This means that TY ∩ HX is orthogonal with
Jg

Y
with respect to gHX . Thus we have the G-equivariant orthogonal decomposi-

tion on Y ,

TY ∩ HX = T HY ⊕ g
Y

, HX |Y = T HY ⊕ g
Y
⊕ Jg|Y , (2.36)

note that the second equation is from the dimension counting argument as TY ∩HX

is a codimension 1 sub-bundle of TY . Thus from (2.36) and the metric gHX on
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HX |Y is J-invariant, we get

JT HY = T HY = (TY ∩ HX) ∩ J(TY ∩ HX). (2.37)

By (2.27) ι∗ω0 is a G-invariant horizontal 1-form on Y , thus there exists a unique
1-form ω0,G ∈ Ω1(XG) such that

ι∗ω0 = π∗ω0,G. (2.38)

We now define the Levi distribution on XG by

HXG := kerω0,G. (2.39)

From (2.35), (2.36), dπ : RT⊕T HY → TXG is bijective, and we get the isomorphism
RT⊕T HY 
 π∗TXG. Thus dπ maps T HY onto HXG and this gives an isomorphism
T HY 
 π∗HXG. Thus for U ∈ HyXG, we take x ∈ π−1(y) and UH ∈ T HY the lift
of U , then by (2.37), we define JG ∈ End(HXG) by

(JGU)H = JUH . (2.40)

From (2.38), we have

ι∗dω0 = π∗dω0,G. (2.41)

Thus from (2.37), ι∗dω0(·, J ·) is positive and G-invariant on T HY implies that
dω0,G(·, JG·) is positive and JG-invariant on HXG. We verify now that

T 1,0XG =
{
u −√−1JGu : u ∈ HXG

}
. (2.42)

defines a CR structure on X . For U, V ∈ C ∞(XG, HXG), from (2.40),

(U −√−1JGU)H = UH −√−1JUH ∈ C∞(Y, T 1,0X ∩ CTY ), (2.43)

thus by (2.1), [UH−√−1JUH , V H−√−1JV H ] ∈ C∞(Y, T 1,0X∩CTY ). By (2.36),
T 1,0X ∩ CTY = {v −√−1Jv : v ∈ T HY }. Thus there exists W ∈ C ∞(XG, HXG)
such that

[UH −√−1JUH , V H −√−1JV H ] = WH −√−1JWH . (2.44)

From (2.43), (2.44), we obtain

[U −√−1JGU, V −√−1JGV ] = dπ[UH −√−1JUH , V H −√−1JV H ]

= W −√−1JGW. (2.45)

i.e. [C∞(XG, T 1,0XG), C∞(XG, T 1,0XG)] ⊂ C∞(XG, T 1,0XG). Let us finally note
that (2.35) shows that we can choose the characteristic vector field T (cf. (2.8), (2.9))
such that T |Y ∈ C∞(Y, TY ) and T is G-invariant. The proof of Theorem 2.6 is
completed.

In the rest of this paper we will work under Assumption 1.1.
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Lemma 2.7. Under Assumption 1.1 there is a G-invariant Hermitian metric g =
gCTX on CTX so that

(i) T 1,0X is orthogonal to T 0,1X,

(ii) g is orthogonal to HY ∩ JHY at every point of Y,

(iii) 〈T, T 〉g = 1,

(iv) T is orthogonal to T 1,0X ⊕ T 0,1X,

where on Y, HY := HX ∩ TY .

Proof. This follows from the proof of Theorem 2.6. Let U be a G-invariant neigh-
borhood of Y so that the Levi form is positive definite on U . Then the metric
gHX = dω0(·, J ·) is a J-invariant and G-equivariant metric on HX and we have
the orthogonal decomposition (2.36) on Y . Now we extend the metric gHX from
U to X as a J-invariant and G-equivariant metric on HX by a partition of unity
argument. Thus we can take gTX on TX = RT ⊕HX as the direct sum metric on
(HX, gHX) and (RT, 〈T, T 〉 = 1).

Convention 2.8. From now on we fix a G-invariant Hermitian metric g = gCTX

on CTX so that (i)–(iv) in Lemma 2.7 hold. This metric induces natural Her-
mitian metrics 〈 · , · 〉XG on CTXG and CT ∗XG. As in (2.11) we define the L2

inner products and spaces induced by g on X and XG by (L2
(0,q)(X), ( · , · )) and

(L2
(0,q)(XG), ( · , · )XG).

2.4. Closed range in L2 for ∂b and Szegő projections

The property of closed range in L2 for ∂b in (2.12) plays an important role
in CR geometry. It follows from the works of Boutet de Monvel [6], Boutet de
Monvel–Sjöstrand [8], Harvey–Lawson [21], Burns [10] and Kohn [33] that the con-
ditions below are equivalent for a compact strictly pseudoconvex CR manifold X ,
dimR X ≥ 3:

(a) X is embeddable in the Euclidean space CN , for N sufficiently large;
(b) X bounds a strictly pseudoconvex complex manifold;
(c) The tangential CR operator ∂b : Dom ∂b ⊂ L2(X) → L2

(0,1)(X) on functions
has closed range.

If X is a compact strictly pseudoconvex CR manifold of dimension greater than or
equal to five, then X satisfies condition (a), by the embedding theorem of Boutet
de Monvel [6]. However, there are examples of non-embeddable compact strictly
pseudoconvex CR manifolds of dimension three given by Grauert et al. [2, 18, 49],
see also Colţoiu–Tibăr [14]. In fact this happens for arbitrarily small perturbations
of the standard CR structure on the unit sphere in C

2. For these examples the
closed range in L2 property fails.
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Assume that condition (b) is satisfied and let M be a strictly pseudoconvex
complex manifold such that ∂M = X . If u is continuous on M and holomorphic on
M , then u|X satisfies the tangential CR equations ∂b(u|X) = 0. Conversely, by [34]
any smooth function u on X satisfying ∂bu = 0 admits a smooth extension ũ to M

which is holomorphic in M . In this sense the space H0
b (X) ∩ C∞(X) is the space

of boundary values of holomorphic functions O(M) ∩ C ∞(M). Note also that the
Hardy space H0

b (S1) consists of boundary values of holomorphic functions on the
unit disc in C cf. [50, Theorem 17.10]. This is the unifying feature of our definition
of H0

b (X) for strictly pseudoconvex X and X = S1.
There are important classes of embeddable compact strictly pseudoconvex three-

dimensional CR manifolds (for which ∂b has thus closed range in L2) carrying
interesting geometric structures such as

• transverse CR S1-actions [4, 15, 35],
• conformal structures [3],
• Sasakian structures (transverse CR R-actions) [42],

If X is a compact strictly pseudoconvex CR manifold and ∂b has closed range
in L2, Boutet de Monvel–Sjöstrand [8] showed that S(x, y) is a Fourier integral
operator with complex phase. In particular, S(x, y) is smooth outside the diagonal
of X × X and there is a precise description of the singularity on the diagonal
x = y, where S(x, x) has a certain asymptotic expansion. Hsiao [27, Theorem 1.2]
generalized Boutet de Monvel–Sjöstrand’s result to (0, q) forms when the Levi form
is non-degenerate and Kohn Laplacian for (0, q) forms has closed range in L2. If
the Levi form is degenerate (for example X is weakly pseudoconvex), Hsiao and
Marinescu [30, Theorem 1.14] showed that the Szegő projector S is a complex
Fourier integral operator on the subset where the Levi form is positive definite if
∂b has closed range in L2.

Let

∂
∗
b : Dom ∂

∗
b ⊂ L2

(0,1)(X) → L2(X) (2.46)

be the Hilbert space adjoint of ∂b in the L2 space with respect to ( · , · ). Let �b

denote the (Gaffney extension) of the Kohn Laplacian on functions given by

Dom�b = {u ∈ L2(X) : u ∈ Dom ∂b, ∂bu ∈ Dom∂
∗
b},

�bu = ∂
∗
b∂bu for u ∈ Dom �(0)

b .
(2.47)

By a result of Gaffney, �b is a positive self-adjoint operator (see [37, Proposi-
tion 3.1.2]). In particular, the spectrum Spec�b of �b is contained in [0,∞). For a
Borel set B ⊂ R we denote by E(B) the spectral projection of �b corresponding to
the set B, where E is the spectral measure of �b. For λ ≥ 0, we set

H0
b,≤λ(X) := Im E((−∞, λ]) ⊂ L2(X), (2.48)
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and let

S≤λ : L2(X) → H0
b,≤λ(X), (2.49)

be the orthogonal projection with respect to the product ( · , · ) and let

S≤λ(x, y) ∈ D ′(X × X) (2.50)

denote the distribution kernel of S≤λ. For λ = 0, we write S := S≤0, S(x, y) :=
S≤0(x, y).

Without the assumption that the range of ∂b is closed, Ker ∂b could be trivial
and therefore it is natural to consider the spectral projection S≤λ for λ > 0.

Theorem 2.9 ([30, Theorem 1.5]). For any λ > 0 the spectral projector S≤λ

is a complex Fourier integral operator on the subset where the Levi form is positive
definite.

Theorems 3.22 and 3.24 are more detailed statements of this result. Since we do
not assume that ∂b has closed range in L2 on X , Theorem 2.9 plays an important
role in this work. We only assume that the Levi form is non-degenerate on Y and
we will show in Theorems 3.17 and 3.19 that the G-invariant tangential CR ∂b,G

has closed range in L2(X)G and we have

SG(x, y) =
∫

G

S≤λ0(x, h ◦ y)dμ(h) (2.51)

for some λ0 > 0, where dμ(h) is the Haar measure on G with
∫

G dμ(h) = 1.
From (2.51), we can apply Theorem 2.9 to study SG without a closed range in L2

assumption on ∂b on X .

2.5. Examples

We give here some simple but non-trivial examples.
(1) Let X := {(z1, z2, z3) ∈ C3 : |z1|4 + |z2|2 + |z3|2 = 1}. Then X is a weakly

pseudoconvex CR manifold of dimension five, and X admits a S1-action

S1 × X → X, eiθ · (z1, z2, z3) = (e−iθz1, e
iθz2, e

iθz3).

Let ξX ∈ C ∞(X, TX) be the vector field on X induced by ξ = − ∂
∂θ in the Lie

algebra of S1, then

ξX = −iz1
∂

∂z1
+ iz1

∂

∂z1
+

3∑
j=2

(
izj

∂

∂zj
− izj

∂

∂zj

)
.

Let ω0 := J(dr), where r := |z1|4 + |z2|2 + |z3|2 − 1 and J is the complex structure
map on TC3. It is straightforward to calculate that

ω0 = 2iz1z
2
1dz1 − 2iz2

1z1dz1 +
3∑

j=2

(izjdzj − izjdzj)
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and

〈ω0 , ξX 〉 = 4|z1|4 − 2|z2|2 − 2|z3|2.
Hence,

μ−1(0) =
{

(z1, z2, z3) ∈ C
3 : |z2|2 + |z3|2 =

2
3
, |z1|4 =

1
3

}
.

Thus, X is strictly pseudoconvex near μ−1(0). Since X is strictly pseudoconvex
near μ−1(0) and S1 acts freely on X , from Lemma 2.5, zero is a regular value of
the moment map μ. Note that μ−1(0)/S1 ∼= S3. From our main results, we see
that modulo some finite-dimensional subspaces of smooth functions, the space of
S1 invariant CR functions on X is isomorphic to the space of CR functions on S3.

(2) Let

X :=

⎧⎨
⎩(z1, z2, z3, z4, z5, z6) ∈ C

6 : (|z5|4 + |z6|2)

×
⎛
⎝ 4∑

j=1

|zj |2 + z1z3 + z2z4 + z1z3 + z2z4

⎞
⎠ = 1

⎫⎬
⎭.

Then, X admits a G := S1 × SU(2) action:

(eiθ, g) · z = (w1, w2, . . . , w6),

(w1, w2)t := g(z1, z2)t, (w3, w4)t := g(z3, z4)t, (w5, w6) = (e−iθz5, e
iθz6),

g ∈ SU(2), eiθ ∈ S1, z ∈ X,

where zt denotes the transpose of z. Then X is a weakly pseudoconvex CR manifold
and we set ω0 := J(dr), where

r := (|z5|4 + |z6|2)
⎛
⎝ 4∑

j=1

|zj |2 + z1z3 + z2z4 + z1z3 + z2z4

⎞
⎠− 1

and J is the complex structure map on TC6. As in Example (1) we can check that
if z = (z1, z2, z3, z4, z5, z6) ∈ μ−1(0), then z5 �= 0. Thus, X is strictly pseudoconvex
near μ−1(0). Since X is strictly pseudoconvex near μ−1(0) and S1 × SU(2) acts
freely on X , from Lemma 2.5, zero is a regular value of the moment map μ. Since X

is weakly pseudoconvex, it is difficult to understand the Szegő kernel. But from our
main results, we see that the G-invariant Szegő kernel is a complex Fourier integral
operator.

3. G-Invariant Szegő Kernel Asymptotics

In this section, we will establish an asymptotic expansion of the G-invariant Szegő
kernel. From now on, we work under Assumption 1.1 and use the same notations
as in Secs. 1 and 2. We do not assume that ∂b,XG has closed range in L2.
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3.1. Subelliptic estimates for G-invariant smooth

functions away Y

In this section, we estimate the Szegő kernel outside Y . The manifold X is supposed
to have arbitrary dimension ≥ 3. Let

L1, . . . , LN ∈ C∞(X, HX), N ∈ N
∗,

such that for any x ∈ X , {L1(x), . . . , LN(x)} span HxX . Let s ∈ N∗. For u ∈
C∞(X), we define

� u�s :=
s∑

ν=1

∑
1≤j1,...,jν≤N

‖Lj1Lj2 . . . Ljν u‖ + ‖u‖. (3.1)

Theorem 3.1. There exists C > 0 such that for all u ∈ C ∞(X),

� u�2
1 ≤ C((�bu, u ) + |(Tu, u )|+ ‖u‖2). (3.2)

Proof. The proof uses the same method as the proof of [11, Theorem 8.3.5], so we
only sketch the proof for the convenience of the reader. Let D � X be a small open
set and let {Z1, . . . , Zn} ∈ C ∞(D, T 1,0X) be an orthonormal frame of T 1,0X on
D. Let u ∈ C∞(D). We have

(�bu, u ) = ‖∂bu‖2 =
n∑

j=1

‖Zju‖2. (3.3)

For every j = 1, . . . , n, by using integration by parts, we have

‖Zju‖2 = (Zju, Zju ) = (Z∗
j Zju, u ) = (−ZjZju, u ) + O(‖Zju‖‖u‖)

= (−ZjZju, u ) + ( [Zj , Zj ]u, u ) + O(‖Zju‖‖u‖)
= ‖Zju‖2 + ( [Zj , Zj ]u, u ) + O(‖Zju‖‖u‖) + O(‖Zju‖‖u‖), (3.4)

where Z∗
j is the formal adjoint of Zj . From (3.3) and (3.4), we get (3.2) for every

u ∈ C∞
c (D). By using a partition of unity we get (3.2) for every u ∈ C ∞(X).

Fix x0 /∈ Y . By definition of Y , we can find a vector field V ∈ C∞(X, g) such
that ω0(V ) �= 0 in an open neighborhood D of x0 with D ∩ Y = ∅. Then,

L := V − ω0(V )T ∈ HX. (3.5)

In the rest of this subsection we fix the neighborhood D as above and let

χ, χ̃, χ1 ∈ C∞
0 (D), χ̃ = 1 near supp χ and χ1 = 1 near supp χ̃. (3.6)

Let u ∈ C ∞(X)G. From (3.5) and since that V (u) = 0 and ω0(V ) �= 0 on D, we
have

Tu =
−1

ω0(V )
L(u) on D,

T (χu) = (Tχ)u + χTu = (Tχ)u + χ
−1

ω0(V )
L(u).

(3.7)
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From (3.7), we deduce that there exists C > 0 such that for all u ∈ C ∞(X)G,

‖T (χu)‖ ≤ C(�χu �1 +‖χ1u‖). (3.8)

For k ∈ N
∗, U ⊂ X an open set, let Dk(U) be the set of differential operators

which can be written as a linear combination of operators as W1 ◦ · · · ◦ Wj with
W1, . . . , Wj ∈ C∞(U, CHX), 1 ≤ j ≤ k.

Lemma 3.2. With the notations above, fix V1, . . . , Vs ∈ C∞(X, CHX), s ∈ N∗,
then there exist V1,1 ∈ C ∞(X, CHX), Q1 ∈ Ds−1(X), Q2 ∈ Ds(X), a, b ∈ C∞(X),
such that

TV1 = V1T + V1,1 + a(x)T, if s = 1, (3.9)

TV1 . . . Vs = V1 . . . VsT + Q1T + Q2 + b(x)T, if s ≥ 2. (3.10)

Proof. We first prove (3.9). Note that

TV1 = V1T + [T, V1]. (3.11)

We have [T, V1] = Ṽ1,1 + a(x)T , where Ṽ1,1 ∈ C∞(X, CHX) and a(x) ∈ C∞(X).
From this observation and (3.11), we get (3.9).

We now prove (3.10). Let s = 2. By the argument after (3.11), we have

TV1V2 = V1TV2 + [T, V1]V2

= V1TV2 + (Ṽ1,1 + a(x)T )V2. (3.12)

From (3.9) and (3.12), we get (3.10) for s = 2.
Assume that the claim (3.10) holds for s = s0 for some s0 ≥ 2. We are going to

prove that the claim (3.10) holds for s = s0 + 1. From the argument after (3.11),
we have

TV1 . . . Vs0+1 = V1TV2 . . . Vs0+1 + [T, V1]V2 . . . Vs0+1

= V1TV2 . . . Vs0+1 + (Ṽ1,1 + a(x)T )V2 . . . Vs0+1. (3.13)

From (3.13) and the induction assumption we get the claim (3.10) for s = s0 + 1.
The lemma follows.

Theorem 3.3. Fix s ∈ N∗. Let V1, . . . , Vs ∈ C∞(D, CTX). Then there exists
Q ∈ Ds(D) such that we have for every u ∈ C ∞(X)G,

V1 . . . Vsu = Qu on D. (3.14)

Proof. From (3.7), we see that (3.14) holds for s = 1. Assume that (3.14) holds
for s = s0. We are going to prove that (3.14) holds for s = s0 + 1. By induc-
tion assumption we only need to assume that V1 = T and Vj ∈ C ∞(D, CHX),
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j = 2, 3, . . . , s0 + 1. From (3.9) and (3.10), there exist Ṽ1,1 ∈ C ∞(D, CHX),
Q1 ∈ Ds−1(D), Q2 ∈ Ds(D) such that

TV2 = V2T + Ṽ1,1 + a(x)T, if s0 = 1,

TV2 . . . Vs0+1 = V2 . . . Vs0+1T + Q1T + Q2 + b(x)T, if s0 ≥ 2,
(3.15)

where a, b ∈ C∞(D). From (3.7) and (3.15), we get (3.14).

From Theorem 3.3 and (3.6) we deduce:

Corollary 3.4. Let s ∈ N
∗ and V1, . . . , Vs ∈ C ∞(D, CTX). Then, there exists

C > 0 such that for all u ∈ C∞(X)G we have

‖(V1 . . . Vs)χu‖ ≤ C(�χu �s + � χ1u�s−1),

‖χ(V1 . . . Vs)u‖ ≤ C(�χu �s + � χ1u�s−1).
(3.16)

For s ∈ Z, let ‖ · ‖s denote the standard Sobolev norm of order s on X . From
Corollary 3.4 and (3.6), we deduce:

Corollary 3.5. For every s ∈ N there exists Cs > 0 such that for any u ∈
C∞(X)G,

‖χu‖s ≤ Cs � χ1u �s .

Theorem 3.6. For every s ∈ N, there exists Cs > 0 such that for any u ∈ C∞(X)G

we have

� χu�2
s+1 ≤ Cs(�χ�bu �2

s + � χ1u�2
s). (3.17)

Proof. We prove (3.17) by induction over s. From (3.2), there exists C > 0 such
that for any u ∈ C ∞(X)G we have

� χu�2
1 ≤ C((�b(χu), χu ) + |(T (χu), χu )|+ ‖χu‖2). (3.18)

Now by (3.6),

(�b(χu), χu ) = (χ�bu, χu ) + (χ[�b, χ]u, χ1u ). (3.19)

From (3.7), (3.18), (3.19), and some elementary computation, we get (3.17) for
s = 0. We now assume that (3.17) holds for every s < k and k ≥ 1. We will prove
that (3.17) holds for s = k. Let Z1, . . . , Zk+1 ∈ C∞(X, CHX). By (3.2), there exist
C0, C > 0 such that for any u ∈ C ∞(X)G, we have

‖Z1 . . . Zk+1(χu)‖2

≤ C0 � Z2 . . . Zk+1(χu) �2
1

≤ C
(
(�bZ2 . . . Zk+1(χu), Z2 . . . Zk+1(χu) ) + ‖Z2 . . . Zk+1(χu)‖2

+ |(TZ2 . . . Zk+1(χu), Z2 . . . Zk+1(χu) )|
)
. (3.20)
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We have

(�b(Z2 . . . Zk+1)χu, (Z2 . . . Zk+1)χu )

= (Z2 . . . Zk+1χ�bu + [�b, Z2 . . . Zk+1]χu

+ Z2 . . . Zk+1[�b, χ]u, Z2 . . . Zk+1χu )

= (Z2 . . . Zk+1χ�bu, Z2 . . . Zk+1χu )

+ (χ1Z3 . . . Zk+1[�b, χ]u, Z∗
2Z2 . . . Zk+1χu )

+ ( [�b, Z2 . . . Zk+1]χu, Z2 . . . Zk+1χu ), (3.21)

where Z∗
2 denotes the adjoint of Z2 and Z∗

2 = −Z2 + zero-order term. From (3.16)
and (3.21) we see that there exists C > 0 such that

|(�bZ2 . . . Zk+1(χu), Z2 . . . Zk+1(χu))|

≤ C

(
�χ�bu �2

k +
1
ε

� χ1u �2
k +ε � χu�2

k+1

)
, (3.22)

for every ε > 0. Similarly, from (3.16), there exists Ĉ > 0 such that

|(TZ2 . . . Zk+1(χu), Z2 . . . Zk+1(χu))| ≤ Ĉ

(
1
ε

� χ1u �2
k +ε � χu�2

k+1

)
, (3.23)

for every ε > 0. From (3.20), (3.22) and (3.23), we conclude that (3.17) holds for
s = k by applying (3.17) for s < k for the term ‖Z2 . . . Zk+1(χu)‖2 in (3.20). The
theorem follows.

From Corollary 3.5 and Theorem 3.6 we get:

Theorem 3.7. For every s ∈ N, there is Cs > 0 such that for any u ∈ C∞(X)G,

‖χu‖2
s+1 ≤ Cs(‖χ1�bu‖2

s + ‖χ1u‖2
s), (3.24)

where χ, χ1 ∈ C∞
0 (D) are as in (3.6).

3.2. Closed range property for the G-invariant Kohn Laplacian

In this section, we will work in the setting of Assumption 1.1(i). Under these
hypotheses we prove subelliptic estimates, regularity and the closed range in L2

property for the G-invariant Kohn Laplacian.
Let ∂

∗
b : Dom ∂

∗
b ⊂ L2

(0,q+1)(X) → L2
(0,q)(X) be the Hilbert space adjoint of

∂b in (2.12) with respect to ( · , · ) in (2.11). The operators ∂b, ∂
∗
b commute with
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G-action, thus we can define ∂b,G and ∂
∗
b,G with

Dom ∂b,G := Dom ∂b ∩ L2
(0,q)(X)G, Dom ∂

∗
b,G := Dom ∂

∗
b ∩ L2

(0,q+1)(X)G,

(3.25)

and ∂
∗
b,G : Dom ∂

∗
b,G → L2

(0,q)(X)G is the Hilbert space adjoint of ∂b,G. Let �(q)
b,G

denote the (Gaffney extension) of the G-invariant Kohn Laplacian given by

Dom �(q)
b,G = {u ∈ L2

(0,q)(X)G : u ∈ Dom ∂b,G ∩ Dom∂
∗
b,G,

∂b,Gu ∈ Dom ∂
∗
b,G, ∂

∗
b,Gu ∈ Dom ∂b,G},

�(q)
b,Gu = ∂b,G∂

∗
b,Gu + ∂

∗
b,G∂b,Gu for u ∈ Dom �(q)

b,G.

(3.26)

Lemma 3.8. Let u∈ Dom ∂b,G ∩L2
(0,q)(X)G. Then ∂b,Gu∈ Dom ∂b,G and ∂

2

b,G

u = 0.

Proof. By Friedrichs’ lemma [11, Appendix D], there is a sequence {uj}∞j=1 ⊂
Ω0,q(X)G such that uj → u in L2

(0,q)(X)G as j → ∞ and ∂b,Guj → ∂b,Gu in
L2

(0,q+1)(X)G as j → ∞. Let v ∈ Ω0,q+2(X)G. We have

( ∂b,Gu , ∂
∗
b,Gv ) = lim

j→∞
( ∂b,Guj , ∂

∗
b,Gv ) = lim

j→∞
( ∂

2

b,Guj , v ) = 0. (3.27)

Hence, ∂b,Gu ∈ Dom ∂b,G and ∂
2

b,Gu = 0.

Lemma 3.9. The operator �(q)
b,G : Dom �(q)

b,G ⊂ L2
(0,q)(X)G → L2

(0,q)(X)G is closed.

Proof. Let {(fk, �(q)
b,Gfk) ∈ L2

(0,q)(X)G × L2
(0,q)(X)G : fk ∈ Dom �(q)

b,G}∞k=1 with

lim
k→∞

fk = f, lim
k→∞

�(q)
b,Gfk = h in L2

(0,q)(X)G. (3.28)

By definition, to check that �(q)
b,G is a closed operator, we need to show that f ∈

Dom �(q)
b,G and �(q)

b,Gf = h. Since fk ∈ Dom �(q)
b,G, for each k, we have

‖∂∗
b,G(fj − fk)‖2 ≤ ‖∂∗

b,G(fj − fk)‖2 + ‖∂b,G(fj − fk)‖2

= (�(q)
b,G(fj − fk) , fj − fk ). (3.29)

From (3.28) and (3.29), {∂∗
b,Gfk}∞k=1 is a Cauchy sequence in L2, hence

limk→∞ ∂
∗
b,Gfk = h1 in L2

(0,q−1)(X)G, for some h1 ∈ L2
(0,q−1)(X)G.

Let v ∈ Dom ∂b,G ∩ L2
(0,q−1)(X)G. We have

( f , ∂b,Gv ) = lim
k→∞

( fk , ∂b,Gv ) = lim
k→∞

( ∂
∗
b,Gfk , v ) = (h1 , v ). (3.30)
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Hence, f ∈ Dom ∂
∗
b,G and ∂

∗
b,Gf = limk→∞ ∂

∗
b,Gfk. Similarly, we can repeat the

procedure above and show that f ∈ Dom ∂b,G and ∂b,Gf = limk→∞ ∂b,Gfk.
Now, we show that ∂b,Gf ∈ Dom ∂

∗
b,G. From Lemma 3.8, we know that

( ∂
∗
b,G ∂b,Gu , ∂b,G ∂

∗
b,Gv ) = 0, for every u, v ∈ Dom �(q)

b,G. (3.31)

From (3.31), we have

‖∂∗
b,G ∂b,G(fj − fk)‖2 + ‖∂b,G ∂

∗
b,G(fj − fk)‖2 = ‖�(q)

b,G(fj − fk)‖2. (3.32)

From (3.28), (3.32), {∂∗
b,G∂b,Gfj}∞j=1 is a Cauchy sequence in L2, hence

limk→∞ ∂
∗
b,G∂b,Gfk = h2 in L2

(0,q)(X)G, for some h2 ∈ L2
(0,q)(X)G and thus,

∂b,Gf ∈ Dom ∂
∗
b,G and ∂

∗
b,G ∂b,Gf = limk→∞ ∂

∗
b,G ∂b,Gfk. Similarly, we can repeat

the process above and show that

∂
∗
b,Gf ∈ Dom ∂b,G, ∂b,G ∂

∗
b,Gf = lim

k→∞
∂b,G ∂

∗
b,Gfk. (3.33)

Hence, f ∈ Dom �(q)
b,G and �(q)

b,Gf = limk→∞ �(q)
b,Gfk = h. The lemma follows.

Since the dimension of X is greater or equal to five, we can repeat Kohn’s
method [32] (see also the proof of [11, Theorem 8.3.5]) and deduce the following
subelliptic estimates:

Theorem 3.10. Under Assumption 1.1(i), let η, η1 ∈ C∞(X) such that η = 1 near
Y, η1 = 1 near supp η and the Levi form is positive near supp η1. Then for every
s ∈ N there is Cs > 0 such that for any u ∈ Ω0,1(X),

‖ηu‖2
s+1 ≤ Cs(‖η1�(1)

b u‖2
s + ‖η1u‖2

s). (3.34)

Repeating the proof of Theorem 3.7 with minor changes we get:

Theorem 3.11. Let γ, γ1 ∈ C∞(X) with γ1 = 1 near supp γ and supp γ1 ∩Y = ∅.
For every s ∈ N, there exists Cs > 0 such that for any u ∈ Ω0,1(X)G,

‖γu‖2
s+1 ≤ Cs(‖γ1�(1)

b,Gu‖2
s + ‖γ1u‖2

s). (3.35)

From Theorems 3.10, 3.11 and by using a partition of unity we obtain:

Theorem 3.12. Assume that Assumption 1.1(i) holds. Then for every s ∈ N and
every γ, γ1 ∈ C∞(X) with γ1 = 1 near supp γ, there is Cs > 0 such that for any
u ∈ Ω0,1(X)G,

‖γu‖2
s+1 ≤ Cs(‖γ1�(1)

b,Gu‖2
s + ‖γ1u‖2

s). (3.36)

For every s ∈ Z, let Hs
(0,q)(X)G be the completion of Ω0,q(X)G with respect to

‖ · ‖s. From Theorem 3.12, we can repeat the technique of elliptic regularization
(see the proof of [11, Theorem 8.4.2]) and conclude:
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Theorem 3.13. Under Assumption 1.1(i) let u ∈ Dom �(1)
b,G and let U be an open

set of X. Let �(1)
b,Gu = v ∈ L2

(0,1)(X)G. If v|U is smooth, then u|U is smooth.
Let τ, τ1 ∈ C ∞(X)G with τ1 = 1 near supp τ . If τ1v ∈ Hs

(0,1)(X)G, for some
s ∈ N, then τu ∈ Hs+1

(0,1)(X)G and there is Cs > 0 independent of u, v, such that

‖τu‖s+1 ≤ Cs(‖τ1�(1)
b,Gu‖s + ‖τ1u‖s). (3.37)

Theorem 3.14. If Assumption 1.1(i) holds, then the operator �(1)
b,G : Dom �(1)

b,G ⊂
L2

(0,1)(X)G → L2
(0,1)(X)G has closed range.

Proof. We claim that there is c > 0 such that

‖�(1)
b,Gu‖ ≥ c‖u‖, for all u ∈ Dom �(1)

b,G, u ⊥ Ker�(1)
b,G. (3.38)

Suppose that the claim is not true. We can find uj ∈ Dom �(1)
b,G, uj ⊥ Ker�(1)

b,G,
‖uj‖ = 1, j = 1, 2, . . . , such that

‖�(1)
b,Guj‖ ≤ 1

j
‖uj‖, j = 1, 2, . . . . (3.39)

From Theorem 3.13, (3.39) and Rellich’s lemma in functional analysis, we can find
{js}∞s=1 ⊂ N, 1 ≤ j1 < j2 < . . . , lims→∞ js = ∞, such that lims→∞ ‖ujs − u‖ = 0,
for some u ∈ L2

(0,1)(X)G. It is obvious that ‖u‖ = 1 and u ⊥ Ker�(1)
b,G. Let g ∈

Dom ∂b,G

⋂
L2(X)G. We have

|(u, ∂b,Gg )| = lim
s→∞|(ujs , ∂b,Gg )| = lim

s→∞|( ∂
∗
b,Gujs , g )|

≤ lim
s→∞ ‖∂∗

b,Gujs‖‖g‖ ≤ lim
s→∞ ‖�(1)

b,Gujs‖
1
2 ‖g‖ ≤ lim

s→∞
1√
js
‖g‖ = 0.

Hence, u ∈ Dom ∂
∗
b,G and ∂

∗
b,Gu = 0. Let f ∈ L2

(0,2)(X)G. We have

|(u, ∂
∗
b,Gf )| = lim

s→∞|(ujs , ∂
∗
b,Gf )| = lim

s→∞|( ∂b,Gujs , f )|

≤ lim
s→∞ ‖∂b,Gujs‖‖f‖ ≤ lim

s→∞ ‖�(1)
b,Gujs‖

1
2 ‖f‖ ≤ lim

s→∞
1√
js
‖f‖ = 0.

Hence, u ∈ Dom ∂b,G and ∂b,Gu = 0. We have proved that u ∈ Ker�(1)
b,G. But

u ⊥ Ker�(1)
b,G, we get a contradiction. The claim (3.38) follows. From (3.38), we get

the lemma.

Let N
(1)
G : L2

(0,1)(X)G → Dom �(1)
b,G be the partial inverse of �(1)

b,G and let

S
(1)
G : L2

(0,1)(X)G → Ker�(1)
b,G be the Szegő projection, i.e. the orthogonal projection

onto Ker�(1)
b,G with respect to (· , · ). We have

�(1)
b,GN

(1)
G + S

(1)
G = I on L2

(0,1)(X)G,

N
(1)
G �(1)

b,G + S
(1)
G = I on Dom�(1)

b,G.
(3.40)
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From Theorem 3.13 we deduce:

Theorem 3.15. Assume that Assumption 1.1(i) holds. Then for every s ∈ Z we
can extend N

(1)
G to a continuous operator N

(1)
G : Hs

(0,1)(X)G → Hs+1
(0,1)(X). Moreover,

Ker�(1)
b,G is a finite-dimensional subspace of Ω0,1(X)G.

Let

P(q)
G : L2

(0,q)(X) → L2
(0,q)(X)G, (3.41)

be the orthogonal projection with respect to ( · , · ). It is not difficult to see that for
every s ∈ Z we can extend P(q)

G to Hs
(0,q)(X) and P(q)

G : Hs
(0,q)(X) → Hs

(0,q)(X)G is

continuous. We extend N
(1)
G and S

(1)
G to Hs

(0,1)(X) by

N
(1)
G u := N

(1)
G P(1)

G u, S
(1)
G u := S

(1)
G P(1)

G u, for u ∈ Hs
(0,1)(X), s ∈ Z. (3.42)

From Theorem 3.15 we see that S
(1)
G is smoothing and

N
(1)
G : Hs

(0,1)(X) → Hs+1
(0,1)(X)G is continuous for every s ∈ Z. (3.43)

Theorem 3.16. Under Assumption 1.1(i), let τ, τ1 ∈ C∞(X)G with supp τ ∩
supp τ1 = ∅. Then τN

(1)
G τ1 is smoothing.

Proof. Let τ̃ , τ̂ ∈ C ∞(X)G with τ̃ = 1 near supp τ̂ , τ̂ = 1 near supp τ and supp τ̃ ∩
supp τ1 = ∅. Let v ∈ L2

(0,1)(X)G and put τ̃N
(1)
G τ1v = u ∈ H1

(0,1)(X)G. From (3.40),
we have

�(1)
b,Gu = �(1)

b,Gτ̃N
(1)
G τ1v

= τ̃ �(1)
b,GN

(1)
G τ1v + [�(1)

b,G, τ̃ ]N (1)
G τ1v

= τ̃ (I − S
(1)
G )τ1v + [�(1)

b,G, τ̃ ]N (1)
G τ1v

= −τ̃S
(1)
G τ1v + [�(1)

b,G, τ̃ ]N (1)
G τ1v. (3.44)

Since S
(1)
G is smoothing, −τ̃S

(1)
G τ1v ∈ C ∞(X)G. Since τ̃ = 1 near supp τ̂ ,

τ̂ [�(1)
b,G, τ̃ ]N (1)

G τ1v = 0. From this observation, we deduce that

τ̂�(1)
b,Gu ∈ C∞(X)G. (3.45)

Fix s ∈ N. From (3.37) and (3.44), there exist Cs, C̃s > 0 such that for any v ∈
L2

(0,1)(X)G, we have

‖τN
(1)
G τ1v‖s+1 = ‖τu‖s+1 ≤ Cs(‖τ̂�(1)

b,Gu‖s + ‖τ̂u‖s)

≤ C̃s(‖− τ̂S
(1)
G τv‖s + ‖τ̂N

(1)
G τ1v‖s). (3.46)

Take s = 1 in (3.46), from Theorem 3.15 and note that S
(1)
G is smoothing, we

conclude that ‖τN
(1)
G τ1v‖2 ≤ C‖v‖. We have proved that for any γ, γ1 ∈ C∞(X)G
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with supp γ ∩ supp γ1 = ∅, we have

γN
(1)
G γ1 : L2

(0,1)(X)G → H2
(0,1)(X)G is continuous. (3.47)

Take s = 2 in (3.46), from (3.47) and note that S
(1)
G is smoothing, we conclude

that there exists Ĉ > 0 such that for any v ∈ L2
(0,1)(X)G, ‖τN

(1)
G τ1v‖3 ≤ Ĉ‖v‖.

Continuing in this way, we conclude that for any γ, γ1 ∈ C ∞(X)G with supp γ ∩
supp γ1 = ∅, we have

γN
(1)
G γ1 : L2

(0,1)(X)G → Hs
(0,1)(X)G is continuous, for every s ∈ N

∗. (3.48)

By taking adjoint in (3.48), we deduce that for any γ, γ1 ∈ C ∞(X)G with supp γ ∩
supp γ1 = ∅, we have

γN
(1)
G γ1 : H−s

(0,1)(X)G → L2
(0,1)(X)G is continuous, for every s ∈ N

∗. (3.49)

Now, let v ∈ H−s0
(0,1)(X)G, s0 ∈ N∗, and put τ̃N

(1)
G τ1v = u ∈ H−s0+1

(0,1) (X)G. Let
vj ∈ Ω0,1(X)G, j = 1, 2, . . . , with vj → v in H−s0

(0,1)(X)G as j → ∞. Taking s = 0

in (3.46), we deduce from (3.49) and the fact that S
(1)
G is smoothing that there

exists C > 0 such that for any h ∈ L2
(0,1)(X)G,

‖τN
(1)
G τ1h‖1 ≤ C‖h‖−s0 . (3.50)

From (3.50), we have

lim
j,k→∞

‖τN
(1)
G τ1(vj − vk)‖1 ≤ C‖vj − vk‖−s0 = 0. (3.51)

From (3.51), we see that {τN
(1)
G τ1vj}j≥1 is a Cauchy sequence in H1

(0,1)(X)G. Since

τN
(1)
G τ1vj → τN

(1)
G τ1v in H−s0+1

(0,1) (X)G as j → ∞ (see Theorem 3.15), we deduce

that τN
(1)
G τ1v ∈ H1

(0,1)(X)G and ‖τN
(1)
G τ1v‖1 ≤ C‖v‖−s0 . We have proved that for

any γ, γ1 ∈ C∞(X)G with

supp γ ∩ supp γ1 = ∅,
we have

γN
(1)
G γ1 : H−s0

(0,1)(X)G → H1
(0,1)(X)G is continuous. (3.52)

Again, take s = 1 in (3.46) , from (3.52) and note that S
(1)
G is smoothing, we

conclude that there exists C > 0 such that for any h ∈ L2
(0,1)(X)G,

‖τN
(1)
G τ1h‖2 ≤ C‖h‖−s0 . (3.53)

From (3.53), we can repeat the argument above and deduce that τN
(1)
G τ1v ∈

H2
(0,1)(X)G and ‖τN

(1)
G τ1v‖2 ≤ C‖v‖−s0 . Continuing in this way, we conclude that

for any γ, γ1 ∈ C∞(X)G with supp γ ∩ supp γ1 = ∅, we have

γN
(1)
G γ1 : H−s0

(0,1)(X)G → Hs
(0,1)(X)G is continuous, for every s ∈ N. (3.54)

The theorem follows.
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We return to the case of functions. As before, let SG : L2(X) → Ker�(0)
b,G =

H0
b (X)G be the G-invariant Szegő projection. In view of Theorem 3.14, we can

repeat the proof of [27, Proposition 6.15, p. 56] and deduce the following.

Theorem 3.17. Under Assumption 1.1(i) the operator �(0)
b,G : Dom �(0)

b,G ⊂
L2(X)G → L2(X)G has closed range and

SG = P(0)
G − ∂

∗
b,GN

(1)
G ∂b,GP(0)

G on L2(X). (3.55)

Theorem 3.18. Let τ, τ1 ∈ C∞(X)G with supp τ ∩ supp τ1 = ∅. If Assump-
tion 1.1(i) holds, then τSGτ1 is smoothing.

Proof. By (3.41) and (3.55) we have

τSGτ1 = −τ∂
∗
b,GN

(1)
G ∂b,Gτ1 = −τ∂

∗
b,Gτ̃N

(1)
G τ̃1∂b,Gτ1, (3.56)

where τ̃ , τ̃1 ∈ C ∞(X)G with τ̃ = 1 near supp τ , τ̃1 = 1 near supp τ1, supp τ̃ ∩
supp τ̃1 = ∅. In view of Theorem 3.16, we see that τ̃N

(1)
G τ̃1 is smoothing. From this

observation and (3.56), the theorem follows.

Let dμ = dμ(h) be the Haar measure on G with
∫

G
dμ(h) = 1. We also need the

following:

Theorem 3.19. Under Assumption 1.1(i) there exists c0 > 0 such that for any
λ ∈ (0, c0) such that

SG(x, y) =
∫

G

S≤λ(x, h.y)dμ(h) on X × X,

where S≤λ is the spectral projection given by (2.49).

Proof. Since �(0)
b,G : Dom �(0)

b,G ⊂ L2(X)G → L2(X)G has closed range, we can
define the partial inverse

N
(0)
G : L2(X)G → Dom �(0)

b,G

of �(0)
b,G as follows: Let u ∈ L2(X)G. Since Im �(0)

b,G is closed in L2(X)G, we have
the orthogonal decomposition

u = v0 + v1, v0 ∈ Im �(0)
b,G, v1 ⊥ Im �(0)

b,G.

There is a unique β ∈ Dom �(0)
b,G, β ⊥ Ker�(0)

b,G, such that �(0)
b,Gβ = v0. Define

N
(0)
G u := β. Since �(0)

b,G is self-adjoint, v1 ∈ Ker�(0)
b,G. Thus, we have the Hodge
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decomposition:

�(0)
b,GN

(0)
G + SG = I on L2(X)G,

N
(0)
G �(0)

b,G + SG = I on Dom�(0)
b,G .

Then, N
(0)
G : L2(X)G → Dom �(0)

b,G is a linear operator. We claim that

N
(0)
G : L2(X)G → Dom �(0)

b,G is a closed operator. (3.57)

Let {(fk, N
(0)
G fk) ∈ L2(X)G × L2(X)G : k ∈ N}, with limk→∞ fk = f in L2(X)G

and limk→∞ N
(0)
G fk = h in L2(X)G. For every k ∈ N, write

fk = �(0)
b,Ggk + ξk, gk ∈ Dom �(0)

b,G, gk ⊥ Ker�(0)
b,G, ξk ⊥ Im �(0)

b,G. (3.58)

From (3.58) and the definition of N
(0)
G , we see that

N
(0)
G fk = gk, lim

k→∞
gk = h in L2(X)G. (3.59)

Since {fk}∞k=1 is a Cauchy sequence, {�(0)
b,Ggk}∞k=1 and {ξk}∞k=1 are Cauchy

sequences. Hence,

lim
k→∞

�(0)
b,Ggk = η, lim

k→∞
ξk = ξ in L2(X)G, (3.60)

for some η, ξ ∈ L2(X)G, ξ ⊥ Im �(0)
b,G, and we have the orthogonal decomposition

f = η + ξ. (3.61)

From (3.59) and (3.60), we see that (gk, �(0)
b,Ggk) → (h, η) in L2(X)G × L2(X)G

as k → ∞. Since �(0)
b,G is a closed operator, we conclude that h ∈ Dom �(0)

b,G, h ⊥
Ker�(0)

b,G, and �(0)
b,Gh = η. From this observation and (3.61), we get the orthogonal

decomposition

f = �(0)
b,Gh + ξ

and hence N
(0)
G f = h. The claim (3.57) follows.

Since N
(0)
G is a closed operator defined on the Banach space L2(X)G, by the

closed graph theorem, N
(0)
G is a continuous operator. Hence, there is c0 > 0 such

that

‖N (0)
G β‖ ≤ 1

c0
‖β‖, for every β ∈ L2(X)G. (3.62)

Let β = �(0)
b,Gu in (3.62), where u ∈ Dom �(0)

b,G, u ⊥ Ker�(0)
b,G, we get

‖�(0)
b,Gu‖ ≥ c0‖u‖, for every u ∈ Dom �(0)

b,G, u ⊥ Ker�(0)
b,G. (3.63)

Fix 0 < λ < c0. We claim that with the notation (3.41), we have

SG = S≤λ ◦ P(0)
G on L2(X). (3.64)

If the claim is not true, we can find a u ∈ H0
b,≤λ(X) ∩ L2(X)G with u ⊥ Ker�(0)

b,G,
‖u‖ = 1, where H0

b,≤λ(X) is given by (2.48). Since u ∈ H0
b,≤λ(X), we have
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‖�(0)
b,Gu‖ ≤ λ‖u‖ < c0‖u‖. From this observation and (3.63) we get a contradic-

tion. The claim (3.64) follows and this yields the theorem.

3.3. G-invariant Szegő kernel asymptotics away Y

Let SG(x, y) ∈ D ′(X ×X) be the distribution kernel of SG. For any subset A of X ,
put GA := {g · x : x ∈ A, g ∈ G}.

Theorem 3.20. Under Assumption 1.1, let τ ∈ C∞(X) with supp τ ∩Y = ∅. Then
τSG and SGτ are smoothing operators.

Proof. First we work under Assumption 1.1(i) as in the previous section. Let
v ∈ L2(X). Take vj ∈ C∞(X), j ∈ N∗, such that ‖vj − v‖ → 0 as j → ∞. We have
‖SGvj − SGv‖ → 0 as j → ∞. By (3.43) and (3.55), we see that

SGvj ∈ C ∞(X), for every j ∈ N
∗. (3.65)

For every j, put uj := SGvj . By Corollary 3.5 and (3.17), it is straightforward to
see that for every s ∈ N there exists Cs > 0 such that for χ in (3.6),

‖χuj‖s ≤ Cs, for every j ∈ N
∗. (3.66)

From (3.66) we deduce that χSGv ∈ Hs(X) for every s ∈ N and

χSG : L2(X) → Hs(X) is continuous, for every s ∈ N. (3.67)

By using a partition of unity we conclude that for any τ, τ1 ∈ C ∞(X)G with
supp τ ∩ Y = ∅, supp τ1 ∩ Y = ∅, we have

τSG : L2(X) → Hs(X) is continuous, for every s ∈ N (3.68)

and hence

SGτ1 : H−s(X) → L2(X) is continuous, for every s ∈ N. (3.69)

From (3.68) and (3.69), we conclude that

τSGτ1 = (τSG) ◦ (SGτ1) : H−s(X) → Hs(X) is continuous, for every s ∈ N,

(3.70)

and hence τSGτ1 is smoothing.
Since G acts on Y , it is not difficult to see that there is a small neighborhood

W of Y such that supp τ ∩GW = ∅. Let γ0, γ1 ∈ C∞(X)G ∩C∞
0 (GW ) with γ0 = 1

near supp γ1, γ1 = 1 near Y . For i = 0, 1, put τi := 1− γi; then τi ∈ C∞(X)G with
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supp τi ∩ Y = ∅. Moreover, it is straightforward to check that

τ0 = 1 on supp τ, supp τ0 ∩ supp(1 − τ1) = ∅. (3.71)

From (3.71) follows

τSG = ττ0SG = ττ0SGτ1 + ττ0SG(1 − τ1). (3.72)

By (3.70) τ0SGτ1 is smoothing. In view of Theorem 3.18 and (3.71), we see that

ττ0SG(1 − τ1) is smoothing. (3.73)

From (3.72) and (3.73), we get that τSG is smoothing and hence SGτ is smoothing.
Let us now work under the Assumption 1.1(ii). By [8], [30, Theorem 1.14] the

Szegő projector S is a Fourier integral operator with complex phase on X . We have
SG = S ◦ P(0)

G . Since S, P(0)
G map smooth functions to smooth functions, SG maps

smooth functions to smooth functions. Thus, (3.65) still holds. Now,

ττ0SG(1 − τ1) = ττ0S ◦ P(0)
G (1 − τ1) = ττ0S(1 − τ1) ◦ P(0)

G . (3.74)

Since S is smoothing away the diagonal, ττ0S ◦ (1 − τ1) is smoothing. From this
observation and (3.74), we conclude that ττ0SG(1− τ1) is smoothing. Thus, (3.73)
still holds. Since (3.65) and (3.73) hold so by repeating the proof above we conclude
also in this case.

3.4. G-invariant Szegő kernel asymptotics near Y

In this section, X has arbitrary dimension ≥ 3. We first recall the definition of
the Hörmander symbol spaces. Let D ⊂ X be a local coordinate patch with local
coordinates x = (x1, . . . , x2n+1).

Definition 3.21. For m ∈ R, Sm
1,0(D × D × R+) is the space of all a(x, y, t) ∈

C∞(D × D × R+) such that, for all compact K � D × D and all α, β ∈ N
2n+1,

γ ∈ N, there exists Cα,β,γ > 0 such that

|∂α
x ∂β

y ∂γ
t a(x, y, t)| ≤ Cα,β,γ(1 + |t|)m−γ , (x, y, t) ∈ K × R+, t ≥ 1.

Put

S−∞(D × D × R+) :=
⋂

m∈R

Sm
1,0(D × D × R+).

Let aj ∈ S
mj

1,0 (D × D × R+), j = 0, 1, 2, . . . with mj ↘ −∞, as j → ∞. Then there
exists a ∈ Sm0

1,0 (D × D × R+) unique modulo S−∞, such that

a −
k−1∑
j=0

aj ∈ Smk
1,0 (D × D × R+) for all k ∈ N

∗.

If a and aj have the properties above, we write a ∼∑∞
j=0 aj in Sm0

1,0 (D ×D ×R+).
We write

s(x, y, t) ∈ Sm
cl (D × D × R+

)
(3.75)
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if s(x, y, t) ∈ Sm
1,0(D × D × R+) and

s(x, y, t) ∼
∞∑

j=0

sj(x, y)tm−j in Sm
1,0(D × D × R+),

sj(x, y) ∈ C∞(D × D), for any j ∈ N.

(3.76)

Let W1 ⊂ RN1 , W2 ⊂ RN2 be open sets. We can also define Sm
1,0(W1 × W2 × R+),

Sm
cl (W1 × W2 × R+) and asymptotic sum in the similar way.

By Theorem 2.9 (cf. [30, Theorem 1.5]) the spectral projector S≤λ is for every
λ > 0 a complex Fourier integral operator on the subset where the Levi form is
positive definite. We give here a detailed description of the spectral kernel.

Theorem 3.22 ([30, Theorem 4.7]). Fix λ > 0. Let D ⊂ X be a local coordinate
patch with local coordinates x = (x1, . . . , x2n+1). Assume that the Levi form of X

is positive definite at every point of D. Then,

S≤λ(x, y) ≡
∫ ∞

0

eiϕ(x,y)ts(x, y, t)dt on D × D,

with a symbol s(x, y, t) ∈ Sn
cl (D × D × R+) such that the coefficient s0 of the

expansion (3.76) is given by

s0(x, x) =
1
2
π−n−1|detLx|, x ∈ D, (3.77)

where detLx is the determinant of the Levi form, see (2.10), and the phase function
ϕ satisfies

ϕ ∈ C∞(D × D), Im ϕ(x, y) ≥ 0,

ϕ(x, x) = 0, ϕ(x, y) �= 0 if x �= y,

dxϕ(x, y)|x=y = −dyϕ(x, y)|x=y = λ(x)ω0(x), λ(x) > 0,

ϕ(x, y) = −ϕ(y, x).

(3.78)

Moreover, let X ′ := {x ∈ X : the Levi form is non-degenerate at x}. Then, S≤λ

is smoothing away the diagonal on X ′ × X ′.

Remark 3.23. With the same notations used in Theorem 3.22, let

Λϕ := {(x, tdxϕ, y, tdyϕ) ∈ T ∗D × T ∗D : ϕ(x, y) = 0, t > 0}.
From (3.78), we see that

Λϕ = {(x, λω0(x), x,−λω0(x)) ∈ T ∗D × T ∗D : x ∈ D, λ > 0}.
Hence, the canonical relation Cϕ of S≤λ is given by

Cϕ = {(x, λω0(x), x, λω0(x)) ∈ T ∗D × T ∗D :x ∈ D, λ > 0}.
The following result describes the phase function in local coordinates (see [27,

Chap. 8 of part I]). For a given point p ∈ D, let {Wj}n
j=1 be an orthonormal frame
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of T 1,0X in a neighborhood of p such that the Levi form is diagonal at p, i.e.
Lp(Wj , W s) = δj,sμj , j, s = 1, . . . , n, where δj,s = 1 if j = s, δj,s = 0 if j �= s. We
take local coordinates x = (x1, . . . , x2n+1) defined on some neighborhood of p such
that ω0(p) = −dx2n+1, x(p) = 0 and

Wj =
∂

∂zj
− iμjzj

∂

∂x2n+1
− cjx2n+1

∂

∂x2n+1

+
2n∑

k=1

aj,k(x)
∂

∂xk
+ O(|x|2), j = 1, . . . , n, (3.79)

where zj = x2j−1 + ix2j , cj ∈ C, aj,k(x) is C∞, aj,k(x) = O(|x|), for every j =
1, . . . , n, k = 1, . . . , 2n. Set y = (y1, . . . , y2n+1), wj = y2j−1 + iy2j , j = 1, . . . , n.

Theorem 3.24. With the same notations and assumptions used in Theorem 3.22
we have for the phase function ϕ in some neighborhood of (0, 0),

Im ϕ(x, y) ≥ c

2n∑
j=1

|xj − yj |2, c > 0, (3.80)

ϕ(x, y) = −x2n+1 + y2n+1 + i

n∑
j=1

|μj ||zj − wj |2

+
n∑

j=1

(
iμj(zjwj − zjwj) + cj(−zjx2n+1 + wjy2n+1)

+ cj(−zjx2n+1 + wjy2n+1)
)

+ (x2n+1 − y2n+1)f(x, y)

+ O(|(x, y)|3), (3.81)

where f is smooth and satisfies f(0, 0) = 0, f(x, y) = f(y, x). Moreover, we can
take the phase ϕ so that

∂b,xϕ(x, y) vanishes to infinite order at x = y. (3.82)

Furthermore, for any ϕ1(x, y) ∈ C∞(D × D), if ϕ1 satisfies (3.78), (3.80), (3.81)
and (3.82), then there is a function h(x, y) ∈ C∞(D × D) with h(x, x) �= 0, for
every x ∈ D, such that ϕ(x, y)− h(x, y)ϕ1(x, y) vanishes to infinite order at x = y.

For the next result we recall that the map Rx and the function Veff were defined
in (1.18) and (1.19). We denote by λ′

1(x), . . . , λ′
d(x) the eigenvalues of Rx with

respect to the G-invariant Hermitian metric g and we define the determinant of
Rx by

detRx = λ′
1(x) . . . λ′

d(x). (3.83)

Theorem 3.25. Under the assumptions of Theorem 1.2, let p ∈ Y, let U be an
open neighborhood of p and let x = (x1, . . . , x2n+1) be local coordinates defined in
U . Then,

SG(x, y) ≡
∫ ∞

0

eiΦ(x,y)ta(x, y, t)dt on U × U (3.84)
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with a symbol a(x, y, t) ∈ S
n− d

2
cl (U × U × R+) such that the coefficient a0 in its

expansion (3.76) satisfies

a0(x, x) = 2d−1 1
Veff (x)

π−n−1+ d
2 |detRx|− 1

2 |det Lx|, x ∈ U ∩ Y, (3.85)

and the phase function Φ satisfies

Φ(x, y) ∈ C ∞(U × U), Im Φ(x, y) ≥ 0,

dxΦ(x, x) = −dyΦ(x, x) = λ(x)ω0(x), λ(x) > 0, x ∈ U ∩ Y.
(3.86)

Moreover, there exists C ≥ 1 such that for all (x, y) ∈ U × U,

|Φ(x, y)| + Im Φ(x, y) ≤ C(inf
{
d2(g · x, y) : g ∈ G

}
+ d2(x, Y ) + d2(y, Y )),

|Φ(x, y)| + Im Φ(x, y) ≥ 1
C

(inf
{
d2(g · x, y) : g ∈ G

}
+ d2(x, Y ) + d2(y, Y )),

Cd2(x, Y ) ≥ Im Φ(x, x) ≥ 1
C

d2(x, Y ), x ∈ U,

(3.87)

and Φ(x, y) satisfies (3.93), (3.94) and (3.95) below.

Proof. If Assumption 1.1(i) holds, then by Theorem 3.20 we can localize the study
of the G-invariant Szegő kernel SG to Y and from Theorems 3.19 and 3.22, we repeat
the proof of [28, Theorem 1.5] and conclude. If Assumption 1.1(ii) holds, we know
by [8], [30, Theorem 1.14] that the Szegő projector S is a Fourier integral operator
with complex phase on X . Repeating the argument from [28, Theorem 1.5] we
conclude.

Remark 3.26. With the same notations used in Theorem 3.25, let

ΛΦ := {(x, tdxΦ, y, tdyΦ) ∈ T ∗X × T ∗X : Φ(x, y) = 0, t > 0}.
From (3.87), we see that

ΛΦ = {(x, λω0(x), g · x,−λω0(x)) ∈ T ∗X × T ∗X : x ∈ Y, g ∈ G, λ > 0}.
Hence, the canonical relation CΦ of SG is given by

CΦ = {(x, λω0(x), g · x, λω0(x)) ∈ T ∗X × T ∗X : x ∈ Y, g ∈ G, λ > 0}.
As applications of Theorems 3.18, 3.20 and 3.25, we establish the following

regularity property for SG.

Theorem 3.27. Under the assumptions of Theorem 1.2 we have

SG : C∞(X) → H0
b (X)G ∩ C ∞(X).

In particular, H0
b (X)G ∩ C∞(X) is dense in H0

b (X)G.

Proof. Let U be an open coordinate patch of X and let u ∈ C∞
0 (U). If U ∩Y = ∅,

we see in view of Theorem 3.20 that SGu ∈ C∞(X). Assume now U ∩ Y �= ∅. By
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Theorem 3.25 SG is a Fourier integral operator with complex phase on U and hence
SGu ∈ C∞(U). We only need to show that SGu is smooth outside U . Let x0 /∈ U .
If x0 /∈ Y , by Theorem 3.20 again we deduce that SGu is smooth near x0. Now, we
suppose that x0 ∈ Y .

Case I: Gx0 ∩U = ∅. We can find τ, τ1 ∈ C∞(X)G with supp τ ∩ supp τ1 = ∅, τ ≡ 1
near x0, τ1 ≡ 1 near suppu. We have τSGu = τSGτ1u. In view of Theorem 3.18
under Assumption 1.1(i) or by the fact that SG is a Fourier integral operator under
Assumption 1.1(ii), we see that τSGτ1 is smoothing and we deduce that τSGτ1u ∈
C∞(X). In particular, SGu is smooth near x0.

Case II: Gx0 ∩ U �= ∅. There is a ĝ ∈ G such that ĝ · x0 ∈ U . Since SGu ∈ C ∞(U),
SGu is smooth near ĝ · x0. Since SGu is G-invariant, SGu is smooth near x0.

We have thus proved that SGu ∈ C ∞(X). By using a partition of unity we
conclude.

Let e0 be the identity element in G. Fix p ∈ Y . It was shown in [28, Theorem 3.6]
that there exist local coordinates v = (v1, . . . , vd) on G defined in a neighborhood V

of e0 with v(e0) = (0, . . . , 0) (until further notice, we will identify the element h ∈ V

with v(h)), local coordinates x = (x1, . . . , x2n+1) of X defined in a neighborhood
U = U1 × U2 of p with 0 ↔ p, where U1 ⊂ Rd is a neighborhood of 0 ∈ Rd,
U2 ⊂ R2n+1−d is an open neighborhood of 0 ∈ R2n+1−d and a smooth function
γ = (γ1, . . . , γd) ∈ C ∞(U2, U1) with γ(0) = 0 ∈ R

d such that for (v1, . . . , vd) ∈ V ,
(xd+1, . . . , x2n+1) ∈ U2,

(v1, . . . , vd).(γ(xd+1, . . . , x2n+1), xd+1, . . . , x2n+1)
= (v1 + γ1(xd+1, . . . , x2n+1), . . . , vd + γd(xd+1, . . . , x2n+1), xd+1, . . . , x2n+1),

Y ∩ U = {xd+1 = . . . = x2d = 0}, g = span
{

∂

∂x1
, . . . ,

∂

∂xd

}
,

J

(
∂

∂xj

)
=

∂

∂xd+j
+ aj(x)

∂

∂x2n+1
, on Y ∩ U , for 1 ≤ j ≤ d,

(3.88)

where aj(x) are smooth functions on Y ∩ U , independent of x1, . . . , x2d, x2n+1,
aj(0) = 0, and T 1,0

p X = span {Z1, . . . , Zn} with

Zj =
1
2

(
∂

∂xj
− i

∂

∂xd+j

)
(p), for j = 1, . . . , d,

Zj =
1
2

(
∂

∂x2j−1
− i

∂

∂x2j

)
(p), for j = d + 1, . . . , n,

〈Zj , Zk 〉g = δj,k, Lp(Zj , Zk) = μjδj,k, for j, k = 1, 2, . . . , n,

(3.89)

−ω0(x) = (1 + O(|x|))dx2n+1 +
d∑

j=1

4μjxd+jdxj +
n∑

j=d+1

2μjx2jdx2j−1

−
n∑

j=d+1

2μjx2j−1dx2j +
2n∑

j=d+1

bjx2n+1dxj + O(|x|2), (3.90)
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where bd+1, . . . , b2n ∈ R. Put

x′′ = (xd+1, . . . , x2n+1), x̂′′ = (xd+1, . . . , x2d), x̊′′ = (xd+1, . . . , x2n). (3.91)

Theorem 3.28 ([28, Theorem 1.11]). The phase function Φ(x, y) appearing in
the expression of the Szegő kernel (3.84), (3.86) is independent of (x1, . . . , xd) and
(y1, . . . , yd). Hence,

Φ(x, y) = Φ((0, x′′), (0, y′′)) =: Φ(x′′, y′′). (3.92)

Moreover, there exists c > 0 such that

Im Φ(x′′, y′′) ≥ c(|x̂′′|2 + |ŷ′′|2 + |̊x′′ − ẙ′′|2), for (0, x′′), (0, y′′) ∈ U, (3.93)

and there exists a smooth function g(x, y) ∈ C∞(U × U, T ∗0,1X) such that

∂b,xΦ(x′′, y′′) − g(x, y)Φ(x′′, y′′) vanishes to

infinite order on diag((Y ∩ U) × (Y ∩ U)), (3.94)

and with the same μj , bd+1, . . . , b2n ∈ R as in (3.90) we have

Φ(x′′, y′′) = −x2n+1 + y2n+1 + 2i

d∑
j=1

|μj |y2
d+j + 2i

d∑
j=1

|μj |x2
d+j

+ i

n∑
j=d+1

|μj ||zj − wj |2 +
n∑

j=d+1

iμj(zjwj − zjwj)

+
d∑

j=1

(−bd+jxd+jx2n+1 + bd+jyd+jy2n+1)

+
n∑

j=d+1

1
2
(b2j−1 − ib2j)(−zjx2n+1 + wjy2n+1)

+
n∑

j=d+1

1
2
(b2j−1 + ib2j)(−zjx2n+1 + wjy2n+1)

+ (−x2n+1 + y2n+1)f(x′′, y′′) + O(|(x′′, y′′)|3), (3.95)

where zj = x2j−1 + ix2j, wj = y2j−1 + iy2j, for j = d + 1, . . . , n, and f(x′′, y′′) ∈
C∞(U × U) with f(0, 0) = 0.

Remark 3.29. The phase function Φ(x′′, y′′) is not unique. For example, we can
replace Φ(x′′, y′′) by Φ(x′′, y′′)r(x′′, y′′), where r(x′′, y′′) ∈ C ∞(U ×U), r(0, 0) = 1.
In [28, Theorem 5.2], the first author and Huang characterized the phase Φ. Since
∂y2n+1Φ(0, 0) �= 0, the Malgrange preparation theorem [26, Theorem 7.57] implies
that

Φ(x′′, y′′) = g(x′′, y′′)(y2n+1 + Φ̂(x′′, ẙ′′))
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in some neighborhood of (0, 0), where g(x′′, y′′), Φ̂(x′′, ẙ′′) ∈ C∞(U × U). We can
replace Φ(x′′, y′′) by y2n+1 + Φ̂(x′′, ẙ′′). From now on, we assume that

Φ(x′′, y′′) = y2n+1 + Φ̂(x′′, ẙ′′), Φ̂(x′′, ẙ′′) ∈ C ∞(U × U). (3.96)

It is straightforward to check that the phase Φ(x′′, y′′) satisfies (3.86), (3.87), (3.93),
and

∂b,xΦ(x′′, y′′) vanishes to infinite order at diag((Y ∩ U) × (Y ∩ U)) (3.97)

and with the same notations as in (3.95) we have

Φ(x′′, y′′) = −x2n+1 + y2n+1 + 2i

d∑
j=1

|μj |y2
d+j + 2i

d∑
j=1

|μj |x2
d+j

+ i

n∑
j=d+1

|μj ||zj − wj |2 +
n∑

j=d+1

iμj(zjwj − zjwj)

+
d∑

j=1

(−bd+jxd+jx2n+1 + bd+jyd+jx2n+1)

+
n∑

j=d+1

1
2
(b2j−1 − ib2j)(−zjx2n+1 + wjx2n+1)

+
n∑

j=d+1

1
2
(b2j−1 + ib2j)(−zjx2n+1 + wjx2n+1)

+ O(|(x′′, ẙ′′)|3). (3.98)

4. The Distribution Kernels of the Maps σ and σ∗σ

In this section, we will study the map σ defined in (1.20) and prove Theorem 1.5.
We assume throughout that dimXG ≥ 3 and ∂b,XG has closed range in L2. The
case when dimXG = 1 will be treated separately.

Let ι∗ : C∞(X) → C∞(Y ) be the pull-back of the inclusion ι : Y → X . Let
ιG : C∞(Y )G → C ∞(XG) be the natural identification. Let SXG : L2(XG) →
H0

b (XG) be the orthogonal projection with respect to ( · , · )XG (cf. Convention 2.8).
By Theorem 3.27 and (1.17) (here we use that ∂b,XG has closed range in L2), we
can extend σ to C ∞(X) by

σ : C ∞(X) → H0
b (XG) ∩ C ∞(XG) ⊂ C∞(XG),

σ = SXG ◦ E ◦ ιG ◦ fG ◦ ι∗ ◦ SG.
(4.1)

Let σ ∗ :C ∞(XG) → D ′(X) be the formal adjoint of σ. We will show in Theo-
rem 4.12 that σ ∗ actually maps C∞(XG) into H0

b (X)G ∩ C∞(X)G.
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In this section, we will study the distribution kernels of σ and σ ∗σ. We explain
briefly the role of the operator E in (4.1). To prove our main result, we need to
show that σ ∗σ is “microlocally close” to SG. In other words, we want σ ∗σ to be
a complex Fourier integral operator with the same phase, the same order and the
same leading symbol as SG. To achieve this we need to take E to be a classical
elliptic pseudodifferential operator with principal symbol pE(x, ξ) = |ξ|−d/4, see
also Remark 1.6.

This section is organized as follows. In Sec. 4.1, we develop the calculus of
Fourier integral operators of G-Szegő type. In Sec. 4.2, we study the distribution
kernels of σ and σ∗σ and prove Theorem 1.5.

4.1. Calculus of complex Fourier integral operators

Let p ∈ Y and x = (x1, . . . , x2n+1) be the local coordinates as in the discussion
before Theorem 3.28 defined in an open neighborhood U of p. From now on, we
change x2n+1 to x2n+1 −

∑d
j=1 aj(x)xd+j , where aj(x) are as in (3.88). With this

new local coordinates x = (x1, . . . , x2n+1) on Y ∩ U we have

J

(
∂

∂xj

)
=

∂

∂xd+j
, for j = 1, 2, . . . , d. (4.2)

Moreover, it is clear that Φ(x, y)+
∑d

j=1 aj(x)xd+j−
∑d

j=1 aj(y)yd+j satisfies (3.98).
Note that aj(x) is a smooth function on Y ∩ U , independent of x1, . . . , x2d, x2n+1

and aj(0) = 0, j = 1, . . . , d. We may assume that U = Ω1 × Ω2 × Ω3, where
Ω1 ⊂ Rd, Ω2 ⊂ Rd are open neighborhoods of 0 ∈ Rd, Ω3 ⊂ R2n+1−2d is an open
neighborhood of 0 ∈ R2n+1−2d. From now on, we identify Ω2 with

{(0, . . . , 0, xd+1, . . . , x2d, 0, . . . , 0) ∈ U : (xd+1, . . . , x2d) ∈ Ω2},

Ω3 with {(0, . . . , 0, x2d+1, . . . , x2n+1) ∈ U : (x2d+1, . . . , x2n+1) ∈ Ω3}, Ω2 ×Ω3 with

{(0, . . . , 0, xd+1, . . . , x2n+1) ∈ U : (xd+1, . . . , x2n+1) ∈ Ω2 × Ω3}.

For x = (x1, . . . , x2n+1), we set

x′ = (x1, . . . , xd),

x′′ = (xd+1, . . . , x2n+1), x̊′′ = (xd+1, . . . , x2n),

x̂′′ = (xd+1, . . . , x2d), x′′ = (x2d+1, . . . , x2n+1).

(4.3)

From now on, we identify

x′′ with (0, . . . , 0, xd+1, . . . , x2n+1) ∈ U,

x̂′′ with (0, . . . , 0, xd+1, . . . , x2d, 0, . . . , 0) ∈ U,

x′′ with (0, . . . , 0, x2d+1, . . . , x2n+1) ∈ U.

(4.4)
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Since G acts freely on Y , we take Ω2 and Ω3 small enough so that if x, x1 ∈ Ω2×Ω3

and x �= x1, then

g · x �= x1, for all g ∈ G. (4.5)

Recall that we take Φ so that (3.96), (3.97), (3.98) hold. Put

Φ∗(x, y) := −Φ(y, x). (4.6)

From (3.97) and notice that for j = 1, . . . , d, x ∈ Y , we have ∂
∂xj

+ i ∂
∂xd+j

∈ T 0,1
x X

and ∂
∂xj

Φ(x, y) = ∂
∂yj

Φ∗(x, y) = 0, we conclude that for j = 1, . . . , d,

∂

∂xd+j
Φ(x, y)

∣∣∣∣∣
xd+1=...=x2d=0

and
∂

∂yd+j
Φ∗(x, y)

∣∣∣∣∣
yd+1=...=y2d=0

vanish to infinite order at diag((Y ∩ U) × (Y ∩ U)). (4.7)

Let

Gj(x, y) :=
∂

∂yd+j
Φ∗(x, y)|yd+1=...=y2d=0,

Hj(x, y) :=
∂

∂xd+j
Φ(x, y)|xd+1=...=x2d=0.

Put

Φ1(x, y) := Φ∗(x, y) −
d∑

j=1

yd+jGj(x, y),

Φ2(x, y) := Φ(x, y) −
d∑

j=1

xd+jHj(x, y).

(4.8)

Then for j = 1, 2, . . . , d,

∂

∂yd+j
Φ1(x, y)

∣∣∣∣∣
yd+1=...=y2d=0

=
∂

∂xd+j
Φ2(x, y)

∣∣∣∣∣
xd+1=...=x2d=0

= 0, (4.9)

and

Φ∗(x, y) − Φ1(x, y) vanishes to infinite order on diag((Y ∩ U) × (Y ∩ U)),

Φ(x, y) − Φ2(x, y) vanishes to infinite order on diag((Y ∩ U) × (Y ∩ U)).

(4.10)

We also write u = (u1, . . . , u2n+1) to denote the local coordinates of U . For any
smooth function h ∈ C∞(U), let h̃ ∈ C∞(UC) be an almost analytic extension of
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h (see [45, Sec. 1]). Let ϑ be a local coordinate of R. Let

F (x̃, ỹ, ũ′′, ϑ̃ ) := Φ̃1(x̃, ũ′′) + ϑ̃ Φ̃2(ũ′′, ỹ). (4.11)

We consider the following two systems for j = 1, 2, . . . , 2n − 2d + 1 and j = 1,

2, . . . , 2n − d + 1, respectively,

∂F

∂ϑ̃
(x̃, ỹ, ũ′′, ϑ̃ ) = Φ̃2(ũ′′, ỹ) = 0,

∂F

∂ũ2d+j
(x̃, ỹ, ũ′′, ϑ̃ ) =

∂Φ̃1

∂ỹ2d+j
(x̃, ũ′′) + ϑ̃

∂Φ̃2

∂x̃2d+j
(ũ′′, ỹ) = 0,

(4.12)

and
∂F

∂ϑ̃
(x̃, ỹ, ũ′′, ϑ̃ ) = Φ̃2(ũ′′, ỹ) = 0,

∂F

∂ũd+j
(x̃, ỹ, ũ′′, ϑ̃ ) =

∂Φ̃1

∂ỹd+j
(x̃, ũ′′) + ϑ̃

∂Φ̃2

∂x̃d+j
(ũ′′, ỹ) = 0,

(4.13)

where ũ′′ = (0, . . . , 0, ũ2d+1, . . . , ũ2n+1), ũ′′ = (0, . . . , 0, ũd+1, . . . , ũ2n+1). Here we
always use ∂

∂exk
for first variable, ∂

∂eyk
for second variable. From (3.96) and (4.9), we

can take Φ̃1 and Φ̃2 so that for every j = 1, 2, . . . , d,

∂Φ̃1

∂ỹd+j
(x̃, ũ′′) =

∂Φ̃2

∂x̃d+j
(ũ′′, ỹ) = 0, if ũd+1 = . . . = ũ2d = 0, (4.14)

and ˜̂Φ1,
˜̂Φ2 ∈ C∞(UC × UC) such that

Φ̃1(x̃, ỹ) = −x̃2n+1 + ˜̂Φ1(˜̊x′′
, ỹ′′), Φ̃2(x̃, ỹ) = ỹ2n+1 + ˜̂Φ2(x̃′′, ˜̊y′′), (4.15)

where ˜̊x′′
= (0, . . . , 0, x̃d+1, . . . , x̃2n, 0), ˜̊y′′

= (0, . . . , 0, ỹd+1, . . . , ỹ2n, 0).
By (3.86), (4.6), (4.7) and x′′ ∈ Y , we know that dxΦ(x, x), dyΦ(x, x) are real

for x ∈ Y , and for j = 1, 2, . . . , 2n− d,

∂Φ̃1

∂ỹd+j
(x′′, x′′) = − ∂Φ

∂x̃d+j
(x′′, x′′) = − ∂Φ

∂xd+j
(x′′, x′′)

=
∂Φ

∂yd+j
(x′′, x′′) =

∂Φ2

∂yd+j
(x′′, x′′),

∂Φ̃2

∂ỹd+j
(x′′, x′′) +

∂Φ̃2

∂x̃d+j
(x′′, x′′) = 0.

Note that by (3.87), Φ(x, x) = 0 for x ∈ Y . Combining it with the above equation,
we get

Φ̃2(x′′, x′′) = 0,

∂Φ̃1

∂ỹd+j
(x′′, x′′) + ϑ̃

∂Φ̃2

∂x̃d+j
(x′′, x′′)

∣∣
eϑ=1

= 0, j = 1, 2, . . . , 2n − d,
(4.16)
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and the Hessians

F
eϑ,fu′′(0, 0, 0, 1) =

⎛
⎜⎜⎜⎝

∂2F

∂2ϑ̃

∂2F

∂ϑ̃∂ũ′′

∂2F

∂ũ′′∂ϑ̃

∂2F

∂2ũ′′

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
(0,0,0,1)

(4.17)

and

F
eϑ,fu′′(0, 0, 0, 1) =

⎛
⎜⎜⎜⎝

∂2F

∂2ϑ̃

∂2F

∂ϑ̃∂ũ′′

∂2F

∂ũ′′∂ϑ̃

∂2F

∂2ũ′′

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
(0,0,0,1)

(4.18)

are non-singular. Moreover, from (3.98), we calculate

det
(

1
2πi

F
eϑ,fu′′

)
(0, 0, 0, 1) =

22n−2d−2

π2n−2d+2
(|μd+1| . . . |μn|)2,

det
(

1
2πi

F
eϑ,fu′′

)
(0, 0, 0, 1) =

22n−2

π2n−d+2
(|μ1| . . . |μd|)(|μd+1| . . . |μn|)2.

(4.19)

Hence, near (p, p) and ϑ̃ = 1, we can solve (4.12) and (4.13) and the solutions are
unique. Let

ũ′′ = α(x, y) = (α2d+1(x, y), . . . , α2n+1(x, y)) ∈ C∞(U × U, C2n−2d+1),

ϑ̃ = γ(x, y) ∈ C∞(U × U, C),
(4.20)

and

ũ′′ = β(x, y) = (βd+1(x, y), . . . , β2n+1(x, y)) ∈ C∞(U × U, C2n−d+1),

ϑ̃ = δ(x, y) ∈ C ∞(U × U, C)
(4.21)

be the solutions of (4.12) and (4.13), respectively. From (4.14), it is easy to see that

β(x, y) = (βd+1(x, y), . . . , β2n+1(x, y))

= (0, . . . , 0, α2d+1(x, y), . . . , α2n+1(x, y)),

γ(x, y) = δ(x, y).

(4.22)

From (4.22), we see that the value of Φ̃1(x, ũ′′) + ϑ̃Φ̃2(ũ′′, y) at critical points ũ′′ =
α(x, y), ϑ̃ = γ(x, y) is equal to the value of Φ̃1(x, ũ′′)+ ϑ̃Φ̃2(ũ′′, y) at critical points
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ũ′′ = β(x, y), ϑ̃ = δ(x, y). Put

Φ3(x, y) := Φ̃1(x, α(x, y)) + γ(x, y)Φ̃2(α(x, y), y)

= Φ̃1(x, β(x, y)) + δ(x, y)Φ̃2(β(x, y), y). (4.23)

Then Φ3(x, y) is a complex phase function, Im Φ3(x, y) ≥ 0 and Φ3(x, y) =
Φ3(x′′, y′′). It is easy to check that

dxΦ3(x, x) = −dyΦ3(x, x) = dxΦ(x, x)

= −dyΦ(x, x) = −λ(x)ω0(x), λ(x) > 0, for x ∈ U ∩ Y . (4.24)

From now on we take U small enough so that the Levi form is positive on U and

dxΦ3(x, y) �= 0, dyΦ3(x, y) �= 0, for every (x, y) ∈ U × U (4.25)

and a0(x, y) �= 0, for every (x, y) ∈ U × U , where a0(x, y) ∈ C ∞(U × U) is as
in (3.85).

Fix an open neighborhood U � U of p with Ω̂2×Ω̂3 ⊂ U , where Ω̂2 � Ω2 ⊂ Rd is
an open neighborhood of 0 ∈ Rd and Ω̂3 � Ω3 ⊂ R2n+1−2d is an open neighborhood
of 0 ∈ R2n+1−2d.

Theorem 4.1. The phase functions Φ and Φ3 are equivalent on U , that is, for any
b1 ∈ S

n− d
2

cl (U × U × R+) there exist b̂1, b2 ∈ S
n−d

2
cl (U × U × R+) such that∫ ∞

0

eiΦ(x,y)tb1(x, y, t)dt ≡
∫ ∞

0

eiΦ3(x,y)tb2(x, y, t)dt on U × U ,

∫ ∞

0

eiΦ(x,y)tb̂1(x, y, t)dt ≡
∫ ∞

0

eiΦ3(x,y)tb1(x, y, t)dt on U × U .

(4.26)

Proof. We consider the kernel (SG ◦ SG)(·, ·) on U . Let U � U1 � U be open
neighborhoods of p. Let χ(x′′) ∈ C∞

0 (Ω2 × Ω3). By (4.5) we can extend χ(x′′) to

W := {g · x : g ∈ G, x ∈ Ω2 × Ω3}
by χ(g · x′′) := χ(x′′), for every g ∈ G. Assume that χ = 1 on some neighborhood
of U1. Let χ1 ∈ C∞

0 (U) with χ1 = 1 on some neighborhood of U1 and suppχ1 ⊂
{x ∈ X : χ(x) = 1}. We have

χ1SG ◦ SG = χ1SGχ ◦ SG + χ1SG(1 − χ) ◦ SG. (4.27)

Let us first consider χ1SG(1 − χ) ◦ SG. We have

(χ1SG(1 − χ))(x, u) = χ1(x)
∫

G

S≤λ0(x, g · u)(1 − χ(u))dμ(g)

= χ1(x)
∫

G

S≤λ0(x, u)(1 − χ(g−1 · u))dμ(g), (4.28)

where λ0 > 0 is a small constant as in Theorem 3.19. If g−1 ·u /∈ {x ∈ X : χ(x) = 1},
since supp χ1 ⊂ {x ∈ X : χ(x) = 1} and χ(x) = χ(g ·x), for every g ∈ G, x ∈ X , we
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conclude that u /∈ supp χ1. From this observation and since that S≤λ0 is smoothing
away the diagonal on GU (see Theorem 3.22), we deduce that χ1SG(1 − χ) is
smoothing and hence

χ1SG(1 − χ) ◦ SG ≡ 0 on X × X. (4.29)

From (4.27) and (4.29), we get

χ1SG ◦ SG ≡ χ1SGχ ◦ SG on X × X. (4.30)

From Theorem 3.25 and using that S∗
G = SG, where S∗

G is the adjoint of SG with
respect to ( · , · ), we obtain that on U ,

(χ1SGχ ◦ SG)(x, y)

≡
∫

Ω2×Ω3

∫ ∞

0

∫ ∞

0

eiΦ∗(x,u′′)t+iΦ(u′′,y)sχ1(x)a∗(x′′, u′′, t)Veff (u′′)

×χ(u′′)a(u′′, y′′, s)dsdtdv(u′′)

≡
∫

Ω2×Ω3

∫ ∞

0

∫ ∞

0

eiΦ1(x,u′′)t+iΦ2(u′′,y)sχ1(x)b(x, u′′, t)

×χ(u′′)c(u′′, y, s)dsdtdv(u′′) (here we used (4.10))

≡
∫

Ω2×Ω3

∫ ∞

0

∫ ∞

0

ei(Φ1(x,u′′)+Φ2(u
′′,y)ϑ)t

×χ1(x)b(x, u′′, t)χ(u′′)c(u′′, y, tϑ)tdϑdtdv(u′′), (4.31)

where s = ϑt, dμ(g)dv(u′′) = dv(x) on U , a∗(x′′, u′′, t) = a(u′′, x′′, t) and

b(x, y, t), c(x, y, t) ∈ S
n−d

2
cl (U × U × R+),

b0(x, x) �= 0, c0(x, x) �= 0, for any x ∈ U ∩ Y (cf. Notation (3.76)).
(4.32)

We apply the complex stationary phase formula of Melin–Sjöstrand [45] to
carry out the dv(u′′)dϑ integration in (4.31). This yields the existence of a symbol

d(x, y, t) ∈ S
n−d

2
cl (U ×U ×R+) with the expansion d(x, y, t) ∼ ∑∞

j=0 tn−
d
2−jdj(x, y)

in S
n−d

2
1,0 (U × U × R+) (cf. (3.76)) with d0(x, x) �= 0 for x ∈ U ∩ Y and

(χ1SGχ ◦ SG)(x, y) ≡
∫ ∞

0

eiΦ3(x,y)td(x, y, t)dt on U × U. (4.33)

From (4.30), (4.33), we deduce that∫ ∞

0

eiΦ3(x,y)td(x, y, t)dt ≡
∫ ∞

0

eiΦ(x,y)tχ1(x)a(x, y, t)dt on U × U. (4.34)

Note that Φ3 and Φ are independent of x′ and y′. By the Malgrange preparation
theorem we may assume that Φ3 and Φ have the form

Φ3(x′′, y′′) = y2n+1 + h(x′′, ẙ′′),

Φ(x′′, y′′) = y2n+1 + h1(x′′, ẙ′′),
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where Φ̂3(x′′, ẙ′′), Φ̂(x′′, ẙ′′) ∈ C∞(U × U). From (4.34), we can repeat the proof
of [28, Theorem 5.2] and deduce that Φ3(x, y)−Φ(x, y) vanishes to infinite order at
diag (Y ×Y ). Since Φ3(x, y) and Φ(x, y) are independent of x′, y′, we conclude that
Φ3(x, y) − Φ(x, y) vanishes to infinite order on the underlying canonical relation

{(x, g · x) : x ∈ Y, g ∈ G} ∩ (U × U).

Hence, Φ and Φ3 are equivalent on U . For the convenience of the reader, we sketch
briefly the idea of the proof. We will use some semi-classical notations as in the
proof of [28, Theorem 5.2]. Suppose that U = U ′ × (−ε, ε), ε > 0, U ′ is an open set
of R2n. Let τ ∈ C∞

c ((−ε, ε)), τ ≥ 0, τ ≡ 1 on [− ε
2 , ε

2 ]. For each k > 0, we consider
the distributions (see the proof of [28, Theorem 5.2])

Ak : u �→
∫ ∫ ∞

0

ei(y2n+1+h(x′′,ẙ′′))t−iky2n+1d(x, y, t)τ(y2n+1)u(̊y)dydt,

Bk : u �→
∫ ∫ ∞

0

ei(y2n+1+h1(x
′′,ẙ′′))t−iky2n+1τ(x)χ1(x)a(x, y, t)τ1τ(y2n+1)u(̊y)dydt,

for u ∈ C∞
0 (U ′), where ẙ = (y1, . . . , y2n). By using the stationary phase formula

of Melin–Sjöstrand [45], we can show that (cf. the proof of [29, Theorem 3.12]) Ak

and Bk are smoothing operators and

Ak(x, ẙ) ≡ eikh(x′′,ẙ′′)g(x, ẙ, k) + O(k−∞),

Bk(x, ẙ) ≡ eikh1(x′′,ẙ′′)p(x, ẙ, k) + O(k−∞),

g(x, ẙ, k), p(x, ẙ, k) ∈ S
n− d

2
cl (U × U ′),

g(x, ẙ, k) ∼
∞∑

j=0

gj(x, ẙ)kn− d
2−j in S

n−d
2

cl (U × U ′),

p(x, ẙ, k) ∼
∞∑

j=0

pj(x, y′)kn− d
2−j in S

n− d
2

cl (U × U ′),

gj(x, ẙ), pj(x, ẙ) ∈ C ∞(U × U ′), j = 0, 1, . . . ,

g0(x0, x̊0) �= 0.

Since∫ ∞

0

ei(y2n+1+h(x′′,ẙ′′))td(x, y, t)dt −
∫ ∞

0

ei(y2n+1+h1(x
′′,ẙ′′))tχ1(x)a(x, y, t)dt

is smoothing, by using integration by parts with respect to y2n+1, it is easy to see
that Ak − Bk = O(k−∞) (see [29, Sec. 3]). From this observation, we can repeat
the argument as in the discussion after [28, (5.2)] and deduce that h− h1 vanishes
to infinite order at diag (Y × Y ). Since Φ3(x, y) and Φ(x, y) are independent of x′,
y′, we conclude that Φ3(x, y) −Φ(x, y) vanishes to infinite order on the underlying
canonical relation {(x, g · x) : x ∈ Y, g ∈ G} ∩ (U × U).
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The following two theorems follow from the proof of Theorem 4.1, (4.10), (4.23),
the proof of (4.34), the complex stationary phase formula of Melin–Sjöstrand [45].

Theorem 4.2. Consider the Fourier integral operators

A(x, y) =
∫ ∞

0

eiΦ(x,y)ta(x, y, t)dt, B(x, y) =
∫ ∞

0

eiΦ(x,y)tb(x, y, t)dt,

with symbols a(x, y, t) ∈ Sk
cl (U×U×R+) and b(x, y, t) ∈ S�

cl (U×U×R+). Consider
χ(x′′) ∈ C∞

0 (Ω̂2 × Ω̂3). Then, we have∫
A(x, u′′)χ(u′′)B(u′′, y)dv(u′′) ≡

∫ ∞

0

eiΦ(x,y)tc(x, y, t)dt on U × U ,

with c(x, y, t) ∈ S
k+�−(n− d

2 )

cl (U × U × R+). For x ∈ Y ∩ U we have

c0(x, x) = 2−n− d
2 +1πn− d

2 +1|detLx|−1|detRx| 12 a0(x, x)b0(x, x)χ(x′′), (4.35)

where detRx is the determinant Rx cf. (3.83). Moreover, if there are N1, N2 ∈ N∗,
C > 0, such that for all x0 ∈ Y ∩ U ,

|a0(x, y)| ≤ C|(x, y) − (x0, x0)|N1 , |b0(x, y)| ≤ C|(x, y) − (x0, x0)|N2 , (4.36)

then there exists Ĉ > 0 such that for all x0 ∈ Y ∩ U
|c0(x, y)| ≤ Ĉ|(x, y) − (x0, x0)|N1+N2 . (4.37)

Proof. By (4.10) and since Φ, Φ1, Φ2 and Φ∗ are independent of (x′, y′), Φ − Φ2,
Φ∗ − Φ1 vanish to infinite order on the underlying canonical relation

{(g · x, x) : x ∈ Y, g ∈ G}.
Hence, we can change the phase of A to Φ1 and the phase of B to Φ2. Thus,∫

A(x, u′′)χ(u′′)B(u′′, y)dv(u′′)

≡
∫

dt

∫ ∞

0

ds

∫ ∞

0

eiΦ1(x,u′′)t+iΦ2(u′′,y)se(x, u′′, t)f(u′′, y, s)χ(u′′)du′′,

for some e ∈ Sk
cl (U × U × R+), f ∈ S�

cl (U × U × R+) such that the leading terms
e0, f0 of e, f , respectively, satisfy (4.36). From (4.23), the proof of (4.34) and the
complex stationary phase formula of Melin–Sjöstrand [45], we get∫

A(x, u′′)χ(u′′)B(u′′, y)dv(u′′)

≡
∫ ∞

0

dt

∫ ∫ ∞

0

eit(Φ1(x,u′′)+γΦ2(u
′′,y))te(x, u′′, t)f(u′′, y, γt)χ(u′′)du′′dγ

≡
∫ ∞

0

eiΦ(x,y)tc(x, y, t)dt on U × U ,

with c(x, y, t) ∈ S
k+�−(n−d

2 )

cl (U×U×R+) (as we integrate over u′′ and γ, whose total
dimension is 2n− d + 2, we need to lower the order by n + 1− d/2; however, due to
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the factor t in the integral we gain one order, thus we get the order k+ l−(n−d/2))
and

c0(x, y) = g(x, y)ẽ0(x, β(x, y))f̃0(β(x, y), y), (4.38)

for some smooth function g, where β(x, y) is as in (4.21), ẽ0, f̃0 denote almost
analytic extensions of e0, f0, respectively. Since β(x, x) = x for every x ∈ Y , we
conclude that ẽ0(x, β(x, y)) and f̃0(β(x, y), y) have vanishing order at least N1 and
N2 on diag (Y × Y ), respectively. This observation and (4.38) yield (4.37).

Theorem 4.3. Consider the Fourier integral operators

A(x, y′′) =
∫ ∞

0

eiΦ(x,y′′)tα(x, y′′, t)dt, B(x′′, y) =
∫ ∞

0

eiΦ(x′′,y)tβ(x′′, y, t)dt,

with symbols α(x, y′′, t) ∈ Sk
cl (U × Ω3 × R+) and β(x′′, y, t) ∈ S�

cl (Ω3 × U × R+).
Let χ1(x′′) ∈ C∞

0 (Ω3). Then, we have∫
A(x, u′′)χ1(u′′)B(u′′, y)dv(u′′) ≡

∫ ∞

0

eiΦ(x,y)tγ(x, y, t)dt on U × U ,

with γ(x, y, t) ∈ S
k+�−(n−d)
cl (U × U × R+) where

γ0(x, x) = 2−n+1πn−d+1|detLx|−1|detRx|α0(x, x′′)β0(x′′, x)χ1(x′′), x ∈ Y ∩ U.

(4.39)

Moreover, if there are N1, N2 ∈ N
∗, C > 0, such that for all x0 ∈ Y ∩ U we have

|α0(x, y′′)| ≤ C|(x, y′′) − (x0, x0)|N1 , |β0(x, y′′)| ≤ C|(x, y′′) − (x0, x0)|N2 ,

then there exists Ĉ > 0 such that for all x0 ∈ Y ∩ U ,

|γ0(x, y)| ≤ Ĉ|(x, y) − (x0, x0)|N1+N2 . (4.40)

The proof of Theorem 4.3 is similar to the proof of Theorem 4.2. We omit the
details.

Remark 4.4. (i) The reason why in Theorem 4.3 we integrate only with respect
to y′′ is that in the proof of our main results, we need to integrate over the
reduced space and this corresponds to the integration only with respect to y′′

variables.
(ii) Theorems 4.2 and 4.3 are about compositions of Fourier integral operators. In

general, the composition of Fourier integral operators correspond to composi-
tion of canonical relation but we do not use this point of view since in the proof
of our main results we need to know the precise form of the phase function of
the composition of our Fourier integral operators.

We introduce next the following notion.
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Definition 4.5. Let H : C∞(X) → C∞(X)G be a continuous operator with dis-
tribution kernel H(x, y) ∈ D ′(X × X) and k ∈ R, � ∈ N.

(i) We say that H is a complex Fourier integral operator of G-Szegő type of leading
order (k, �), if for every open set D of X with D ∩ Y = ∅,

χH and Hχ are smoothing operators on X , for every χ ∈ C ∞
0 (D) (4.41)

and for every p ∈ Y and any open coordinate neighborhood (U, x =
(x1, . . . , x2n+1)) of p, we have

H(x, y) ≡
∫ ∞

0

eiΦ(x,y)ta(x, y, t)dt on U × U (4.42)

with Φ(x, y) ∈ C∞(U × U) as in Theorem 3.25, and

a(x, y, t) ∈ Sk
cl (U × U × R+) (4.43)

and under the notation (3.76),

∂|α|+|β|a0(x, y)
∂xα∂yβ

∣∣∣∣
x=y∈Y

= 0, for α, β ∈ N
2n+1, |α| + |β| ≤ � − 1. (4.44)

(ii) We say that H is a complex Fourier integral operator of G-Szegő type of order
(k, �), k ∈ R, � ∈ N, if (4.41), (4.42), (4.43) hold and there is a r(x, y, t) ∈
S−∞

cl (U × U × R+) such that

∂|α|+|β|(a(x, y, t) − r(x, y, t))
∂xα∂yβ

∣∣∣∣
x=y∈Y

= 0, for α, β ∈ N
2n+1,

|α| + |β| ≤ � − 1. (4.45)

Let Gk,�(X) denote the space of all complex Fourier integral operators of G-
Szegő type of leading order (k, �) and let Ĝk,�(X) denote the space of all complex
Fourier integral operators of G-Szegő type of order (k, �).

Note that (4.45) means that each coefficient aj has vanishing order at least �

at diag (Y × Y ). In Definition 4.5 we use the terminology G-Szegő type in order to
stress the dependence on the set Y and thus on the group G.

Let us explain briefly the role of the spaces Gk,�(X) and Ĝk,�(X). Our goal is to
study distribution kernel of σ ∗σ. In Theorem 4.13, we will show that C0σ

∗σ is of
the same type as SG and with the same leading term, where C0 is a constant. In the
terminology introduced in Definition 4.5, C0 σ ∗σ − SG ∈ Gn−(d/2),1(X). To prove
our main result, we need to show that C0 σ ∗σ − SG is “microlocally small”, and it
suffices to prove that elements H ∈ Gn−(d/2),1(X) have good regularity properties
(see (4.58)).

Let H = H0 + H1, where H0 ∈ Gn−(d/2),1(X) is the leading term of H and
H1 ∈ Gn−(d/2)−1,0(X) is the lower order term of H . By using calculus of complex
Fourier integral operators, we can show that when we compose H1 with itself, the
order of the composition will decrease. More precisely, HN

1 ∈ Gn−(d/2)−N,0(X), for
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every N ∈ N∗. Hence, for large N , HN
1 has good regularity properties and hence

H1 itself has good regularity properties.
In order to handle H0 we observe that when we compose H0 with itself the

order of the composition will not decrease, that is, HN
0 is still in Gn−(d/2),1(X)

for every N ∈ N∗. To get good regularity properties, we need the space Ĝk,�(X).
Note that the space Ĝk,�(X) is the subspace of Gk,�(X) whose elements have full
symbols have vanishing order at least � on diag(Y × Y ). The key observation is
that the leading symbol of HN

0 has vanishing order at least N on diag(Y × Y ).
We write HN

0 = R0,N + R1,N , where R1,N ∈ Gn−(d/2)−1,0(X) is the lower order
term of HN

0 and R0,N ∈ Ĝn−(d/2),N(X) is the the leading term of HN
0 . Since the

full symbol of R0,N has vanishing order at least N at diag(Y × Y ), even the order
of R0,N is high, R0,N still has good regularity properties if N is large. Note that
for an element A ∈ Gk,�(X), only the leading symbol of A has vanishing order at
least � on diag(Y × Y ). Hence even for large � we still do not have good regularity
property for A in general. That is why we need the space Ĝk,�(X).

Remark 4.6. In the following, we will establish L2 continuity and regularity prop-
erties for H ∈ Gk,�(X) under certain assumptions on k, � (see Theorem 4.10).
Hörmander [25] already established the L2 continuity for complex Fourier integral
operators but we cannot apply Hörmander’s results to our situation. More precisely,
from the main results in [25], we have that for H ∈ Gn−(d/2)−m,0(X) with m ∈ N,
the map H : Hs(X) → Hs+m(X) is continuous for every s ∈ R. In this work, we
need the regularity property for H ∈ Gn−(d/2),�(X) for � large (see Lemma 4.9
and (4.58)) but Hörmander’s result can only be applied to � = 0.

From Theorem 4.2, we deduce the following.

Theorem 4.7. Let H1 ∈ Gk1,�1(X), H2 ∈ Gk2,�2(X), where k1, �1, k2, �2 ∈ R.
Then,

H1 ◦ H2 ∈ Gk1+k2−(n− d
2 ),�1+�2

(X).

Recall that ‖ · ‖s denotes the standard Sobolev norm on X of order s.

Theorem 4.8. Let H ∈ Gk,0(X) with k ≤ n − d
2 − 1. Then, there exists C > 0

such that for any u ∈ C∞(X),

‖Hu‖ ≤ C‖u‖. (4.46)

Moreover, for every s ∈ N∗, there exist Ns ∈ N∗ and Cs > 0 such that for any
u ∈ C∞(X),

‖HNsu‖s ≤ Cs‖u‖. (4.47)

Proof. Fix s ∈ N∗. By Theorem 4.7, for any Ns ∈ N∗ we have HNs ∈
GNsk−(Ns−1)(n−d

2 ),0(X). Taking now Ns ∈ N∗ such that Nsk − (Ns − 1)(n − d
2 ) <

−s − 2. We claim that HNs(x, y) ∈ C s(X × X). Since HNs is smoothing outside
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Y , we only need to check this property near Y . Let U be an open set of p ∈ Y . Fix
α, β ∈ N2n+1 with |α| + |β| ≤ s. Since HNs ∈ GNsk−(Ns−1)(n− d

2 ),0(X), we have

∂α
x ∂β

y HNs(x, y) ≡
∫ ∞

0

eitΦ(x,y)a(x, y, t),

a(x, y, t) ∈ S
Nsk−(Ns−1)(n− d

2 )+|α|+|β|
cl (U ×U ×R+). Since there exist C, Ĉ > 0 such

that ∫ ∞

1

e−tImΦ(x,y)|a(x, y, t)|dt ≤ C

∫ ∞

1

tNsk−(Ns−1)(n− d
2 )+|α|+|β|dt

≤ Ĉ

∫ ∞

1

t−2dt < ∞,

we conclude that HNs(x, y) ∈ C s(X × X) and (4.47) follows.
We now prove (4.46). We claim that for every � ∈ N∗, we have for any u ∈

C∞(X),

‖Hu‖2 ≤ ‖(H∗H)2
�

u‖2−�‖u‖2−2−�

, (4.48)

where H∗ is the adjoint of H . We have for any u ∈ C ∞(X),

‖Hu‖2 = (Hu , Hu ) = (H∗Hu , u) ≤ ‖H∗Hu‖‖u‖ (4.49)

and

‖H∗Hu‖2 = (H∗Hu , H∗Hu ) = ( (H∗H)2u , u) ≤ ‖(H∗H)2u‖‖u‖. (4.50)

We prove (4.48) by induction on �. From (4.49) and (4.50), we get (4.48) for � = 1.
Suppose that (4.48) holds for � ∈ N∗. We have for every u ∈ C∞(X),

‖(H∗H)2
�

u‖2 = ( (H∗H)2
�

u, (H∗H)2
�

u )

= ( (H∗H)2
�+1

u , u) ≤ ‖(H∗H)2
�+1

u‖‖u‖, (4.51)

From the induction hypothesis and (4.51), we get (4.48) for � + 1.
It is obvious that H∗ ∈ Gk,0 and hence H∗H ∈ G2k−(n− d

2 ),0. From this obser-
vation and (4.47), we deduce that for � large, there exists C > 0 such that for any
u ∈ C∞(X),

‖(H∗H)2
�

u‖ ≤ C‖u‖. (4.52)

From (4.48) and (4.52), we get (4.46).

Lemma 4.9. Let H ∈ Ĝk,2�(X). If k− � ≤ −s−2, for some s ∈ N, then H(x, y) ∈
C s(X × X).

Proof. Since H is smoothing away Y , we only need to prove that H(x, y) is in C s

near Y . Let p ∈ Y and x = (x1, . . . , x2n+1) be local coordinates as in the discussion
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before Theorem 3.28 defined in an open set U of p. We will use the same notations
as in the beginning of Sec. 4.1. On U , write

H(x, y) =
∫ ∞

0

eiΦ(x,y)ta(x, y, t)dt + F (x, y),

F (x, y) ∈ C ∞(U × U), a ∈ Sk
cl (U × U × R+). Let u ∈ C ∞

c (U). Since Hu is G-
invariant, Hu is independent of x′ and hence on U ,

(Hu)(x) = (Hu)(x′′) =
∫ ∞

0

eiΦ(x,y)ta(x′′, y, t)u(y)dv(y)dt +
∫

F (x′′, y)u(y)dv(y).

Hence,

H(x, y) ≡
∫ ∞

0

eiΦ(x,y)ta(x′′, y, t)dt on U × U.

We are going to prove the lemma by induction over � ∈ N. Let � = 0. Let P and
Q be differential operators on U with ord (P ) + ord (Q) ≤ s. Then the symbol of
PHQ is of order ≤ k+ord (P )+ord (Q) ≤ k+s ≤ −2 and hence the integral over t

converges. We get that the lemma holds for � = 0. We assume that the lemma holds
for some � = �0 ∈ N. We are going to prove that the lemma holds for � = �0 + 1.
Since all the asymptotics of a have vanishing order at least 2�0 +2 on diag (Y ×Y ),
we may assume for simplicity that a(x′′, y, t) = tkb(x′′, y) and b has vanishing order
at least 2�0 + 2 on diag (Y × Y ). The Malgrange preparation theorem entails that
there exist a neighborhood U0 ⊂ U of p and functions f, g, Φ̂, b̂ ∈ C ∞(U0 × U0),
such that Φ̂ and b̂ are independent of y2n+1 and we have on U0 × U0,

Φ(x, y) = f(x, y)(y2n+1 + Φ̂(x′′, ẙ′′)),

b(x′′, y) = g(x′′, y)(y2n+1 + Φ̂(x′′, ẙ′′)) + b̂(x′′, ẙ′′).
(4.53)

We claim that g(x, y) and b̂ have vanishing order at least 2�0 + 1 and 2�0 + 2 on
diag (Y × Y ), respectively. For every j = 1, . . . , 2�0 + 1, we have

∂jb

∂yj
2n+1

= j
∂j−1g

∂yj−1
2n+1

+
∂jg

∂yj
2n+1

(y2n+1 + Φ̂(x′′, ẙ′′)). (4.54)

Taking j = 2�0 + 1 in (4.54) and using that (y2n+1 + Φ̂(x′′, ẙ′′))|diag (Y ×Y ) = 0,
we conclude that ∂2�0

y2n+1
g vanishes on diag (Y × Y ). Taking j = 2�0 in (4.54) we

conclude that ∂2�0−1
y2n+1

g has vanishing order at least 2 on diag (Y ×Y ). Continuing in
a similar way, we can show that for every j = 1, . . . , 2�0 + 1, ∂j−1

y2n+1
g has vanishing

order at least 2�0 + 2 − j on diag (Y × Y ). Now we have from (4.53),

∂b

∂y2n+1
= g +

∂g

∂y2n+1
(y2n+1 + Φ̂(x′′, ẙ′′)). (4.55)

Since ∂y2n+1g has vanishing order at least 2�0 on diag (Y ×Y ), we deduce that g(x, y)
has vanishing order at least 2�0+1 on diag (Y ×Y ). Thus, b̂ = b−g(y2n+1+Φ̂(x′′, ẙ′′))
has vanishing order at least 2�0 + 2 at diag (Y × Y ). The claim follows.
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By using integration by parts, we have∫ ∞

0

eitΦ(x,y)tkb(x′′, y)dt ≡
∫ ∞

0

eitΦ(x,y)tk(g(x, y)(y2n+1 + Φ̂(x′′, ẙ′′)) + b̂(x′′, ẙ))dt

≡ I1 + I2, where

I1(x, y) ≡
∫ ∞

0

eitΦ(x,y)kitk−1 g

f
(x, y)dt,

I2(x, y) ≡
∫ ∞

0

eitΦ(x,y)tk b̂(x′′, ẙ)dt.

Since g has vanishing order at least 2�0 + 1 and k − 1− �0 ≤ −s− 2, we deduce by
the induction assumption that I1(x, y) ∈ C s(U0 ×U0). Since b̂(x′′, ẙ) has vanishing
order at least 2�0 + 2 on diag (Y × Y ), there exist C, Ĉ > 0 such that we have

|b̂(x′′, ẙ)| ≤ C|(x′′, y) − ((0, x′′), (0, x̊′′))|2�0+2

≤ Ĉ(|x̂′′|2 + |̊x′′ − ẙ′′|2 + |ŷ′′|2)�0+1, (4.56)

where x̊′′ = (x2d+1, . . . , x2n). From (3.93) and (4.56), there exist c, Ĉ > 0, C1, C2 >

0 such that∣∣∣∣
∫ ∞

1

eitΦ(x,y)tk b̂(x′′, ẙ)dt

∣∣∣∣ ≤
∫ ∞

1

e−tIm Φtk|b̂(x′′, ẙ)|dt

≤
∫ ∞

1

e−tc(|x̂′′|2+|̊x′′−ẙ′′|2+|ŷ′′|)2tk

× Ĉ(|x̂′′|2 + |̊x′′ − ẙ′′|2 + |ŷ′′|2)�0+1dt

≤ C1

∫ ∞

1

tk−�0−1dt ≤ C2

∫ ∞

1

t−s−2dt < ∞.

Let α, β ∈ N2n+1 with |α|+ |β| ≤ s. We can repeat the procedure above with minor
changes and deduce that∫ ∞

1

|∂α
x ∂β

y (eitΦ(x,y)tk b̂(x′′, ẙ))|dt ≤ C3

∫ ∞

1

tk−�0−1+|α|+|β| ≤ C4

∫ ∞

1

t−2dt < ∞,

where C3, C4 > 0 are constants. Hence I2(x, y) ∈ C s(U0 ×U0). The assertion holds
thus for � = �0 + 1 and the lemma follows.

In the proof of our main result, we need the following.

Theorem 4.10. Let H ∈ Gn− d
2 ,1(X). Then there exists C > 0 such that for any

u ∈ C∞(X),

‖Hu‖ ≤ C‖u‖. (4.57)
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Moreover, for every s ∈ N∗, there exist Ns ∈ N∗ and Cs > 0 such that for any
u ∈ C∞(X),

‖HNsu‖s ≤ Cs‖u‖. (4.58)

Proof. From Theorem 4.2, we see that for every N ∈ N∗, we have

HN = H1,N + H2,N ,

H1,N ∈ Ĝn− d
2 ,N (X), H2,N ∈ Gn− d

2−1,0(X).
(4.59)

Fix s ∈ N∗. Due to Lemma 4.9 there exists N � 1 such that H1,N (x, y) ∈ C s(X×X)
and for every j ∈ N∗, there exists Cj > 0 such that for every u ∈ C ∞(X) we have

‖Hj
1,Nu‖s ≤ Cj‖u‖. (4.60)

Since H2,N ∈ Gn− d
2−1,0(X), Theorem 4.8 shows that there exist Ks ∈ N∗ and

Ĉs > 0 so that

‖HKs

2,Nu‖s ≤ Ĉs‖u‖, for u ∈ C ∞(X). (4.61)

We have

HNKs = (H1,N + H2,N )Ks . (4.62)

Let A := Ha1
1,NHb1

2,N · · ·Hap

1,NH
bp

2,N , where aj, bj ∈ N, j = 1, . . . , p,
∑p

j=1(aj + bj) =
Ks. We claim that

A : L2(X) → Hs(X) is continuous. (4.63)

If a1 = a2 = . . . = ap = 0, then, A = HKs

2,N . From (4.61), we get (4.63). Assume that
aj0 �= 0, for some j0 ∈ {1, 2, . . . , p}. Let Λs be a classical elliptic pseudodifferential
operator on X of order s with inverse Λ−s. By the complex stationary phase formula
of Melin-Sjöstrand, we have Λs ◦H2,N ◦Λ−s ∈ Gn− d

2−1,0(X). From this observation
and (4.46), we see that

H2,N : Hs(X) → Hs(X) is continuous. (4.64)

By (4.60) and (4.64) we deduce that

H1,N ◦ H2,N and H2,N ◦ H1,N : L2(X) → Hs(X) are continuous. (4.65)

From (4.65), we get the claim (4.63). From (4.62) and (4.63), we get (4.58) with
Ns = NKs. Using (4.58) we can repeat the proof of (4.46) and obtain (4.57).

Let H ∈ Gn− d
2 ,1(X). From (4.57), we can extend I−H to a bounded operator in

I − H : L2(X) → L2(X).
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Theorem 4.11. Let H ∈ Gn− d
2 ,1(X) and extend I − H to a bounded operator in

I − H :L2(X) → L2(X)

by density. Then Ker (I −H) is a finite-dimensional subspace of C∞(X) and there
exists C > 0 such that

‖(I − H)u‖ ≥ C‖u‖, for any u ∈ L2(X), u ⊥ Ker (I − H). (4.66)

Proof. Fix s ∈ N
∗. Theorem 4.10 shows that we can extend HNs to a bounded

operator

HNs : L2(X) → Hs(X), (4.67)

by density. Now, let u ∈ Ker (I − H). Then,

(I − HNs)u = (I + H + · · · + HNs−1)(I − H)u = 0 (4.68)

and hence u = HNsu ∈ Hs(X). Since s is arbitrary, we deduce that u ∈ C∞(X).
Moreover, from (4.68), we can apply Rellich’s theorem and conclude that Ker (I−H)
is a finite-dimensional subspace of C∞(X). Since the argument is standard, we omit
the details.

We now prove (4.66). Assume that (4.66) is not true. For every j ∈ N∗ we can
find uj ∈ L2(X) with uj ⊥ Ker (I − H) and ‖uj‖ = 1 such that

‖(I − H)uj‖ ≤ 1
j
· (4.69)

Put vj := (I − H)uj . We have for any j ∈ N∗,

(I − HNs)uj = (I + H + . . . + HNs−1)vj . (4.70)

From (4.57) and (4.69) we see that there exists C > 0 such that

‖(I + H + . . . + HNs−1)vj‖ ≤ C

j
, j ∈ N

∗. (4.71)

By (4.67) and since ‖uj‖ = 1 we conclude that there exists Ĉ > 0 such that for any
j ∈ N∗,

‖HNsuj‖s ≤ Ĉ. (4.72)

By Rellich’s theorem, we can find a subsequence HNsujk
, 1 ≤ j1 < j2 < . . ., such

that HNsujk
converges to some u in L2(X) as k → ∞. From this observation, (4.70)

and (4.71), we deduce that ujk
converges to u in L2(X) with ‖u‖ = 1 as k → ∞.

By (4.57) and (4.69), we get u ∈ Ker (I −H). Since ujk
⊥ Ker (I −H) for every k,

we have u ⊥ Ker (I − H). We get a contradiction and (4.66) follows.
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4.2. The distribution kernels of σ and σ∗σ; proof of Theorem 1.5

We are now ready to study the distribution kernels of σ and σσ∗ in (4.1). We will use
the same notations as before. Let LXG,q be the Levi form on XG at q ∈ XG induced
naturally from L . The Hermitian metric gCTX on CTX restricts to a metric on
T 1,0X which in turn induces a Hermitian metric on T 1,0XG. Let μd+1, . . . , μn be
the eigenvalues of LXG,q with respect to this Hermitian metric. We set

det LXG,q = μd+1 . . . μn. (4.73)

Recall that π : Y = μ−1(0) → XG is the natural projection. Let

SXG : L2(XG) → Ker∂b,XG = H0
b (XG), (4.74)

be the Szegő projection on XG (cf. (2.14)). Since XG is assumed to be strictly
pseudoconvex and ∂b,XG has closed range in L2 on XG, SXG is smoothing away the
diagonal (see [8], [27, Theorem 1.2], [30, Theorem 4.7]). Hence, for any x, y ∈ Y

with π(x) �= π(y), there are open neighborhoods U of π(x) in XG and U1 of π(y)
in XG such that for all χ̂ ∈ C∞

0 (U), χ̃ ∈ C∞
0 (U1), we have

χ̂SXG χ̃ ≡ 0 on XG × XG. (4.75)

We will use the same notations as in Sec. 4.1. Fix p ∈ Y and let x =
(x1, . . . , x2n+1) be the local coordinates and Ω3 ⊂ R2n+1−2d be an open set as
in the discussion at the beginning of Sec. 4.1. From now on, we identify x′′ as
local coordinates of XG near q := π(p) ∈ XG and we identify W := Ω3 with an
neighborhood of π(p) in XG. Note that from (3.90), on μ−1(0)/G,

ω0,G(x) = (1 + O(|x|))dx2n+1 +
n∑

j=d+1

2μj(x2jdx2j−1 − x2j−1dx2j)

+
2n∑

j=2d+1

bjx2n+1dxj + O(|x|2). (4.76)

From (3.79), (4.76), we see that μj , j = d + 1, . . . , n in (4.76) are the same μj

in (3.79) and cj = b2j−1 − ib2j. From this observation and applying [8] (more
precisely Theorems 3.22, 3.24) to μ−1(0)/G, we have

SXG(x′′, y′′) ≡
∫ ∞

0

eiϕ(x′′,y′′)tβ(x′′, y′′, t)dt on W × W, (4.77)

where β(x′′, y′′, t) ∈ Sn−d
cl (W × W × R+) with

β0(x′′, x′′) =
1
2
π−(n−d)−1|det LXG,x′′ |, x′′ ∈ W, (4.78)
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and ϕ(x′′, y′′) ∈ C ∞(W × W ) with

dx′′ϕ(x′′, x′′) = −dy′′ϕ(x′′, x′′) = −λ(x′′)ω0,G(x′′), λ(x′′) > 0,

Im ϕ(x′′, y′′) ≥ c

2n∑
j=2d+1

|xj − yj |2, for some c > 0,

∂b,x′′ϕ(x′′, y′′) vanishes to infinite order at x′′ = y′′,

ϕ(x′′, y′′) = −x2n+1 + y2n+1 + i

n∑
j=d+1

|μj ||zj − wj |2

+
n∑

j=d+1

iμj(zjwj − zjwj)

+
n∑

j=d+1

1
2
(b2j−1 − ib2j)(−zjx2n+1 + wjy2n+1)

+
n∑

j=d+1

1
2
(b2j−1 + ib2j)(−zjx2n+1 + wjy2n+1)

+ (x2n+1 − y2n+1)r(x′′, y′′) + O(|(x′′, y′′)|3),

(4.79)

where r(x′′, y′′) ∈ C ∞(W × W ), r(0, 0) = 0, zj = x2j−1 + ix2j , j = d + 1, . . . , n.
From Theorem 3.28, it is not difficult to see that the phase function Φ(x′′, y′′)

in Theorem 3.25 satisfies (4.79). Hence, there is a function h ∈ C∞(W × W ) with
h(x′′, x′′) �= 0 for any x′′ ∈ W , such that ϕ(x′′, y′′)− h(x′′, y′′)Φ(x′′, y′′) vanishes to
infinite order at x′′ = y′′ (see Theorem 3.24). We can replace the phase ϕ(x′′, y′′)
by Φ(x′′, y′′) and we have

SXG(x′′, y′′) ≡
∫ ∞

0

eiΦ(x′′,y′′)tβ(x′′, y′′, t)dt on W × W. (4.80)

Theorem 4.12. If y /∈ Y, then for any open neighborhood D of y with D ∩ Y = ∅,
we have

σ ≡ 0 on XG × D. (4.81)

Let x0, y0 ∈ Y . If π(x0) �= π(y0), then there are open neighborhoods UG of π(x0) in
XG and U1 of y0 in X such that

σ ≡ 0 on UG × U1. (4.82)

Let p ∈ Y and let x = (x1, . . . , x2n+1) be the local coordinates, and U an open
neighborhood of p as at the discussion in the beginning of Sec. 4.1. Then under the
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notations at (3.76), (4.77), there exists α(x′′, y′′, t) ∈ S
n− 3

4 d

cl (W ×U ×R+) such that

σ(x′′, y) ≡
∫ ∞

0

eiΦ(x′′,y′′)tα(x′′, y′′, t)dt on W × U,

α0(x′′, x′′) = 2−n+2d−1π
d
2−n−1 1√

Veff (x′′)
|det Lx′′ |

× |det Rx′′ |− 3
4 , for x′′ ∈ W.

(4.83)

Proof. By Theorem 3.20, SG is smoothing away Y , which implies (4.81) from
Theorem 3.27. Let x0, y0 ∈ Y . Assume that π(x0) �= π(y0). Let V1 be a G-invariant
neighborhood of y0 and x0 /∈ V1. We have

SG(x, y) =
∫

G

S≤λ0(x, g ◦ y)dμ(g),

where λ0 > 0 is as in Theorem 3.19. Since S≤λ0 is smoothing away the diagonal
near Y , for any neighborhood U1 of x0 in X with U1 ∩ V1 = ∅, we have

SG ≡ 0 on U1 × V1. (4.84)

Let V̂G := {π(y) ∈ XG : y ∈ V1 ∩Y }. By (4.75) there is an open set ÛG of π(x0) in
XG such that

SXG ≡ 0 on ÛG × V̂G. (4.85)

The definition (4.1) of σ and Theorem 3.27, relations (4.84) and (4.85) yield (4.82).
Fix u = (u1, . . . , u2n+1) ∈ Y ∩ U . In view of (4.81) and (4.82), we

only need to show that (4.83) holds near u. We may assume that u =
(0, . . . , 0, u2d+1, . . . , u2n+1) = u′′. Let U2 be a small neighborhood of u. Let
χ(x′′) ∈ C∞

0 (Ω3). By (4.5) we can extend χ(x′′) to G·Ω3 by setting χ(g·x′′) := χ(x′′)
for every g ∈ G. Assume that χ = 1 on some neighborhood of U2. Let χ1 ∈ C∞

0 (XG)
with χ1 = 1 on some neighborhood of π(U2 ∩ Y ) ⊂ XG and suppχ1 ⊂ π({x ∈
Y : χ(x) = 1}). We have by (4.1),

χ1σ = χ1SXG ◦ E ◦ ιG ◦ fG ◦ ι∗ ◦ SG

= χ1SXG ◦ E ◦ ιG ◦ fG ◦ ι∗ ◦ χSG

+ χ1SXG ◦ E ◦ ιG ◦ fG ◦ ι∗ ◦ (1 − χ)SG. (4.86)

If u ∈ Y but u /∈ {x ∈ X : χ(x) = 1}, then π(u) /∈ supp χ1. From this observation,
Theorem 3.27 and (4.75), we get

χ1SXG ◦ E ◦ ιG ◦ fG ◦ ι∗ ◦ (1 − χ)SG ≡ 0 on XG × X. (4.87)

From (4.86) and (4.87), we get

χ1σ ≡ χ1SXG ◦ E ◦ ιG ◦ fG ◦ ι∗ ◦ χSG on XG × X. (4.88)
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From Theorem 3.25, (4.80) and (4.88), we can check that on W × U ,

χ1(x′′)σ(x′′, y) ≡
∫ ∞

0

∫
eiΦ(x′′,v′′)tβ(x′′, v′′, t)E ◦

×
(∫ ∞

0

χ(v′′)fG(v′′)eiΦ(v′′,y)sa(v′′, y, s)ds

)
dv(v′′)dt. (4.89)

From the asymptotic formula of Melin–Sjöstrand [45, (2.28)], we have

E ◦
(∫ ∞

0

χ(v′′)fG(v′′)eiΦ(v′′,y)sa(v′′, y, s)ds

)
≡
∫ ∞

0

eiΦ(v′′,y)sb(v′′, y, s)ds, (4.90)

where b(v′′, y, s) ∈ S
n− d

2− d
4

cl (W × U × R+) with

b0(v′′, v′′) = σ0
E(v′′,−ω0,G(v′′))χ(v′′)fG(v′′)a0(v′′, v′′),

where b0 denotes the leading term of b and σ0
E denotes the principal symbol of E,

a0 is as in (3.85). Since σ0
E(x, ξ) = |ξ|− d

4 and |ω0| = 1, we have

b0(v′′, v′′) = χ(v′′)fG(v′′)a0(v′′, v′′). (4.91)

From Theorem 4.3, (4.89) and (4.90), we get that there exists α(x′′, y′′, t) ∈
S

n− 3
4 d

cl (W × U × R+) such that

σ(x′′, y) ≡
∫ ∞

0

eiΦ(x′′,y′′)tα(x′′, y′′, t)dt on W × U. (4.92)

Now, we compute α0 at (x′′, x′′). From (1.19), (3.85), (4.39), (4.78) and (4.91), we
have that on {x′′ ∈ W ; χ(x′′) = 1},

α0(x′′, x′′) = 2−n+1πn−d+1|detLx′′ |−1|detRx′′ |b0(x′′, x′′)β0(x′′, x′′)

= 2−n+1πn−d+1|detLx′′ |−1|detRx′′ |fG(x′′)a0(x′′, x′′)β0(x′′, x′′)

= 2−n+1πn−d+1|detLx′′ |−1|detRx′′ ||detRx′′ |− 1
4
√

Veff (x′′)

× 2d−1 1
Veff (x′′)

π−n−1+ d
2 |detRx′′ |− 1

2 |det Lx′′ |

× 1
2
π−(n−d)−1|det LXG,x′′ |

= 2−n+2d−1π
d
2−n−1 1√

Veff (x′′)
|detLx′′ ||detRx′′ |− 3

4 . (4.93)

Here we used the fact that |det LXG,x′′ | = 2d|detLx′′ ||detRx′′ |−1. From (4.92)
and (4.93), we get (4.83).
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Let σ∗ : C∞(XG) → D ′(X) be the formal adjoint of σ. From Theorem 4.12 we
deduce that

σ∗ : C ∞(XG) → H0
b (X)G ∩ C∞(X)G. (4.94)

Let

A1 := σ∗σ : C∞(X) → H0
b (X)G,

A2 := σσ∗ : C∞(XG) → H0
b (XG).

(4.95)

Let A1(x, y) and A2(x, y) be the distribution kernels of A1 and A2, respectively.
In view of Theorems 4.2, 4.3 we can repeat the proof of Theorem 4.12 with minor
changes and deduce the following two theorems.

Theorem 4.13. With the notations used above, if y /∈ Y, then for any neighborhood
D of y with D ∩ Y = ∅, we have

A1 ≡ 0 on X × D. (4.96)

Let x, y ∈ Y . If π(x) �= π(y), then there are neighborhoods D1 of x in X and D2 of
y in X such that

A1 ≡ 0 on D1 × D2. (4.97)

Let p ∈ Y and let x = (x1, . . . , x2n+1) be the local coordinates as in the discussion
in the beginning of Sec. 4.1. Then there exists an open neighborhood U of p and a
symbol a(x′′, y′′, t) ∈ S

n− d
2

cl (U × U × R+) such that the following holds under the
notation (3.76),

A1(x, y) ≡
∫ ∞

0

eiΦ(x′′,y′′)ta(x′′, y′′, t)dt on U × U (4.98)

with

a0(x′′, x′′) = 2−3n+4d−1π−n−1 1
Veff (x′′)

|det Lx′′ |

× |det Rx′′ |− 1
2 , for x′′ ∈ U ∩ Y . (4.99)

Theorem 4.14. Let x, y ∈ Y . If π(x) �= π(y), then there are neighborhoods DG of
π(x) and VG of π(y) in XG such that

A2 ≡ 0 on DG × VG. (4.100)

Let p ∈ Y and let x = (x1, . . . , x2n+1) be the local coordinates as in the discussion
at the beginning of Sec. 4.1. Then there exists â(x′′, y′′, t) ∈ Sn−d

cl (W × W × R+)
such that by using the notations (3.76), (4.77), we have

A2(x′′, y′′) ≡
∫ ∞

0

eiΦ(x′′,y′′)tâ(x′′, y′′, t)dt on W × W, (4.101)
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with

â0(x′′, x′′) = 2−3n+ 5
2 d−1π−n+ d

2−1|det LXG,x′′ |, for x′′ ∈ W. (4.102)

Set

Q := −C0 σ∗σ + SG := −C0A1 + SG :

C ∞(X) → H0
b (X)G, with C0 = 23(n−d)πd/2. (4.103)

Since A1 = A1SG = SGA1, it is clear that

C0A1 = SG − Q = SG − QSG = (I − Q)SG = SG(I − Q) (4.104)

and

Q∗ = Q, (4.105)

where Q∗ is the formal adjoint of Q. From Theorems 3.25, 4.11 and 4.13, we get:

Theorem 4.15. The operator Q belongs to the class Gn− d
2 ,1(X) and hence I − Q

extends by density to a bounded self-adjoint operator I − Q : L2(X) → L2(X).

By Theorem 4.15 there exists C > 0 such that for every u ∈ H0
b (X)G ∩C ∞(X),

we have

(σu, σu )XG = (σ∗σu, u ) =
1

C0
( (I − Q)u, u) ≤ C‖u‖2. (4.106)

From (4.106), we deduce:

Corollary 4.16. There exists C > 0 such that

(σu, σu )XG ≤ C‖u‖2, for any u ∈ H0
b (X)G ∩ C ∞(X). (4.107)

Hence we can extend σ by density to a bounded operator

σ : H0
b (X)G → H0

b (XG).

From now on, we consider σ as a bounded operator σ : H0
b (X)G → H0

b (XG).

Theorem 4.17. Kerσ is a finite-dimensional subspace of H0
b (X) ∩ C∞(X).

Proof. From Theorem 4.11 we see that Ker (I−Q) is a finite-dimensional subspace
of the space C∞(X). Note that Kerσ ⊂ H0

b (X)G ∩ Ker (I − Q), so the theorem
follows.

From Theorem 4.14 we see that σσ∗ is a complex Fourier integral operator
with the same type as SXG . It is known that σσ∗ is a pseudodifferential operator
of order zero type (1

2 , 1
2 ) (see [27, Proposition 5.18]). Set C1 = π

d
2 23n− 5

2 d. Then
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the leading of the symbol of −C1σσ∗ + SXG vanishes on the diagonal x = y,
and it is known that −C1σσ∗ + SXG is a pseudodifferential operator of order − 1

2

and type (1
2 , 1

2 ) (see [27, Proposition 5.18]). By the classical Calderon–Vaillancourt
theorem [26, Chap. XVIII], we have for every s ∈ R,

σσ∗ : Hs(XG) → Hs(XG) is continuous,

−C1σσ∗ + SXG : Hs(XG) → Hs+ 1
2 (XG) is continuous.

(4.108)

From (4.108), we have a result similar to Theorem 4.10. Hence, we can apply the
proof of Corollary 4.16 with minor changes and deduce that there exists Ĉ > 0 such
that

(σ∗v, σ∗v ) ≤ Ĉ‖v‖2
XG

, for any v ∈ H0
b (XG) ∩ C∞(XG). (4.109)

Therefore we can extend σ∗ by density to a bounded operator

σ∗ : H0
b (XG) → H0

b (X)G.

We repeat the proof of Theorem 4.17 with minor changes and deduce:

Theorem 4.18. Kerσ∗ is a finite-dimensional subspace of H0
b (XG) ∩ C∞(XG).

Finally, we obtain:

Theorem 4.19. Kerσ and (Im σ)⊥ are finite-dimensional subspaces of H0
b (X)G ∩

C∞(X) and H0
b (XG) ∩ C∞(XG), respectively.

Proof. We only need to prove that (Imσ)⊥ is a finite-dimensional subspace of
C∞(XG). Note that (Im σ)⊥ ⊂ Kerσ∗. From this observation and Theorem 4.18,
the theorem follows.

Theorem 4.19 implies Theorem 1.5.

5. Proof of Theorem 1.2

The main goal of this section is to prove Theorem 1.2. Recall that the Riemannian
metrics gTX on X and gTXG on XG are given by Convention 2.8. Let ΔX and
ΔXG be the (positive) Laplacians on (X, gTX) and (XG, gTXG), respectively. For
s ∈ R we consider the classical pseudodifferential operators of order s on X and
XG, respectively,

Λs = (1 + ΔX)s/2, Λ̂s = (1 + ΔXG)s/2. (5.1)
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They are self-adjoint and positive with respect to the inner products (·, ·)X and
(·, ·)XG , respectively. In particular, the maps

Λs : H�(X) → H�−s(X), Λ̂s : H�(XG) → H�−s(XG), (5.2)

are injective for any � ∈ R. For u, v ∈ Hs(X), u′, v′ ∈ Hs(XG), we define the inner
products

(u, v)s := (Λsu, Λsv)X , (u′, v′)s := (Λ̂su, Λ̂sv)XG , (5.3)

and let ‖ · ‖s, ‖ · ‖XG,s be the corresponding norms.
Recall that the space Gk,�(X) is given by Definition 4.5 and SG ∈ Gn− d

2 ,0(X).

Theorem 5.1. Let A ∈ Gn− d
2 +γ,0(X), γ ∈ R. Then A can be extended continuously

to A : Hs(X) → Hs−γ(X) for every s ∈ R.

Proof. For every s ∈ R, put B := Λs−γAΛ−s. As Λs is G-invariant, we see from
complex stationary phase formula of Melin–Sjöstrand that B ∈ Gn− d

2 ,0(X). Near
Y , write B(x, y) ≡ ∫∞

0
eiΦ(x,y)tb(x, y, t)dt as in (4.42) and let b0(x, y) be the leading

term of b(x, y, t). Let P be a classical pseudodifferential operator of order 0 on X

with

σP (x, dxΦ(x, x))a0(x, x) = b0(x, x), (5.4)

for every x ∈ Y , where σP denotes the principal symbol of P and a0 is the leading
term of the expansion of SG (see (3.85)). The complex stationary phase formula
yields

B = PSG + R, R ∈ Gn− d
2 ,1(X). (5.5)

From Theorem 4.10, (5.5) and the fact that SG is L2 bounded, we deduce that
B = Λs−γAΛ−s is L2 bounded. This implies that there exists C1 > 0 such that for
every u ∈ C∞(X),

‖Au‖s−� = ‖Λs−γAΛ−sΛsu‖ ≤ C1‖Λsu‖ = C1‖u‖s. (5.6)

The theorem follows.

From Theorems 3.27, 5.1 and note that SG ∈ Gn− d
2 ,0(X), we deduce the follow-

ing regularity property of the G-invariant Szegő projector.

Corollary 5.2. For every s ∈ R, SG :Hs(X) → Hs(X) is continuous, and in
particular, H0

b (X)G ∩ C ∞(X) is dense in H0
b (X)G

s in Hs(X).

2250074-65



August 19, 2023 9:34 WSPC/S0219-1997 152-CCM 2250074

C.-Y. Hsiao, X. Ma & G. Marinescu

Due to Theorem 3.27 the map σG given by (1.5) has a well-defined extension

σG :C ∞(X) → H0
b (XG) ∩ C∞(XG), u �→ ιG ◦ ι∗ ◦ SGu.

Theorem 5.3. For every s ∈ Z there exists Cs > 0 such that

‖σGu‖2
XG,s− d

4
≤ Cs‖u‖2

s, for every u ∈ C ∞(X). (5.7)

Moreover, the map (1.5) can be extended continuously by density to a bounded
operator

σG,s := σG : H0
b (X)G

s → H0
b (XG)s− d

4
, (5.8)

for every s ∈ R.

Proof. Fix s ∈ R. Let (Λ̂s− d
4
σG)∗ : C∞(XG) → D ′(X) be the formal adjoint of

Λ̂s− d
4
σG : C∞(X) → C∞(XG). For u ∈ C∞(X), we have

‖σGu‖2
XG,s− d

4
= ( Λ̂s− d

4
σGu, Λ̂s− d

4
σGu )XG

= ( (Λ̂s− d
4
σG)∗(Λ̂s− d

4
σG)u , u ). (5.9)

We repeat the proof of Theorem 4.13 and conclude that

(Λ̂s− d
4
σG)∗(Λ̂s− d

4
σG) ∈ Gn− d

2 +2s,0(X). (5.10)

From Theorem 5.1 and (5.10), we deduce that there exist C, C1 > 0 such that

|( (Λ̂s− d
4
σG)∗(Λ̂s− d

4
σG)u , u )| ≤ C‖(Λ̂s− d

4
σG)∗(Λ̂s− d

4
σG)u‖−s‖u‖s

≤ C1‖u‖2
s, (5.11)

for every u ∈ C∞(X). From (5.9) and (5.11) we get (5.7).
By Theorem 3.27 and Corollary 5.2 we see that H0

b (X)G ∩ C∞(X) is dense
in H0

b (X)G
s , for every s ∈ R. From this observation and (5.7), we deduce that for

every s ∈ R the map (1.5) can be extended continuously by density to a bounded
operator σG,s as in (5.8).

Let fG ∈ C∞(Y )G be as in (1.19). We identify fG with a smooth function
on XG.

Theorem 5.4. For every s ∈ R, KerσG,s is a finite-dimensional subspace of
C∞(X). Moreover, KerσG,s is independent of s.

Proof. Let E be a classical pseudodifferential operator on XG with principal sym-
bol σE(x, ξ) = |ξ|− d

4 . Let for every s ∈ R,

σ̂G := SXG ◦ E ◦ fG ◦ σG : H0
b (X)G

s → H0
b (XG)s. (5.12)

We repeat the proof of Theorem 4.17 and deduce that Ker σ̂G is a finite-dimensional
subspace of C∞(X). Since KerσG ⊂ Ker σ̂G, the theorem follows.

Theorem 5.5. With σG,s as in (5.8), (Im σG,s)⊥ in (1.7) is a finite-dimensional
subspace of C ∞(XG) for every s ∈ R.
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Proof. Fix s ∈ R. By Corollary 5.2 and Theorem 5.3 we can extend σG,s in (5.8)
to Hs(X) by

σG : Hs(X) → Hs− d
4 (XG), u �→ σGSGu. (5.13)

We have Λ̂s− d
4
σG : C ∞(X) → C∞(XG). Let (Λ̂s− d

4
σG)∗ : D ′(XG) → D ′(X) be the

formal adjoint of Λ̂s−d
4
σG. We repeat the proof of Theorem 4.12 with minor changes

and deduce that (Λ̂s− d
4
σG)∗ : C∞(XG) → C∞(X). Let

Fs := SXGf2
GΛ̂−2sσG(Λ̂s− d

4
σG)∗Λ̂s− d

4
SXG : D ′(XG) → D ′(XG). (5.14)

For any u ∈ (Im σG,s)⊥ and v ∈ C ∞(X), by (1.7), we have

(v, SG(Λ̂s− d
4
σG)∗Λ̂s− d

4
SXGu) = (Λ̂s− d

4
σGSGv, Λ̂s− d

4
SXGu)XG

= (σGv, u)XG,s− d
4

= 0. (5.15)

In view of (5.15), we see that

(Im σG,s)⊥ ⊂ KerFs ∩ H0
b (XG)s. (5.16)

We repeat the proof of Theorem 4.14 and conclude as in (4.104) that Fs = C(I −
R)SXG , where C �= 0 is a constant and R is a complex Fourier integral operator
with the same phase and order as SXG and vanishing leading term on the diagonal.
More precisely, in the local coordinates x′′ of XG defined in an open set W of XG,
we have

R(x′′, y′′) ≡
∫ ∞

0

eiΦ(x′′,y′′)tr(x′′, y′′, t)dt, (5.17)

where Φ is as in (4.101), r ∈ Sn−d
cl (W ×W ×R+), r0(x′′, x′′) = 0 for every x′′ ∈ W ,

where r0 is the leading term of r. We repeat now the proof of Theorem 4.11 with
minor changes and deduce that Ker (I − R) is a finite-dimensional subspace of
C∞(XG). From (5.16) we deduce that (Im σG,s)⊥ ⊂ Ker (I − R). The theorem
follows.

Theorem 5.6. dim(Im σG,s)⊥ is independent of s.

Proof. Fix s ∈ R and let u ∈ (Im σG,s)⊥. By Theorem 5.5 we have u ∈ C∞(XG)∩
H0

b (XG). We have an orthogonal decomposition

u = σG, d
4
v + w, v ∈ H0

b (X)G
d
4
, w ∈ (Im σG, d

4
)⊥. (5.18)

We define a linear map

γs : (Im σG,s)⊥ → (Im σG, d
4
)⊥, γsu := w ∈ (Im σG, d

4
)⊥. (5.19)

We claim that γs is injective. Assume that γsu = 0. Then there exists v ∈ H0
b (X)G

d
4

such that u = σG, d
4
v. Let (vj) be a sequence in C∞(X) with vj → v in H

d
4 (X)

as j → ∞. By Corollary 5.2 we have SGvj → SGv = v in H
d
4 (X) as j → ∞.
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By Theorem 5.3 we have σG, d
4
SGvj → σG, d

4
v = u in L2(XG) as j → ∞. Since

u ∈ (Im σG,s)⊥, we have as j → ∞
0 = ( Λ̂s− d

4
σGSGvj , Λ̂s− d

4
u )XG = (σGSGvj , (Λ̂s− d

4
)2u )XG → (u , (Λ̂s−d

4
)2u )XG .

Hence ( u , (Λ̂s−d
4
)2u )XG = 0 and thus Λ̂s− d

4
u = 0. Since Λ̂s− d

4
is injective, we

get u = 0 and hence γs is injective. Since γs is injective, dim (ImσG,s)⊥ ≤
dim (ImσG, d

4
)⊥.

Similarly, we can repeat the procedure above and conclude that dim (Im
σG, d

4
)⊥ ≤ dim (ImσG,s)⊥. Thus, dim (Im σG,s)⊥ = dim (Im σG, d

4
)⊥. The theorem

follows.

Proof of Theorem 1.2. Theorems 5.4, 5.5 and 5.6 yield Theorem 1.2 for the
case when dimXG ≥ 3.

Assume now that dim XG = 1. Then XG is a union of circles. For simplicity,
suppose that XG = S1. The circle XG admits a natural S1 action eiθ :S1 × XG →
XG, (eiθ, z) → eiθz. For every m ∈ Z, put

L2
m(XG) :=

{
u ∈ L2(XG) : (eiθ)∗u = eimθu, for every eiθ ∈ S1

}
.

It is clear that L2(XG) = ⊕m∈ZL2
m(XG). By definition H0

b (XG) = ⊕m∈NL2
m(XG).

The Szegő projection on XG is the orthogonal projection: SXG : L2(XG) → H0
b (XG).

The S1 action induces a smooth vector field ∂
∂θ on XG. Fix a point p ∈ XG. Let x

be local coordinate of XG such that x(p) = 0 and ∂
∂x = ∂

∂θ . Then

SXG(x, y) ≡ 1
2π

∫ ∞

0

eit(x−y)dt. (5.20)

In particular, SXG(x, y) is a Fourier integral operator with complex phase. There-
fore, the above proof of Theorem 1.2 in the case dimXG ≥ 3 works also when
dim XG = 1.

Theorem 5.7. Let X be a three-dimensional compact orientable CR manifold and
let G be a compact Lie group acting on X such that the G-action preserves J and
ω0. We assume that X is pseudoconvex of finite type and that ∂b has closed range
in L2 on X. Then the conclusions of Theorem 1.2 hold.

Proof. It was shown in [12, Proposition 4.1] that there exists a bounded linear
operator G : Im ∂b → L2(X) such that S = I − G∂̄b. Furthermore G is smoothing
away the diagonal and maps smooth functions to smooth functions, where S denotes
the Szegő projector. Hence, the Szegő projector is smoothing outside the diagonal
and preserves the space of smooth functions. Moreover, G is a circle and dim XG = 1
in this case, thus the arguments above apply again.

Example 5.8. If X be a compact pseudoconvex three-dimensional CR manifold of
finite type admitting a transversal CR circle action, then ∂b has closed range in L2,
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see [31, §5.2]. Let M be a compact Riemann surface and (L, hL) be semi-positive
line bundle over M whose curvature RL vanishes to finite order at any point. Then
the Grauert tube X of L∗ (2.19) is a compact pseudoconvex three-dimensional CR
manifold of finite type (cf. [31], [41, Proposition 11]) admitting a transversal CR
circle action. If G is a compact Lie group acting holomorphically on M and whose
action lifts to (L, hL), Theorem 5.7 applies to X .

6. An Almost Complex Version of Theorem 1.4

In this section, we will prove a version of Theorem 1.4 in the case of an almost
complex manifold. We will mostly follow [52] and adopt the notations therein.

Let (L, hL) be a Hermitian line bundle with Hermitian connection ∇L and
associated curvature RL on a compact almost complex manifold (M, J).

Let G be a compact Lie group with Lie algebra g acting (on left) on M , whose
action lifts on L such that hL, ∇L are G-equivariant. Then the moment map
μ :M → g∗ is defined by the Kostant formula

2π
√−1〈μ, ξ〉 : = ∇L

ξM
− Lξ, for ξ ∈ g. (6.1)

For any ξ ∈ g, we have

d〈μ, ξ〉 = iξM ω, with ω =
√−1
2π

RL. (6.2)

We assume that the almost complex structure J on M is G-invariant and RL is
J-invariant, G acts freely on μ−1(0) and ω(·, J ·) defines a metric on TM |μ−1(0).

By choosing any G- and J-invariant Riemannian metric gTM on TM , we can
define an associated Dirac operator DL on Λ(T ∗(0,1)M)⊗L and DL

± its restriction on
Ω0,even/odd(M, L) (cf. [52, Definition 1.1]). Its index as a finite-dimensional virtual
representation of G,

Ind(DL
+) = Ker(DL

+) − Ker(DL
−) ∈ R(G), (6.3)

does not depend on the choice of gTM .
Moreover (L, hL,∇L), J, ω on M induce canonically (LG, hLG,∇LG), JG, ωG on

MG = μ−1(0)/G. In particular, (MG, ωG) is a compact symplectic manifold with
compatible almost complex structure JG. Thus Ind(DLG

+ ) is well defined as a virtual
vector space.

Theorem 6.1. Let (M, J) be a compact almost complex manifold and (L, h,∇L)
be a Hermitian line bundle with connection on M . Let G be a compact Lie group
acting (on left) on M, whose action lifts on L such that J , hL and ∇L are G-
equivariant. We assume that G acts freely on μ−1(0) and ω(·, J ·) defines a metric
on TM |μ−1(0). Then there exists m0 ∈ N such that for any m ≥ m0 we have

Ind(DLm

+ )G = Ind(DLm
G

+ ). (6.4)

Note that by the main result of [44], [52, Theorem 0.1], if ω(·, J ·) > 0 on the
whole M , then Theorem 6.1 holds for m0 = 1.
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Proof. We adapt directly the notation and argument from [52]. We fix a G- and
J-invariant metric gTM on TM such that near μ−1(0), gTM is given by ω(·, J ·). We
fix an AdG-invariant scalar product on g and identify g and g∗ via this product.

Let h1, . . . , hd be an orthonormal basis of g. Set

XH(x) = 2(μ(x))M (x) = 2
∑

i

μi(x)Vi(x) with μ =
∑

i

μi(x)hi and Vi = hi,M .

(6.5)

Following [52, Definition 1.2] we set for T ∈ R,

DLm

T = DLm

+
√−1

2
Tc(XH) : Ω0,∗(M, L) → Ω0,∗(M, L), (6.6)

where c(·) is the Clifford action. Then we have (cf. [52, (1.26)])

(DLm

T )2 = (DLm

)2 +
√−1

2
T
∑

j

c(ej)c(∇ej X
H) −√−1T∇XH +

T 2

4
|XH|2,

(6.7)

where {ej}j is an orthonormal frame of (TM, gTM ). Now as in [52, (1.27)],

∇XH = 2
∑

i

μiLVi + 4m
√−1H + A, (6.8)

where A is an endomorphism of Λ(T ∗(0,1)M) and does not depend on m.
We fix a sufficiently small G-invariant open neighborhoods U ′ � U of μ−1(0)

such that G acts freely on U and ω(·, J ·) > 0 on U . Note that on Ω0,∗(M, L)G,
LVi = 0. From (6.7) and (6.8), there exists m0 > 0 such that for any m ≥ m0, the
assertion of [52, Theorem 2.1] holds for U ′: there exist C > 0, b > 0 such that for
any T ≥ 1 and any s ∈ Ω0,∗(M, Lm) with supp s ⊂ M\U ′, we have

‖DLm

T s‖2
0 ≥ C(‖s‖2

1 + (T − b)‖s‖2
0). (6.9)

Thus we are on U exactly in same situation as considered in [52, §3(b)–3(e)]. Hence
Theorem 6.1 follows as in [52, (3.36), (3.37)].

It is an interesting question to show that in the holomorphic situation, under
the assumption of this section, we have

Hj(M, Lm)G = 0 for any j > 0, m � 1. (6.10)
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[6] L. Boutet de Monvel, Intégration des equations de Cauchy–Riemann induites
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2000/2001, Astérisque 282 (2002) 249–278.

[55] M. Vergne, Applications of equivariant cohomology, in Int. Cong. Mathematicians.
Vol. I (European Mathematical Society, Zürich, 2007), pp. 635–664.

[56] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential
Geom. 13(1) (1978) 25–41.

[57] C. Willett, Contact reduction, Trans. Amer. Math. Soc. 354(10) (2002) 4245–4260.
[58] W. Zhang, Holomorphic quantization formula in singular reduction, Commun. Con-

temp. Math. 1(3) (1999) 281–293.

2250074-73



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 900
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


