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0. Introduction

In order to find a well-defined index for a first order elliptic differential operator 
over an even-dimensional compact manifold with nonempty boundary, Atiyah-Patodi-
Singer [1] introduced a global boundary condition which is particularly significant for 
applications. In this final index formula, the contribution from the boundary is given 
by the Atiyah-Patodi-Singer (APS) η-invariant associated with the restriction of the 
operator on the boundary. Formally, the η-invariant is equal to the number of positive 
eigenvalues of the self-adjoint operator minus the number of its negative eigenvalues. 
If the manifold admits a compact Lie group action, in [31], extending the APS index 
theorem [1], Donnelly proved a Lefschetz type formula for manifolds with boundary. The 
contribution of the boundary is expressed as the equivariant η-invariant ηg.

Note that the η-invariant and the equivariant η-invariant are well-defined for any 
compact manifold. In [36, Theorem 0.5], Goette studied the singularity of ηg at g = e

the identity element, when the group action is locally free. He defined the equivariant 
infinitesimal η-invariant as a formal power series and express the singularity of ηg at g = e

as a locally computable term through the comparison of the equivariant infinitesimal η-
invariant and the equivariant η-invariant.

In [19,20], Bismut and Goette established the general comparison formulas for holo-
morphic analytic torsions and de Rham torsions. They used the analytic localization 
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techniques developed by Bismut and Lebeau in [21] and developed new techniques to 
overcome the difficulty that the operators do not have lower bounds. In the holomorphic 
case [19, Theorem 0.1], besides the predictable Bott-Chern current, in the final formula, 
there is an exotic additive characteristic class of the normal bundle, which is closely re-
lated to the Gillet-Soulé R-genus [35] and Bismut’s equivariant extension [10]. In the real 
case [20, Theorem 0.1], in the final formula, besides the predictable Chern-Simons cur-
rent, they discovered an exotic locally computable diffeomorphism invariant of the fixed 
point set, the so-called V -invariant. The mysterious V -invariant should be understood 
as a finite dimensional analogue of the real analytic (de Rham) torsion.

On the other hand, extending the works of Bismut-Freed [17] and Cheeger [27] on the 
Witten’s holonomy conjecture, Bismut and Cheeger [13] studied the adiabatic limit for 
a fibration of compact spin manifolds and found that under the invertible assumption 
of the fiberwise Dirac operator, the adiabatic limit of the η-invariant of the associated 
Dirac operators on the total space is expressible in terms of a canonically constructed 
differential form, η̃, so-called Bismut-Cheeger η-form, on the base space. Later, Dai [28]
extended this result to the case when the kernels of the fiberwise Dirac operators form 
a vector bundle over the base manifold. The Bismut-Cheeger η-form, η̃, is the families 
version of the η-invariant and its 0-degree part is just the APS η-invariant. It appears 
naturally as the boundary contribution of the family index theorem for manifolds with 
boundary (cf. [14,15,49,50]). We cite also [57] for a nice topological application of eta 
forms. As the holomorphic analytic torsion and its family version, Bismut-Köhler holo-
morphic torsion form [22] are the analytic counterpart to the direct image in Arakelov 
geometry [54], whose foundation was developed by Gillet-Soulé and Bismut in the 1980s, 
the Bismut-Cheeger η-form is also the analytic counterpart to the direct image in dif-
ferential K-theory introduced by Freed-Hopkins [33] and developed further by [26], [34], 
[38], [53], etc.

When the fibration admits a fiberwise compact Lie group action, the Bismut-Cheeger 
η-form could be naturally extended to the equivariant η-form η̃g. Recently, the functo-
riality of equivariant η-forms with respect to the composition of two submersions was 
established in [39], which extends the previous work of Bunke-Ma [25] for usual η-forms 
for flat vector bundles with duality, cf. [5,6,23,29,45–47,51] for related works on η-forms 
and holomorphic torsions.

In the same way as fixed-point formula has two equivariant versions, the Lefschetz 
fixed-point formula and Kirillov-like formula of Berline-Vergne [4], the same is true for 
equivariant η-forms. In this paper, we use the analytic techniques of Bismut-Goette in 
[19] to define the equivariant infinitesimal Bismut-Cheeger η-form and prove a general 
comparison formula between the equivariant infinitesimal Bismut-Cheeger η-form and 
the equivariant Bismut-Cheeger η-form which extend the work of Goette [36]. In par-
ticular, we express the singularity of η̃g modulo exact forms, at any g ∈ G as a locally 
computable differential form.

Let G be a compact Lie group with Lie algebra g. We assume that G acts isometrically 
on an odd-dimensional compact oriented Riemannian manifold X and the G-action lifts 
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on a Clifford module E over X. In general, the equivariant APS η-invariant ηg is not a 
continuous function on g ∈ G. In [36], Goette studied the singularity of the equivariant 
η-invariant ηg at g = e. He defined a formal power series ηK ∈ C[[g∗]] for K ∈ g, called 
the equivariant infinitesimal η-invariant and showed that if the Killing vector field KX

induced by K has no zeroes on X, for any N ∈ N, as 0 �= t → 0,

[ηtK ]N − ηetK = MtK + O(tN ), (0.1)

where [ηtK ]N is the part of the formal power series ηtK with degree ≤ N and MtK could 
be expressed precisely as a locally computable term. Moreover, there exist cj(K) ∈ C

such that when t → 0,

MtK =
(dimX+1)/2∑

j=1
cj(K)t−j + O(t0). (0.2)

It means that if the Killing vector field KX is nowhere vanishing, the singular behavior 
of ηetK when t → 0 could be computed as the integral of the local terms explicitly.

In this paper, we show first that ηtK is an analytic function on t for t small enough 
and for any 0 �= K ∈ g,

ηtK − ηetK = MtK , for t �= 0 small enough. (0.3)

In Theorem 0.2, we establish a general version of (0.3), in particular, its family version.
Let’s explain in detail our result here. Let π : W → B be a smooth submersion of 

smooth compact manifolds with fiber X. Note that n = dimX can be even or odd. Let 
TX = TM/B be the relative tangent bundle to the fiber X. We assume that TX is 
oriented and that the compact Lie group G acts fiberwise on W and as identity on B
and preserves the orientation of TX.

Let gTX be a G-invariant metric on TX. Let (E , hE) be a Clifford module of TX to 
the fiber X and we assume that the G-action lifts on (E , hE) and is compatible with the 
Clifford action. Let ∇E be a G-invariant Clifford connection on (E , hE), i.e., ∇E is a G-
invariant Hermitian connection on (E , hE) and compatible with the Clifford action (see 
(1.19)). Let D be the fiberwise Dirac operator associated with (gTX , ∇E) (see (1.20)).

We assume that the kernels Ker(D) form a vector bundle over B. Then for any g ∈ G, 
the equivariant η-form η̃g is well-defined (see Definition 1.4).1

1 For even dimensional fiber, any family of Dirac operators could be deformed to another one which satisfies 
this assumption and has the same family index in K0(B) (see e.g., [3, §9.5]). But for odd dimensional 
fiber, some topological obstruction appears: if a family of Dirac operators D satisfies this assumption, the 
family index of D vanishes in K1(B) (this fact is implicitly contained in [2], a proof of which is presented 
in [32, Theorem 4.1]). Recently, for odd dimensional fiber case, Wittmann [56] defined an η-form under 
the assumption that the family of Dirac operators has one eigenvalue of multiplicity one crossing zero 
transversally. It is expected that many properties of Bismut-Cheeger η-form could be extended to this case.
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In the whole paper, if n = dimX is even, E is naturally Z2-graded by the chirality 
operator Γ defined in (1.15) and the supertrace for A ∈ End(E) is defined by Trs[A] :=
Tr[ΓA]; if dimX is odd, E is ungraded. For σ = α ⊗ A with α ∈ Λ(T ∗B), A ∈ End(E), 
we define Tr[σ] := α · Tr[A]. We denote by Trodd[σ] the odd degree part of Tr[σ]. Set

T̃r[σ] =
®

Trs[σ] if n = dimX is even;
Trodd[σ] if n = dimX is odd.

(0.4)

For α ∈ Ωj(R ×B), the space of j-th differential forms on R ×B, set

ψR×B(α) =
{

(2iπ)−
j
2 · α if j is even;

π− 1
2 (2iπ)−

j−1
2 · α if j is odd.

(0.5)

Let t be the coordinate of R in R ×B. If α = α0 + dt ∧ α1, with α0, α1 ∈ Λ(T ∗B), set

[α]dt := α1. (0.6)

Let LK be the infinitesimal action on C∞(W, E) induced by K ∈ g (see (2.3)).
For g ∈ G, we denote by Z(g) ⊂ G the centralizer subgroup of g with Lie algebra 

z(g). Let W g = {x ∈ W : gx = x} be the fixed point set of g. Then the restriction of π
on W g, π|W g : W g → B is a fibration with compact fiber Xg.

Let Bt be the rescaled Bismut superconnection defined in (1.23). Let d be the exterior 
differential operator.

Let Âg,K(·) and chg,K(·) be equivariant infinitesimal versions of the Â-form and the 
Chern character form (cf. (2.15) and (2.16)). The following result extends the equivariant 
infinitesimal η-invariant to the family case at any g ∈ G (see Definition 2.3, (2.31), (2.32), 
(2.36) and (2.37)).

Theorem 0.1. For any g ∈ G, there exists β > 0 such that if K ∈ z(g) with |K| < β, the 
integral

η̃g,K = −
+∞∫

0

®
ψR×BT̃r

ñ
g exp

Ç
−
Å
Bt + c(KX)

4
√
t

+ dt ∧ ∂

∂t

ã2

− LK

åô´dt

dt (0.7)

is a well-defined differential form on B, and

dη̃g,K =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

Xg

Âg,K(TX,∇TX) chg,K(E/S,∇E)

− chgeK (Ker(D),∇Ker(D)) if n is even;∫

Xg

Âg,K(TX,∇TX) chg,K(E/S,∇E) if n is odd.

(0.8)
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Moreover, for fixed K ∈ z(g), η̃g,zK is an analytic function of z ∈ C for |zK| < β.

In the sequel, η̃g,K is called the equivariant infinitesimal (Bismut-Cheeger) η-form.
Let ϑK ∈ T ∗X be the 1-form which is dual to KX by the metric gTX . Now we state 

the main result of this paper.

Theorem 0.2. For g ∈ G and K0 ∈ z(g), there exists β > 0 such that for any K = zK0, 
K �= 0 and −β < z < β, modulo exact forms on B, we have

η̃g,K = η̃geK + Mg,K , (0.9)

where Mg,K is a well-defined integral defined by

Mg,K = −
+∞∫

0

∫

Xg

ϑK

2iπv exp
Å
dϑK − 2iπ|KX |2

2iπv

ã
Âg,K(TX,∇TX) chg,K(E/S,∇E)dv

v
,

(0.10)

and t�(dimW g+1)/2�Mg,tK is real analytic on t ∈ R, |t| < 1. Moreover, we have

dMg,K =
∫

Xg

Âg,K(TX,∇TX) chg,K(E/S,∇E)

−
∫

XgeK

ÂgeK (TX,∇TX) chgeK (E/S,∇E). (0.11)

By Theorem 0.1, η̃g,tK is an analytic function of t near t = 0. Thus when t → 0, 
modulo exact forms, the singularity of η̃getK is the same as that of −Mg,tK .

Note that the general comparison formula for the two versions of equivariant holo-
morphic analytic torsions is established in [19, Theorem 5.1], which is the model of our 
paper. The analytical tools in this paper are inspired by those of [19] with necessary mod-
ifications. For this problem on de Rham torsion forms, a comparison formula is stated 
in [20, Theorem 5.13].

Remark 0.3. Let G act on an odd dimensional compact Riemannian manifold (X, gTX)
and on a Clifford module (E , hE , ∇E) compatible with the Clifford action. Then for g = e

the identity element of G, (0.7) defines a complex number ηK for any K ∈ g, |K| < β. 
As formal power series on K, this ηK is just the equivariant infinitesimal η-invariant ηK
in [36, Definition 0.4].

Let P → B be a G-principal bundle with connection and associated curvature Ω. 
Then we get naturally a fibration P ×G X → B with fiber X. Let η̃ be the associated 
Bismut-Cheeger η-form. For this fibration, by Bismut [8, §1d), §3b)], under the notation 
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of (1.23), the term c(TH) in the Bismut superconnection is c(Ω), and (∇E,u)2 = LΩ, 
thus we get [36, Lemma 1.14],

η̃ = η i
2π Ω. (0.12)

Thus we can understand the formal power series of ηK as a universal η-form.

Remark 0.4. Assume temporarily that B = pt, dimX = n is odd, and X is the boundary 
of a G-equivariant Riemannian manifold Z, which has product structure near X. We also 
assume that EZ = E+

Z ⊕E−
Z is a G-equivariant Clifford module on Z such that E+

Z

∣∣
X

= E
and E±

Z near X is the pull-back of E as Hermitian vector bundles with connections.
Let DZ be the associated Dirac operator on EZ over Z. Then the index of D+

Z :=
DZ |C∞(Z,E+

Z ) with respect to the Atiyah-Patodi-Singer (APS) boundary condition is a 

virtual representation of G. For g ∈ G, its equivariant APS index IndAPS,g(D+
Z ) can be 

computed by Donnelly’s theorem [31],

IndAPS,g(D+
Z ) =

∫

Zg

Âg(TZ,∇TZ) chg(EZ/SZ ,∇EZ ) − 1
2
(
ηg(D) + Tr |Ker(D)[g]

)
. (0.13)

By combining (0.9), (0.11) (more precisely the Stokes formula [24, p. 775], (3.30) and 
(3.33)), and (0.13), for any K ∈ g, there exists β > 0 such that, for any −β < t < β, we 
have

IndAPS,etK (D+
Z ) =

∫

Z

ÂtK(TZ,∇TZ) chtK(EZ/SZ ,∇EZ ) − 1
2
(
ηtK(D) + Tr |Ker(D)[etK ]

)
.

(0.14)

Here ÂtK(·) := Âe,tK(·) and chtK(·) := che,tK(·).

The main result of this paper is announced in [41] and plays an important role in our 
recent work [42].

This paper is organized as follows. In Section 1, we recall the definition of the equiv-
ariant Bismut-Cheeger η-form. In Section 2, we state the family Kirillov formula and 
define the equivariant infinitesimal η-form, in particular, we establish Theorem 0.1 mod-
ulo some technical details. In Section 3, we prove that Mg,tK in (0.10) is well-defined 
and state our main result, Theorem 0.2. In Section 4, we state some intermediate results 
and prove Theorem 0.2. In Section 5, we give an analytic proof of the family Kirillov 
formula and the technical details to establish Theorem 0.1 following the lines of [19, §7]. 
For the convenience to compare the arguments here with those in [19, §7], especially how 
the extra terms for the families version appear, the structure of this section is formulated 
almost the same as in [19, §7]. In Section 6, we prove the intermediate results in Section 4
using the analytical techniques in [19, §8, §9].
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From Remark 1.3, to simplify the presentation, in Sections 5, 6, we will assume that 
TXg is oriented.

Notation. We use the Einstein summation convention in this paper: when an index 
variable appears twice in a single term and is not otherwise defined, it implies summation 
of that term over all the values of the index.

We denote by �x the maximal integer not larger than x.
We denote by d the exterior differential operator and dB when we like to insist the 

base manifold B. Let Ωeven/odd(B, C) be the space of even/odd degree complex valued 
differential forms on B. For a real vector bundle E, we denote by dimE the real rank of 
E.

If A is a Z2-graded algebra, and if a, b ∈ A, then we will note [a, b] := ab −
(−1)deg a·deg bba as the supercommutator of a, b. In the whole paper, if A, A′ are Z2-
graded algebras we will note A“⊗A′ as the Z2-graded tensor product as in [3, §1.3]. If 
one of A, A′ is ungraded, we understand it as Z2-graded by taking its odd part as zero.

For the fiber bundle π : W → B, we will often use the integration of the differential 
forms along the oriented fibers X in this paper. Since the fibers may be odd dimensional, 
we must make precisely our sign conventions: for α ∈ Ω•(B) and β ∈ Ω•(W ), then

∫

X

(π∗α) ∧ β = α ∧
∫

X

β. (0.15)

Acknowledgments. B. L. is partially supported by Science and Technology Commission 
of Shanghai Municipality (STCSM), grant No. 18dz2271000, Natural Science Founda-
tion of Shanghai, grant No. 20ZR1416700 and NSFC No. 11931007. X. M. is partially 
supported by NSFC No. 11528103, No. 11829102, ANR-14-CE25-0012-01, and funded 
through the Institutional Strategy of the University of Cologne within the German Ex-
cellence Initiative. Part of this work was done while the authors were visiting University 
of Science and Technology in China and Wuhan University.

1. Equivariant η-forms

In this section, we recall the definition of the equivariant η-form in the language of 
Clifford modules. In Section 1.1, we recall the definition of the Clifford algebra. In Sec-
tion 1.2, we explain the Bismut superconnection. In Section 1.3, we define the equivariant 
η-form for Clifford module.

1.1. Clifford algebras

Let (V, 〈, 〉) be a Euclidean space, such that dimV = n, with orthonormal basis 
{ei}ni=1. Let c(V ) be the Clifford algebra of V defined by the relations

eiej + ejei = −2δij . (1.1)
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To avoid ambiguity, we denote by c(ei) the element of c(V ) corresponding to ei.
If e ∈ V , let e∗ ∈ V ∗ correspond to e by the scalar product 〈, 〉 of V . The exterior 

algebra ΛV ∗ is a module of c(V ) defined by

c(e)α = e∗ ∧ α− ieα (1.2)

for any α ∈ ΛV ∗, where ∧ is the exterior product and i is the contraction operator. The 
map a �→ c(a) · 1, a ∈ c(V ), induces an isomorphism of vector spaces

σ : c(V ) → ΛV ∗. (1.3)

1.2. Bismut superconnection

Let π : W → B be a smooth submersion of smooth compact manifolds with n-
dimensional fibers X. Let TX = TW/B be the relative tangent bundle to the fibers 
X.

Let G be a compact Lie group acting on W along the fibers X, that is, if g ∈ G, 
π ◦g = π. Then G acts on TW and on TX. Let THW ⊂ TW be a G-invariant horizontal 
subbundle, so that

TW = THW ⊕ TX. (1.4)

Since G is compact, such THW always exists. Let PTX : TW → TX be the projection 
associated with the splitting (1.4). Note that

THW ∼= π∗TB. (1.5)

Let gTX be a G-invariant metric on TX. Let gTB be a Riemannian metric on TB. 
We equip TW with the G-invariant metric via (1.4) and (1.5),

gTW = π∗gTB ⊕ gTX . (1.6)

Let ∇TW,L (resp. ∇TB) be the Levi-Civita connection on (TW, gTW ) (resp. (TB, gTB)). 
Let ∇TX be the connection on TX defined by

∇TX = PTX∇TW,LPTX . (1.7)

It is G-invariant. Let ∇TW be the G-invariant connection on TW , via (1.4) and (1.5),

∇TW = π∗∇TB ⊕∇TX . (1.8)

Put
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S = ∇TW,L −∇TW . (1.9)

Then S is a 1-form on W with values in antisymmetric elements of End(TW ). Let T be 
the torsion of ∇TW . By [8, (1.28)], if U, V, Z ∈ TW ,

S(U)V − S(V )U + T (U, V ) = 0,

2〈S(U)V,Z〉 + 〈T (U, V ), Z〉 + 〈T (Z,U), V 〉 − 〈T (V,Z), U〉 = 0.
(1.10)

If U is a vector field on B, let UH be its lift in THW and let LUH be the Lie derivative 
operator associated with the vector field UH . Then LUH acts on the tensor algebra of 
TX. In particular, if U ∈ TB, 

(
gTX

)−1 LUHgTX defines a self-adjoint endomorphism of 
TX. If U, V are vector fields on B, from [11, Theorem 1.1],

T (UH , V H) = −PTX [UH , V H ], (1.11)

and if U ∈ TB, Z, Z ′ ∈ TX,

T (UH , Z) = 1
2
(
gTX

)−1 LUHgTXZ, T (Z,Z ′) = 0. (1.12)

From (1.10) and (1.12), if U ∈ TB, Z, Z ′ ∈ TX, we have

〈S(Z)Z ′, UH〉 = −〈T (UH , Z), Z ′〉 = −〈T (UH , Z ′), Z〉. (1.13)

We recall some properties in [11, §1.1].

Proposition 1.1. 1) The connection ∇TX does not depend on gTB and on each fiber X, 
it restricts to the Levi-Civita connection of (TX, gTX).

2) If U ∈ TB, then

∇TX
UH = LUH + 1

2
(
gTX

)−1 LUHgTX . (1.14)

3) The tensors T and 〈S(·)·, ·〉 do not depend on gTB.

Let c(TX) be the Clifford algebra bundle of (TX, gTX), whose fiber at x ∈ W is the 
Clifford algebra c(TxX) of the Euclidean space (TxX, gTxX). Let E be a Clifford module 
of c(TX). It means that E is a complex vector bundle and restricted on a fiber, Ex is a 
representation of c(TxX). We assume that the G-action lifts on E and commutes with 
the Clifford action.

From now on, we assume that TX is G-equivariant oriented.
In the whole paper, if n is even, as in [3, Lemma 3.17], for a locally oriented orthonormal 

frame e1, · · · , en of TX, we define the chirality operator by
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Γ = in/2c(e1) · · · c(en). (1.15)

Then Γ does not depend on the choice of the frame, commutes with the G-action and 
Γ2 = Id. Thus E is naturally Z2-graded by the chirality operator Γ. The supertrace for 
A ∈ End(E) is defined by

Trs[A] := Tr[ΓA]. (1.16)

If n is odd, E is ungraded.
Let hE be a G-invariant Hermitian metric on E . For b ∈ B, let Eb be the set of smooth 

sections over Xb = π−1(b) of E|Xb
. As in [8], we will regard E as an infinite dimensional 

vector bundle over B. Let dvX(x) be the Riemannian volume element of Xb. The bundle 
Eb is naturally endowed with the Hermitian product

〈s, s′〉0 =
∫

Xb

〈s, s′〉(x)dvX(x), for s, s′ ∈ E. (1.17)

Then G acts on Eb = C∞(Xb, E|Xb
) as

(g.s)(x) = g(s(g−1x)) for any g ∈ G. (1.18)

Let ∇E be a G-invariant Clifford connection on E (cf. [3, §10.2]), that is, ∇E is G-
invariant, preserves hE and for any U ∈ TW , Z ∈ C∞(W, TX),[

∇E
U , c(Z)

]
= c

(
∇TX

U Z
)
. (1.19)

The fiberwise Dirac operator is defined by

D =
n∑

i=1
c(ei)∇E

ei , (1.20)

which is independent of the choice of the orthonormal frame {ei}ni=1.
Let k ∈ (THW )∗ such that for any U ∈ TB, LUHdvX(x)/dvX(x) = 2k(UH)(x). The 

connection ∇E,u on E defined by (cf. [16, Definition 1.3])

∇E,u
U s := ∇E

UHs + k(UH)s for s ∈ C∞(B,E) = C∞(W, E), (1.21)

is G-invariant and preserves the G-invariant L2-product (1.17) (see e.g., [16, Proposition 
1.4]).

Let {fp} be a local frame of TB and {fp} be its dual. Set

∇E,u = fp ∧∇E,u
fp

, c(TH) = 1
2 c

(
T (fH

p , fH
q )

)
fp ∧ fq ∧ . (1.22)
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Then c(TH) is a section of π∗Λ2(T ∗B)“⊗End(E).
By [8, (3.18)], the rescaled Bismut superconnection Bu, u > 0, is defined by

Bu =
√
uD + ∇E,u − 1

4
√
u
c(TH) : C∞(B,Λ(T ∗B)“⊗E) → C∞(B,Λ(T ∗B)“⊗E). (1.23)

Obviously, the Bismut superconnection Bu commutes with the G-action. Furthermore, 
B2
u is a 2nd-order elliptic differential operator along the fiber X (cf. [8, (3.4)]) acting on 

Λ(T ∗B)“⊗E. Let exp(−B2
u) be the heat operators associated with the fiberwise elliptic 

operator B2
u.

1.3. Equivariant η-forms

Take g ∈ G fixed and set W g = {x ∈ W : gx = x}, the fixed point set of g. Then W g

is a submanifold of W and π|W g : W g → B is a fibration with compact fiber Xg. Let 
NW g/W denote the normal bundle of W g in W , then

NW g/W := TW

TW g
= TX

TXg
=: NXg/X . (1.24)

Let {Xg
α}α∈B be the connected components of Xg with

dimXg
α = �α. (1.25)

By an abuse of notation, we will often simply denote by all �α the same �.

Assumption 1.2. We assume that the kernels Ker(D) form a vector bundle over B.

For σ = α“⊗A with α ∈ Λ(T ∗B), A ∈ End(E), we define

Tr[σ] = α · Tr[A], Trodd[σ] = {α}odd · Tr[A], Treven[σ] = {α}even · Tr[A], (1.26)

where {α}odd/even is the odd or even degree part of α. Set

T̃r[σ] =
®

Trs[σ] := α · Tr[ΓA] if n = dimX is even;
Trodd[σ] if n = dimX is odd.

(1.27)

Let Endc(TX)(E) be the set of endomorphisms of E supercommuting with the Clifford 
action. It is a vector bundle over W . As in [3, Definition 3.28], we define the relative 
trace TrE/S : Endc(TX)(E) → C by: for any A ∈ Endc(TX)(E),

TrE/S [A] =
®

2−n/2 Trs[ΓA] if n = dimX is even;
2−(n−1)/2 Tr[A] if n = dimX is odd.

(1.28)
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Let RTX =
(
∇TX

)2, RE =
(
∇E)2 be the curvatures of ∇TX , ∇E . Then

RE/S := RE − 1
4 〈R

TXei, ej〉c(ei)c(ej) ∈ C∞(W,Λ2(T ∗W ) ⊗ Endc(TX)(E)) (1.29)

is the twisting curvature of the Clifford module E as in [3, Proposition 3.43].
Note that if TX has a G-equivariant spin structure, then there exists a G-equivariant 

Hermitian vector bundle E such that E = SX ⊗ E, with SX the spinor bundle of TX, 
∇E is induced by ∇TX and a G-invariant Hermitian connection ∇E on E and

RE/S = RE = (∇E)2. (1.30)

We denote the differential of g by dg which gives a bundle isometry dg : NXg/X →
NXg/X . As G is compact, we know that there is an orthonormal decomposition of real 
vector bundles over W g,

TX|W g = TXg ⊕NXg/X = TXg ⊕
⊕

0<θ≤π

N(θ), (1.31)

where dg|N(π) = −Id and for each θ, 0 < θ < π, N(θ) is the underlying real vector 
bundle of a complex vector bundle Nθ over W g on which dg acts by multiplication by 
eiθ. Since g preserves the metric and the orientation of TX, thus det(dg|N(π)) = 1, this 
means dimN(π) is even. So the normal bundle NXg/X is even dimensional.

Since ∇TX commutes with the group action, its restriction on W g, ∇TX |W g , preserves 
the decomposition (1.31). Let ∇TXg and ∇N(θ) be the corresponding induced connections 
on TXg and N(θ), with curvatures RTXg and RN(θ).

Set

Âg(TX,∇TX) = det
1
2

Ç
i

4πR
TXg

sinh
(

i
4πR

TXg
)å

·
∏

0<θ≤π

Å
i
1
2 dimN(θ)det

1
2

Å
1 − g exp

Å
i

2πR
N(θ)

ããã−1
∈ Ω2•(W g,C). (1.32)

The sign convention in (1.32) is that the degree 0 part in 
∏

0<θ≤π is given by Ä
eiθ/2

eiθ−1

ä 1
2 dimN(θ)

.
By [3, Lemma 6.10], along W g, the action of g ∈ G on E may be identi-

fied with a section gE of c(NXg/X) ⊗ Endc(TX)(E). Under the isomorphism (1.3), 
σ(gE) ∈ C∞(W g, Λ(N∗

Xg/X) ⊗ Endc(TX)(E)). Let σn−�(gE) ∈ C∞(W g, Λn−�(N∗
Xg/X) ⊗

Endc(TX)(E)) be the highest degree part of σ(gE) in Λ(N∗
Xg/X). Then we define the 

localized relative Chern character chg(E/S, ∇E) as in [3, Definition 6.13]:
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chg(E/S,∇E) := 2(n−�)/2

det1/2(1 − g|NXg/X
)

TrE/S
ñ
σn−�(gE) exp

Ç
−RE/S |W g

2iπ

åô
∈ Ω•(W g,detNXg/X

)
. (1.33)

Remark 1.3. In general, TXg is not necessary oriented. The orientation of TX allows us 
to identify detNXg/X as the orientation line of Xg, thus the integral 

∫
Xg of a form in 

Ω•(W g, detNXg/X

)
makes sense as in [3, Theorem 6.16]. Assume that TXg is oriented, 

then the orientations of TXg and TX induce canonically an orientation on NXg/X . By 
pairing with the volume form of NXg/X , we obtain

chg(E/S,∇E) ∈ Ω•(W g,C). (1.34)

If TX has a G-equivariant spinc structure, then TXg is canonically oriented (cf. 
[3, Proposition 6.14], [44, Lemma 4.1]). If TX has a G-equivariant spin structure, 
chg(E/S, ∇E) under the above convention is just the usual equivariant Chern charac-
ter (cf. (1.30))

chg(E,∇E) = TrE
ï
g exp

Å
−RE |W g

2iπ

ãò
. (1.35)

As in (0.5), for α ∈ Ωj(B), set

ψB(α) =
{

(2iπ)−
j
2 · α if j is even;

π− 1
2 (2iπ)−

j−1
2 · α if j is odd.

(1.36)

Then from the equivariant family local index theorem (see e.g., [8, Theorem 4.17], [17, 
Theorem 2.10], [40, Theorem 2.2], [43, Theorem 1.3]), for any u > 0, the differential form 
ψBT̃r[g exp(−B2

u)] ∈ Ω•(B, C) is closed, its cohomology class is independent of u > 0, 
and

lim
u→0

ψBT̃r[g exp(−B2
u)] =

∫

Xg

Âg(TX,∇TX) chg(E/S,∇E). (1.37)

Let PKer(D) : E → Ker(D) be the orthogonal projection with respect to (1.17). Let

∇Ker(D) = PKer(D)∇E,uPKer(D) (1.38)

and RKer(D) be the curvature of the connection ∇Ker(D) on Ker(D).
• If n = dimX is even, from the natural equivariant extension of [3, Theorem 9.19], 

we have

lim
u→+∞

ψB Trs[g exp(−B2
u)] = Trs

ñ
g exp

Ç
−RKer(D)

2iπ

åô
= chg(Ker(D),∇Ker(D)).

(1.39)
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Since Bu is G-invariant, the equivariant version of [3, Theorem 9.17] shows that

∂

∂u
Trs

[
g exp(−B2

u)
]

= −dB Trs
ï
g
∂Bu

∂u
exp(−B2

u)
ò
. (1.40)

Thus for 0 < ε < T < +∞,

Trs
[
g exp(−B2

ε)
]
− Trs

[
g exp(−B2

T )
]

= dB
T∫

ε

Trs
ï
g
∂Bu

∂u
exp(−B2

u)
ò
du. (1.41)

The natural equivariant extension of [3, Theorems 9.23 and 10.32(1)] (cf. e.g., [39, (2.72) 
and (2.77)]) shows that

Trs
ï
g
∂Bu

∂u
exp(−B2

u)
ò

= O(u−1/2) as u → 0,

Trs
ï
g
∂Bu

∂u
exp(−B2

u)
ò

= O(u−3/2) as u → +∞.
(1.42)

In this case, by (1.36) and (1.42), the equivariant η-form is defined by

η̃g =
+∞∫

0

1
2i
√
π
ψB Trs

ï
g
∂Bu

∂u
exp(−B2

u)
ò
du ∈ Ωodd(B,C). (1.43)

By (1.37), (1.39), (1.41) and (1.43), we have

dB η̃g =
∫

Xg

Âg(TX,∇TX) chg(E/S,∇E) − chg(Ker(D),∇Ker(D)). (1.44)

• If n is odd, since the equivariant extension of [3, Theorem 9.19] also holds, we have

lim
u→+∞

Trodd[g exp(−B2
u)] = Trodd

î
g exp

Ä
−RKer(D)

äó
= 0. (1.45)

As an analogue of (1.41), for 0 < ε < T < +∞, we have

Trodd [g exp(−B2
ε)
]
− Trodd [g exp(−B2

T )
]

= dB
T∫

ε

Treven
ï
g
∂Bu

∂u
exp(−B2

u)
ò
du. (1.46)

Following the same arguments in the proof of (1.42), we have

Treven
ï
g
∂Bu

∂u
exp(−B2

u)
ò

= O(u−1/2) as u → 0,

Treven
ï
g
∂Bu

∂u
exp(−B2

u)
ò

= O(u−3/2) as u → +∞.
(1.47)
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In this case, by (1.36) and (1.47), the equivariant η-form is defined by

η̃g =
+∞∫

0

1√
π
ψB Treven

ï
g
∂Bu

∂u
exp(−B2

u)
ò
du ∈ Ωeven(B,C). (1.48)

From (1.37), (1.45), (1.46) and (1.48), we get

dB η̃g =
∫

Xg

Âg(TX,∇TX) chg(E/S,∇E). (1.49)

We write the definition of the equivariant η-form (1.43) and (1.48) in a uniform way 
using the notation {·}du as in (0.6).

Definition 1.4. [39, Definition 2.3] For g ∈ G fixed, under Assumption 1.2, the equivariant 
Bismut-Cheeger η-form is defined by

η̃g := −
+∞∫

0

®
ψR×B T̃r

ñ
g exp

Ç
−
Å
Bu + du ∧ ∂

∂u

ã2åô´du

du ∈ Ω•(B,C). (1.50)

If g = e the identity element of G, (1.50) is exactly the Bismut-Cheeger η-form defined 
in [13]. If B is noncompact, (1.42) and (1.47) hold uniformly on any compact subset of 
B, thus Definition 1.4, (1.44) and (1.49) still hold.

2. Equivariant infinitesimal η-forms

In this section, we state the family Kirillov formula and define the equivariant in-
finitesimal η-form. In Section 2.1, we state the families version of the Kirillov formula. 
In Section 2.2, we define the equivariant infinitesimal η-form, and establish Theorem 0.1
modulo some technical details.

In this section, we use the same notations and assumptions in Section 1. Especially, 
TX is G-equivariant oriented and Assumption 1.2 holds in this section.

2.1. Moment maps and the family Kirillov formula

Let | · | be a G-invariant norm on the Lie algebra g of G. For K ∈ g, let

KX(x) = ∂

∂t

∣∣∣∣
t=0

etK · x for x ∈ W (2.1)

be the induced vector field on W . Since G acts fiberwise on W , KX ∈ C∞(W, TX) and

[KX ,K ′X ] = −[K,K ′]X for any K,K ′ ∈ g. (2.2)
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For K ∈ g, let LK be the corresponding Lie derivative given by

LKs = ∂

∂t

∣∣∣∣
t=0

(
e−tK .s

)
, (2.3)

for s ∈ C∞(W, E) (cf. (1.18)). The associated moment maps mTX(·), mE(·) are defined 
by [3, Definition 7.5] (see also [19, Definition 2.1]),

mTX(K) := ∇TX
KX − LK |TX ∈ C∞(W,End(TX)),

mE(K) := ∇E
KX − LK |E ∈ C∞(W,End(E)).

(2.4)

Since the vector field KX is Killing and ∇TX , ∇E preserve the corresponding metrics, 
mTX(K) and mE(K) are skew-adjoint actions of End(TX) and End(E) respectively. By 
Proposition 1.1, the connection ∇TX is the Levi-Civita connection of (TX, gTX) when 
it is restricted on a fiber. Since the G-action is along the fiber, we have

mTX(K) = ∇TX
· KX ∈ C∞(W,End(TX)). (2.5)

Since the connection ∇TX is G-invariant, from (2.4) (cf. [3, (7.4)] or [19, (2.8)]),

∇TX
· mTX(K) + iKXRTX = 0. (2.6)

We denote by mS(K) ∈ End(E) by

mS(K) := 1
4 〈m

TX(K)ei, ej〉c(ei)c(ej). (2.7)

If TX is spin, mS(K) is just the moment map of the spinor. Set

mE/S(K) := mE(K) −mS(K). (2.8)

From (1.29), we set (cf. [19, (2.30)])

RTX
K = RTX − 2iπ mTX(K), R

E/S
K = RE/S − 2iπ mE/S(K). (2.9)

Then RTX
K (resp. RE/S

K ) is called the equivariant curvature of TX (resp. equivariant 
twisted curvature of E).

Let Z(g) ⊂ G be the centralizer of g ∈ G with Lie algebra z(g). Then in the sense of 
the adjoint action,

z(g) = {K ∈ g : g.K = K}. (2.10)

We fix g ∈ G from now on. In the sequel, we always take K ∈ z(g). Put

WK = {x ∈ W : KX(x) = 0}. (2.11)
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Then WK , which is the fixed point set of the group generated by K, is a totally geodesic 
submanifold along each fiber X. Set

W g,K = W g ∩WK . (2.12)

Then W g,K is also a totally geodesic submanifold along each fiber X. Moreover, if K0 ∈
z(g) and z ∈ R, for z small enough, we have

W g,zK0 = W gezK0
. (2.13)

Since the G-action is trivial on B, WK → B and W g,K → B are fibrations with 
compact fiber XK and Xg,K . As in (1.25), by an abuse of notation, we will often simply 
denote by

dimXg,K = �′. (2.14)

Observe that mTX(K)|Xg acts on TXg and NXg/X . Also it preserves the splitting 
(1.31). Let mTXg (K) and mN(θ)(K) be the restrictions of mTX(K)|Xg to TXg and 
N(θ). We define the corresponding equivariant curvatures RTXg

K , RN(θ)
K as in (2.9).

For K ∈ z(g) with |K| small enough, comparing with (1.32), set

Âg,K(TX,∇TX) = det
1
2

Ç
i

4πR
TXg

K

sinh
(

i
4πR

TXg

K

)å
·
∏
k>0

Å
i
1
2 dimN(θ)det

1
2

Å
1 − g exp

Å
i

2πR
N(θ)
K

ããã−1
∈ Ω2•(W g,C). (2.15)

Note that W compact and |K| small guarantee that the denominator in (2.15) is invert-
ible. Comparing with (1.33), set

chg,K(E/S,∇E) := 2(n−�)/2

det1/2(1 − g|NXg/X
)

TrE/S
ñ
σn−�(gE) exp

Ç
−R

E/S
K |W g

2iπ

åô
. (2.16)

As in (1.35), if TX has a G-equivariant spin structure, chg,K(E/S, ∇E) is just the equiv-
ariant infinitesimal Chern character in [19, Definition 2.7],

chg,K(E,∇E) = TrE
ï
g exp

Å
−RE

K |W g

2iπ

ãò
∈ Ω2•(W g,C), (2.17)

where mE(K) = ∇E
KX − LK , RE

K := RE − 2iπmE(K) as in (2.4) and (2.9).
Set

dK = d− 2iπ iKX . (2.18)
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Then by (2.6) (cf. [3, Theorem 7.7]),

dKÂg,K(TX,∇TX) = 0, dK chg,K(E/S,∇E) = 0. (2.19)

Recall that Bt is the rescaled Bismut superconnection in (1.23). Set

BK,t = Bt + c(KX)
4
√
t

. (2.20)

Then B2
K,t is a 2nd-order elliptic differential operator along the fiber X acting on 

Λ(T ∗B)“⊗E. If the base B is a point, then the operator BK,t is 
√
tD + c(KX)

4
√
t

, and it 
was introduced by Bismut [7] in his heat kernel proof of the Kirillov formula for the 
equivariant index. As observed by Bismut [8, §1d), §3b)] (cf. also [3, §10.7]), its square 
plus LKX is the square of the Bismut superconnection for a fibration with compact 
structure group, by replacing KX by the curvature of the fibration. Thus we can roughly 
interpret BK,t as the Bismut superconnection by extending our fibration by a fibration 
with compact structure group.

Now we state the families version of the Kirillov formula and delayed a heat kernel 
proof of it to Section 5.

Theorem 2.1. For any K ∈ z(g) and |K| small,

• if n is even, for t > 0, the differential form

ψB Trs
[
g exp

(
−B2

K,t − LK

)]
∈ Ωeven(B,C)

is closed, the cohomology class defined by it is independent of t and

lim
t→0

ψB Trs
[
g exp

(
−B2

K,t − LK

)]
=

∫

Xg

Âg,K(TX,∇TX) chg,K(E/S,∇E). (2.21)

• if n is odd, for t > 0, the differential form

ψB Trodd [g exp
(
−B2

K,t − LK

)]
∈ Ωodd(B,C)

is closed, the cohomology class defined by it is independent of t and

lim
t→0

ψB Trodd [g exp
(
−B2

K,t − LK

)]
=

∫

Xg

Âg,K(TX,∇TX) chg,K(E/S,∇E). (2.22)

If B is a point and g = e, this heat kernel proof of the Kirillov formula is given by 
Bismut in [7] (see also [3, Theorem 8.2]). If B is a point, (2.21) is established in [19]. For 
g = e, (2.21) is obtained in [55].
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2.2. Equivariant infinitesimal η-forms: Theorem 0.1

For t > 0, set

BK,t = BK,t + dt ∧ ∂

∂t
. (2.23)

Then by (2.20),

B2
K,t = B2

K,t + dt ∧ ∂BK,t

∂t
=

Å
Bt + c(KX)

4
√
t

ã2

+ dt ∧ ∂

∂t

Å
Bt + c(KX)

4
√
t

ã
. (2.24)

Theorem 2.2. There exist β > 0, δ, δ′ > 0, C > 0, such that if K ∈ z(g), z ∈ C, |zK| ≤ β,
a) for any t ≥ 1, ∣∣∣∣{T̃r

[
g exp

(
− B2

zK,t − zLK

)]}dt
∣∣∣∣ ≤ C

t1+δ
; (2.25)

b) for any 0 < t ≤ 1,∣∣∣∣{T̃r
[
g exp

(
− B2

zK,t − zLK

)]}dt
∣∣∣∣ ≤ C tδ

′−1. (2.26)

We delay the proof of Theorem 2.2 to Section 5.
• If n = dimX is even, then for t > 0, as BK,t commutes with g, LK , by [3, Lemma 

9.15],

dB Trs
[
g exp(−B2

K,t − LK)
]

= Trs
[[
BK,t, g exp(−B2

K,t − LK)
]]

= 0. (2.27)

As in (1.39) (cf. [3, Proposition 8.11 and Theorem 9.19]), we have

lim
t→+∞

ψB Trs
[
g exp

(
− B2

K,t − LK

)]
= chgeK (Ker(D),∇Ker(D)). (2.28)

As in (1.40),

∂

∂t
Trs

[
g exp(−B2

K,t − LK)
]

= −dB Trs
ï
g
∂BK,t

∂t
exp(−B2

K,t − LK)
ò

= dB
{
Trs

[
g exp(−B2

K,t − LK)
]}dt

. (2.29)

Thus from (2.29), for 0 < ε < T < +∞,

Trs
[
g exp(−B2

K,T − LK)
]
− Trs

[
g exp(−B2

K,ε − LK)
]

= dB
T∫

ε

{
Trs

[
g exp(−B2

K,t − LK)
]}dt

dt. (2.30)
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In this case, for |K| ≤ β, by Theorem 2.2, the equivariant infinitesimal η-form is defined 
by

η̃g,K = −
+∞∫

0

1
2i
√
π
ψB

{
Trs

[
g exp(−B2

K,t − LK)
]}dt

dt

=
+∞∫

0

1
2i
√
π
ψB Trs

ï
g
∂BK,t

∂t
exp(−B2

K,t − LK)
ò
dt ∈ Ωodd(B,C). (2.31)

By (2.21), (2.30) and (2.31), we have

dB η̃g,K =
∫

Xg

Âg,K(TX,∇TX) chg,K(E/S,∇E) − chgeK (Ker(D),∇Ker(D)). (2.32)

• If n is odd, then for t > 0, as BK,t commutes with g, LK , again by the argument in 
[3, Lemma 9.15],

dB Trodd [g exp(−B2
K,t − LK)

]
= Treven

[[
BK,t, g exp(−B2

K,t − LK)
]]

= 0. (2.33)

As the same argument in (1.45),

lim
t→+∞

Trodd
[
g exp

(
− B2

K,t − LK

)]
= 0. (2.34)

Comparing with (1.40) and (2.29), we have

∂

∂t
Trodd [g exp(−B2

K,t − LK)
]

= −dB Treven
ï
g
∂BK,t

∂t
exp(−B2

K,t − LK)
ò

= dB
¶
Trodd [g exp(−B2

K,t − LK)
]©dt

. (2.35)

From Theorem 2.2, in this case, for |K| ≤ β, the equivariant infinitesimal η-form is 
defined by

η̃g,K = −
+∞∫

0

1√
π
ψB

¶
Trodd [g exp(−B2

K,t − LK)
]©dt

dt

=
+∞∫

0

1√
π
ψB Treven

ï
g
∂BK,t

∂t
exp(−B2

K,t − LK)
ò
dt ∈ Ωeven(B,C). (2.36)

As in (1.49), by (2.22), (2.34), (2.35) and (2.36), we get
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dB η̃g,K =
∫

Xg

Âg,K(TX,∇TX) chg,K(E/S,∇E). (2.37)

Definition 2.3. For K ∈ z(g), |K| ≤ β, determined in Theorem 2.2, under Assumption 1.2, 
the equivariant infinitesimal Bismut-Cheeger η-form is defined by

η̃g,K = −
+∞∫

0

{
ψR×BT̃r

[
g exp

(
−B2

K,t − LK

) ]}dt

dt. (2.38)

By (0.5) and (1.36), (2.38) is a reformulation of (2.31) and (2.36). From (2.32) and 
(2.37), we establish the first part of Theorem 0.1.

Remark that the compactness of B guarantees the existence of the constant β > 0 in 
Definition 2.3.

From (2.31) and (2.36), it is obvious that if K = 0, η̃g,K = η̃g in (1.50).
From the Duhamel’s formula (cf. e.g., [3, Theorem 2.48]), we have

∂

∂z̄
T̃r

[
g exp

(
− B2

zK,t − zLK

)]
= −T̃r

ñ
g
∂(B2

zK,t + zLK)
∂z̄

exp
(
− B2

zK,t − zLK

)ô
= 0.

(2.39)

Thus, T̃r
[
g exp

(
− B2

zK,t − zLK

)]
is C∞ on t > 0 and holomorphic on z ∈ C.

We fix K ∈ z(g). Thus for 0 < ε < T < +∞, the function

T∫

ε

{
ψR×BT̃r

[
g exp

(
−B2

zK,t − zLK

) ]}dt

dt

is holomorphic on z. By Theorem 2.2 and the dominated convergence theorem, we have

η̃g,zK := −
+∞∫

0

{
ψR×BT̃r

[
g exp

(
−B2

zK,t − zLK

) ]}dt

dt (2.40)

is holomorphic on z ∈ C, |zK| < β. Thus we get the last part of Theorem 0.1.
The proof of Theorem 0.1 is completed.

3. Comparison of two equivariant η-forms

In this section, we state our main result. We use the same notations and assumptions 
in Sections 1 and 2.

Let ϑK ∈ T ∗X be the 1-form which is dual to KX by the metric gTX , i.e., for any 
U ∈ TX,
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ϑK(U) = 〈KX , U〉. (3.1)

We identify ϑK to a vertical 1-form on W , i.e., to a 1-form which vanishes on THW . 
Then by (2.18) and (3.1), we have

dKϑK = dϑK − 2iπ |KX |2. (3.2)

Let dX be the exterior differential operator along the fiber X. By (2.5) and (3.1) (cf. [3, 
Lemma 7.15 (1)]), for U, U ′ ∈ TX, we have

dXϑK(U,U ′) = 2〈∇TX
U KX , U ′〉 = 2〈mTX(K)U,U ′〉. (3.3)

From (1.11) and (1.12), set

T̃ = 2T (fH
p , ei)fp ∧ ei ∧ +1

2T (fH
p , fH

q )fp ∧ fq ∧ . (3.4)

From [3, Proposition 10.1] or [20, (3.61) and (3.94)],

dϑK = dXϑK + 〈T̃ ,KX〉 = dXϑK + ϑK(T̃ ). (3.5)

For K ∈ z(g), |K| small, v > 0, set

αK = Âg,K(TX,∇TX) chg,K(E/S,∇E) ∈ Ω2•(W g,detNXg/X

)
,

ẽv = −
∫

Xg

ϑK

8viπ exp
Å
dKϑK

8viπ

ã
αK ∈ Ω•(B,C). (3.6)

Note that if W g,K = W g, as ϑK = 0 on W g,K , we get ẽv = 0.

Lemma 3.1. If W g,K � W g. Then ẽv = O(v−1) as v → +∞ and ẽv = O(v1/2) as v → 0.

Proof. By (3.2) and (3.6), we have

ẽv = −
�dimW g/2�∑

j=0

1
j!

Å 1
2iπ

ãj+1 ∫

Xg

ϑK

4v

Å
dϑK

4v

ãj

exp
Å
−|KX |2

4v

ã
· αK . (3.7)

Thus when v → +∞, ẽv = O(v−1).
For v → 0, we follow the argument in the proof of [9, Theorem 1.3]. For x ∈ W g, if 

KX
x �= 0, when v → 0, the integral term in (3.7) at x is of exponential decay. So the 

integral in (3.7) could be localized on a neighborhood of W g,K .
Let NXg,K/Xg be the normal bundle of W g,K in W g, and we identify it as the orthog-

onal complement of TXg,K = TXg|W g,K ∩ TXK |W g,K in TXg|W g,K . Recall that as KX
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is a Killing vector field, for any b ∈ B, Xg,K
b is totally geodesic in Xg

b , and as the same 
argument in Section 2.1, ∇TXg , mTX(K) preserve the splitting

TXg = TXg,K ⊕NXg,K/Xg on W g,K (3.8)

and mTX(K) = 0 on TXg,K . In particular,

mN
Xg,K/Xg (K) = mTX(K)|N

Xg,K/Xg
∈ End(NXg,K/Xg ) is skew-adjoint and invertible.

(3.9)

Combining with (2.6), it implies that NXg,K/Xg is orientable, and we fix an orientation. 
Then the orientations on TX, NXg,K/Xg induce the identifications over W g,K ,

det(NXg/X) � det(TXg) � det(TXg,K). (3.10)

Given ε > 0, let U ′′
ε be the ε-neighborhood of W g,K in NXg,K/Xg . There exists ε0 such 

that for 0 < ε ≤ ε0, the fiberwise exponential map (y, Z) ∈ Nb,Xg,K/Xg → expX
y (Z) ∈ Xg

b

is a diffeomorphism from U ′′
ε into the tubular neighborhood V ′′

ε of W g,K in W g. We denote 
Ṽ ′′
ε the fiber of the fibration V ′′

ε → B. With this identification, let k̄(y, Z) be the function 
such that

dvXg (y, Z) = k̄(y, Z)dvXg,K (y)dvN
Xg,K/Xg

(Z). (3.11)

Here dvXg ∈ Λmax(T ∗Xg) ⊗det(T ∗Xg), dvXg,K ∈ Λmax(T ∗Xg,K) ⊗det(T ∗Xg,K) are the 
Riemannian volume forms of Xg, Xg,K and dvN

Xg,K/Xg
is the Euclidean volume form 

on NXg,K/Xg .
Let e1, · · · , e� be a locally orthonormal frame of T ∗Xg. For β ∈ Ω•(W g, det(NXg/X)

)
, 

let [β]max be the coefficient of e1 ∧ · · · ∧ e� ⊗ ¤�e1 ∧ · · · ∧ e� of β, here ¤�e1 ∧ · · · ∧ e� means 
the local frame of det(NXg/X) induced by e1 ∧ · · · ∧ e� via (3.10). Consider the dilation 
δv, v > 0, of NXg,K/Xg by δv(y, Z) = (y, 

√
vZ). We have

∫

‹V′′
ε

ϑK

4v

Å
dϑK

4v

ãj

exp
Å
−|KX |2

4v

ã
αK

=
∫

Xg,K

∫

Z∈N
Xg,K/Xg ,|Z|<ε

ñ
ϑK |(y,Z)

4v

Å
dϑK |(y,Z)

4v

ãj

exp
Å
−|KX(y, Z)|2

4v

ã
αK(y, Z)

ômax

· k̄(y, Z)dvXg,K (y)dvN
Xg,K/Xg

(Z)

=
∫

Xg,K

∫

Z∈N g,K g ,|Z|<ε/
√
v

ï
δ∗vϑK |(y,Z)

4v

Å
dδ∗vϑK |(y,Z)

4v

ãj

exp
Å
−|KX(y,

√
vZ)|2

4v

ã

X /X
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· δ∗vαK |(y,Z)

ômax

· k̄(y,
√
vZ)dvXg,K (y)dvN

Xg,K/Xg
(Z). (3.12)

Let ∇N
Xg,K/Xg be the connection on NXg,K/Xg induced by ∇TX as explained af-

ter (1.31). Let πN : NXg,K/Xg → W g,K be the obvious projection. With respect to 
∇N

Xg,K/Xg , we have the canonical splitting of bundles over NXg,K/Xg ,

TNXg,K/Xg = THNXg,K/Xg ⊕ π∗
NNXg,K/Xg . (3.13)

By (1.4) and (3.13), we have

THNXg,K/Xg � π∗
NTW g,K � π∗

N (THW ⊕ TXg,K). (3.14)

On NXg,K/Xg , by (3.13) and (3.14), we have

Λ(T ∗NXg,K/Xg ) = Λ(TH∗NXg,K/Xg )“⊗π∗
NΛ(N∗

Xg,K/Xg )

� π∗
N

Ä
Λ(T ∗W g,K)“⊗Λ(N∗

Xg,K/Xg )
ä
. (3.15)

For y ∈ W g,K fixed, we take Y1, Y ′
1 ∈ TyW

g,K , Y V , Y ′V ∈ NXg,K/Xg,y, then Y = Y1+
Y V , Y ′ = Y ′

1 +Y ′V are sections of TNXg,K/Xg along NXg,K/Xg,y under our identification 
(3.13), i.e.,

Y(y,Z) = Y H
1 (y, Z) + Y V , Y ′

(y,Z) = Y ′H
1 (y, Z) + Y ′V . (3.16)

Here Y H
1 , Y ′H

1 ∈ THNXg,K/Xg are the lifts of Y1, Y ′
1 .

Let θ0 be the one form on total space N of NXg,K/Xg = NW g,K/W g given by

θ0(Y )(y,Z) = 〈mTX(K)Z, Y V 〉y for Y = Y H
1 + Y V ∈ THNXg,K/Xg ⊕ (π∗

NNXg,K/Xg ).
(3.17)

By [3, Lemma 7.15 (2)], we have

1
v
δ∗vϑK = θ0 + O(v1/2). (3.18)

From (3.18), we get

1
v
δ∗vdϑK = 1

v
dδ∗vϑK = dθ0 + O(v1/2). (3.19)

As in the argument before [3, p. 218, Lemma 7.16], by (3.8), we calculate that for 
(y, Z) ∈ NXg,K/Xg ,

dθ0(Y, Y ′)(y,Z) = 2〈mTX(K)Y V , Y ′V 〉y − 〈RTX(Y H
1 , Y ′H

1 )(mTX(K)Z), Z〉y. (3.20)
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By (2.5) and (2.12), for y ∈ W g,K ,

1
v
|KX(y,

√
vZ)|2 = |mTX(K)Z|2 + O(v1/2). (3.21)

From (3.12), (3.18), (3.19) and (3.21), for any α ∈ Ω•(W g, det(NXg/X)
)
, as v → 0,

∫

‹V′′
ε

ϑK

4v

Å
dϑK

4v

ãj

exp
Å
−|KX |2

4v

ã
α

=
∫

Xg,K

αy

∫

Z∈N
Xg,K/Xg

θ0

4

Å
dθ0

4

ãj

exp
Å
−|mTX(K)Z|2

4

ã
+ O(v1/2). (3.22)

From (3.20), dθ0 is an even polynomial in Z. However from (3.17), θ0 is linear in Z. Thus 
the last integral in (3.22) is zero. Therefore, as v → 0, we have

∫

Xg

ϑK

4v

Å
dϑK

4v

ãj

exp
Å
−|KX |2

4v

ã
αK = O(v1/2). (3.23)

The proof of Lemma 3.1 is completed. �
Remark that when B is a point, for g = e, Lemma 3.1 is proved in [37, Proposition 

2.2].
From Lemma 3.1 and (3.6), the following integral is well-defined,

Mg,K :=
+∞∫

0

ẽv
dv

v
. (3.24)

Proposition 3.2. For any K0 ∈ z(g), there exists β > 0 such that for K = zK0, −β <

z < β, we have

dBMg,K =
∫

Xg

Âg,K(TX,∇TX) chg,K(E/S,∇E)

−
∫

XgeK

ÂgeK (TX,∇TX) chgeK (E/S,∇E). (3.25)

And there exist cj(K) ∈ Ω•(B, C) for 1 ≤ j ≤ �(dimW g + 1)/2 such that Mg,tK is 
smooth on |t| < 1, t �= 0 and as t → 0, we have

Mg,tK =
�(dimW g+1)/2�∑

j=1
cj(K)t−j + O(t0). (3.26)
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Moreover, t�(dimW g+1)/2�Mg,tK is real analytic in t for |t| < 1.

Proof. By (2.18), d2
K = −2iπLK , and ϑK is K-invariant. We know

∂

∂v

Å
exp

Å
dKϑK

2viπ

ãã
= − 1

v2 dK

Å
ϑK

2iπ exp
Å
dKϑK

2viπ

ãã
. (3.27)

We define the corresponding equivariant curvature R
N

Xg,K/Xg

K as in (2.9) via (3.8). 
By the proof of (3.23) and [9, Theorem 1.3], we know that there exists C > 0, such that 
for any v ∈ (0, 1], α ∈ Ω•(W g, det(NXg/X)) = Ω•(W g, o(TXg)),

∣∣∣∣∣∣∣
∫

Xg

exp
Å
dKϑK

2viπ

ã
α−

∫

Xg,K

i−(�−�′)/2α

det1/2
(
R

N
Xg,K/Xg

K /(2iπ)
)
∣∣∣∣∣∣∣ ≤ C

√
v‖α‖C 1(W g),

∣∣∣∣∣∣
∫

Xg

ϑK

2viπ exp
Å
dKϑK

2viπ

ã
α

∣∣∣∣∣∣ ≤ C
√
v‖α‖C 1(W g).

(3.28)

Let QK be the current on W g such that if α ∈ Ω•(W g, det(NXg/X)), then

∫

Xg

QKα = −
+∞∫

0

∫

Xg

ϑK

2viπ exp
Å
dKϑK

2viπ

ã
α
dv

v
. (3.29)

From (3.7), the second equation of (3.28), we know (3.29) is well-defined. From 
(3.27)-(3.29), the following equality of currents on W g holds (cf. [12, Theorem 1.8]):

dKQK = 1 − i−(�−�′)/2δW g,K

det1/2
(
R

N
Xg,K/Xg

K /(2iπ)
) , (3.30)

where δW g,K is the current of integration on W g,K . From (3.6), (3.24) and (3.29), we get

Mg,K =
∫

Xg

QKαK

= −
+∞∫

0

∫

Xg

ϑK

2viπ exp
Å
dKϑK

2viπ

ã
Âg,K(TX,∇TX) chg,K(E/S,∇E)dv

v
. (3.31)

For x ∈ W g, K ∈ z(g), we have KX(x) ∈ TxX
g. From [3, (1.7)], for σ ∈

Ω•(W g, o(TXg)), using the sign convention in (0.15), we have
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dB
∫

Xg

σ =
∫

Xg

dσ =
∫

Xg

dKσ. (3.32)

From (2.12), proceeding as the same calculation in the proof of [3, Theorem 8.2], we 
get, as elements in Ω•(W g,K , det(NXg/X)),

Âg,K(TX,∇TX) chg,K(E/S,∇E)

i(�−�′)/2det1/2
(
R

N
Xg,K/Xg

K /(2iπ)
) = ÂgeK (TX,∇TX) chgeK (E/S,∇E). (3.33)

As αK is dK -closed, by (2.13) and (3.29)-(3.33), we get (3.25).
For t �= 0, by (3.31) and changing the variables v �→ vt2, we have

Mg,tK = −
+∞∫

0

∫

Xg

ϑK

2viπt

�(dimW g−1)/2�∑
k=0

Ç
(dϑK)k

(2viπt)kk!

å
exp

Å
−|KX |2

v

ã
αtK

dv

v
. (3.34)

From the arguments in the proof of (3.23), we get (3.26). From (2.15), (2.16) and (3.6), 
we see that αtK is real analytic on t for |t| < 1. Following the proof of (3.23),

+∞∫

0

∫

Xg

ϑK

v

Å
dϑK

v

ãk

exp
Å
−|KX |2

v

ã
αtK

dv

v

is uniformly absolutely integrable on v for |t| < 1. Thus t�(dimW g+1)/2�Mg,tK is real 
analytic on t for |t| < 1.

The proof of Proposition 3.2 is completed. �
From Proposition 3.2, we could state our main result, Theorem 0.2 as follows.

Theorem 3.3. For any g ∈ G, K0 ∈ z(g), there exists β > 0 such that for K = zK0, 
−β < z < β, K �= 0, we have

η̃g,K = η̃geK + Mg,K ∈ Ω•(B,C)/dΩ•(B,C). (3.35)

Observe that by (2.40), η̃g,tK is analytic on t for t small. By (3.35), when t → 0, 
modulo exact forms, the singularity of η̃getK is the same as that of −Mg,tK in (3.26).

Note that Theorem 3.3 is compatible with (1.44), (1.49), (2.32), (2.37) and (3.25).

Remark 3.4. For K ∈ z(g), M = �(dimW g − 1)/2, on W g \ {KX = 0}, we have

QK = −
M∑
j=0

1
j!

Å 1
2iπ

ãj+1 +∞∫
ϑK

v

Å
dϑK

v

ãj

exp
Å
−|KX |2

v

ã
dv

v

0
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= −
M∑
j=0

1
j!

Å 1
2iπ

ãj+1 ϑK

|KX |2
(dϑK)j

|KX |2j

+∞∫

0

vje−vdv

= −
M∑
j=0

ϑK(dϑK)j

(2iπ)j+1|KX |2j+2 = − ϑK

2iπ|KX |2
Å

1 − dϑK

2iπ|KX |2
ã−1

. (3.36)

From (3.18)-(3.21), we know that there exists C > 0 such that∣∣KX(y, Z)
∣∣2 ≥ C|Z|2, (3.37)

and for Y1 ∈ TyW
g,K ,

iY H
1
ϑK = O(|Z|3), iY H

1
dϑK = O(|Z|2). (3.38)

From (3.36)-(3.38) and the rank � − �′ of NXg,K/Xg is even, we know that near W g,K ,

QK(y, Z) = O(|Z|1−(�−�′)). (3.39)

Thus as a current over W g, QK is in fact locally integrable over W g and given by (3.36). 
For g = e, and B = pt, this is exactly [37, Proposition 2.2].

Assume now KX has no zeros, for t �= 0 small enough, by (3.6), (3.24), (3.35) and 
(3.36), we have

η̃g,tK = η̃getK −
∫

Xg

ϑK

2iπt|KX |2
Å

1 − dϑK

2iπt|KX |2
ã−1

αtK

∈ Ω•(B,C)/dΩ•(B,C). (3.40)

In particular, for g = e and B = pt, (3.40) as Taylor expansion at t = 0 is [36, Theorem 
0.5].

4. A proof of Theorem 3.3

In this section, we state some intermediate results and prove Theorem 3.3. The proofs 
of the intermediate results are delayed to Section 6.

4.1. Some intermediate results

For t > 0, v > 0, set

Cv,t = Bt +
√
tc(KX)

4

Å1
t
− 1

v

ã
+ dt ∧ ∂

∂t
+ dv ∧ ∂

∂v
. (4.1)

Then Cv,t is a superconnection associated with the fibration (R∗
+)2 ×W → (R∗

+)2 × B. 
From the argument in the proof of [3, Theorem 9.17], we have
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dR
2×BT̃r[g exp(−C2

v,t − LK)] = 0. (4.2)

For α ∈ Λ(T ∗(R2 ×B)),

α = α0 + dv ∧ α1 + dt ∧ α2 + dv ∧ dt ∧ α3, αi ∈ Λ(T ∗B), i = 0, 1, 2, 3, (4.3)

as in (0.6), set

[α]dv := α1, [α]dt := α2, [α]dv∧dt := α3. (4.4)

Definition 4.1. We define βg,K to be the part of −ψR2×BT̃r[g exp(−C2
v,t −LK)] of degree 

one with respect to the coordinates (v, t). We denote by

αg,K = −
¶
ψR2×BT̃r[g exp(−C2

v,t − LK)]
©dv∧dt

. (4.5)

From comparing the coefficient of dv ∧ dt part of (4.2), we haveÅ
dv ∧ ∂

∂v
+ dt ∧ ∂

∂t

ã
βg,K = −dv ∧ dt ∧ dBαg,K . (4.6)

Take a, A, 0 < a ≤ 1 ≤ A < +∞. Let Γ = Γa,A be the oriented contour in R+,v×R+,t:

0

Δ

t

v

a

A

a A

Γ1

Γ3

Γ2

The contour Γ is made of three oriented pieces Γ1, Γ2, Γ3 indicated in the above 
picture. For 1 ≤ k ≤ 3, set I0

k =
∫
Γk

βg,K . Also Γ bounds an oriented triangular domain 
Δ.

By Stocks’ formula and (4.6),

3∑
k=1

I0
k =

∫

∂Δ

βg,K =
∫

Δ

Å
dv ∧ ∂

∂v
+ dt ∧ ∂

∂t

ã
βg,K = −dB

Ñ∫

Δ

αg,Kdv ∧ dt

é
. (4.7)

The proof of the following theorem is left to Section 5.11.
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Theorem 4.2. For K ∈ z(g), |K| small enough, there exist δ > 0, C > 0 such that for 
any t ≥ 1, v ≥ t, we have

∣∣∣[βg,K(v, t)]dt
∣∣∣ ≤ C

t1+δ
. (4.8)

For α ∈ Ωj(B, C), we define

φ(α) := {ψR×B(dv ∧ α)}dv =
{

π− 1
2 (2iπ)−

j
2 · α if j is even;

(2iπ)−
j+1
2 · α if j is odd.

(4.9)

Comparing with (1.27), we set

T̃r
′
=

®
Trs if n is even;
Treven if n is odd.

(4.10)

For 0 < t ≤ v, set

BK,t,v =
Ç
Bt +

√
tc(KX)

4

Å1
t
− 1

v

ãå2

+ LK . (4.11)

Then by Definition 4.1, (4.1) and (4.11), we have

[βg,K(v, t)]dt

= −
®
ψRt×BT̃r

ñ
g exp

Ç
−BK,t,v − dt ∧ ∂

∂t

Ç
Bt +

√
tc(KX)

4

Å1
t
− 1

v

ãååô´dt

= φT̃r
′
ñ
g
∂

∂t

Ç
Bt +

√
tc(KX)

4

Å1
t
− 1

v

ãå
exp (−BK,t,v)

ô
,

[βg,K(v, t)]dv = −
®
ψRv×BT̃r

ñ
g exp

Ç
−BK,t,v − dv

√
tc(KX)
4v2

åô´dv

= φT̃r
′
ñ
g

√
tc(KX)
4v2 exp (−BK,t,v)

ô
.

(4.12)

Thus as BK,t,t = B2
t + LK , by (4.12), on Γ2, we have

βg,K(v, t) = dt ∧ φT̃r
′
ï
g
∂Bt

∂t
exp

(
−B2

t − LK

)ò
= −dt ∧

®
ψR×B T̃r

ñ
g exp

Ç
−
Å
Bt + dt ∧ ∂

∂t

ã2
− LK

åô´dt

. (4.13)
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In the remainder of this section, we use Theorem 4.2 and the following estimates to 
prove Theorem 3.3. The proofs of these estimates are delayed to Section 6. Recall that 
ẽv is defined in (3.6).

Theorem 4.3. For K0 ∈ z(g), there exists β > 0 such that for K = zK0, −β < z < β, 
K �= 0,

a) when t → 0,

φT̃r
′
ñ
g

√
tc(KX)

4v exp (−BK,t,v)
ô
→ −ẽv; (4.14)

b) there exist C > 0, δ ∈ (0, 1], such that for t ∈ (0, 1], v ∈ [t, 1],∣∣∣∣∣φT̃r
′
ñ
g

√
tc(KX)

4v exp (−BK,t,v)
ô

+ ẽv

∣∣∣∣∣ ≤ C

Å
t

v

ãδ

; (4.15)

c) there exists C > 0 such that for t ∈ (0, 1], v ≥ 1,∣∣∣∣∣T̃r
′
ñ
g

√
tc(KX)

4v exp (−BK,t,v)
ô∣∣∣∣∣ ≤ C

v
; (4.16)

d) for v ≥ 1,

lim
t→0

T̃r
′
ï
g
c(KX)
4
√
tv

exp (−BK,t,tv)
ò

= 0. (4.17)

4.2. A proof of Theorem 3.3

We now finish the proof of Theorem 3.3 by using Theorems 4.2 and 4.3. By (4.7), we 
know that I0

1 +I0
2 +I0

3 is an exact form on B. We take the limits A → +∞ and then a → 0
in the indicated order. We claim that the limit of the part I0

j (A, a) as A → +∞ exists, 
denoted by I1

j (a), and the limit of I1
j (a) as a → 0 exists, denoted by I2

j for j = 1, 2, 3.
i) By (4.11) and (4.12), [βg,K(v, t)]dt is uniformly bounded for v ≥ 1, t ∈ I, a compact 

interval I ⊂ (0, +∞), and

lim
v→+∞

[βg,K(v, t)]dt = [βg,K(+∞, t)]dt. (4.18)

From Theorem 4.2, (2.24), (4.12) and the dominated convergence theorem, we see that

I1
1 (a) = lim

A→+∞

A∫

a

[βg,K(A, t)]dtdt = −
+∞∫

a

{
ψR×BT̃r

[
g exp

(
−B2

K,t − LK

) ]}dt

dt.

(4.19)
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Thus by Theorem 2.2 and Definition 2.3, we have

I2
1 = −

+∞∫

0

{
ψR×BT̃r

[
g exp

(
−B2

K,t − LK

) ]}dt

dt = η̃g,K . (4.20)

ii) From Definition 1.4, (2.3) and (4.13), we have

I2
2 =

+∞∫

0

®
ψR×B T̃r

ñ
g exp

Ç
−
Å
Bt + dt ∧ ∂

∂t

ã2
− LK

åô´dt

dt = −η̃geK . (4.21)

iii) For the term I0
3 (A, a), set

J1 = −
1∫

a

ẽv
dv

v
,

J2 =
+∞∫

1

φT̃r
′
ï
g

√
ac(KX)

4v exp (−BK,a,v)
ò
dv

v
,

J3 =
1/a∫

1

Å
φT̃r

′
ï
g
c(KX)
4
√
av

exp (−BK,a,av)
ò

+ ẽav

ã
dv

v
.

(4.22)

Clearly, by Theorem 4.3 c) and (4.12), we have

I1
3 (a) = J1 + J2 + J3. (4.23)

By (4.14), (4.16) and (4.22), from the dominated convergence theorem, we find that as 
a → 0,

J2 → J1
2 = −

+∞∫

1

ẽv
dv

v
. (4.24)

By (4.15), there exist C > 0, δ ∈ (0, 1] such that for a ∈ (0, 1], 1 ≤ v ≤ 1/a,∣∣∣∣φT̃r
′
ï
g
c(KX)
4
√
av

exp (−BK,a,av)
ò

+ ẽav

∣∣∣∣ ≤ C

vδ
. (4.25)

Using Lemma 3.1, (4.17), (4.22), (4.25), and the dominated convergence theorem, as 
a → 0,

J3 → J1
3 = 0. (4.26)
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By (3.24), (4.22)-(4.24) and (4.26), we have

I2
3 = −

+∞∫

0

ẽv
dv

v
= −Mg,K . (4.27)

By [30, §22, Theorem 17], dΩ•(B, C) is closed under the uniformly convergence. Thus, 
by (4.7),

3∑
j=1

I2
j ≡ 0 mod dΩ•(B,C). (4.28)

By (4.20), (4.21), (4.27) and (4.28), the proof of Theorem 3.3 is completed.

5. Construction of the equivariant infinitesimal η-forms

In this section, we prove Theorems 2.2 and 4.2 following the lines of [19, §7] and give 
a heat kernel proof of the family Kirillov formula, Theorem 2.1. For the convenience to 
compare the arguments in this section with those in [19], especially how the extra terms 
for the family version appear, the structure of this section is formulated almost the same 
as in [19, §7].

This section is organized as follows. In Section 5.1, we prove Theorem 2.2 a). In 
Sections 5.2-5.10, we give proofs of Theorems 2.1 and 2.2 b). In Section 5.11, we prove 
Theorem 4.2.

5.1. The behavior of the trace as t → +∞

Set

CK,t = Bt + c(KX)
4
√
t

+ t · dt ∧ ∂

∂t
. (5.1)

For z ∈ C, we denote by

AzK,t := C2
zK,t + zLK . (5.2)

Then Theorem 2.2 a) is implied by the following estimate.

Theorem 5.1. For β > 0 fixed, there exist C > 0, δ > 0 such that if K ∈ g, z ∈ C, 
|zK| ≤ β, t ≥ 1, ∣∣∣∣¶T̃r[g exp(−AzK,t)]

©dt
∣∣∣∣ ≤ C

δ
. (5.3)
t
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Proof. This subsection is devoted to the proof of Theorem 5.1. �
In this subsection, we fix β > 0. The constants in this subsection may depend on β.
For b ∈ B, recall that Eb is the vector space of the smooth sections of E on Xb. For 

μ ∈ R, let Eμ
b be the Sobolev spaces of the order μ of sections of E on Xb. We equip E0

b

by the Hermitian product 〈 , 〉0 in (1.17). Let ‖ · ‖0 be the corresponding norm of E0
b . 

For μ ∈ Z, let ‖ · ‖μ be the Sobolev norm of Eμ
b induced by ∇TX and ∇E .

Recall that we assume that the kernels Ker(D) form a vector bundle over B. We 
denote by P the orthogonal projection from E0 to Ker(D) and let P⊥ = 1 − P .

Recall that PTX : TW = THW ⊕ TX → TX is the projection defined by (1.4). For 
s, s′ ∈ E, t ≥ 1, we set

|s|2t,0 : = ‖s‖2
0 ,

|s|2t,1 : = ‖Ps‖2
0 + t‖P⊥s‖2

0 + t‖∇E
PTX ·P

⊥s‖2
0 .

(5.4)

Set

|s|t,−1 = sup
0=s′∈E1

|〈s, s′〉0|
|s′|t,1

. (5.5)

Then (5.4) and (5.5) define Sobolev norms on E1 and E−1. Since ∇E
PTX ·P is an operator 

along the fiber X with smooth kernel, we know that | · |t,1 (resp. | · |t,−1) is equivalent to 
‖ · ‖1 (resp. ‖ · ‖−1) on E1 (resp. E−1).

Let A(0)
zK,t be the piece of AzK,t which has degree 0 in Λ(T ∗(R ×B)).

Lemma 5.2. There exist c1, c2, c3, c4 > 0, such that for any t ≥ 1, K ∈ g, z ∈ C, 
|zK| ≤ β, s, s′ ∈ E,

Re
¨
A(0)

zK,ts, s
∂
0
≥ c1|s|2t,1 − c2|s|2t,0,∣∣∣Im ¨

A(0)
zK,ts, s

∂
0

∣∣∣ ≤ c3|s|t,1|s|t,0,∣∣∣¨A(0)
zK,ts, s

′
∂
0

∣∣∣ ≤ c4|s|t,1|s′|t,1.

(5.6)

Proof. From (1.23), (5.1) and (5.2), we have

A(0)
zK,t = tD2 + z

4
[
D, c(KX)

]
− z2 |KX |2

16t + zLK . (5.7)

So we have
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Re〈A(0)
zK,ts, s〉0 =

≠Å
tD2 + Im(z)i

Å1
4
[
D, c(KX)

]
+ LK

ã
− Re(z2) |K

X |2
16t

ã
s, s

∑
0
,

Im〈A(0)
zK,ts, s〉0 =

≠Å
−Re(z)i

Å1
4
[
D, c(KX)

]
+ LK

ã
− Im(z2) |K

X |2
16t

ã
s, s

∑
0
.

(5.8)

From (5.4), there exist c′1, c′2, c′3, c′4 > 0 such that for any t ≥ 1, |zK| ≤ β, ε > 0,≠Å
tD2 − Re(z2) |K

X |2
16t

ã
s, s

∑
0
≥ c′1|s|2t,1 − c′2|s|2t,0,∣∣∣∣≠ Im(z)

4
[
D, c(KX)

]
s, s

∑
0

∣∣∣∣ ≤ c′3|s|t,1|s|t,0 ≤ c′3ε|s|2t,1 + c′3
4ε |s|

2
t,0,

|〈|z|LKs, s〉0| ≤ c′4|s|t,1|s|t,0 ≤ c′4ε|s|2t,1 + c′4
4ε |s|

2
t,0.

(5.9)

By taking ε = min{c′1/(4c′3), c′1/(4c′4)}, from (5.8), we get the first estimate of (5.6).
The other estimates in (5.6) follow directly from (5.4) and (5.8).
The proof of Lemma 5.2 is completed. �
By using Lemma 5.2 and exactly the same argument in [21, Theorem 11.27], we get

Lemma 5.3. There exist c, C > 0, such that if t ≥ 1, K ∈ g, z ∈ C, |zK| ≤ β,

λ ∈ Uc :=
ß
λ ∈ C : Re(λ) ≤ Im(λ)2

4c2 − c2
™
, (5.10)

the resolvent (λ −A(0)
zK,t)−1 exists, and moreover for any s ∈ E,

|(λ−A(0)
zK,t)

−1s|t,0 ≤ C|s|t,0,

|(λ−A(0)
zK,t)

−1s|t,1 ≤ C(1 + |λ|)2|s|t,−1.
(5.11)

The following lemma is the analogue of [11, Theorem 9.15].

Lemma 5.4. There exist C > 0, k ∈ N, such that for t ≥ 1, K ∈ g, z ∈ C, |zK| ≤ β, 
λ ∈ Uc, with c in Lemma 5.3, the resolvent (λ −AzK,t)−1 exists, extends to a continuous 
linear operator from Λ(T ∗(R × B)) ⊗ E−1 into Λ(T ∗(R × B)) ⊗ E1, and moreover for 
s ∈ E,

|(λ−AzK,t)−1s|t,1 ≤ C(1 + |λ|)k|s|t,−1. (5.12)

Proof. From (1.1), (1.23), (5.1) and (5.2),
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AzK,t −A(0)
zK,t =

√
t

Å
[D,∇E,u] + 1

2dt ∧D

ã
+

Ä
∇E,u

ä2
− 1

4 [D, c(TH)]

+ 1
8
√
t

(
2[∇E,u, zc(KX) − c(TH)] − dt ∧ (zc(KX) − c(TH))

)
+ 1

16t

(
2z〈KX , TH〉 + c(TH)2

)
. (5.13)

By [8, Theorem 2.5], [D, ∇E,u] and 
(
∇E,u

)2 are first order differential operators along 
the fiber. From P [D, ∇E,u]P = 0, we get∣∣∣〈√t[D,∇E,u]s, s′〉0

∣∣∣ ≤ C(|s|t,0|s′|t,1 + |s|t,1|s′|t,0). (5.14)

By (5.13) and (5.14), there exists C ′ > 0 such that for any t ≥ 1, we have

|(AzK,t −A(0)
zK,t)s|t,−1 ≤ C ′|s|t,1. (5.15)

Take λ ∈ Uc. Then since AzK,t −A(0)
zK,t has positive degree in Λ(T ∗(R ×B)), we have

(λ−AzK,t)−1 =
1+dimB∑
m=0

(λ−A(0)
zK,t)

−1
(
(AzK,t −A(0)

zK,t)(λ−A(0)
zK,t)

−1
)m

. (5.16)

Therefore, by (5.11), (5.15) and (5.16), we obtain (5.12).
The proof of Lemma 5.4 is completed. �

Proposition 5.5. There exists C > 0, such that for t ≥ 1, K ∈ g, z ∈ C, |zK| ≤ β, s ∈ E,

∥∥∥
(

exp(−AzK,t) − exp(−B2
zK,t − zLK)

)
s
∥∥∥

0
≤ C√

t
‖s‖0. (5.17)

Proof. From (5.4) and (5.5), we know for s ∈ E,

|P⊥s|t,−1 = sup
0=s′∈E1, Ps′=0

|〈P⊥s, s′〉0|
|s′|t,1

= 1√
t
‖P⊥s‖−1 ≤ 1√

t
‖P⊥s‖0. (5.18)

Note that from (2.20), (5.1) and (5.2), we have

AzK,t = B2
zK,t + zLK + dt ∧

Å1
2
√
tD − 1

8
√
t

(
zc(KX) − c(TH)

)ã
. (5.19)

Thus B2
zK,t + zLK has the same spectrum as AzK,t and by omitting dt part, we know 

Lemma 5.4 holds for B2
zK,t + zLK . Thus from (5.12) and (5.18), for λ ∈ Uc, we have



38 B. Liu, X. Ma / Advances in Mathematics 404 (2022) 108163
∥∥∥∥(λ−AzK,t)−1√tD
(
λ− (B2

zK,t + zLK)
)−1

s

∥∥∥∥
0

≤ C√
t
(1 + |λ|)k

∥∥∥∥
√
tDP⊥

(
λ− (B2

zK,t + zLK)
)−1

s

∥∥∥∥
0

≤ C√
t
(1 + |λ|)k

∣∣∣∣(λ− (B2
zK,t + zLK)

)−1
s

∣∣∣∣
t,1

≤ C2
√
t
(1 + |λ|)2k|s|t,−1 ≤ C2

√
t
(1 + |λ|)2k‖s‖0. (5.20)

Note that

exp(−AzK,t) = 1
2iπ

∫

∂Uc

e−λ(λ−AzK,t)−1dλ, (5.21)

and (5.21) also holds for B2
zK,t + zLK . From (5.19),

(λ−AzK,t)−1 − (λ− (B2
zK,t + zLK))−1

= (λ−AzK,t)−1 ·
Å
dt ∧

Å1
2
√
tD − 1

8
√
t

(
zc(KX) − c(TH)

)ãã
· (λ− (B2

zK,t + zLK))−1.

(5.22)

Now from (5.20)-(5.22), we get (5.17). The proof of Proposition 5.5 is completed. �
Since B is compact, there exists a family of smooth sections of TX, U1, · · · , Um such 

that for any x ∈ W , U1(x), · · · , Um(x) spans TxX.
Let D be a family of operators on E,

D =
{
P⊥ ∇E

Ui
P⊥} . (5.23)

From (5.7) and (5.13), by the same argument as the proof of [21, Proposition 11.29]
(see also e.g., [11, Theorem 9.17], [39, Lemma 5.17]), we get the following lemma.

Lemma 5.6. For any k ∈ N fixed, there exists Ck > 0 such that for t ≥ 1, K ∈ g, z ∈ C, 
|zK| ≤ β, Q1, · · · , Qk ∈ D and s, s′ ∈ E, we have

|〈[Q1, [Q2, · · · [Qk,AzK,t], · · · ]]s, s′〉0| ≤ Ck|s|t,1|s′|t,1. (5.24)

For k ∈ N, let Dk be the family of operators Q which can be written in the form

Q = Q1 · · ·Qk, Qi ∈ D. (5.25)

If k ∈ N, we define the Hilbert norm ‖ · ‖′k by
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‖s‖′ 2k =
k∑

�=0

∑
Q∈D�

‖Qs‖2
0. (5.26)

Since P∇E
PTX · and ∇E

PTX ·P are operators along the fiber with smooth kernels, the 
Sobolev norm ‖ · ‖′k is equivalent to the Sobolev norm ‖ · ‖k. Thus, we also denote the 
Sobolev space with respect to ‖ · ‖′k by Ek.

By using Lemma 5.6, as the proof of [21, Theorem 11.30], we get

Lemma 5.7. For any m ∈ N, there exist pm ∈ N and Cm > 0 such that for t ≥ 1, λ ∈ Uc, 
s ∈ E,

‖(λ−AzK,t)−1s‖′m+1 ≤ Cm(1 + |λ|)pm‖s‖′m. (5.27)

Let exp(−AzK,t)(x, x′), exp(−B2
zK,t − zLK)(x, x′) be the smooth kernels of the oper-

ators exp(−AzK,t), exp(−B2
zK,t − zLK) associated with dvX(x′). By using Lemma 5.7, 

following the same progress as in the proof of [21, Theorem 11.31], we get

Proposition 5.8. For m ∈ N, there exists C > 0, such that for b ∈ B, x, x′ ∈ Xb, t ≥ 1, 
K ∈ g, z ∈ C, |zK| ≤ β,

sup
|α|,|α′|≤m

∣∣∣∣∣ ∂|α|+|α′|

∂xα∂x′α′ exp(−AzK,t)(x, x′)
∣∣∣∣∣ ≤ C. (5.28)

By omitting dt part, we know Proposition 5.8 holds for exp(−B2
zK,t − zLK)(x, x′). 

From Propositions 5.5, 5.8 and (5.19), by the arguments in [21, §11 p)], there exist 
C > 0, δ > 0, such that for t ≥ 1, K ∈ g, |zK| ≤ β,

∣∣exp (−AzK,t) (x, x′) − exp(−B2
zK,t − zLK)(x, x′)

∣∣ ≤ C

tδ
. (5.29)

From (5.19),

dt ∧
¶
T̃r [g exp (−AzK,t)]

©dt
= T̃r

[
g
(

exp (−AzK,t) − exp(−B2
zK,t − zLK)

)]
. (5.30)

From (5.28) and (5.30), we get Theorem 5.1.

5.2. A proof of Theorems 2.1 and 2.2 b)

Section 5.3 is devoted to the proof of the following theorem.

Theorem 5.9. There exist β > 0, C > 0, 0 < δ ≤ 1 such that if K ∈ z(g), z ∈ C, 
|zK| ≤ β, 0 < t ≤ 1,
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∣∣∣∣∣∣ψR×BT̃r [g exp (−AzK,t)] −
∫

Xg

Âg,zK(TX,∇TX) chg,zK(E/S,∇E)

∣∣∣∣∣∣ ≤ Ctδ. (5.31)

Since 
∫
Xg Âg,zK(TX, ∇TX) chg,zK(E/S, ∇E) does not have the dt term, we get The-

orem 2.2 b) from Theorem 5.9, which we reformulate as follows.

Theorem 5.10. There exist β > 0, C > 0, δ > 0, such that if K ∈ z(g), z ∈ C, |zK| ≤ β, 
0 < t ≤ 1, ∣∣∣∣{T̃r

[
g exp

(
−AzK,t

)]}dt
∣∣∣∣ ≤ Ctδ. (5.32)

Proof of Theorem 2.1. If we omit the dt term in (5.31) and take z = 1, it follows that

∣∣∣∣∣ψBT̃r
ñ
g exp

Ç
−
Å
Bt + c(KX)

4
√
t

ã2

− LK

åô
−

∫

Xg

Âg,K(TX,∇TX) chg,K(E/S,∇E)

∣∣∣∣∣∣ ≤ Ctδ. (5.33)

From (5.33), we get (2.21) and (2.22).
From (2.27), (2.29), (2.33) and (2.35), we get other parts of Theorem 2.1.
The proof of Theorem 2.1 is completed. �
For simplicity, we will assume in the remainder of this section that n = dimX is even. 

The functional analysis part is exactly the same for even and odd dimensional. We only 
explain in Remark 5.22 how to use the argument in the proof of [17, Theorem 2.10] to 
compute the local index in odd dimensional case.

5.3. Finite propagation speed and localization

The proof of the following lemma is the same as Lemma 5.2.

Lemma 5.11. Given β > 0, there exist C1, C2, C ′
2(β), C3(β), C ′

3(β), C4, C5(β) > 0 such 
that if K ∈ g, z ∈ C, |zK| ≤ β, s, s′ ∈ E, 0 < t ≤ 1,

Re〈tA(0)
zK,ts, s〉0 ≥ C1t

2‖s‖2
1 − (C2t

2 + C ′
2(β))‖s‖2

0,

|Im〈tA(0)
zK,ts, s〉0| ≤ C3(β)t‖s‖1‖s‖0 + C ′

3(β)‖s‖2
0,

|〈tA(0)
zK,ts, s

′〉0| ≤ C4(t‖s‖1 + C5(β)‖s‖0)(t‖s′‖1 + C5(β)‖s′‖0).

(5.34)

Moreover, as β → 0, C ′
2(β), C3(β), C ′

3(β), C5(β) → 0.
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In the sequel, we take β > 0 and always assume that K ∈ g, |zK| ≤ β.
For c > 0, put

Vc =
ß
λ ∈ C : Re(λ) ≥ Im(λ)2

4c2 − c2
™
,

Γc =
ß
λ ∈ C : Re(λ) = Im(λ)2

4c2 − c2
™
.

(5.35)

Note that Uc, Vc, Γc are the images of {λ ∈ C : |Im(λ)| ≥ c}, {λ ∈ C : |Im(λ)| ≤ c}, 
{λ ∈ C : |Im(λ)| = c} by the map λ �→ λ2.

The following lemma is an analogue of [19, Theorem 7.12].

Lemma 5.12. There exists C > 0 such that given c ∈ (0, 1], for β > 0 and t ∈ (0, 1] small 
enough, if λ ∈ Uc, |zK| ≤ β, the resolvent (λ − tA(0)

zK,t)−1 exists, extends to a continuous 
operator from E−1 into E1, and moreover, for s ∈ E,

‖(λ− tA(0)
zK,t)

−1s‖0 ≤ 2
c2
‖s‖0,

‖(λ− tA(0)
zK,t)

−1s‖1 ≤ C

c2t4
(1 + |λ|)2‖s‖−1.

(5.36)

Proof. From the same arguments in [19, (7.47)-(7.49)], by Lemma 5.11, if λ ∈ R, λ ≤
−(C2t

2 + C ′
2(β)), the resolvent (λ − tA(0)

zK,t)−1 exists.
Now we take λ = a + ib, a, b ∈ R. By (5.34),

|〈(tA(0)
zK,t − λ)s, s〉| ≥ sup

{
C1t

2‖s‖2
1 − (C2t

2 + C ′
2(β) + a)‖s‖2

0,

− C3(β)t‖s‖1‖s‖0 + (|b| − C ′
3(β))‖s‖2

0

}
. (5.37)

Set

C(λ, t) = inf
u≥1

sup
{
C1(tu)2 − (C2t

2 + C ′
2(β) + a),−C3(β)tu− C ′

3(β) + |b|
}
. (5.38)

Since ‖s‖0 ≤ ‖s‖1, using (5.37), (5.38), we get

|〈(tA(0)
zK,t − λ)s, s〉| ≥ C(λ, t)‖s‖2

0. (5.39)

Now we fix c ∈ (0, 1]. Suppose that λ ∈ Uc, i.e.,

a ≤ b2

4c2 − c2. (5.40)

Assume that u ∈ R is such that
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|b| − C3(β)tu− C ′
3(β) ≤ c2. (5.41)

Then by (5.40) and (5.41),

C1(tu)2 − (C2t
2 + C ′

2(β) + a) ≥ C1(tu)2 − b2

4c2 + c2 − C2t
2 − C ′

2(β)

≥
Å
C1 −

C3(β)2

4c2

ã
(tu)2 − (c2 + C ′

3(β))C3(β)
2c2 tu + c2 − (c2 + C ′

3(β))2

4c2 − C2t
2 − C ′

2(β).

(5.42)

The discriminant Δ of the polynomial in the variable tu in the right-hand side of (5.42)
is given by

Δ = −3c2C1 + 2C1(C ′
3(β) + 2C2t

2 + 2C ′
2(β)) + C3(β)2

+ 1
c2

(C1C
′
3(β)2 − C2C3(β)2t2 − C ′

2(β)C3(β)2). (5.43)

Clearly, for β, t small enough,

Δ ≤ −2c2C1, C1 −
C2

3 (β)
4c2 > 0. (5.44)

From (5.42)-(5.44), we get

C1(t2u)2 − (C2t
4 + C ′

2(β) + a) ≥ − Δ
4(C1 − C2

3 (β)/(4c2)) ≥ c2

2 . (5.45)

Ultimately, by (5.38)-(5.45), we find that for β > 0, t ∈ (0, 1] small enough, if λ ∈ Uc,

C(λ, t) ≥ c2

2 . (5.46)

From (5.37), (5.38) and (5.46), we get the first equation of (5.36). Then combining 
with (5.34) and the argument in [19, (7.64)-(7.68)], we get the other part of Lemma 5.12.

The proof of Lemma 5.12 is completed. �
As in (5.15), from (5.13), there exists C > 0, such that for any 0 < t ≤ 1, s ∈ E1,

‖(tAzK,t − tA(0)
zK,t)s‖−1 ≤ C‖s‖1. (5.47)

From Lemma 5.12, following the same process as the proof of (5.12), we get the 
following lemma.
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Lemma 5.13. There exist k, m ∈ N, C > 0, such that given c ∈ (0, 1], for β > 0 and 
t ∈ (0, 1] small enough, if λ ∈ Uc, |zK| ≤ β, the resolvent (λ − tAzK,t)−1 exists, extends 
to a continuous operator from Λ(T ∗(R ×B)) ⊗E−1 into Λ(T ∗(R ×B)) ⊗E1, and moreover, 
for s ∈ E,

‖(λ− tAzK,t)−1s‖1 ≤ C

cktk
(1 + |λ|)m‖s‖−1. (5.48)

Definition 5.14. If H, H ′ are separable Hilbert spaces, if 1 ≤ p < +∞, set

Lp(H,H ′) = {A ∈ L (H,H ′) : Tr[(A∗A)p/2] < +∞}. (5.49)

If A ∈ Lp(H, H ′), set

‖A‖(p) :=
Ä
Tr[(A∗A)p/2]

ä1/p
. (5.50)

Then by [52, Chapter IX Proposition 6], ‖ · ‖(p) is a norm on Lp(H, H ′). Similarly, if 
A ∈ L (H, H ′), let ‖A‖(∞) be the usual operator norm of A.

In the sequel, the norms ‖ · ‖(p), ‖ · ‖(∞) will always be calculated with respect to the 
Sobolev spaces E0.

From Lemma 5.13, we get the following lemma with the same proof as in [19, Theorem 
7.13].

Lemma 5.15. Given q ≥ 2 dimX + 1, there exist C > 0, k, m ∈ N, such that given 
c ∈ (0, 1], for β > 0 and t ∈ (0, 1] small enough, if λ ∈ Uc, |zK| ≤ β,

‖(λ− tAzK,t)−1‖(q) ≤
C

cktk
(1 + |λ|)m,

‖(λ− tAzK,t)−q‖(1) ≤
Cq

(cktk)q (1 + |λ|)mq.

(5.51)

Let aX be the inf of the injectivity radius of the fibers X. Let α ∈ (0, aX/8]. The 
precise value of α will be fixed later. The constants C > 0, C ′ > 0, ... may depend on 
the choice of α.

Let f : R → [0, 1] be a smooth even function such that

f(u) =
{

1 for |u| ≤ α/2;

0 for |u| ≥ α.
(5.52)

Set

g(u) = 1 − f(u). (5.53)
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For t > 0, a ∈ C, put⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ft(a) =
+∞∫

−∞

exp(
√

2iua) exp
Å
−u2

2

ã
f(
√
tu) du√

2π
,

Gt(a) =
+∞∫

−∞

exp(
√

2iua) exp
Å
−u2

2

ã
g(
√
tu) du√

2π
.

(5.54)

Then Ft(a), Gt(a) are even holomorphic functions of a such that

exp(−a2) = Ft(a) + Gt(a). (5.55)

Moreover when restricted on R, Ft and Gt both lie in the Schwartz space S(R). Put

It(a) = Gt(a/
√
t). (5.56)

Clearly, there exist uniquely defined holomorphic functions ‹Ft(a), ‹Gt(a), Ĩt(a) such that

Ft(a) = ‹Ft(a2), Gt(a) = ‹Gt(a2), It(a) = Ĩt(a2). (5.57)

By (5.55) and (5.56), we have

exp(−a) = ‹Ft(a) + ‹Gt(a), Ĩt(a) = ‹Gt(a/t). (5.58)

From (5.58),

exp(−AzK,t) = ‹Ft(AzK,t) + Ĩt(tAzK,t). (5.59)

From Lemma 5.15, the proof of the following lemma is the same as that of [19, Theorem 
7.15].

Lemma 5.16. There exist β > 0, C > 0, C ′ > 0 such that if t ∈ (0, 1], K ∈ g, |zK| ≤ β,

‖Ĩt(tAzK,t)‖(1) ≤ C exp(−C ′/t). (5.60)

By (5.59) and (5.60), we find that to establish (5.31), we may as well replace 
exp(−AzK,t) by ‹Ft(AzK,t).

Let ‹Ft(AzK,t)(x, x′), (x, x′ ∈ Xb, b ∈ B) be the smooth kernel associated with the 
operator ‹Ft(AzK,t) with respect to dvX(x′). Clearly the kernel of g‹Ft(AzK,t) is given by 
g‹Ft(AzK,t)(g−1x, x′). Then,

Trs[g‹Ft(AzK,t)] =
∫

X

Trs[g‹Ft(AzK,t)(g−1x, x)]dvX(x). (5.61)
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For ε > 0, x ∈ Xb, b ∈ B, let BX(x, ε) be the open ball in Xb with center x and 
radius ε. Using finite propagation speed for solutions of hyperbolic equations (cf. [48, 
Appendix D.2]), we find that given x ∈ Xb, ‹Ft(AzK,t)(x, ·) vanishes on the complement 
of BX(x, α) in Xb, and depends only on the restriction of the operator AzK,t to the ball 
BX(x, α). Therefore, we have shown that the proof of (5.31) can be made local on Xb. 
Therefore, we may and we will assume that TXb is spin and

E = SX ⊗ E (5.62)

over Xb, where SX is the spinor of TX and E is a complex vector bundle, and the metric 
and the connection on E are induced from those on TX and E.

By the above, it follows that g‹Ft(AzK,t)(g−1x, x), x ∈ Xb vanishes if dXb(g−1x, x) ≥
α. Here dXb is the distance in (Xb, gTX).

Now we explain our choice of α. Recall that NXg/X is identified with the orthogonal 
bundle to TXg in TX|Xg . Given ε > 0, let Uε be the ε-neighborhood of Xg

b in NXg/X . 
There exists ε0 ∈ (0, aX/32] such that if ε ∈ (0, 16ε0], the fiberwise exponential map 
(x, Z) ∈ NXg/X → expX

x (Z) is a diffeomorphism of Uε on the tubular neighborhood Vε

of Xg in X. In the sequel, we identify Uε and Vε. This identification is g-equivariant. 
We will assume that α ∈ (0, ε0] is small enough so that for any b ∈ B, if x ∈ Xb, 
dXb(g−1x, x) ≤ α, then x ∈ Vε0 .

By (5.60), (5.61) and the above considerations, it follows that for β > 0 small enough, 
the problem is localized on the ε0-neighborhood Vε0 of Xg.

As in (3.11), let k(x, Z) be the smooth function on Uε0 such that

dvX(x, Z) = k(x, Z)dvXg (x)dvNXg/X
(Z). (5.63)

In particular, k|Xg = 1.
For ω ∈ Λ(T ∗R)“⊗Λ(T ∗W g), via (1.4) and (1.5), we will write

ω =
∑

1≤i1<···<ip≤�

ωi1,··· ,ip ∧ ei1 ∧ · · · ∧ eip , for ωi1,··· ,ip ∈ Λ(T ∗R)“⊗π∗Λ(T ∗B).

We denote by

ωmax := ω1,··· ,� ∈ Λ(T ∗R)“⊗π∗Λ(T ∗B). (5.64)

Note that if the fiber is odd dimensional, our sign convention here is compatible with 
that in (0.15).

Theorem 5.17. There exist β > 0, δ ∈ (0, 1] such that if K ∈ z(g), z ∈ C, |zK| ≤ β, 
t ∈ (0, 1], x ∈ Xg,
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∣∣∣∣∣t 1
2 dimNXg/X

∫

Z∈NXg/X ,|Z|≤ε0/
√
t

ψR×B Trs[g‹Ft(AzK,t)(g−1(x,
√
tZ), (x,

√
tZ))]

· k(x,
√
tZ)dvNXg/X

(Z) −
¶
Âg,zK(TX,∇TX) chg,zK(E,∇E)

©max
∣∣∣∣∣ ≤ Ctδ. (5.65)

Proof. Sections 5.4-5.10 are devoted to the proof of this theorem. �
Proof of Theorem 5.9. By (5.61) and the finite propagation speed argument above, we 
have

∫

X

Trs[g‹Ft(AzK,t)(g−1x, x)]dvX(x) =
∫

Uε0

Trs[g‹Ft(AzK,t)(g−1x, x)]dvX(x)

=
∫

(x,Z)∈Uε0/
√

t

t
1
2 dimNXg/X Trs[g‹Ft(AzK,t)(g−1(x,

√
tZ), (x,

√
tZ))]

· k(x,
√
tZ)dvXg (x)dvNXg/X

(Z). (5.66)

By Lemma 5.16, Theorem 5.17 and (5.66), there exist β > 0, δ ∈ (0, 1] such that for 
K ∈ z(g), |zK| ≤ β, t ∈ (0, 1],

∣∣∣∣∣∣ψR×B Trs [g exp (−AzK,t)] −
∫

Xg

Âg,zK(TX,∇TX) chg,zK(E/S,∇E)

∣∣∣∣∣∣ ≤ Ctδ. (5.67)

So we obtain Theorem 5.9. �
5.4. A Lichnerowicz formula

Let e1, · · · , en be a locally defined smooth orthonormal frame of TX. Let (F, ∇F ) be 
a vector bundle with connection on X. We use the notation

(∇F
ei)

2 =
n∑

i=1
(∇F

ei)
2 −∇F∑n

i=1 ∇TX
ei

ei
. (5.68)

Let H be the scalar curvature of X. The following result is a combination of [7, 
Theorem 1.6], [19, Proposition 7.18] (for the term involved KX and base B = pt), [8, 
Theorem 3.5] (for Bismut’s Lichnerowicz formula for Bismut superconnection) and [18, 
Theorem 2.10] (for the term involved dt).

Proposition 5.18. The following identity holds,
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AzK,t = −t

Å
∇E

ei + 1
2
√
t
〈S(ei)ej , fH

p 〉c(ej)fp∧

+ 1
4t 〈S(ei)fH

p , fH
q 〉fp ∧ fq ∧ −z〈KX , ei〉

4t − dt ∧ c(ei)
4
√
t

ã2

+ t

4H + t

2R
E/S(ei, ej)c(ei)c(ej) +

√
tRE/S(ei, fH

p )c(ei)fp∧

+ 1
2R

E/S(fH
p , fH

q )fp ∧ fq ∧ −zmE/S(K). (5.69)

Proof. From Bismut’s Lichnerowicz formula (cf. [8, Theorem 3.5]),

B2
t = −t

Å
∇E

ei + 1
2
√
t
〈S(ei)ej , fH

p 〉c(ej)fp ∧ + 1
4t 〈S(ei)fH

p , fH
q 〉fp ∧ fq∧

ã2

+ t

4H + t

2R
E/S(ei, ej)c(ei)c(ej) +

√
tRE/S(ei, fH

p )c(ei)fp ∧+1
2R

E/S(fH
p , fH

q )fp ∧ fq ∧ .

(5.70)

From (1.19), (2.5) and (2.7),

1
4 [D, c(KX)] = 1

4c(ek)c
(
∇TX

ek
KX

)
− 1

2 〈K
X , ej〉∇E

ej = mS(K) − 1
2∇

E
KX . (5.71)

Since the G-action preserves the splitting (1.4), 〈[KX , fH
p ], ej〉 = 0. Thus from (1.9), 

(1.19) and (1.22),

[∇E,u, c(KX)] = fp ∧ c
Ä
∇TX

fH
p
KX

ä
= −〈∇TW,L

fH
p

KX , ej〉c(ej)fp∧

= 〈∇TW,L
KX ej , f

H
p 〉c(ej)fp∧ = 〈S(KX)ej , fH

p 〉c(ej)fp ∧ . (5.72)

From (1.10)-(1.12), we get

S(ej)ek = S(ek)ej , 〈S(ej)fH
p , fH

q 〉 = 1
2 〈T (fH

p , fH
q ), ej〉. (5.73)

Thus from (1.22),

[c(TH), c(KX)] = 〈S(ej)fH
p , fH

q 〉fp ∧ fq ∧ [c(ej), c(KX)]

= −2〈S(KX)fH
p , fH

q 〉fp ∧ fq ∧ . (5.74)

Thus from (5.1), (5.2) and (5.70)-(5.74), we get (5.69) without dt term. By comparing 
directly the coefficient of dt on both sides of (5.69) as in [18, Theorem 2.10], we get 
(5.69).

The proof of Proposition 5.18 is completed. �
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5.5. A local coordinate system near Xg

Take x ∈ W g. Then the fiberwise exponential map Z ∈ TxX → expX
x (Z) ∈ X

identifies BTxX(0, 16ε0) with BX(x, 16ε0). With this identification, there exists a smooth 
function k′x(Z), Z ∈ BTxX(0, aX/2) such that

dvX(Z) = k′x(Z)dvTX(Z), with k′x(0) = 1. (5.75)

We may and we will assume that ε0 is small enough so that if Z ∈ TxX, |Z| ≤ 4ε0,

1
2g

TX
x ≤ gTX

Z ≤ 3
2g

TX
x . (5.76)

Assume from now, K ∈ z(g). Recall that ϑK is the one form dual to KX defined in 
(3.1).

Definition 5.19. Let 1∇E,t be the connection on Λ(T ∗R)“⊗π∗Λ(T ∗B)“⊗E along the fibers,

1∇E,t
· := ∇E

· + 1
2
√
t
〈S(·)ej , fH

p 〉c(ej)fp ∧ + 1
4t 〈S(·)fH

p , fH
q 〉fp ∧ fq∧

− zϑK(·)
4t − dt ∧ c(·)

4
√
t
. (5.77)

In the sequel, we will trivialize Λ(T ∗R)“⊗π∗Λ(T ∗B)“⊗E by parallel transport along 
u ∈ [0, 1] → uZ with respect to the connection 1∇E,t. Observe that the above connection 
is g-invariant.

From (1.10) and (1.13), we have S(ei)ej = S(ej)ei. Let L be a trivial line bundle over 
W . We equip a connection on L by

∇L = d− zϑK

4 . (5.78)

Thus

RL = (∇L)2 = −zdϑK

4 . (5.79)

From (1.30), (3.3), (3.5), (5.73), (5.78) and (5.79), we could calculate that

(1∇E,1)2 (ei, ej) = 1
4 〈R

TX(ek, el)ei, ej〉c(ek)c(el) + 1
2 〈R

TX(ek, fH
p )ei, ej〉c(ek)fp∧

+ 1
4 〈R

TX(fH
p , fH

q )ei, ej〉fp ∧ fq ∧ +RE(ei, ej) −
z

2 〈m
TX(K)ei, ej〉. (5.80)



B. Liu, X. Ma / Advances in Mathematics 404 (2022) 108163 49
Note that when K = 0, (5.80) is [8, Theorem 4.14], [3, Theorem 10.11] or [11, Theorem 
11.8]. Note that from (5.77), 

(1∇E,t)2 could be obtained from 
(1∇E,1)2 by replacing fp∧, 

fq∧ and K by f
p

√
t
∧, f

q
√
t
∧ and Kt .

Let A, A′ be smooth sections of TX. By (5.77),

1∇E,1
A c(A′) = c(∇TX

A A′) + 〈S(A)A′, fH
p 〉fp ∧ +1

2 〈A,A′〉dt. (5.81)

Let c1(TX) � TX be the set of elements of length 1 in c(TX). It follows from (5.81) that 
parallel transport along the fiber X with respect to 1∇E,1 maps c1(TX) into c1(TX) ⊕
T ∗B ⊕ T ∗R, while leaving Λ(T ∗B)“⊗Λ(T ∗R) invariant.

5.6. Replacing X by TxX

Let γ(u) be a smooth even function from R into [0, 1] such that

γ(u) =
{

1 if |u| ≤ 1/2;

0 if |u| ≥ 1.
(5.82)

If Z ∈ TxX, put

ρ(Z) = γ

Å |Z|
4ε0

ã
. (5.83)

Then

ρ(Z) =
{

1 if |Z| ≤ 2ε0;

0 if |Z| ≥ 4ε0.
(5.84)

For x ∈ W g, let Hx be the vector space of smooth sections of Λ(T ∗R)“⊗π∗(Λ(T ∗B))“⊗Ex
over TxX. Let ΔTX be the (negative) standard Laplacian on the fiber of TX.

Let L1,t
x,zK be the differential operator acting on Hx,

L1,t
x,zK = (1 − ρ2(Z))(−tΔTX) + ρ2(Z)AzK,t. (5.85)

Let ‹Ft(L1,t
x,zK)(Z, Z ′) be the smooth kernel of ‹Ft(L1,t

x,zK) with respect to dvTX(Z ′). 
Using the finite propagation speed for solutions of hyperbolic equations [48, Appendix 
D.2] and (5.75), we find that if Z ∈ NXg/X,x, |Z| ≤ ε0, then

‹Ft(AzK,t)(g−1Z,Z)k′x(Z) = ‹Ft(L1,t
x,zK)(g−1Z,Z). (5.86)

Thus in our proof of Theorem 5.17, we can then replace AzK,t by L1,t
x,zK .
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5.7. The Getzler rescaling

Let Opx be the set of scalar differential operators on TxX acting on Hx. Then by 
(5.62),

L1,t
x,zK ∈ (Λ(T ∗R)“⊗π∗(Λ(T ∗B))“⊗c(TX) ⊗ End(E))x ⊗ Opx. (5.87)

For t > 0, let Ht : Hx → Hx be the linear map

Hth(Z) = h(Z/
√
t). (5.88)

Let L2,t
x,zK be the differential operator acting on Hx defined by

L2,t
x,zK = H−1

t L1,t
x,zKHt. (5.89)

By (5.87),

L2,t
x,zK ∈ (Λ(T ∗R)“⊗π∗(Λ(T ∗B))“⊗c(TX) ⊗ End(E))x ⊗ Opx. (5.90)

Recall that dimXg = � and dimNXg/X = n − �. Let (e1, · · · , e�) be an orthonormal 
oriented basis of TxX

g, let (e�+1, · · · , en) be an orthonormal oriented basis of NXg/X , so 
that (e1, · · · , en) is an orthonormal oriented basis of TxX. We denote with an superscript 
the corresponding dual basis.

For 1 ≤ j ≤ �, the operators ej∧ and iej act as odd operators on Λ(T ∗Xg).

Definition 5.20. For t > 0, put

ct(ej) = 1√
t
ej ∧ −

√
tiej , 1 ≤ j ≤ �. (5.91)

Let L3,t
x,zK be the differential operator acting on Hx obtained from L2,t

x,zK by replacing 
c(ej) by ct(ej) for 1 ≤ j ≤ �.

For A ∈ (Λ(T ∗R)“⊗π∗(Λ(T ∗B))“⊗c(TX) ⊗ End(E))x ⊗ Opx, we denote by [A](3)t the 
differential operator obtained from A by using the Getzler rescaling of the Clifford vari-
ables which is given in Definition 5.20.

Let τej(Z) be the parallel transport of ej along the curve t ∈ [0, 1] → tZ with respect 
to the connection ∇TX . Let O1(|Z|2) be any object in Λ(T ∗R)“⊗π∗(Λ(T ∗B))“⊗c(TX)
which is of length at most 1 and is also O(|Z|2). By (5.81), in the trivialization associated 
with 1∇E,t,

c(τej(Z)) = c(ej) + 1√
t
〈S(Z)ej , fH

p 〉fp ∧ + 1
2
√
t
〈Z, ej〉dt ∧ +O1(t−1/2|Z|2). (5.92)

From (5.92), for 1 ≤ j ≤ �,
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î√
tc(τej(

√
tZ))

ó(3)
t

= ej ∧ +O(
√
t|Z|); (5.93)

for � + 1 ≤ j ≤ n,î
c(τej(

√
tZ))

ó(3)
t

= c(ej) + 〈S(Z)ej , fH
p 〉fp ∧ +1

2 〈Z, ej〉dt ∧ +O(
√
t|Z|2). (5.94)

From [3, Proposition 1.18], (5.69), (5.80), (5.85), (5.89) and (5.91), we calculate that

L3,t
x,zK = (1 − ρ2(

√
tZ))(−ΔTX) + ρ2(

√
tZ) ·

¶
−gij(

√
tZ)

Ä
∇′

ei∇
′
ej − Γk

ij(
√
tZ)

√
t∇′

ek

ä
+ t

4H
√
tZ + t

2R
E√
tZ

(τei, τej)
î
c(τei(

√
tZ))c(τej(

√
tZ))

ó(3)
t

+
√
tRE√

tZ
(τej , fH

p )
î
c(τej(

√
tZ))

ó(3)
t

fp ∧ +1
2R

E√
tZ

(fH
p , fH

q )fp ∧ fq ∧ −mE√
tZ

(zK)
™
,

(5.95)

where 
(
gij(Z)

)
is the inverse matrix of (gij(Z) = 〈ei, ej〉Z), 

(
∇TX

ei ej
)
Z

= Γk
ij(Z)ek and

∇′
ei = ∇τei(

√
tZ) + t

8

(
〈RTX

x (ek, el)Z, ei〉 + O(
√
t|Z|2)

) î
c(τei(

√
tZ))c(τej(

√
tZ))

ó(3)
t

+
√
t

4

(
〈RTX

x (ej , fH
p )Z, ei〉 + O(

√
t|Z|2)

) î
c(τej(

√
tZ))

ó(3)
t

fp∧

+ 1
8

(
〈RTX

x (fH
p , fH

q )Z, ei〉 + O(
√
t|Z|2)

)
fp ∧ fq ∧ + t

2
Ä
RE

x (Z, ei) + O(
√
t|Z|2)

ä
− 1

4 〈m
TX
x (zK)Z, ei〉 + 1√

t
hi(zK,

√
tZ). (5.96)

Here ∇U is the ordinary differentiation operator on TX in the direction U , hi(zK, Z) is 
a function depending linearly on zK and hi(zK, Z) = O(|Z|2) for |zK| < β.

Let ‹Ft(L3,t
x,zK)(Z, Z ′) be the smooth kernel associated with ‹Ft(L3,t

x,zK) with respect to 
dvTX(Z ′).

From the finite propagation speed argument explained before (5.62), we could also 
assume that TXg and NXg/X are spin. Let SXg and SN be the spinors of TXg and 
NXg/X respectively. Then SX = SXg“⊗SN . Recall that g acts on (SN ⊗ E)x.

We may write ‹Ft(L3,t
x,zK)(Z, Z ′) in the form

‹Ft(L3,t
x,zK)(Z,Z ′) =

∑ ‹F j1···jq
t,i1···ip(Z,Z

′)ei1 ∧ · · · ∧ eipiej1 · · · iejq ,

1 ≤ i1 < · · · < ip ≤ �, 1 ≤ j1 < · · · < jq ≤ �, (5.97)

and ‹F j1···jq
t,i1···ip(Z, Z

′) ∈ Λ(T ∗R)“⊗π∗Λ(T ∗B) ⊗
(
c(NXg/X) ⊗ End(E)

)
x
. As explained in 

Section 1.3, � = dimXg has the same parity as n = dimX. As in (5.64), put



52 B. Liu, X. Ma / Advances in Mathematics 404 (2022) 108163
[‹Ft(L3,t
x,zK)(Z,Z ′)]max = ‹Ft,1···�(Z,Z ′). (5.98)

In other words, ‹Ft,1···�(Z, Z ′) is the coefficient of e1 ∧ · · · ∧ e� in (5.97).

Proposition 5.21. If Z ∈ TxX, |Z| ≤ ε0/
√
t,

t(n−�)/2 Trs[g‹Ft(AzK,t)(g−1(
√
tZ),

√
tZ)]k′x(

√
tZ)

= (−i)�/22�/2 TrSN⊗E
s [g‹Ft(L3,t

x,zK)(g−1Z,Z)]max. (5.99)

Proof. As K ∈ z(g), 1∇E,t is g-equivariant. Thus the trivialization Λ(T ∗R)“⊗π∗Λ(T ∗B)“⊗E is g-equivariant and the action of g on 
(
Λ(T ∗R)“⊗π∗Λ(T ∗B)“⊗E

)
g−1Z

is the action 

of g on 
(
Λ(T ∗R)“⊗π∗Λ(T ∗B)“⊗E

)
x
, which is an element in 

(
c(NXg/X) ⊗End(E)

)
x
. Now 

we get Proposition 5.21 by the same proof of [19, Proposition 7.25]. �
Remark 5.22. As in [17, (1.6) and (1.7)], if n = dimX is even,

TrSX
s [c(ei1) · · · c(eip)] = 0, for p < n, 1 ≤ i1 < · · · < ip ≤ n,

TrSX
s [c(e1) · · · c(en)] = (−2i)n/2;

(5.100)

if n = dimX is odd,

TrSX [1] = 2(n−1)/2, TrSX [c(e1) · · · c(en)] = (−i)(n+1)/22(n−1)/2, (5.101)

and the trace of the other monomials is zero.
If n = dimX is odd, since (5.101) holds and the total degree of ‹Ft(AzK,t) is even, we 

only take the trace for the odd degree Clifford part. In this case, (5.65) is replaced by

∣∣∣∣∣t(n−�)/2
∫

Z∈N,|Z|≤ ε0√
t

ψR×B Trodd[g‹Ft(AzK,t)(g−1(x,
√
tZ), (x,

√
tZ))]

· k(x,
√
tZ)dvNXg/X

(Z) −
¶
Âg,zK(TX,∇TX) chg,zK(E,∇E)

©max
∣∣∣∣∣ ≤ Ctδ. (5.102)

In particular, since n − � is even,

TrSX [c(e1) · · · c(en)]

= (−i)(�+1)/22(�−1)/2t�/2
¶
TrSN

s [ct(e1) · · · ct(e�)c(e�+1) · · · c(en)]
©max

, (5.103)

the analogue of (5.99) is
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t(n−�)/2 Trodd[g‹Ft(AzK,t)(g−1(
√
tZ),

√
tZ)]k′x(

√
tZ)

= (−i)(�+1)/22(�−1)/2{TrSN⊗E
s [g‹Ft(L3,t

x,zK)(g−1Z,Z)]}max. (5.104)

Let j : W g → W be the obvious embedding.

Definition 5.23. Let L3,0
x,zK be the operator in

(π∗(Λ(T ∗B))“⊗Λ(T ∗Xg)“⊗c(NXg/X) ⊗ End(E))x ⊗ Opx, (5.105)

under the notation (5.68), given by

L3,0
x,zK = −

Å
∇ei + 1

4
〈
(j∗RTX

x −mTX(zK)x)Z, ei
〉ã2

+ j∗RE
x −mE(zK)x. (5.106)

In the sequel, we will write that a sequence of differential operators on TxX converges if 
its coefficients converge together with their derivatives uniformly on the compact subsets 
in TxX.

Comparing with [19, Proposition 7.27], from (5.93)-(5.96), we have

Proposition 5.24. As t → 0,

L3,t
x,zK → L3,0

x,zK . (5.107)

5.8. A family of norms

For x ∈ W g, let Ix be the vector space of smooth sections of (Λ(T ∗R)“⊗π∗Λ(T ∗B)“⊗
Λ(T ∗Xg)“⊗SN ⊗E)x on TxX, let I(r,q),x be the vector space of smooth sections of

((
T ∗R“⊗π∗Λr−1(T ∗B) ⊕ π∗Λr(T ∗B)

)“⊗Λq(T ∗Xg)“⊗SN ⊗E
)
x

on TxX. We denote by I0
x =

⊕
r,q I0

(r,q),x the corresponding vector space of square-
integrable sections. Put k = dimB.

Definition 5.25. If s ∈ I(r,q),x has compact support, put

|s|2t,x,0 =
∫

TxX

|s(Z)|2
Ç

1 + |Z| ρ
Ç√

tZ

2

åå2(k+�+1−q−r)

dvTX(Z). (5.108)

Recall that by (5.84), if ρ(
√
tZ) > 0, then |

√
tZ| ≤ 4ε0. If 

√
t|Z| ≤ 4ε0, then 

ρ(
√
tZ/2) = 1. By the same arguments as in [21, Proposition 11.24], for t ∈ (0, 1], 

the following family of operators acting on (I0
x, | · |t,x,0) are uniformly bounded:
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1|√tZ|≤4ε0

√
tct(ej), 1|√tZ|≤4ε0 |Z|

√
tct(ej), for 1 ≤ j ≤ �,

1|√tZ|≤4ε0 |Z|fp∧, 1|√tZ|≤4ε0 |Z|dt ∧ .
(5.109)

Definition 5.26. If s ∈ Ix has compact support, put

|s|2t,x,1 = |s|2t,x,0 +
n∑

i=1
|∇eis|2t,x,0, (5.110)

and

|s|t,x,−1 = sup
0=s′∈Ix

|〈s, s′〉t,x,0|
|s′|t,x,1

. (5.111)

Let (I1
x, | ·|t,x,1) be the Hilbert closure of the above vector space with respect to | ·|t,x,1. 

Let (I−1
x , | · |t,x,−1) be the antidual of (I1

x, | · |t,x,1). Then (I1
x, | · |t,x,1) and (I0

x, | · |t,x,0)
are densely embedded in (I0

x, | · |t,x,0) and (I−1
x , | · |t,x,−1) with norms smaller than 1 

respectively.
Comparing with [19, Proposition 7.31], by (5.95) and (5.109), we get the following 

estimates.

Lemma 5.27. There exist constants Ci > 0, i = 1, 2, 3, 4, such that if t ∈ (0, 1], z ∈ C, 
|zK| ≤ 1, if n ∈ N, x ∈ Xg, if the support of s, s′ ∈ Ix is included in {Z ∈ TxX : |Z| ≤
n}, then

Re〈L3,t
x,zKs, s〉t,x,0 ≥ C1|s|2t,x,1 − C2(1 + |nzK|2)|s|2t,x,0,

|Im〈L3,t
x,zKs, s〉t,x,0| ≤ C3

(
(1 + |nzK|)|s|t,x,1|s|t,x,0 + |nzK|2|s|2t,x,0

)
,

|〈L3,t
x,zKs, s′〉t,x,0| ≤ C4(1 + |nzK|2)|s|t,x,1|s′|t,x,1.

(5.112)

Proof. We only need to observe that the terms containing |nzK|2 come from terms∣∣∣∣∣
ÆÅ

ρ(
√
tZ)

Å
−1

4 〈m
TX(zK)Z, ei〉 + 1√

t
hi(zK,

√
tZ)

ãã2
s, s

∏
t,x,0

∣∣∣∣∣ , (5.113)

which can be dominated by C(1 + |nzK|2)|s|2t,x,0.
The proof of Lemma 5.27 is completed. �

5.9. The kernel ‹Ft(L3,t
x,K) as an infinite sum

Let h be a smooth even function from R into [0, 1] such that

h(u) =

⎧⎨⎩1 if |u| ≤ 1
2 ;

0 if |u| ≥ 1.
(5.114)
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For n ∈ N, put

hn(u) = h
(
u + n

2

)
+ h

(
u− n

2

)
. (5.115)

Then hn is a smooth even function whose support is included in 
[
−n

2 − 1,−n
2 + 1

]
∪[

n
2 − 1, n

2 + 1
]
.

Set

H(u) =
∑
n∈N

hn(u). (5.116)

The above sum is locally finite, and H(u) is a bounded smooth even function which takes 
positive values and has a positive lower bound on R.

Put

kn(u) = hn

H (u). (5.117)

Then the kn are bounded even smooth functions with bounded derivatives, and moreover
∑
n∈N

kn = 1. (5.118)

Note that here we use n as an index for the natural numbers, not the dimX in the 
previous sections.

Definition 5.28. For t ∈ [0, 1], n ∈ N, a ∈ C, put

Ft,n(a) =
+∞∫

−∞

exp(
√

2iua) exp
Å
−u2

2

ã
f(
√
tu)kn(u) du√

2π
. (5.119)

By (5.54), (5.118) and (5.119),

Ft(a) =
∑
n∈N

Ft,n(a). (5.120)

Also, given m, m′ ∈ N, there exist C > 0, C ′ > 0, C ′′ > 0 such that for any t ∈ [0, 1], 
n ∈ N, c > 0,

sup
a∈C,|Im(a)|≤c

|a|m
∣∣∣F (m′)

t,n (a)
∣∣∣ ≤ C exp(−C ′n2 + C ′′c2). (5.121)

Let ‹Ft,n(a) be the unique holomorphic function such that

Ft,n(a) = ‹Ft,n(a2). (5.122)
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Recall that Vc was defined in (5.35). By (5.121), given m, m′ ∈ N, there exist C > 0, 
C ′ > 0, C ′′ > 0 such that for any t ∈ [0, 1], n ∈ N, c > 0, λ ∈ Vc,

|λ|m
∣∣∣‹F (m′)

t,n (λ)
∣∣∣ ≤ C exp(−C ′n2 + C ′′c2). (5.123)

By (5.120),

‹Ft(a) =
∑
n∈N

‹Ft,n(a). (5.124)

Using (5.124), we get

‹Ft(L3,t
x,zK) =

∑
n∈N

‹Ft,n(L3,t
x,zK). (5.125)

More precisely, by (5.123) and using standard elliptic estimates, given t ∈ (0, 1], we have 
the identity

‹Ft(L3,t
x,zK)(Z,Z ′) =

∑
n∈N

‹Ft,n(L3,t
x,zK)(Z,Z ′) (5.126)

and the series in the right-hand side of (5.126) converges uniformly together with its 
derivatives on the compact sets in TxX × TxX.

Definition 5.29. For γ in (5.82), put

L3,t
x,zK,n = −

Å
1 − γ2

Å |Z|
2(n + 2)

ãã
ΔTX + γ2

Å |Z|
2(n + 2)

ã
L3,t
x,zK . (5.127)

Observe that if kn(u) �= 0, then |u| ≤ n
2 + 1. Using finite propagation speed and 

(5.76), we find that if Z ∈ TxX, the support of ‹Ft,n(L3,t
x,zK)(Z, ·) is included in {Z ′ ∈

TxX : |Z ′ − Z| ≤ n + 2}. Therefore, given p ∈ N, if Z ∈ TxX, |Z| ≤ p, the support of ‹Ft,n(L3,t
x,zK)(Z, ·) is included in {Z ′ ∈ TxX : |Z ′| ≤ n + p + 2}.

If |Z| ≤ n + p +2, then γ(|Z|/2(n + p +2)) = 1. Using finite propagation speed again, 
we see that by (5.127), for Z ∈ TxX, |Z| ≤ p,

‹Ft,n(L3,t
x,zK)(Z,Z ′) = ‹Ft,n(L3,t

x,zK,n+p)(Z,Z
′). (5.128)

From Lemma 5.27, we have

Re〈L3,t
x,zK,ns, s〉t,x,0 ≥ C1|s|2t,x,1 − C2(1 + |nzK|2)|s|2t,x,0,

|Im〈L3,t
x,zK,ns, s〉t,x,0| ≤ C3

(
(1 + |nzK|)|s|t,x,1|s|t,x,0 + |nzK|2|s|2t,x,0

)
,

|〈L3,t s, s′〉 | ≤ C (1 + |nzK|2)|s| |s′| .

(5.129)
x,zK,n t,x,0 4 t,x,1 t,x,1
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)

Put

L3,0
x,zK,n = −

Å
1 − γ2

Å |Z|
2(n + 2)

ãã
ΔTX + γ2

Å |Z|
2(n + 2)

ã
L3,0
x,zK . (5.130)

By Proposition 5.24, as t → 0,

L3,t
x,zK,n → L3,0

x,zK,n. (5.131)

By (5.129), the functional analysis arguments in [19, §7.10-7.12] work perfectly here. 
We have the following uniform estimates, which is formally the same as [19, Theorem 
7.38]. In particular, since the estimates in (5.112) and (5.129) are the analogue of [19, 
(7.131) and (7.148)], the proof of the following theorem is exactly the same as that of 
[19, Theorem 7.38].

Theorem 5.30. There exist C ′ > 0, C ′′ > 0, C ′′′ > 0 such that for η > 0 small enough, 
there is cη ∈ (0, 1] such that for any m ∈ N, there are C > 0, r ∈ N such that for 
t ∈ (0, 1], |zK| ≤ cη, n ∈ N, x ∈ Xg, Z, Z ′ ∈ TxX,

sup
|α|,|α′|≤m

∣∣∣∣∣ ∂|α|+|α′|

∂Zα∂Z ′α′
‹Ft,n(L3,t

x,zK)(Z,Z ′)
∣∣∣∣∣

≤ C(1 + |Z| + |Z ′|)r exp
(
− C ′n2/4 + 2C ′′η2 sup(|Z|2, |Z ′|2) − C ′′′|Z − Z ′|2

)
.

(5.132)

5.10. A proof of Theorem 5.17

Remark that as explained in the introduction of [19], L3,t
x,zK does not have a fixed lower 

bound. So it is not possible to define a priori a honest heat kernel for exp(−L3,t
x,zK). So 

we cannot prove Theorem 5.17 following the arguments in [21, §11].
Since L3,0

x,zK,n+p coincides with −ΔTX near infinity, the operator ‹F0,n(L3,0
x,zK,n+p) is 

well-defined. Also, by proceeding as in (5.128), if |Z|, |Z ′| ≤ p, using finite propagation 
speed, we find that the kernel ‹F0,n(L3,0

x,zK,n+p)(Z, Z ′) does not depend on p. Finally 
this kernel verifies estimates similar to (5.132) for η > 0 small enough and |zK| ≤ cη. 
Therefore we may define the kernel exp(−L3,0

x,zK)(Z, Z ′) by

exp(−L3,0
x,zK)(Z,Z ′) =

∑
n∈N

‹F0,n(L3,0
x,zK,n+p)(Z,Z

′), for |Z|, |Z ′| ≤ p. (5.133

Note that the estimate in (5.132) also works for t = 0. Thus the series in (5.133) converges 
uniformly on compact subsets of TxX × TxX together with its derivatives.

From (5.95), (5.106), (5.127) and (5.130), there exists C > 0 such that for t ∈ (0, 1], 
z ∈ C, |zK| ≤ 1, n ∈ N, x ∈ Xg, if s ∈ Ix has compact support, then
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∣∣∣(L3,t
x,zK,n − L3,0

x,zK,n)s
∣∣∣
t,x,−1

≤ C
√
t(1 + n4)|s|0,x,1. (5.134)

From Theorem 5.30, (5.133) and (5.134), the proof of the following theorem is exactly 
the same as that of [19, Theorem 7.43].

Theorem 5.31. There exist C ′′ > 0, C ′′′ > 0 such that for η > 0 small enough, there 
exist cη ∈ (0, 1], r ∈ N, C > 0, such that for t ∈ (0, 1], z ∈ C, |zK| ≤ cη, x ∈ Xg, 
Z, Z ′ ∈ TxX,

∣∣∣Ä‹Ft(L3,t
x,zK) − exp(−L3,0

x,zK)
ä

(Z,Z ′)
∣∣∣ ≤ Ct

1
4(dim X+1) (1 + |Z| + |Z ′|)r

· exp
(
2C ′′η2 sup(|Z|2, |Z ′|2) − C ′′′|Z − Z ′|2/2

)
. (5.135)

Now there is C > 0 such that if Z ∈ NXg/X , then

|g−1Z − Z| ≥ C|Z|. (5.136)

By (5.135) and (5.136), we find that there exists C ′′′′ > 0 such that if Z ∈ NXg/X ,

∣∣∣(‹Ft(L3,t
x,zK) − exp(−L3,0

x,zK))(g−1Z,Z)
∣∣∣

≤ Ct
1

4(dim X+1) (1 + |Z|)r · exp
(
2C ′′η2|Z|2 − C ′′′′|Z|2

)
. (5.137)

For η > 0 small enough,

2C ′′η2 − C ′′′′ ≤ −C ′′′′/2. (5.138)

So by (5.137), if Z ∈ NXg/X ,

∣∣∣Ä‹Ft(L3,t
x,zK) − exp(−L3,0

x,zK)
ä

(g−1Z,Z)
∣∣∣ ≤ Ct

1
4(dim X+1) exp

(
−C ′′′′|Z|2/4

)
. (5.139)

For K ∈ z(g), put

HTX = j∗RTX −mTX(zK). (5.140)

Clearly HTX splits under TX = TXg ⊕NXg/X as

HTX = HTXg

+ HN . (5.141)

Using the Mehler’s formula (cf. e.g., [43, (1.34)]), by (5.106), for |zK| small enough,
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exp(−L3,0
x,zK)(g−1Z,Z) = (4π)− dimX/2det

1
2

Å
HTX/2

sinh(HTX/2)

ã
· exp

Å
−1

2

≠
HN/2

sinh(HN/2)
(
cosh(HN/2) − exp(HN/2)g−1)Z,Z∑ã

· exp(−j∗RE + mE(zK)). (5.142)

Observe that for z ∈ C, |zK| small enough, the right-hand side of (5.142) is well-
defined. Using (5.142), comparing with [43, (1.37)], if |zK| is small enough,

∫

NXg/X

exp(−L3,0
x,zK)(g−1Z,Z)dvN (Z) = (4π)−�/2det

1
2

Ç
HTXg

/2
sinh(HTXg/2)

å
·
(
det1/2(1 − g−1|N )det1/2(1 − g exp(−HN ))

)−1
· exp(−j∗RE + mE(zK)). (5.143)

Also compare with [43, (1.38)],

TrSN⊗E
s [g exp(−j∗RE + mE(zK))]

= (−i)(dimX−�)/2det1/2(1 − g−1|N ) TrE [g exp(−j∗RE + mE(zK))]. (5.144)

Using (2.15), (2.16), (5.143) and (5.144), we get

ψR×B

∫

NXg/X

(−i)�/22�/2
¶
TrSN⊗E

s [g exp(−L3,0
x,zK)(g−1Z,Z)]

©max
dvN (Z)

=
¶
Âg,zK(TX,∇TX) chg,zK(E,∇E)

©max
. (5.145)

From (5.99), (5.139) and (5.145), we obtain Theorem 5.17 for dimX even.
If dimX is odd, following the explanation in Remark 5.22, the proof is the same.
The proof of Theorem 5.17 is completed.

5.11. A proof of Theorem 4.2

Since v ≥ t > 0, we have

0 ≤ t−1 − v−1 < t−1. (5.146)

Set

A′
K,t,v =

Ç
Bt +

√
tc(KX)

4

Å1
t
− 1

v

ã
+ t · dt ∧ ∂

∂t

å2

+ LK . (5.147)



60 B. Liu, X. Ma / Advances in Mathematics 404 (2022) 108163
Let A′ (0)
K,t,v be the piece of A′

K,t,v which has degree 0 in Λ(T ∗(R ×B)). Then from (5.146), 
A′ (0)

K,t,v satisfies the same estimate in Lemma 5.2 and the estimate (5.15) of AK,t −A(0)
K,t

also holds for A′
K,t,v −A′ (0)

K,t,v uniformly on v ≥ t ≥ 1. Since v ≥ t, as t → +∞, we have∣∣∣∣∣ ∂∂t
Ç√

tc(KX)
4

Å1
t
− 1

v

ã
− c(TH)

4
√
t

å∣∣∣∣∣ = O(t−3/2). (5.148)

Then the analogue of Propositions 5.5 and 5.8 holds for A′
K,t,v uniformly for v ≥ t ≥ 1. 

Thus replacing AzK,t by A′
K,t,v in the proof of Theorem 5.1, we obtain Theorem 4.2.

6. A proof of Theorem 4.3

In this section, we prove Theorem 4.3. This section is organized as follows. In Sec-
tion 6.1, we establish a Lichnerowicz formula for BK,t,v in (4.11). In Section 6.2, we prove 
Theorem 4.3 a). In Sections 6.3-6.8, we prove Theorem 4.3 b). In Section 6.9, we prove 
Theorem 4.3 c). In Section 6.10, we prove Theorem 4.3 d). In this section, we use the 
assumptions and the notations in Section 4.

6.1. A Lichnerowicz formula

Let L be a trivial line bundle over W . We equip a connection on L by

∇L
v = d− ϑK

4v . (6.1)

Thus

RL
v = (∇L

v )2 = −dϑK

4v . (6.2)

Let ∇E⊗L
v be the connection on E ⊗L induced by ∇E and ∇L

v . The corresponding Dirac 
operator is

Dv =
n∑

i=1
c(ei)∇E⊗L

v,ei = D − c(KX)
4v . (6.3)

Since

∇E⊗L
v,fH

p
= ∇E

fH
p
, (6.4)

from (6.3), the new Bismut superconnection associated with E ⊗ L is

Bv
t = Bt −

√
tc(KX)

. (6.5)
4v
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Theorem 6.1. The following identity holds,

BK,t,v = −t

Å
∇E

ei + 1
2
√
t
〈S(ei)ej , fH

p 〉c(ej)fp∧

+ 1
4t 〈S(ei)fH

p , fH
q 〉fp ∧ fq ∧ −〈KX , ei〉

4

Å1
t

+ 1
v

ãã2

+ t

4H + t

2

Å
RE/S(ei, ej) −

1
2v 〈∇

TX
ei KX , ej〉

ã
c(ei)c(ej)

+
√
t

Å
RE/S(ei, fH

p ) − 1
2v 〈T (ei, fH

p ),KX〉
ã
c(ei)fp∧

+ 1
2

Å
RE/S(fH

p , fH
q ) − 1

8v 〈T (fH
p , fH

q ),KX〉
ã
fp ∧ fq ∧ −mE/S(KX) + 1

4v |K
X |2.

(6.6)

Proof. From (4.11), (5.1), (5.2), (5.69) and (6.5), we have

BK,t,v =
Å
Bv
t + c(KX)

4
√
t

ã2

+ LK = −t

Å
∇E⊗L

v,ei + 1
2
√
t
〈S(ei)ej , fH

p 〉c(ej)fp∧

+ 1
4t 〈S(ei)fH

p , fH
q 〉fp ∧ fq ∧ −〈KX , ei〉

4t

ã2

+ t

4H + t

2R
E⊗L/S(ei, ej)c(ei)c(ej)

+
√
tRE⊗L/S(ei, fH

p )c(ei)fp ∧ +1
2R

E⊗L/S(fH
p , fH

q )fp ∧ fq ∧ −mE⊗L/S(KX). (6.7)

Since G acts trivially on L, the corresponding mL(K) in the sense of (2.4) is given by

mL(KX) = −KX + ∇L
v,KX = −|KX |2

4v . (6.8)

Then (6.6) follows from (3.3)-(3.5), (6.2), (6.7) and (6.8).
The proof of Theorem 6.1 is completed. �

6.2. A proof of Theorem 4.3 a)

Comparing with (5.77), we set

2∇E,t
· := ∇E

· + 1
2
√
t
〈S(·)ej , fH

p 〉c(ej)fp ∧ + 1
4t 〈S(·)fH

p , fH
q 〉fp ∧ fq ∧ −ϑK(·)

4t

Å
1 + t

v

ã
.

(6.9)

We trivialize π∗Λ(T ∗B)“⊗E by parallel transport along u ∈ [0, 1] → uZ with respect to 
the connection 2∇E,t. Observe that the above connection is g-equivariant as K ∈ z(g). 
Let A, A′ be smooth sections of TX. As in (5.81), from (6.9),
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2∇E,1
A c(A′) = c(∇TX

A A′) + 〈S(A)A′, fH
p 〉fp ∧ . (6.10)

For x ∈ W g, in this section, we denote by Hx the vector space of smooth sections of 
π∗(Λ(T ∗B))“⊗Ex. Let L1,(t,v)

x,K be the differential operator acting on Hx,

L
1,(t,v)
x,K = (1 − ρ2(Z))(−tΔTX) + ρ2(Z)BK,t,v. (6.11)

We define L2,(t,v)
x,K := H−1

t L
1,(t,v)
x,K Ht and L3,(t,v)

x,K :=
î
L

2,(t,v)
x,K

ó(3)
t

as in Section 5.7. By 

Proposition 5.24 for (E ⊗ L, ∇E⊗L
v ), we have

L
3,(0,v)
x,K = −

Å
∇ei + 1

4
〈
(j∗RTX

x −mTX(K)x)Z, ei
〉ã2

+ j∗RE⊗L
x −mE⊗L(K)x, (6.12)

and as t → 0,

L
3,(t,v)
x,K → L

3,(0,v)
x,K . (6.13)

By (6.10), as in (5.92) and (5.94),î√
tc(KX)(

√
tZ)

ó(3)
t

= j∗ϑK + O(
√
tZ +

√
t). (6.14)

By (2.9), (2.17), (3.2), (6.2) and (6.8), we get

j∗RL
v,K = j∗RL

v − 2iπmL(K) = − 1
4v (dW

g

ϑK − 2iπ|KX |2) = −dW
g

K ϑK

4v . (6.15)

Then by (2.18),

chg,K(L,∇L
v ) = exp

Ç
dW

g

K ϑK

8πiv

å
. (6.16)

From (2.15), (2.16), (3.1), (3.2) and (3.6), set

γK,v = − ϑK

8viπ exp
Å
dKϑK

8viπ

ã
Âg,K(TX,∇TX) chg,K(E/S,∇E/S) ∈ Ω(W g,det(NXg/X)).

(6.17)

By (4.9), (6.12) and (6.17), if dimX is even, as in (5.145), we get

φ

∫

NXg/X

(−i)�/22�/2
ß

TrSN⊗E⊗L
s

ï
g
j∗ϑK

4v exp(−L
3,(0,v)
x,K )(g−1Z,Z)

ò™max
dvN (Z)

= −{γK,v}max
x . (6.18)
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By (3.6), (6.13)-(6.18), from the same argument of Section 5.7 and (5.139) for (
E ⊗ L,∇E⊗L

v

)
, we obtain Theorem 4.3 a) for dimX even.

If n is odd, following the explanation in Remark 5.22, the proof is the same.
The proof of Theorem 4.3 a) is completed.

6.3. Localization of the problem

The proof of Theorem 4.3 b) is devoted to Sections 6.3-6.8.
Let B0 be the piece of BK,t,v which has degree 0 in Λ(T ∗B). Then for t ∈ (0, 1], 

v ∈ [t, 1], by (5.146), tB0 satisfies the same estimates as Lemma 5.11 uniformly for 
v ∈ [t, 1].

Thus following the same arguments in the proof of Lemma 5.16, we have

Theorem 6.2. There exist β > 0, C > 0, C ′ > 0 such that if K ∈ g, |K| ≤ β, t ∈ (0, 1], 
v ∈ [t, 1],

‖Ĩt(tBK,t,v)‖(1) ≤ C exp(−C ′/t). (6.19)

So our proof of inequality (4.15) in Theorem 4.3 can be localized near Xg. As in 
Section 5.3, we may and we will assume that W = B ×X, TX is spin and E = SX ⊗E.

6.4. A rescaling of the normal coordinate to Xg,K in Xg

In the sequel, we fix g ∈ G, 0 �= K0 ∈ z(g) and

K = zK0, z ∈ R∗. (6.20)

Recall that Xg and Xg,K are totally geodesic in X. Given ε > 0, let U ′′
ε be the 

ε-neighborhood of Xg,K in NXg,K/Xg (cf. the notation in the proof of Lemma 3.1). By 
zooming out ε0 ∈ (0, aX/32] in Section 5.3, we can assume that the map (y0, Z0) ∈
NXg,K/Xg → expXg

y0
(Z0) ∈ Xg is a diffeomorphism from U ′′

ε into the tubular neighbor-
hood V ′′

ε of Xg,K in Xg for any 0 < ε ≤ 16ε0.
Since Xg is totally geodesic in X, the connection ∇TX induces the connection ∇NXg/X

on NXg/X (cf. (1.31) and (3.8)).
For (y0, Z0) ∈ U ′′

ε , we identify NXg/X,(y0,Z0) with NXg/X,y0 by parallel transport along 
the geodesic u ∈ [0, 1] → uZ0 with respect to ∇TX . If y0 ∈ Xg,K , Z0 ∈ NXg,K/Xg,y0 , Z ∈
NXg/X,y0 , |Z0|, |Z| ≤ 4ε0, we identify (y0, Z0, Z) with expX

expXg
y0 (Z0)(Z) ∈ X. Therefore, 

(y0, Z0, Z) defines a coordinate system on X near Xg,K .
From (2.15), (2.16) and (6.17), for |z| small enough, γK,v is a smooth form on W g. 

Recall that the function k is defined in (5.63) and �′ = dimXg,K .
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Theorem 6.3. There exist β ∈ (0, 1], δ ∈ (0, 1] such that for p ∈ N, there is C > 0 such 
that if z ∈ R∗, |z| ≤ β, t ∈ (0, 1], v ∈ [t, 1], y0 ∈ Xg,K , Z0 ∈ NXg,K/Xg,y0 , |Z0| ≤ ε0/

√
v, 

then for K = zK0,

∣∣∣∣∣v 1
2 dimN

Xg,K/Xg

Ç
φ

∫

Z∈NXg/X,y0 ,|Z|≤ε0

T̃r
′
ñ
g

√
tc(KX)

4v
‹Ft (−BK,t,v)

(g−1(y0,
√
vZ0, Z), (y0,

√
vZ0, Z))

]
· k(y0,

√
vZ0, Z)dvNXg/X

(Z)

+ {γK,v}max(y0,
√
vZ0)

å∣∣∣∣∣ ≤ C
(1 + |Z0|)�

′+1

(1 + |zZ0|)p
Å
t

v

ãδ

. (6.21)

Proof. Sections 6.5-6.7 will be devoted to the proof of Theorem 6.3. �
6.5. A new trivialization and Getzler rescaling near Xg,K

Since g preserves geodesics and the parallel transport, in the coordinate system in 
above subsection,

g(Z0, Z) = (Z0, gZ). (6.22)

By an abuse of notation, we will often write Z0 + Z instead of expX
expXg

y0 (Z0)(Z).
Firstly, we fix Z0 ∈ NXg,K/Xg,y0 , |Z0| ≤ ε0, and we take Z ∈ Ty0X, |Z| ≤ 4ε0. 

The curve u ∈ [0, 1] → Z0 + uZ lies in BX
y0

(0, 5ε0). Moreover we identify TXZ0+Z , 
π∗Λ(T ∗B) ⊗ EZ0+Z with TXZ0 , π∗Λ(T ∗B) ⊗ EZ0 by parallel transport with respect to 
the connections ∇TX , 2∇E,t along the curve.

When Z0 ∈ NXg,K/Xg,y0 is allowed to vary, we identify TXZ0 , π∗Λ(T ∗B) ⊗ EZ0 with 
TXy0 , π∗Λ(T ∗B) ⊗ Ey0 by parallel transport with respect to the connections ∇TX , ∇E

along the curve u ∈ [0, 1] → uZ0. Then HZ0 is identified with Hy0 associated with this 
trivialization. Furthermore the fiber of π∗Λ(T ∗B) ⊗E at Z0 +Z and y0 are identified by 
parallel transport along the broken curve u ∈ [0, 1] → 2uZ0, for 0 ≤ u ≤ 1

2 ; Z0+(2u −1)Z
for 1

2 ≤ u ≤ 1.
Note that here we use the trick in [11, Section 11.4] (cf. also [19, Section 9.5]) and the 

trivialization here is different from that in the proof of Theorem 4.3 a) in Section 6.2. 
Under this new trivialization, the identification between Hy0 and HZ0 is an isometry 
with respect to (1.17).

For Z0 ∈ NXg,K/Xg,y0 , |Z0| ≤ ε0, the considered trivializations depend explicitly on 
Z0. We denote by (BK,t,v)Z0 the action of BK,t,v centered at Z0. Thus the operator 
(BK,t,v)Z0 acts on HZ0 . As HZ0 is identified with Hy0 , so that ultimately, (BK,t,v)Z0

acts on Hy0 .
We may and we will assume that ε0 is small enough so that if |Z0| ≤ ε0, |Z| ≤ 4ε0, 

then
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1
2g

TX
y0

≤ gTX
Z0+Z ≤ 3

2g
TX
y0

. (6.23)

We define k′(y0,Z0)(Z) as in (5.75). Recall that ρ(Z) is defined in (5.84).

Definition 6.4. Let L′ 1,(t,v)
Z0,K

be the differential operator acting on Hy0 ,

L
′ 1,(t,v)
Z0,K

= −(1 − ρ2(Z))(−tΔTX) + ρ2(Z)(BK,t,v)Z0 . (6.24)

By proceeding as in (5.86), and using Theorem 6.2 and (6.22), we find that if Z0 ∈
NXg,K/Xg,y0 , Z ∈ NXg/X,y0 , |Z|, |Z0| ≤ ε0,

‹Ft(BK,t,v)(g−1(Z0, Z), (Z0, Z))k′(y0,Z0)(Z) = ‹Ft(L1,(t,v)
Z0,K

)(g−1Z,Z). (6.25)

We still define Ht as in (5.88). Let

L
′ 2,(t,v)
Z0,K

= H−1
t L

′ 1,(t,v)
Z0,K

Ht. (6.26)

Let (e1, · · · , e�′), (e�′+1, · · · , e�), (e�+1, · · · , en) be orthonormal basis of Ty0X
g,K , 

NXg,K/Xg,y0 , NXg/X,y0 respectively.

Definition 6.5. Let L′ 3,(t,v)
Z0,K

be the differential operator acting on Hy0 obtained from 

L
′ 2,(t,v)
Z0,K

by replacing c(ej) by ct(ej) (cf. (5.91)) for 1 ≤ j ≤ �′, by ct/v(ej) for �′ + 1 ≤
j ≤ �, while leaving unchanged the c(ej)’s for � + 1 ≤ j ≤ n.

For A ∈ (π∗(Λ(T ∗B))“⊗c(TX) ⊗End(E))x⊗Opx, we denote by [A](3)(t,v) the differential 
operator obtained from A by using the Getzler rescaling of the Clifford variables which 
is given in Definition 6.5.

If Z0 ∈ NXg,K/Xg,y0 , |Z0| ≤ ε0, Z ∈ Ty0X, |Z| ≤ 4ε0, if U ∈ Ty0X, let τZ0U(Z) ∈
TXZ0+Z be the parallel transport of U along the curve u → 2uZ0, 0 ≤ u ≤ 1

2 , u →
expX

Z0
((2u − 1)Z), 1

2 ≤ u ≤ 1, with respect to ∇TX .
By (6.10), under the identification of π∗Λ(T ∗B) ⊗ EZ0+Z and π∗Λ(T ∗B) ⊗ Ey0 at the 

beginning of this subsection, in the trivialization

c
(
τZ0ej(Z)

)
= c(ej) + 1√

t

(
〈S(Z)ej , fH

p 〉Z0 + O(|Z|2)
)
fp ∧ . (6.27)

Then comparing with (5.95) and (5.96), from (6.6), we have

L
′ 3,(t,v)
Z0,K

= −(1 − ρ2(
√
tZ))ΔTX + ρ2(

√
tZ) ·

¶
−gij(

√
tZ)

Ä
∇′′

ei∇
′′
ej − Γk

ij(
√
tZ)

√
t∇′′

ek

ä
+ t

2

Å
R

E/S
(Z0,

√
tZ)(ei, ej) −

1
2v 〈∇

TX
ei KX , ej〉(Z0,

√
tZ)

ãî
c
Ä
τZ0ei(

√
tZ)

ä
c
Ä
τZ0ej(

√
tZ)

äó3
(t,v)

+
√
t

Å
R

E/S
(Z ,

√
tZ)(ei, f

H
p ) − 1 〈T (ei, fH

p ),KX〉(Z0,
√
tZ)

ãî
c
Ä
τZ0ei(

√
tZ)

äó3
fp∧
0 2v (t,v)
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+ 1
2

Å
R

E/S
(Z0,

√
tZ)(f

H
p , fH

q ) − 1
8v 〈T (fH

p , fH
q ),KX〉(Z0,

√
tZ)

ã
fp ∧ fq∧

+ t

4H(Z0,
√
tZ) −m

E/S
(Z0,

√
tZ)(K

X) + 1
4v |K

X(Z0,
√
tZ)|2

™
, (6.28)

where

∇′′
ei = ∇τZ0ei(

√
tZ) + t

8

(
〈RTX

Z0
(ek, el)Z, ei〉 + O(

√
t|Z|2)

)
·
î
c
Ä
τZ0ek(

√
tZ)

ä
c
Ä
τZ0el(

√
tZ)

äó3
(t,v)

+
√
t

4

(
〈RTX

Z0
(ek, fH

p )Z, ei〉 + O(
√
t|Z|2)

) î
c
Ä
τZ0ek(

√
tZ)

äó3
(t,v)

fp∧

+ 1
8

(
〈RTX

Z0
(fH

p , fH
q )Z, ei〉 + O(

√
t|Z|2)

)
fp ∧ fq ∧ + t

2
Ä
RE

Z0
(Z, ei) + O(

√
t|Z|2)

ä
− 1

4

Å
1 + t

v

ã
〈mTX

Z0
(K)Z, ei〉 +

√
thi(K,

√
tZ)

Å1
t

+ 1
v

ã
. (6.29)

Here hi(K, Z) is a function depending linearly on K and hi(K, Z) = O(|Z|2) for |K|
bounded.

Let ψv ∈ End(Λ(T ∗Xg)) be the morphism of exterior algebras such that

ψv(ej) = ej , 1 ≤ j ≤ �′,

ψv(ej) =
√
vej , �′ + 1 ≤ j ≤ �.

(6.30)

Recall that for x = (y0, Z0) ∈ Xg, Λ(T ∗Xg)(y0,Z0) has been identified with Λ(T ∗Xg)y0 .

Definition 6.6. Let L′ 3,(0,v)
x,K be the operator

L
′ 3,(0,v)
x,K = ψvL

3,(0,v)
x,K ψ−1

v . (6.31)

By Definitions 6.5 and 6.6, (6.13) and (6.30), as t → 0,

L
′ 3,(t,v)
Z0,K

→ L
′ 3,(0,v)
(y0,Z0),K . (6.32)

6.6. A family of norms

For 0 ≤ p ≤ �′, 0 ≤ q ≤ � − �′, put

Λ(p,q)(T ∗Xg)y0 = Λp(T ∗Xg,K)y0
“⊗Λq(N∗

Xg,K/Xg )y0 . (6.33)

The various Λ(p,q)(T ∗Xg)y0 are mutually orthogonal in Λ(T ∗Xg)y0 . Let Iy0 be the vector 
space of smooth sections of (π∗Λ(T ∗B) ⊗Λ(T ∗Xg)“⊗SN ⊗E)y0 on Ty0X, let I(r,p,q),y0 be 
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the vector space of smooth sections of (π∗Λr(T ∗B) ⊗Λ(p,q)(T ∗Xg)“⊗SN ⊗E)x on Ty0X. 
Let I0

y0
, I0

(r,p,q),y0
be the corresponding vector spaces of square-integrable sections.

Now we imitate constructions in [21, §11]. Recall that dimB = k.

Definition 6.7. For t ∈ [0, 1], v ∈ R∗
+, y0 ∈ Xg,K , Z0 ∈ NXg,K/Xg,y0 , |Z0| ≤ ε0/

√
v, 

s ∈ I(r,p,q),y0 , set

|s|2t,v,Z0,0 =
∫

Ty0X

|s(Z)|2
Ç

1 +
(
|Z0| + |Z|

)
ρ

Ç√
tZ

2

åå2(k+�′−p−r)

·
Ç

1 +
√
v|Z|ρ

Ç√
tZ

2

åå2(�−�′−q)

dvTX(Z). (6.34)

Then (6.34) induces a Hermitian product 〈·, ·〉t,v,Z0,0 on I0
(r,p,q),y0

. We equip I0
y0

=⊕
I0
(r,p,q),y0

with the direct sum of these Hermitian metrics.
Recall that by (5.84), if ρ(

√
tZ) > 0, then |

√
tZ| ≤ 4ε0. The proof of the following 

proposition is almost the same as that of [19, Proposition 8.16] (cf. also [21, Proposition 
11.24]).

Proposition 6.8. For t ∈ (0, 1], v ∈ [t, 1], y0 ∈ Xg,K , Z0 ∈ NXg,K/Xg,y0 , |Z0| ≤ ε0/
√
v, 

the following family of operators acting on (I0
y0
, | · |t,v,Z0,0) are uniformly bounded:

1|√tZ|≤4ε0

√
tct(ej), 1|√tZ|≤4ε0 |Z|

√
tct(ej), 1|√tZ|≤4ε0 |Z0|

√
tct(ej), for 1 ≤ j ≤ �′,

1|√tZ|≤4ε0 |Z0|fp∧, 1|√tZ|≤4ε0 |Z|fp∧,

1|√tZ|≤4ε0

…
t

v
c t

v
(ej), 1|√tZ|≤4ε0 |Z|

√
tc t

v
(ej), for �′ + 1 ≤ j ≤ �. (6.35)

Definition 6.9. For t ∈ [0, 1], v ∈ R∗
+, y0 ∈ Xg,K , Z0 ∈ NXg,K/Xg,y0 , |Z0| ≤ ε0/

√
v, if 

s ∈ Iy0 has compact support, set

|s|2t,v,Z0,1 = |s|2t,v,Z0,0 + 1
v

∣∣∣ρ(√tZ)|KX |(
√
vZ0 +

√
tZ)s

∣∣∣2
t,v,Z0,0

+
n∑

i=1
|∇eis|2t,v,Z0,0.

(6.36)

Note that |s|t,v,Z0,1 depends explicitly on K = zK0. In fact, |s|t,v,Z0,1 depends on 
z ∈ R∗.

Theorem 6.10. There exist constants Ci > 0, i = 1, 2, 3, 4, such that if t ∈ (0, 1], v ∈ [t, 1], 
n ∈ N, y0 ∈ Xg,K , Z0 ∈ NXg,K/Xg,y0 , |Z0| ≤ ε0/

√
v, z ∈ R, |z| ≤ 1, and if the support 

of s, s′ ∈ Iy0 is included in {Z ∈ Ty0X : |Z| ≤ n}, then
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Re〈L′ 3,(t,v)√
vZ0,zK0

s, s〉t,v,Z0,0 ≥ C1|s|2t,v,Z0,1 − C2(1 + |nz|2)|s|2t,v,Z0,0,

|Im〈L′ 3,(t,v)√
vZ0,zK0

s, s〉t,v,Z0,0| ≤ C3((1 + |nz|)|s|t,v,Z0,1|s|t,v,Z0,0 + |nz|2|s|2t,v,Z0,0),

|〈L′ 3,(t,v)√
vZ0,zK0

s, s′〉t,v,Z0,0| ≤ C4(1 + |nz|2)|s|t,v,Z0,1|s′|t,v,Z0,1.

(6.37)

Proof. Comparing with L3,t
x,K in (5.95) and (5.112), there are four additional terms in 

(6.28) which should be estimated:

1
4v

∣∣∣ρ(√tZ)|zKX
0 |(

√
vZ0 +

√
tZ)s

∣∣∣2
t,v,Z0,0

, (6.38)

− ρ2(
√
tZ) t

4v
¨
〈∇TX

τ
√

vZ0ei(
√
tZ)zK

X
0 (

√
vZ0 +

√
tZ), τ

√
vZ0ej(

√
tZ))〉

·
î
c
Ä
τ
√
vZ0ei(

√
tZ)

ä
c
Ä
τ
√
vZ0ej(

√
tZ)

äó3
(t,v)

s, s
〉
t,v,Z0,0

, (6.39)

− ρ2(
√
tZ)

√
t

2v
¨
〈T (ei, fH

p ), zKX
0 〉(

√
vZ0 +

√
tZ)

·
î
c
Ä
τ
√
vZ0ei(

√
tZ)

äó3
(t,v)

fp ∧ s, s
〉
t,v,Z0,0

, (6.40)

and

−ρ2(
√
tZ) 1

16v
¨
〈T (fH

p , fH
q ), zKX

0 〉(
√
vZ0 +

√
tZ)fp ∧ fq ∧ s, s

∂
t,v,Z0,0

. (6.41)

The first term is controlled by (6.36) and the second term was estimated in the proof 
of [19, Theorem 8.18]. We only need to estimate (6.40) and (6.41), which are new terms 
in the family case.

By (3.4), T̃ is G-invariant, thus [KX , T̃ ] = 0. Since mTX(K) is skew-adjoint, by (2.5),

Z〈T̃ ,KX〉 = 〈∇TX
Z T̃ ,KX〉 + 〈T̃ ,∇TX

Z KX〉 = 〈∇TX
Z T̃ ,KX〉 − 〈∇TX

KX T̃ , Z〉. (6.42)

As y0 ∈ Xg,K ⊂ XK , we know KX
y0

= 0. Thus from (6.42), we have

∂

∂s
〈T̃ ,KX〉(y0,sZ)|s=0 = 0. (6.43)

From (6.43), we have

〈T̃ ,KX〉(y0,Z) = O(|Z|2). (6.44)

Thus we have

ρ2(
√
tZ)

√
t

2v 〈T (ei, fH
p ), zKX

0 〉(
√
vZ0 +

√
tZ)

î
c
Ä
τ
√
vZ0ei(

√
tZ)

äó3
(t,v)

fp∧

= ρ2(
√
tZ)v−1√t|z|

î
c
Ä
τ
√
vZ0ei(

√
tZ)

äó3
(t,v)

fp ∧ ·O((
√
v|Z0| +

√
t|Z|)2), (6.45)
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and

ρ2(
√
tZ) 1

16v 〈T (fH
p , fH

q ), zKX
0 〉(

√
vZ0 +

√
tZ)fp ∧ fq∧

= ρ2(
√
tZ)|z|fp ∧ fq ∧ ·O((|Z0| +

»
t/v|Z|)2). (6.46)

Using the fact that v ≤ 1 and t/v ≤ 1 and also Proposition 6.8, from (6.27), we find that 
the operators in (6.45) and (6.46) remain uniformly bounded with respect to | · |t,v,Z0,0.

The proof of Theorem 6.10 is completed. �
Definition 6.11. Put

L
3,(t,v)
Z0,K,n = −

Å
1 − γ2

Å |Z|
2(n + 2)

ãã
ΔTX + γ2

Å |Z|
2(n + 2)

ã
L

3,(t,v)
Z0,K

. (6.47)

Let ‹Ft(L3,(t,v)
Z0,K

)(Z, Z ′) and ‹Ft(L3,(t,v)
Z0,K,n)(Z, Z ′) be the smooth kernels associated with ‹Ft(L3,(t,v)

Z0,K
) and ‹Ft(L3,(t,v)

Z0,K,n) with respect to dvTX(Z ′). Using (6.23) and proceeding as 
in (5.128), i.e., using finite propagation speed, we see that if Z ∈ Ty0X, |Z| ≤ p,‹Ft,n(L3,(t,v)

Z0,K
)(Z,Z ′) = ‹Ft,n(L3,(t,v)

Z0,K,n+p)(Z,Z
′). (6.48)

Clearly, when replacing L3,(t,v)√
vZ0,zK0

in (6.37) by L3,(t,v)√
vZ0,zK0,n

, the estimates (6.37) still 
hold.

6.7. A Proof of Theorem 6.3

Since W is a compact manifold, there exists a finite family of smooth functions 
f1, · · · , fr : W → [−1, 1] which have the following properties:

• WK = ∩r
j=1{x ∈ W : fj(x) = 0};

• On WK , df1 · · · , dfr span NXg,K/X .

Definition 6.12. Let Qt,v,Z0 be the family of operators

Qt,v,Z0 =
ß
∇ei , 1 ≤ i ≤ dimX; z√

v
ρ(
√
tZ)fj(

√
vZ0 +

√
tZ), 1 ≤ j ≤ r

™
. (6.49)

For j ∈ N, let Qj
t,v,Z0

be the set of operators Q1 · · ·Qj , with Qi ∈ Qt,v,Z0 , 1 ≤ i ≤ j.

Following the arguments in [19, §8.8-8.10], we have the following uniform estimate, 
which is formally the same as [19, (8.76)]. We only need to take care that in the proof of 
the analogue of [19, Proposition 8.22 and Theorems 8.23, 8.24], there are two new terms 
like (6.40) and (6.41) appear in our family case. However, they are easy to be controlled 
as in (6.45) and (6.46).
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Theorem 6.13. There exist C > 0, C ′ > 0 such that given m > 0, there exists β1 > 0 such 
that if t ∈ (0, 1], v ∈ [t, 1], z ∈ R, |z| ≤ β1, y0 ∈ Xg,K , Z0 ∈ NXg,K/Xg,y0 , |Z0| ≤ ε0/

√
v, 

Z ∈ NXg/X,y0 , |Z| ≤ ε0/
√
t,

∣∣∣Ä‹Ft

Ä
L

3,(t,v)√
vZ0,zK0

ä
− exp

Ä
−L

3,(0,v)√
vZ0,zK0

ää
(g−1Z,Z)

∣∣∣
≤ C

Å
t

v

ã 1
4(dim X+1)

· (1 + |Z0|)�
′+1

(1 + |zZ0|)m
exp

(
−C ′|Z|2/4

)
. (6.50)

The kernel exp(−L
3,(0,v)√
vZ0,zK0

))(g−1Z, Z) here is defined in the same way as in (5.133).
From (6.27), we get

…
t

v

î
c
Ä
τ
√
vZ0ej(

√
tZ)

äó3
(t,v)

=
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1√
v
ej ∧ +

…
t

v

(
O(

√
t) + O(|Z|)

)
, if 1 ≤ j ≤ �′;

ej ∧ +
…

t

v
O(1 + |Z|), if �′ + 1 ≤ j ≤ �;…

t

v

(
c(ej) + O(|Z|)

)
, if � + 1 ≤ j ≤ n.

(6.51)

Moreover as KX vanishes on W g,K , we have

〈KX
0 (

√
vZ0 +

√
tZ), τ

√
vZ0ej(

√
tZ)〉 = 〈KX

0 (
√
vZ0), τ

√
vZ0ej〉(y0,

√
vZ0) + O(

√
t|Z|),

〈KX
0 (

√
vZ0), τ

√
vZ0ej〉(y0,

√
vZ0) = O(

√
v|Z0|).

(6.52)

By (3.1), (6.30), (6.51) and (6.52), we get

√
t

4v
î
c
Ä
KX√

vZ0+
√
tZ

äó3
(t,v)

=
Å
ψv

j∗ϑK

4v ψ−1
v

ã
√
vZ0

+
√
t

v
zO(

√
v|Z0| +

√
t|Z|)O(1 + |Z|).

(6.53)

Note that we have (δ∗vα)Z0 = (ψvαψ
−1
v )√vZ0 for any α ∈ Ω(W g) with δv defined above 

(3.12). Therefore, from (3.18), (6.50) and (6.53), we get Theorem 6.3.

6.8. A Proof of Theorem 4.3 b)

Theorem 4.3 b) follows directly from the following theorem.

Theorem 6.14. There exist β1 > 0, r ∈ N, C > 0, δ ∈ (0, 1], such that if t ∈ (0, 1], 
v ∈ [t, 1], if z ∈ R\{0}, |z| ≤ β1, then
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|z|r
∣∣∣∣∣φT̃r

′
ñ
g

√
tc(KX)

4v exp (−BK,t,v)
ô

+ ẽv

∣∣∣∣∣ ≤ C

Å
t

v

ãδ

. (6.54)

Proof. Recall that Uε, U ′
ε, U ′′

ε are ε-neighborhoods of Xg, Xg,K , Xg,K in NXg/X , 
NXg,K/X , NXg,K/Xg respectively. Let k̄(y0, Z0) be the function defined on Xg ∩ U ′′

ε by 
the relation

dvXg (y0, Z0) = k̄(y0, Z0)dvXg,K (y0)dvN
Xg,K/Xg

(Z0). (6.55)

Then

k̄|Xg,K = 1. (6.56)

Recall that ‹Ft(BK,t,v)(g−1x, x) vanishes on X\Uε0 . Using (5.75), (6.55), we get

φ

∫

U ′
ε0

T̃r
′
ñ
g

√
tc(KX)

4v exp (−BK,t,v) (g−1x, x)
ô
dvX(x) +

∫

Xg∩U ′
ε0

{γK,v}maxdvXg

=
∫

y0∈Xg,K

v(�−�′)/2
∫

|Z0|≤ε0/
√
v

ñ
φ

∫

|Z|≤ε0

T̃r
′
ñ
g

√
tc(KX)

4v exp (−BK,t,v)

(g−1(y0,
√
vZ0, Z), (y0,

√
vZ0, Z))

ô
· k(y0,

√
vZ0, Z)dvNXg/X

(Z)

+ {γK,v}max(y0,
√
vZ0)

ô
k̄(y0,

√
vZ0)dvN

Xg,K/Xg
(Z0)dvXg,K (y0). (6.57)

Using Theorem 6.3 and (6.57), we find that there exist C > 0 and β1 > 0 such that 
for z ∈ R∗, |z| ≤ β1,

|z|�+1

∣∣∣∣∣∣∣φ
∫

U ′
ε0

T̃r
′
ñ
g
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tc(KX)

4v exp (−BK,t,v) (g−1x, x)
ô
dvX(x) +

∫

Xg∩U ′
ε0

γK,v

∣∣∣∣∣∣∣
≤ C|z|�−�′

∫

y0∈Xg,K

∫

Z0∈N
Xg,K/Xg ,|Z0|<ε0

(1 + |zZ0|)−(�−�′)−1dZ0 ·
Å
t

v

ãδ

≤ C

Å
t

v

ãδ

.

(6.58)

Similar estimates can be obtained for∣∣∣∣∣∣∣φ
∫

X\U ′
ε0

T̃r
′
ñ
g

√
tc(KX)

4v exp (−BK,t,v) (g−1x, x)
ô
dvX(x) +

∫

Xg\U ′
ε0

γK,v

∣∣∣∣∣∣∣ . (6.59)
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In fact, on X\U ′
ε0 , we observe that |KX |2/2v has a positive lower bound. Then we 

adopt the above techniques to the case where Xg,K = ∅. The potentially annoying term √
tc(KX)

4v can be controlled by the term |KX |2/2v.
The proof of Theorem 6.14 is completed. �

6.9. A Proof of Theorem 4.3 c)

When v ∈ [1, +∞), 1
v remains bounded. By using the methods of the last section and 

of the present section, one sees easily that for K0 ∈ z(g), K = zK0, there exist C > 0, 
β > 0 such that for t ∈ (0, 1], v ∈ [1, +∞), |zK0| < β, we have

∣∣∣T̃r
′ î
g
√
tc(KX) exp (−BK,t,v)

ó∣∣∣ ≤ C, (6.60)

which is equivalent to Theorem 4.3 c).
The proof of Theorem 4.3 c) is completed.

6.10. A Proof of Theorem 4.3 d)

In this subsection, we will prove Theorem 4.3 d) by using the method in [19, §9]. Since 
the singular term there does not appear here, our proof is in fact much easier.

We fix g ∈ G, 0 �= K0 ∈ z(g), and take K = zK0 with z ∈ R∗.
From Theorem 6.1, we have

BK,t,tv = −t

Å
∇E

ei + 1
2
√
t
〈S(ei)ej , fH

p 〉c(ej)fp∧

+ 1
4t 〈S(ei)fH

p , fH
q 〉fp ∧ fq ∧ −〈KX , ei〉

4t

Å
1 + 1

v

ãã2

+ t

4H + t

2

Å
RE/S(ei, ej) −

1
2vt 〈∇

TX
ei KX , ej〉

ã
c(ei)c(ej)

+
√
t

Å
RE/S(ei, fH

p ) − 1
2vt 〈T (ei, fH

p ),KX〉
ã
c(ei)fp∧

+ 1
2

Å
RE/S(fH

p , fH
q ) − 1

8vt 〈T (fH
p , fH

q ),KX〉
ã
fp ∧ fq ∧ −mE/S(KX) + 1

4vt |K
X |2.

(6.61)

As in sections 5.3 and 6.3, the proof of Theorem 4.3 d) can be localized near Xg. In 
the following, we will concentrate on the estimates near Xg,K . As in (6.59), the proof of 
the estimates near Xg and far from Xg,K is much easier.

We may assume that for ε0 taken in Section 6.4, if ε ∈ (0, 8ε0], the map (y0, Z) ∈
NXg,K/X → expX

y (Z) ∈ X induces a diffeomorphism from the ε-neighborhood U ′
ε of 
0
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Xg,K in NXg,K/X on the tubular neighborhood V ′
ε of Xg,K in X as in the proof of 

Theorem 6.14.
As in (5.77) and (6.9), we put

3∇E,t
· := ∇E

· + 1
2
√
t
〈S(·)ej , fH

p 〉c(ej)fp∧

+ 1
4t 〈S(·)fH

p , fH
q 〉fp ∧ fq ∧ −ϑK(·)

4t

Å
1 + 1

v

ã
. (6.62)

Take y0 ∈ W g,K in (2.12). If Z ∈ NXg,K/X,y0 , |Z| ≤ 4ε0, we identify π∗Λ(T ∗B)“⊗EZ
with π∗Λ(T ∗B)“⊗Ey0 by parallel transport with respect to the connection 3∇E,t along 
the curve u ∈ [0, 1] → uZ.

Recall that ρ is the cut-off function in (5.84). Let

L
1,(t,v)
y0,K

= (1 − ρ2(Z))(−tΔTX) + ρ2(Z)(BK,t,tv). (6.63)

We still define Ht as in (5.88) and define L2,(t,v)
y0,K

as in (5.89) from L1,(t,v)
y0,K

. Let L3,(t,v)
y0,K

be 

the operator obtained from L2,(t,v)
y0,K

by replacing c(ej) by ct(ej) as in (5.91) for 1 ≤ j ≤ �′

(cf. (2.14)), while leaving the c(ej)’s unchanged for �′ + 1 ≤ j ≤ n.
As in (3.21), we have

|KX(y0, Z)|2 = |mTX
y0

(K)Z|2 + O(|Z|3). (6.64)

Let j′ : W g,K → W be the obvious embedding. Put

L
3,(0,v)
y0,K

= −
Å
∇ei + 1

4

≠Å
j′ ∗RTX −

Å
1 + 1

v

ã
mTX(K)

ã
Z, ei

∑ã2

+ j′ ∗RE
y0

−mE(K)y0 −
1
4v

∑
j,k≥�′+1

〈mTX(K)ej , ek〉y0c(ej)c(ek)

+ 1
4v 〈j

′ ∗RTX(mTX(K)Z), Z〉y0 + 1
4v |m

TX
y0

(K)Z|2. (6.65)

From (3.5), (3.19), (3.20), (6.44), (6.61) and (6.65), as in Proposition 5.24, we have

L
3,(t,v)
y0,K

→ L
3,(0,v)
y0,K

. (6.66)

Now we take a new trivialization as in Section 6.5. Take Z0 ∈ NXg,K/Xg,y0 , |Z0| ≤ ε0. 
If Z ∈ Ty0X, |Z| ≤ 4ε0, we identify π∗Λ(T ∗B)“⊗EZ+Z0 with π∗Λ(T ∗B)“⊗EZ0 by parallel 
transport along the curve u ∈ [0, 1] → expX

Z0
(uZ) with respect to the connection 3∇E,t. 

Also we identify π∗Λ(T ∗B)“⊗EZ0 with π∗Λ(T ∗B)“⊗Ey0 by parallel transport along the 
curve u ∈ [0, 1] → uZ0 with respect to the connection ∇E . Using this trivialization, the 
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analogues of [19, Theorems 9.19 and 9.22] hold here following the same arguments except 
for replacing the norm in [19, (9.43)] by

|s|2t,Z0,0 =
∫

Ty0X

|s(Z)|2
Ç

1 + (|Z| + |Z0|) ρ
Ç√

tZ

2

åå2(k+�′−p−r)

dvTX(Z). (6.67)

Here s is a square integrable section of 
Ä
π∗Λr(T ∗B)“⊗Λp(T ∗Xg,K)“⊗SN

Xg,K/X
⊗ E

ä
y0

over Ty0X, and dimB = k.
As in [19, (9.52)-(9.57)], combining with (3.18), if n is even, there exists β > 0, if 

z ∈ R∗, |z| ≤ β, for t → 0,

∫

Xg,K

∫

(Z0,Z)∈N
Xg,K/Xg×NXg/X ,

|Z0|,|Z|≤ε0

Trs
ï
g
c(KX)
4
√
tv

‹Ft(BzK0,t,tv)(g−1(y0, Z0, Z),

(y0, Z0, Z))] dvX(y0, Z0, Z)

→
∫

Xg,K

∫

N
Xg,K/X

(−i)�
′/22�

′/2 Trs
ñ
g
c
(
mTX

y0
(K)Z

)
4v exp

Ä
−L

3,(0,v)
y0,zK0

ä
(g−1Z,Z)

ô
dvN

Xg,K/X
(Z). (6.68)

The heat kernel exp
Ä
−L

3,(0,v)
y0,zK0

ä
(g−1Z, Z) could be calculated as in (5.142) by [19, The-

orem 4.13], which is an even function on Z and can be controlled by C exp(−C ′|Z|2). So 
the right-hand side of (6.68) is an integral of an odd function on Z over NXg,K/X , which 
is zero.

If n is odd, by Remark 5.22, from the same argument above, as t → 0,

∫

U ′
ε0

Treven
ï
g
c(KX)
4
√
tv

exp (−BK,t,tv)
ò
→ 0. (6.69)

After adopting the above technique to the case where Xg,K = ∅, for z ∈ R∗, |z| small 
enough, as t → 0, we have

∫

X\U ′
ε0

T̃r
′
ï
g
c(KX)
4
√
tv

exp (−BK,t,tv)
ò
→ 0. (6.70)

The proof of Theorem 4.3 d) is completed.
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