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0. Introduction

In order to find a well-defined index for a first order elliptic differential operator
over an even-dimensional compact manifold with nonempty boundary, Atiyah-Patodi-
Singer [1] introduced a global boundary condition which is particularly significant for
applications. In this final index formula, the contribution from the boundary is given
by the Atiyah-Patodi-Singer (APS) n-invariant associated with the restriction of the
operator on the boundary. Formally, the n-invariant is equal to the number of positive
eigenvalues of the self-adjoint operator minus the number of its negative eigenvalues.
If the manifold admits a compact Lie group action, in [31], extending the APS index
theorem [1], Donnelly proved a Lefschetz type formula for manifolds with boundary. The
contribution of the boundary is expressed as the equivariant n-invariant 7.

Note that the n-invariant and the equivariant n-invariant are well-defined for any
compact manifold. In [36, Theorem 0.5], Goette studied the singularity of n, at g = e
the identity element, when the group action is locally free. He defined the equivariant
infinitesimal 7-invariant as a formal power series and express the singularity of n,at g = e
as a locally computable term through the comparison of the equivariant infinitesimal 7-
invariant and the equivariant n-invariant.

In [19,20], Bismut and Goette established the general comparison formulas for holo-
morphic analytic torsions and de Rham torsions. They used the analytic localization
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techniques developed by Bismut and Lebeau in [21] and developed new techniques to
overcome the difficulty that the operators do not have lower bounds. In the holomorphic
case [19, Theorem 0.1], besides the predictable Bott-Chern current, in the final formula,
there is an exotic additive characteristic class of the normal bundle, which is closely re-
lated to the Gillet-Soulé R-genus [35] and Bismut’s equivariant extension [10]. In the real
case [20, Theorem 0.1], in the final formula, besides the predictable Chern-Simons cur-
rent, they discovered an exotic locally computable diffeomorphism invariant of the fixed
point set, the so-called V-invariant. The mysterious V-invariant should be understood
as a finite dimensional analogue of the real analytic (de Rham) torsion.

On the other hand, extending the works of Bismut-Freed [17] and Cheeger [27] on the
Witten’s holonomy conjecture, Bismut and Cheeger [13] studied the adiabatic limit for
a fibration of compact spin manifolds and found that under the invertible assumption
of the fiberwise Dirac operator, the adiabatic limit of the n-invariant of the associated
Dirac operators on the total space is expressible in terms of a canonically constructed
differential form, 7, so-called Bismut-Cheeger n-form, on the base space. Later, Dai [28]
extended this result to the case when the kernels of the fiberwise Dirac operators form
a vector bundle over the base manifold. The Bismut-Cheeger n-form, 7, is the families
version of the n-invariant and its 0-degree part is just the APS n-invariant. It appears
naturally as the boundary contribution of the family index theorem for manifolds with
boundary (cf. [14,15,49,50]). We cite also [57] for a nice topological application of eta
forms. As the holomorphic analytic torsion and its family version, Bismut-Kohler holo-
morphic torsion form [22] are the analytic counterpart to the direct image in Arakelov
geometry [54], whose foundation was developed by Gillet-Soulé and Bismut in the 1980s,
the Bismut-Cheeger n-form is also the analytic counterpart to the direct image in dif-
ferential K-theory introduced by Freed-Hopkins [33] and developed further by [26], [34],
[38], [53], ete.

When the fibration admits a fiberwise compact Lie group action, the Bismut-Cheeger
n-form could be naturally extended to the equivariant n-form 7,. Recently, the functo-
riality of equivariant n-forms with respect to the composition of two submersions was
established in [39], which extends the previous work of Bunke-Ma [25] for usual n-forms
for flat vector bundles with duality, cf. [5,6,23,29,45-47,51] for related works on n-forms
and holomorphic torsions.

In the same way as fixed-point formula has two equivariant versions, the Lefschetz
fixed-point formula and Kirillov-like formula of Berline-Vergne [4], the same is true for
equivariant n-forms. In this paper, we use the analytic techniques of Bismut-Goette in
[19] to define the equivariant infinitesimal Bismut-Cheeger n-form and prove a general
comparison formula between the equivariant infinitesimal Bismut-Cheeger n-form and
the equivariant Bismut-Cheeger n-form which extend the work of Goette [36]. In par-
ticular, we express the singularity of 77, modulo exact forms, at any g € G as a locally
computable differential form.

Let G be a compact Lie group with Lie algebra g. We assume that G acts isometrically
on an odd-dimensional compact oriented Riemannian manifold X and the G-action lifts
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on a Clifford module £ over X. In general, the equivariant APS n-invariant 7, is not a
continuous function on g € G. In [36], Goette studied the singularity of the equivariant
n-invariant 7, at g = e. He defined a formal power series nx € C[[g*]] for K € g, called
the equivariant infinitesimal 7-invariant and showed that if the Killing vector field KX
induced by K has no zeroes on X, for any N € N, as 0 #t — 0,

Mix]N — Netx = Mk + O(tY), (0.1)

where [ x|y is the part of the formal power series 7k with degree < N and M, could
be expressed precisely as a locally computable term. Moreover, there exist ¢;(K) € C
such that when t — 0,

(dim X +1)/2
Mg = > K7 +0(t). (0.2)

Jj=1

It means that if the Killing vector field KX is nowhere vanishing, the singular behavior
of n.tx when t — 0 could be computed as the integral of the local terms explicitly.

In this paper, we show first that n;x is an analytic function on ¢ for ¢t small enough
and for any 0 # K € g,

Mg — Netk = Myg, for t # 0 small enough. (0.3)

In Theorem 0.2, we establish a general version of (0.3), in particular, its family version.

Let’s explain in detail our result here. Let 7 : W — B be a smooth submersion of
smooth compact manifolds with fiber X. Note that n = dim X can be even or odd. Let
TX = TM/B be the relative tangent bundle to the fiber X. We assume that T'X is
oriented and that the compact Lie group G acts fiberwise on W and as identity on B
and preserves the orientation of T'X.

Let g7 be a G-invariant metric on TX. Let (£, hf) be a Clifford module of TX to
the fiber X and we assume that the G-action lifts on (£, h®) and is compatible with the
Clifford action. Let V€ be a G-invariant Clifford connection on (&, h%), i.e., V€ is a G-
invariant Hermitian connection on (£, hf) and compatible with the Clifford action (see
(1.19)). Let D be the fiberwise Dirac operator associated with (g7, V) (see (1.20)).

We assume that the kernels Ker(D) form a vector bundle over B. Then for any g € G,
the equivariant 7-form 7, is well-defined (see Definition 1.4)."

L For even dimensional fiber, any family of Dirac operators could be deformed to another one which satisfies
this assumption and has the same family index in K°(B) (see e.g., [3, §9.5]). But for odd dimensional
fiber, some topological obstruction appears: if a family of Dirac operators D satisfies this assumption, the
family index of D vanishes in K'(B) (this fact is implicitly contained in [2], a proof of which is presented
in [32, Theorem 4.1]). Recently, for odd dimensional fiber case, Wittmann [56] defined an n-form under
the assumption that the family of Dirac operators has one eigenvalue of multiplicity one crossing zero
transversally. It is expected that many properties of Bismut-Cheeger n-form could be extended to this case.
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In the whole paper, if n = dim X is even, £ is naturally Zs-graded by the chirality
operator I' defined in (1.15) and the supertrace for A € End(€) is defined by Tr [A] :=
Tr[['A]; if dim X is odd, € is ungraded. For 0 = a ® A with o € A(T*B), A € End(€&),
we define Tr[o] := a - Tr[A]. We denote by Tr°%[s] the odd degree part of Tr[o]. Set

~ Tr,[o] if n = dim X is even;
Trlo] = ; ’ 0.4
rlo] {TrOdd [o] if n = dim X is odd. (04)
For o € Q7 (R x B), the space of j-th differential forms on R x B, set
2im —3 e if j is even;
Yrx () = _;) Rt ) ] . (0.5)
772 (2im)” 2 -« if j is odd.

Let t be the coordinate of R in R x B. If a = g + dt A a1, with «g, 1 € A(T*B), set
[a]® = . (0.6)

Let Lk be the infinitesimal action on (W, ) induced by K € g (see (2.3)).

For g € G, we denote by Z(g) C G the centralizer subgroup of g with Lie algebra
3(g). Let W9 = {x € W : gz = x} be the fixed point set of g. Then the restriction of 7
on W9 w|lwe : W9 — B is a fibration with compact fiber X9.

Let B; be the rescaled Bismut superconnection defined in (1.23). Let d be the exterior
differential operator.

Let Kg, x(-) and chy i (-) be equivariant infinitesimal versions of the A-form and the
Chern character form (cf. (2.15) and (2.16)). The following result extends the equivariant
infinitesimal 7-invariant to the family case at any g € G (see Definition 2.3, (2.31), (2.32),
(2.36) and (2.37)).

Theorem 0.1. For any g € G, there exists § > 0 such that if K € 3(g) with |K| < 3, the
integral

+00 2 dt

Ng, K = — / {T/J]RxBﬁ {QGXP <— (Bt + C(jj/)-;) + dt A %) — EK>}} dt (0.7)

0

is a well-defined differential form on B, and

/ Ay, (TX, VXY chy 1 (£/8,VF)

X9

dijg. xk = — chy.x (Ker(D), Ve (D)) if n is even;
/ Ak (TX, V") chy 1 (€/8, V) if n is odd.
X9

(0.8)
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Moreover, for fized K € 3(g), Ng,-x s an analytic function of z € C for |zK| < (5.
In the sequel, 7,  is called the equivariant infinitesimal (Bismut-Cheeger) n-form.
Let 9 € T*X be the 1-form which is dual to KX by the metric ¢7X. Now we state

the main result of this paper.

Theorem 0.2. For g € G and Ky € 3(g), there exists B > 0 such that for any K = zKj,
K #0 and —5 < z < 8, modulo exact forms on B, we have

77g,K = ﬁgeK + Mg,Ka (09)

where Mg i is a well-defined integral defined by

“+o00

. ’l9K (dﬁK—Qiﬂ'|KX|2> -~ TX < d’u

My = //22'71'11 exp Y- Ay k(TX,V'*)chg k(E/S,V )v’
0 X9

(0.10)

and LA WIFD/2I A e s real analytic on t € R, |t| < 1. Moreover, we have
dMg = / Ay x(TX, V") chy 1 (£/S,VE)
X9

- / Ryorc (TX, VX chyonc (/8. V). (0.11)

Xk

By Theorem 0.1, 7j4+x is an analytic function of ¢ near ¢ = 0. Thus when ¢t — 0,
modulo exact forms, the singularity of 7g.:x is the same as that of —M, k.

Note that the general comparison formula for the two versions of equivariant holo-
morphic analytic torsions is established in [19, Theorem 5.1], which is the model of our
paper. The analytical tools in this paper are inspired by those of [19] with necessary mod-
ifications. For this problem on de Rham torsion forms, a comparison formula is stated
in [20, Theorem 5.13].

Remark 0.3. Let G act on an odd dimensional compact Riemannian manifold (X, g7*)
and on a Clifford module (€, h¢, V¥) compatible with the Clifford action. Then for g = e
the identity element of G, (0.7) defines a complex number ng for any K € g, |K| < S.
As formal power series on K, this nx is just the equivariant infinitesimal n-invariant nx
in [36, Definition 0.4].

Let P — B be a G-principal bundle with connection and associated curvature Q.
Then we get naturally a fibration P xg X — B with fiber X. Let 77 be the associated
Bismut-Cheeger n-form. For this fibration, by Bismut [8, §1d), §3b)], under the notation
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of (1.23), the term ¢(T") in the Bismut superconnection is ¢(2), and (VE*)2 = Lq,
thus we get [36, Lemma 1.14],

T=n.q (0.12)

27

Thus we can understand the formal power series of nx as a universal n-form.

Remark 0.4. Assume temporarily that B = pt, dim X = n is odd, and X is the boundary
of a G-equivariant Riemannian manifold Z, which has product structure near X. We also
assume that £z = £} © & is a G-equivariant Clifford module on Z such that £} | =€
and 8% near X is the pull-back of £ as Hermitian vector bundles with connections.

Let Dz be the associated Dirac operator on £z over Z. Then the index of DJZr =
DZ|%”OO(Z75;) with respect to the Atiyah-Patodi-Singer (APS) boundary condition is a
virtual representation of G. For g € G, its equivariant APS index IndAPS’g(D}_) can be
computed by Donnelly’s theorem [31],

Indaps 4(D}) = / Kg(TZ, V%) ch,(E7/Sz,VE%) —

Z9

(ng(D) + Tx |ker(m) [9]) - (0.13)

N~

By combining (0.9), (0.11) (more precisely the Stokes formula [24, p. 775], (3.30) and
(3.33)), and (0.13), for any K € g, there exists 5 > 0 such that, for any —8 < t < 3, we
have

Indppg o« (D) = / Ak (TZ,NT7) ey (E2/S7,VE?) —
Z

(ntK(D) +Tr |Ker(D) [etK]) .

| =

(0.14)
Here Ayg () := Ae ik (-) and chy(+) := che i (-).

The main result of this paper is announced in [41] and plays an important role in our
recent work [42].

This paper is organized as follows. In Section 1, we recall the definition of the equiv-
ariant Bismut-Cheeger n-form. In Section 2, we state the family Kirillov formula and
define the equivariant infinitesimal n-form, in particular, we establish Theorem 0.1 mod-
ulo some technical details. In Section 3, we prove that M, ;x in (0.10) is well-defined
and state our main result, Theorem 0.2. In Section 4, we state some intermediate results
and prove Theorem 0.2. In Section 5, we give an analytic proof of the family Kirillov
formula and the technical details to establish Theorem 0.1 following the lines of [19, §7].
For the convenience to compare the arguments here with those in [19, §7], especially how
the extra terms for the families version appear, the structure of this section is formulated
almost the same as in [19, §7]. In Section 6, we prove the intermediate results in Section 4
using the analytical techniques in [19, §8, §9].
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From Remark 1.3, to simplify the presentation, in Sections 5, 6, we will assume that
T XY is oriented.

Notation. We use the Einstein summation convention in this paper: when an index
variable appears twice in a single term and is not otherwise defined, it implies summation
of that term over all the values of the index.

We denote by |z| the maximal integer not larger than z.

We denote by d the exterior differential operator and d? when we like to insist the
base manifold B. Let Q¢ve"/°dd(B C) be the space of even/odd degree complex valued
differential forms on B. For a real vector bundle E, we denote by dim E the real rank of
E.

If A is a Zs-graded algebra, and if a,b € A, then we will note [a,b] := ab —
(—1)desadeebpg as the supercommutator of a, b. In the whole paper, if A, A’ are Zo-
graded algebras we will note ARA’ as the Zo-graded tensor product as in [3, §1.3]. If
one of A, A’ is ungraded, we understand it as Zs-graded by taking its odd part as zero.

For the fiber bundle 7 : W — B, we will often use the integration of the differential
forms along the oriented fibers X in this paper. Since the fibers may be odd dimensional,
we must make precisely our sign conventions: for o € Q°(B) and 8 € Q*(W), then

/<7r*a) AB=aA /5. (0.15)

X

Acknowledgments. B. L. is partially supported by Science and Technology Commission
of Shanghai Municipality (STCSM), grant No. 18dz2271000, Natural Science Founda-
tion of Shanghai, grant No. 20ZR1416700 and NSFC No. 11931007. X. M. is partially
supported by NSFC No. 11528103, No. 11829102, ANR-14-CE25-0012-01, and funded
through the Institutional Strategy of the University of Cologne within the German Ex-
cellence Initiative. Part of this work was done while the authors were visiting University
of Science and Technology in China and Wuhan University.

1. Equivariant n-forms

In this section, we recall the definition of the equivariant n-form in the language of
Clifford modules. In Section 1.1, we recall the definition of the Clifford algebra. In Sec-
tion 1.2, we explain the Bismut superconnection. In Section 1.3, we define the equivariant
n-form for Clifford module.

1.1. Clifford algebras

Let (V,(,)) be a Euclidean space, such that dimV = n, with orthonormal basis
{e;}1 . Let ¢(V) be the Clifford algebra of V' defined by the relations

eie; +eje; = _261'3‘- (1.1)
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To avoid ambiguity, we denote by c(e;) the element of ¢(V') corresponding to e;.
If e € V, let e* € V* correspond to e by the scalar product (,) of V. The exterior
algebra AV* is a module of ¢(V') defined by

cle)a=e" Na—i.a (1.2)

for any a € AV*, where A is the exterior product and i is the contraction operator. The
map a — c¢(a) - 1, a € ¢(V), induces an isomorphism of vector spaces

o:c(V)—= AV™. (1.3)

1.2. Bismut superconnection

Let m : W — B be a smooth submersion of smooth compact manifolds with n-
dimensional fibers X. Let TX = TW/B be the relative tangent bundle to the fibers
X.

Let G be a compact Lie group acting on W along the fibers X, that is, if g € G,
mog = 7. Then G acts on TW and on TX. Let THW C TW be a G-invariant horizontal
subbundle, so that

TW =THW & TX. (1.4)

Since G is compact, such THW always exists. Let PTX : TW — T'X be the projection
associated with the splitting (1.4). Note that

TEW ~ n*TB. (1.5)

Let ¢g7X be a G-invariant metric on TX. Let g”” be a Riemannian metric on T'B.
We equip TW with the G-invariant metric via (1.4) and (1.5),

g™V — 1 gTB g gTX (1.6)

Let VIW-L (vesp. VT'B) be the Levi-Civita connection on (TW, g™W) (resp. (T'B, g*P)).
Let VTX be the connection on T'X defined by

vIX _ pTXyTW,.L pTX (1.7)
It is G-invariant. Let VI'W be the G-invariant connection on TW, via (1.4) and (1.5),
VIW = w18 g v, (1.8)

Put
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S =vIWL _ygTw, (1.9)

Then S is a 1-form on W with values in antisymmetric elements of End(TW). Let T be
the torsion of VIW. By [8, (1.28)],if U,V,Z € TW,

S(U)V — S(V)U +T(U,V) =0,

2AS(U)V, Z) + (T(U, V), Z) + (T(Z,U),V) = (T(V, Z),U) = 0. (1.10)

If U is a vector field on B, let UH be its lift in T7H W and let L= be the Lie derivative
operator associated with the vector field U*. Then L;# acts on the tensor algebra of
TX. In particular, if U € T B, (gTX)f1 LyagTX defines a self-adjoint endomorphism of
TX.If UV are vector fields on B, from [11, Theorem 1.1],

T(UH vy = —pTX [yt vH) (1.11)
and if U e TB, Z,7' € TX,

T, 7)== (¢") " Lyng™¥ 2, T(2,7')=0. (1.12)

DN | =

From (1.10) and (1.12), it U € TB, Z,Z’ € TX, we have
We recall some properties in [11, §1.1].

Proposition 1.1. 1) The connection VX does not depend on g*P and on each fiber X,
it restricts to the Levi-Civita connection of (T X, g"™X).
2) If U € TB, then

1 -1
3) The tensors T and (S(-)-,-) do not depend on gT®.

Let ¢(TX) be the Clifford algebra bundle of (TX, g7*X), whose fiber at z € W is the
Clifford algebra ¢(T, X) of the Euclidean space (T, X, g7=*). Let &€ be a Clifford module
of ¢(TX). It means that £ is a complex vector bundle and restricted on a fiber, &, is a
representation of ¢(T,X). We assume that the G-action lifts on € and commutes with
the Clifford action.

From now on, we assume that T'X is G-equivariant oriented.

In the whole paper, if n is even, as in [3, Lemma 3.17], for a locally oriented orthonormal
frame eqy,--- , e, of T X, we define the chirality operator by
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L =i"%c(er) - cley). (1.15)

Then I' does not depend on the choice of the frame, commutes with the G-action and
I'? = Id. Thus & is naturally Zs-graded by the chirality operator I'. The supertrace for
A € End(€) is defined by

Tr,[A] := Tr[LA. (1.16)

If n is odd, &€ is ungraded.

Let h% be a G-invariant Hermitian metric on €. For b € B, let E;, be the set of smooth
sections over X, = 771(b) of £|x,. As in [8], we will regard E as an infinite dimensional
vector bundle over B. Let dvx (x) be the Riemannian volume element of Xj. The bundle
E; is naturally endowed with the Hermitian product

(s,8")0 = /{s,s'}(aj)dvx(w), for s,s' € E. (1.17)
Xy

Then G acts on E, = (X, €|x,) as

(g.5)(x) = g(s(g"'z)) forany g € G. (1.18)

Let V¢ be a G-invariant Clifford connection on & (cf. [3, §10.2]), that is, V& is G-
invariant, preserves h® and for any U € TW, Z € €>(W,TX),

Vi, e(2)] =c(VE*Z). (1.19)

The fiberwise Dirac operator is defined by

D:

%

c(e)VE,, (1.20)
1

n

which is independent of the choice of the orthonormal frame {e;}};.
Let k € (THW)* such that for any U € TB, Lyundvx(z)/dvx(z) = 2k(UH)(z). The
connection VE* on E defined by (cf. [16, Definition 1.3])

VEUs .= VEus+ k(UT)s  for s € €°(B,E) = €= (W,E), (1.21)
is G-invariant and preserves the G-invariant L2-product (1.17) (see e.g., [16, Proposition

1.4]).
Let {fp} be a local frame of T'B and {f?} be its dual. Set

VEL = [PAVEY o(TH) = %C(T( PRSI FARINANIS (1.22)
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Then ¢(TH) is a section of 7*A?(T* B)® End(£).
By [8, (3.18)], the rescaled Bismut superconnection B,, u > 0, is defined by

B, = vuD + VE* — o(TH) : €%°(B,A(T*B)RE) — ¢ (B, A(T*B)QE). (1.23)

1
4/u
Obviously, the Bismut superconnection B, commutes with the G-action. Furthermore,
B2 is a 2nd-order elliptic differential operator along the fiber X (cf. [8, (3.4)]) acting on
A(T*B)®E. Let exp(—B2) be the heat operators associated with the fiberwise elliptic
operator B2.

1.8. Equivariant n-forms

Take g € G fixed and set W9 = {z € W : gz = x}, the fixed point set of g. Then W9
is a submanifold of W and 7|ws : W9 — B is a fibration with compact fiber X9. Let
Ny o w denote the normal bundle of W9 in W, then

T™W TX

Nwsjw = e = mseg = Nxa/x (1.24)

Let {X¢}oem be the connected components of X9 with
dim XJ = ¢,. (1.25)
By an abuse of notation, we will often simply denote by all ¢, the same /.
Assumption 1.2. We assume that the kernels Ker(D) form a vector bundle over B.
For 0 = a®A with a € A(T*B), A € End(€), we define
Trlo] = a - Tr[4], Tr°Y[o] = {a}°d Tr[4], Tr*""[o] = {a}*" - Tr[A], (1.26)
where {a}°d9/¢ve? is the odd or even degree part of . Set

ﬁ[a] _ {Trs [o] :== a - Tr[['4] if n = dim X is even; (1.27)

Trodd (g if n = dim X is odd.

Let End.(rx)(€) be the set of endomorphisms of £ supercommuting with the Clifford
action. It is a vector bundle over W. As in [3, Definition 3.28], we define the relative
trace Tré/S End.rx)(£) — C by: for any A € End.rx)(E),

2-"/2 Tr, [T A] if n = dim X is even;
/5 [A] = ; ’ 1.28
4] {2—<n—1>/2Tr[A] if n = dim X is odd. (1.28)
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Let RTX = (VTX)Q7 R¢ = (Vg)Z be the curvatures of VI'X | V¢. Then

1
R/ .= Rf — Z(RTXeZ—, ej)elei)c(e;) € €°°(W, A2 (T*W) @ End.rx)(€)) (1.29)

is the twisting curvature of the Clifford module £ as in [3, Proposition 3.43].

Note that if TX has a G-equivariant spin structure, then there exists a G-equivariant
Hermitian vector bundle E such that £ = Sx ® E, with Sx the spinor bundle of T X,
V¢ is induced by VT'¥ and a G-invariant Hermitian connection V¥ on E and

RE/S = RP = (VF)2, (1.30)
We denote the differential of g by dg which gives a bundle isometry dg : Nxo/x —

Nxg/x. As G is compact, we know that there is an orthonormal decomposition of real
vector bundles over W9,

TX|wo =TX?® Nxoyx =TX® P N(0), (1.31)
0<0<T
where dg|y(r) = —Id and for each 0, 0 < § < w, N(f) is the underlying real vector

bundle of a complex vector bundle Ny over W9 on which dg acts by multiplication by
e'?. Since g preserves the metric and the orientation of TX, thus det(dg|n(x)) = 1, this
means dim N () is even. So the normal bundle Nxq,x is even dimensional.

Since VT¥ commutes with the group action, its restriction on W9, V7X |y, preserves
the decomposition (1.31). Let VTX " and VY be the corresponding induced connections
on TX9 and N(6), with curvatures R”** and RN,

Set

i pTXY
A (TX,VTX) =det? [ —In—
o )= 4 | i (2R

- -1
H <i%dimN(9)det% <1 — gexp (QLRN(e))>) €O (W9,C). (1.32)
T

0<0< T

The sign convention in (1.32) is that the degree 0 part in [[,_g.. is given by
£i0/2 %dimN(Q) B

(e“’—1> ’

By [3, Lemma 6.10], along W9, the action of ¢ € G on & may be identi-

fied with a section ¢ of ¢(Nys/x) ® End.rx)(€). Under the isomorphism (1.3),

o(9%) € € (W9, A(Ng, ) ® Endyrs(€)). Let u_s(9%) € € (W9, A"4(N%, ) @

End.(rx)(£)) be the highest degree part of o(g¢) in A(N)*(Q/X). Then we define the

localized relative Chern character ch,(€/S,V¥) as in [3, Definition 6.13]:
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2(77,74)/2 RE/S o
Ch!] (5/87 vg) = 1/2 TrS/S O'n—é(gg) CXp | — ¢
det™ " (1 — g[Nyq,x) 2im

S Q.(Wg,detng/X). (133)

Remark 1.3. In general, T XY is not necessary oriented. The orientation of T X allows us
to identify det Nxq,x as the orientation line of X9, thus the integral fX-‘? of a form in
Qe (Wg, det NXQ/X) makes sense as in [3, Theorem 6.16]. Assume that T XY is oriented,
then the orientations of TX¢ and T'X induce canonically an orientation on Ny, x. By
pairing with the volume form of Nx,x, we obtain

chy(£/8S,V¥) € Q*(W9,C). (1.34)

If TX has a G-equivariant spin® structure, then 7X9 is canonically oriented (cf.
[3, Proposition 6.14], [44, Lemma 4.1]). If TX has a G-equivariant spin structure,
chy(E/S,V¥) under the above convention is just the usual equivariant Chern charac-
ter (cf. (1.30))

E B RE|ws
chy(E,V¥) =Tr" |gexp | ———= . (1.35)
2w
As in (0.5), for o € Q¥(B), set
ppla)={ B0 e s even; (1.36)
772 (2im)” 2 -« if j is odd.

Then from the equivariant family local index theorem (see e.g., [8, Theorem 4.17], [17,
Theorem 2.10], [40, Theorem 2.2], [43, Theorem 1.3]), for any u > 0, the differential form
YpTrlgexp(—B2)] € Q*(B,C) is closed, its cohomology class is independent of u > 0,
and

lim YpTr[gexp(—B2)] = / A (TX,VTX) chy(£/S,VE). (1.37)
u—
X9
Let PXer(P) . B — Ker(D) be the orthogonal projection with respect to (1.17). Let
VKer(D) — PKer(D)v]E,uPKer(D) (138)
and RXe*(P) he the curvature of the connection VXe'(P) on Ker(D).

e If n = dim X is even, from the natural equivariant extension of [3, Theorem 9.19],
we have

RKer(D)
lim_i T, g exp(~B2)] = Tr, | gexp ( - — oy (Kex(D), V(2.

u—~+00 2w

(1.39)



B. Liu, X. Ma / Advances in Mathematics 404 (2022) 108163 15

Since B, is G-invariant, the equivariant version of [3, Theorem 9.17] shows that

9 _R2\ — _ B { B, 2}
50 Tr, [gexp(—B)| = —d” Tr, |g 5 exp(—B3)| . (1.40)

Thus for 0 < e < T < 400,

T
Tr, [gexp(—]B%?)] —Trg [g eXp(—B%)} = dB/Trs {g% exp(—]BZ)} du. (1.41)

€

The natural equivariant extension of [3;, Theorems 9.23 and 10.32(1)] (cf. e.g., [39, (2.72)
and (2.77)]) shows that

Tr [Q% eXP(*Bi)} =Ow™?) asu—0,

ou
o8 (1.42)
Tr [gﬁ—uu exp(—Bi)} = Ow™>?) asu— +oo.
In this case, by (1.36) and (1.42), the equivariant n-form is defined by
+oo
g = / sz Tr { 9B (—BQ)} du € Q°44(B,C) (1.43)
779 - 21\/77_ B s |9 811, 298 u ) . .
0
By (1.37), (1.39), (1.41) and (1.43), we have
dPij, = / Ay (TX,VTX) chy(£/S,VE) — chy(Ker(D), VEr D)), (1.44)

X9

o If n is odd, since the equivariant extension of [3, Theorem 9.19] also holds, we have

lim Tr°%[gexp(—B2)] = Trodd [g exp (—RKer(D))] = 0. (1.45)

UuU—+00

As an analogue of (1.41), for 0 < e < T < +00, we have

T
OB,
T [g exp(—BZ)] — T [g exp(~B7)] = d” / T [ga— exp(—Biﬁ du. (1.46)
u
€
Following the same arguments in the proof of (1.42), we have

Trever {g% exp(—]Bi)} =0wY?) asu—0,
(1.47)

Trever {g%]iu exp(f]Bi)} =Ow™>?) asu— +oo.
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In this case, by (1.36) and (1.47), the equivariant n-form is defined by

—+o0

~ 1 even aBU even

o= / ﬁwB Tr {9 . exp(~B)| du € Q°(B, C). (1.48)
0

From (1.37), (1.45), (1.46) and (1.48), we get
dBij, = / A (TX,VT¥) chy(E/S, V). (1.49)
X9

We write the definition of the equivariant n-form (1.43) and (1.48) in a uniform way
using the notation {-}%* as in (0.6).

Definition 1.4. [39, Definition 2.3] For g € G fixed, under Assumption 1.2, the equivariant
Bismut-Cheeger n-form is defined by

—+oo

2 du
Tg ::f/ {1/}]R><Bﬁ {gexp ( <Bu+du/\ %) )}} du € Q*(B,C). (1.50)

0

If g = e the identity element of G, (1.50) is exactly the Bismut-Cheeger n-form defined
n [13]. If B is noncompact, (1.42) and (1.47) hold uniformly on any compact subset of
B, thus Definition 1.4, (1.44) and (1.49) still hold.

2. Equivariant infinitesimal n-forms

In this section, we state the family Kirillov formula and define the equivariant in-
finitesimal n-form. In Section 2.1, we state the families version of the Kirillov formula.
In Section 2.2, we define the equivariant infinitesimal n-form, and establish Theorem 0.1
modulo some technical details.

In this section, we use the same notations and assumptions in Section 1. Especially,
TX is G-equivariant oriented and Assumption 1.2 holds in this section.

2.1. Moment maps and the family Kirillov formula

Let | - | be a G-invariant norm on the Lie algebra g of G. For K € g, let

KX(x) = % Ky forzew (2.1)
t=0

be the induced vector field on W. Since G acts fiberwise on W, KX € (W, TX) and

[KX,K'X] = —-[K,K']*  forany K,K' €g. (2.2)
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For K € g, let L be the corresponding Lie derivative given by

0

G ), (23

EKS:

for s € €°(W,E) (cf. (1.18)). The associated moment maps m?*X(-), m®(-) are defined
by [3, Definition 7.5] (see also [19, Definition 2.1]),

mT(K) = ViX — Lk|rx € € (W,End(TX)),

(2.4)
mé(K) := Vix — Lxle € € (W,End(€)).

Since the vector field KX is Killing and VX, V€ preserve the corresponding metrics,
mTX(K) and m®(K) are skew-adjoint actions of End(7X) and End(&) respectively. By
Proposition 1.1, the connection VI is the Levi-Civita connection of (T'X, g7*) when
it is restricted on a fiber. Since the G-action is along the fiber, we have

mTX(K) = VIX KX € ¢°°(W,End(TX)). (2.5)
Since the connection VIX is G-invariant, from (2.4) (cf. [3, (7.4)] or [19, (2.8)]),
VIXmIX(K) +igx RTX = 0. (2.6)

We denote by m®(K) € End(€) by

mS (K) = i<mTX(K)ei,ej>c(ei)c<ej). (2.7)

If TX is spin, m®(K) is just the moment map of the spinor. Set
m&/S(K) .= mé(K) — mS (K). (2.8)
From (1.29), we set (cf. [19, (2.30)])
REX = R™Y —2inm™(K), RY/® = R®/S - 2inm®/S(K). (2.9)

Then RIX (resp. Rf(/ ) is called the equivariant curvature of TX (resp. equivariant
twisted curvature of £).
Let Z(g) C G be the centralizer of g € G with Lie algebra 3(g). Then in the sense of

the adjoint action,
3(9)={Keg:9K=K}. (2.10)
We fix g € G from now on. In the sequel, we always take K € 3(g). Put

WE ={zew:KX()=0}. (2.11)
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Then W, which is the fixed point set of the group generated by K, is a totally geodesic
submanifold along each fiber X. Set

WK = wIsnwk, (2.12)

Then W9 is also a totally geodesic submanifold along each fiber X. Moreover, if K, €
3(9) and z € R, for z small enough, we have

W92Ko — e’ (2.13)

Since the G-action is trivial on B, WX — B and W9 — B are fibrations with
compact fiber X* and X9%. Asin (1.25), by an abuse of notation, we will often simply
denote by

dim X 9K =7’ (2.14)

Observe that m™™ (K)|xs acts on TX9 and Ny,,x. Also it preserves the splitting
(1.31). Let mTX*(K) and m™(®(K) be the restrictions of m”X(K)|xs to TX9 and
N(6). We define the corresponding equivariant curvatures REX", RIZ\(](Q) as in (2.9).

For K € 3(g) with |K| small enough, comparing with (1.32), set

N TX 1 4i RTIF(XQ
A TX,V =det2 [ — 2 —————
i )= (smh (—4;R£X9))

. —1
11 (ﬁdimw’)det% (1 — gexp (%Rﬁ”)))) € Q% (W9,C). (2.15)

k>0

Note that W compact and |K| small guarantee that the denominator in (2.15) is invert-
ible. Comparing with (1.33), set

n— E/S
o(n—0)/2 £/

RE/% |y
chy x(£/S,VE) = TS o o(gf)exp [ ——E22 )| . (2.16
97K( / ) det1/2(1 _ glNXg/X) Z(g ) p % ( )

Asin (1.35), if TX has a G-equivariant spin structure, chy ;(€/S, V) is just the equiv-
ariant infinitesimal Chern character in [19, Definition 2.7],

RElws

2m

chy (B, VE) = Tr¥ {gexp (— ﬂ €O (W9,C), (2.17)

where m¥(K) = VE, — Li, RE := R¥ — 2imm”(K) as in (2.4) and (2.9).
Set

dg = d — 2im igx. (2.18)
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Then by (2.6) (cf. [3, Theorem 7.7]),
dgAy k(TX,VTX) =0, dgchyx(£/S,VE) =0. (2.19)
Recall that B is the rescaled Bismut superconnection in (1.23). Set

c(KX)
4t

Then ]B%%(,t is a 2nd-order elliptic differential operator along the fiber X acting on

A(T*B)@E. If the base B is a point, then the operator By ; is ViD + cg\(;), and it
was introduced by Bismut [7] in his heat kernel proof of the Kirillov formula for the
equivariant index. As observed by Bismut [8, §1d), §3b)] (cf. also [3, §10.7]), its square
plus Lxx is the square of the Bismut superconnection for a fibration with compact
structure group, by replacing KX by the curvature of the fibration. Thus we can roughly
interpret B + as the Bismut superconnection by extending our fibration by a fibration

with compact structure group.

By =B+

(2.20)

Now we state the families version of the Kirillov formula and delayed a heat kernel
proof of it to Section 5.

Theorem 2.1. For any K € 3(g) and | K| small,
e ifn is even, fort > 0, the differential form
U Tr, [gexp (—B%, — Lxc)] € 02 (B,C)
is closed, the cohomology class defined by it is independent of t and
lim 5 Tr [g exp (~Bi, — Lxc)] = /K%K(TX, VTX) chy x (£/S, V). (2.21)
Xo

e ifn is odd, fort > 0, the differential form
¢p T [gexp (B, — Lx)] € 0°(B,C)

1s closed, the cohomology class defined by it is independent of t and

}irr(l)wg Tyodd [gexp (—Bfﬁ - EK)] = /KQVK(TX, vTX) Chq)K(S/S,Vg). (2.22)
s ) E
X9

If B is a point and g = e, this heat kernel proof of the Kirillov formula is given by
Bismut in [7] (see also [3, Theorem 8.2]). If B is a point, (2.21) is established in [19]. For
g =e, (2.21) is obtained in [55].
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2.2. Equivariant infinitesimal n-forms: Theorem 0.1

For t > 0, set
0
Bri=Bg:+dt N —. (2.23)
k) k) at
Then by (2.20),

2

OBk ¢ c(KX) 0 c(KX)
2 =B>? : :(B ) —(JB% ) 2.24
B 4 p HdtA 5t + + Wi —|—dt/\at ¢+ v (2.24)

Theorem 2.2. There exist § >0, 0,8’ > 0, C > 0, such that if K € 3(g), z € C, |zK| < 3,
a) for any t > 1,

’{ﬁ[gexp(—BgK,t—zﬁK)]}dt < tl%; (2.25)
b) for any 0 <t <1,

Tr|gexp (= B2, — 2Lx " <L (2.26)

{Te[gexp (- B, — 21|}

We delay the proof of Theorem 2.2 to Section 5.
o If n = dim X is even, then for ¢ > 0, as Bx; commutes with g, Lk, by [3, Lemma
9.15],

d® Tr, g exp(f]Bf{,t —Lg)| =Tr, [[IB’)K,t,gexp(fB%(’t - EK)H =0. (2.27)
As in (1.39) (cf. [3, Proposition 8.11 and Theorem 9.19]), we have
tii?oo ¥p Trs [g exp (- Bk, — LK)} = chy.x (Ker(D), vKer(D)y, (2.28)

As in (1.40),

0 OB
e Tr, [g exp(—B%w —Lk)] = —dP Tr, {g B?t exp(f]B%Qt — EK)}

— d® {Tr, [gexp(—B%, — Lx)]}". (2.29)

Thus from (2.29), for 0 < e < T < 400,

v, [gexp(-Bir — £x)] — T [gexp(~B. — Lx)]
T

P / [Tr, [gexp(—B%, — L)} dt. (2:30)

€
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In this case, for |[K| < 3, by Theorem 2.2, the equivariant infinitesimal 7-form is defined
by

+o00o
. 1 dt
Ng, K = — / mwﬁ’ {Tl"s [geXP(_B%(,t_EK)]} dt
0
Dl OB
_ K.t _wm2 odd
_/—Qiﬁwgm {g K oxp (B LK)} dt € 0°(B,C). (2.31)
0

By (2.21), (2.30) and (2.31), we have

dPi, = / Ay (TX,VTX) chy x(E/S,VE) = chyx (Ker(D), VET ) (2.32)

X9
e If n is odd, then for ¢ > 0, as Bx + commutes with g, Lx, again by the argument in
[3, Lemma 9.15],
dP T [gexp(—B% , — Li)] = Tr*"" [[BK,tvgeXp(_B%(,t - ['K)H =0. (2.33)

As the same argument in (1.45),

lim Tr°% [g exp (— Bk, — EK)} = 0. (2.34)

t——+oo

Comparing with (1.40) and (2.29), we have

P 7 oB
O [gexp(-By, — £x)] = a7 T g o BR )]

=dP {TrOdd [gexp(—Bk, — Lk)] }dt . (2.35)

From Theorem 2.2, in this case, for |K| < (3, the equivariant infinitesimal n-form is
defined by

—+oo

_ 1 o dt
Ng,K = — / ﬁd’B {Tf dd [QGXP(_B%(,t - EK)]} dt
0

+oo

1 n oB even

- / ﬁ%wve {g a?t exp(—B%ﬂ—EK)} dt € Q" (B,C). (2.36)
0

As in (1.49), by (2.22), (2.34), (2.35) and (2.36), we get
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iy = / Ry (TX, V) chy 1 (£/S, V). (2.37)

X9

Definition 2.3. For K € 3(g), | K| < 3, determined in Theorem 2.2, under Assumption 1.2,
the equivariant infinitesimal Bismut-Cheeger n-form is defined by

+oo
o == [ {vmesTe[gexn (B, — £ ]} at. 23%)
0

By (0.5) and (1.36), (2.38) is a reformulation of (2.31) and (2.36). From (2.32) and
(2.37), we establish the first part of Theorem 0.1.

Remark that the compactness of B guarantees the existence of the constant 8 > 0 in
Definition 2.3.

From (2.31) and (2.36), it is obvious that if K =0, 1, x = 7y in (1.50).

From the Duhamel’s formula (cf. e.g., [3, Theorem 2.48)), we have

0By, + 2LK)

5% exp (— BfKt —2Lk)| =0.

o ~ —
&Tr {g exp ( — B§K7t — zﬁK)} =—Tr {g

(2.39)

Thus, /T‘;[g exp ( - BgK,t — ZEK)] is € on t > 0 and holomorphic on z € C.
We fix K € 3(g). Thus for 0 < e < T < 400, the function

T

/ {waBﬁ[geXp (-B2k . — 2LK) } }dt dt

€

is holomorphic on z. By Theorem 2.2 and the dominated convergence theorem, we have

+oo
Ng2K = — / {waBﬁ [g exp (—BEK,t _ ZEK) ] }dt » (2.40)
0

is holomorphic on z € C, |zK| < . Thus we get the last part of Theorem 0.1.
The proof of Theorem 0.1 is completed.

3. Comparison of two equivariant 7-forms

In this section, we state our main result. We use the same notations and assumptions
in Sections 1 and 2.

Let 9 € T*X be the 1-form which is dual to KX by the metric g7, i.e., for any
UeTX,
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Vg (U) = (KX, U). (3.1)

We identify ¥k to a vertical 1-form on W, i.e., to a 1-form which vanishes on THW.
Then by (2.18) and (3.1), we have

dg9g = ddx — 2im |[K~X|2. (3.2)

Let dX be the exterior differential operator along the fiber X. By (2.5) and (3.1) (cf. [3,
Lemma 7.15 (1)]), for U, U’ € TX, we have

dX0g (U, U") = 2VEXKX U') = 2(m™™ (KU, U). (3.3)
From (1.11) and (1.12), set
T =27 ( f7ei)fp/\ei/\+%T( P AFIN. (3.4)
From [3, Proposition 10.1] or [20, (3.61) and (3.94)],
g = dX0x + (T, KX) = d¥0x + 9k (T). (3.5)
For K € 3(g), | K| small, v > 0, set

ax = Ay x(TX,VT¥) chy x(£/S,VE) € 02 (W9, det Nxa/x),
'évzf/ Vi exp(dKﬁK>ozK€Q'(B,(C). (3.6)

Suim 8uim

X9
Note that if WK = W9, as 9 = 0 on W9 K we get ¢, = 0.
Lemma 3.1. If W95 ¢ W9, Then €, = O(v™!) as v — 400 and &, = O(v*/?) as v — 0.

Proof. By (3.2) and (3.6), we have

|dim W9 /2] : :
g = — Z l(i)ﬁrl/ﬁ_f((%)jexp (_|KX|2).QK (3.7)
Y = g \2im v \ 4o 4v ' '
— 2o

Thus when v — +o0, &, = O(v™1).

For v — 0, we follow the argument in the proof of [9, Theorem 1.3]. For x € W9, if
KX # 0, when v — 0, the integral term in (3.7) at x is of exponential decay. So the
integral in (3.7) could be localized on a neighborhood of W9 .

Let Nxg.x /x9 be the normal bundle of WK in W9, and we identify it as the orthog-
onal complement of TX 9K = TX9|y 0. NTXE |96 in TX|yyq.x. Recall that as KX
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is a Killing vector field, for any b € B, Xg’K is totally geodesic in X}/, and as the same
argument in Section 2.1, VIX* mTX(K) preserve the splitting

TXY9=TX9" ® Nysx/xs on Wk (3.8)
and m?X(K) = 0 on TX9%¥. In particular,

mNxo K x9 (K) = mTY(K) € End(Nyo.x/x0¢) is skew-adjoint and invertible.

(3.9)

|NX9,K/xg

Combining with (2.6), it implies that Nxg.xx0 is orientable, and we fix an orientation.
Then the orientations on T'X, Nxg,x/xs induce the identifications over WK

det(Nxo/x) =~ det(TXY) ~ det(TX ). (3.10)

Given € > 0, let U be the e-neighborhood of W% in Nxo.xxq. There exists g9 such
that for 0 < & < &g, the fiberwise exponential map (y, Z) € Ny, xo.5 /x5 — expy (Z) € X}
is a diffeomorphism from ¢’ into the tubular neighborhood V' of W9-X in W9. We denote
V” the fiber of the fibration V' — B. With this identification, let k(y, Z) be the function
such that

dvxs(y, Z) = k(y, Z)dvxe.x (y)duy Z). (3.11)

x9=K/xg(
Here dvxs € A™(T*X9)@det(T*X9), dvxex € A(T*X9K)@det(T* X9 K) are the
Riemannian volume forms of X9, X9 and don, K xo 18 the Euclidean volume form

on NXg,K/Xg.
Let €', -+, e’ be alocally orthonormal frame of T*X9. For 8 € Q* (W9, det(Nxq,x)),

let [8]™8* be the coefficient of e! A --- Aef @ el A--- Ael of B, here el A --- A e means
the local frame of det(Nys,x) induced by e' A --- A e’ via (3.10). Consider the dilation
0y, v > 0, of Nyo.x/x9 by 04(y,Z) = (y,/vZ). We have

J () e (-5F)
4ov 4u eXp 4v OK

v
V&

_ ?9K|(y,2>(d19K|<y,Z)>j (IKX(y7Z)I2> -
= / / { ™ T oxp |\ ———— ) ax(y, 2)

X9 K ZENyg,K /xq:lZ|<e

: l;(y, Z)deva (y)dUNXg,K/Xg (Z)

_ / / {5;;19K|<y,z> <d5$19K(y,Z))jeXp (_ KX (y, \/BZ)P)

4v 4v 4v
X9.K ZEN g,k ;xg:1Z|<e/VV
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max

SOnakl(y 2 k(y, VUZ)dvuxex WAUN ko (Z). (3.12)

Let V¥x95/x9 be the connection on Ny x /xs induced by VI¥ as explained af-
ter (1.31). Let 7n : Nxox/xo — W9 be the obvious projection. With respect to
VVxox, X¢, we have the canonical splitting of bundles over Nxq.x x,

TNy /xs =T"Nxox ) xe ® T Nxarxa- (3.13)
By (1.4) and (3.13), we have
T Nxox jxa = anTWOH o~ ni(THW & TX9K). (3.14)
On Nygx/x9, by (3.13) and (3.14), we have
A(T*NX%K/XQ) = A(TH*NXQ«K/XQ)@WEKVA(N)*aﬂ/x.q)
~ i (MT W S)BA(NYpx x0)) - (3.15)
For y € W9X fixed, we take Y1, Y/ € T,Wo5 YV Y'V € Nyox, xo,, then Y =Y+
YV, Y =Y/+Y""V are sections of TNyy.x ) xs along Ny.x x4, under our identification
(3.13), ie.,
Yz =Y, 2)+ YV, Y =Yy 2)+Y'V. (3.16)

Here Y, Y/ H € THNXg,K/Xg are the lifts of ¥7,Y7.
Let 6y be the one form on total space N of Nxo.x/xs = Nwo.x ywe given by

00(Y)(y.2) = (m" X (K)Z, YY), for Y =Y{T+ YV € T" Ny /xs @ (TyNxox/x0)-

(3.17)
By [3, Lemma 7.15 (2)], we have
%5;;19;( — 6o+ O(W'7?), (3.18)
From (3.18), we get
%5:@9;( - %ddzﬁ;{ — iy + O(v/?). (3.19)

As in the argument before [3, p. 218, Lemma 7.16], by (3.8), we calculate that for
(y,Z) € NXQ’K/ng

do(Y,Y")(y.2) = 2(m™ (K)YV, YY), — (RTX(V{", Y] ") ("™ (K)Z), Z),.  (3.20)
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By (2.5) and (2.12), for y € WK,
1
~|EX (y,VoZ)]? = [mTX (K) 2] + O(v'/?). (3.21)
v

From (3.12), (3.18), (3.19) and (3.21), for any o € Q* (W9, det(Nxs,x)), as v — 0,
2 (22 ()
4qu v P 4v

vy
= / vy / ?(dzo)jexp(W)JrO(vlﬂ). (3.22)

X9 K ZENyg,K /x9g

From (3.20), df is an even polynomial in Z. However from (3.17), 6y is linear in Z. Thus
the last integral in (3.22) is zero. Therefore, as v — 0, we have

%(%)j (_‘KXP) — O@\/?
/4v 1 ) &P 1 ag = 0w 7?). (3.23)

X9
The proof of Lemma 3.1 is completed. 0O
Remark that when B is a point, for ¢ = e, Lemma 3.1 is proved in [37, Proposition

2.9.
From Lemma 3.1 and (3.6), the following integral is well-defined,

+oo
_d
M,k = /el,%’. (3.24)
0

Proposition 3.2. For any Ky € 3(g), there exists 8 > 0 such that for K = 2Ky, —f8 <
z < 3, we have

dPM, e = / Ay 1 (TX,VTX) ch, 1 (£/S, V)
X9

/ Agerc (TX,VTX) chyox (€/S,VE).  (3.25)
XgeK

And there exist c;(K) € Q*(B,C) for 1 < j < |[(dim W9 + 1)/2] such that Mgk is
smooth on |t| <1, t# 0 and as t — 0, we have

[(dim W9+41) /2] _
Mgk = > ¢;(K)t7 + O(t°). (3.26)

Jj=1
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Moreover, t{ MW HD/2IM 41 is real analytic in t for [t| < 1.

Proof. By (2.18), d% = —2inLy, and Yk is K-invariant. We know

o (o0 (5 ) = e (o (7))
a0 \P\ 2uirx N UQdK 2ir “P\ 2virr ) ) (3:27)

We define the corresponding equivariant curvature Rixg’x/ * as in (2.9) via (3.8).
By the proof of (3.23) and [9, Theorem 1.3], we know that there exists C' > 0, such that
for any v € (0,1], a € Q*(W9,det(Nxq,x)) = Q*(W9,0(TX9)),

X9 X9, K

dK19K> Z’—(@—é/)/2a
/eXp(Qviw @ / 1/2 Nyg.K /xg ) SC\/EHOZH%I(Wg)a
det!/2 (R ) (2im))
(3.28)

2uim 20w
X g

Y dg¥
/ K exp( K,K> a| < OVollallgr wa).
Let Qx be the current on W9 such that if a € Q*(W9,det(Nxq,x)), then

“+oo
) dgd d
/QKaz— // K exp( K,K)a—v. (3.29)
2uim 2uim v
X4 0 X9

From (3.7), the second equation of (3.28), we know (3.29) is well-defined. From
(3.27)-(3.29), the following equality of currents on W9 holds (cf. [12, Theorem 1.8]):

—(=0)/25

det!/? (RZXQ’K/XQ /(2im)) ’

dxQr =1— (3.30)

where &y, is the current of integration on W9 K. From (3.6), (3.24) and (3.29), we get

My = /QKOéK
X9

:f/‘/ ﬁK eXp(dK§K>Kg,K(TX’VTX)Ch%K(E/S?V‘S)%. (331)

2uim 20w

For x € W9 K € j3(g9), we have KX(z) € T,X9. From [3, (1.7)], for o €
O (W9, 0(TX9)), using the sign convention in (0.15), we have
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dB/U: /da: /dKO'. (3.32)
X9 X9 X9

From (2.12), proceeding as the same calculation in the proof of [3, Theorem 8.2], we
get, as elements in Q°(W9 X det(Nx,,x)),

Rk (TX,V7X) chy x (£/8, V)
i(=/2det! /2 (R ) (2i) )

Agerc (TX,VTX) chyox (€/S, V). (3.33)

As ag is di-closed, by (2.13) and (3.29)-(3.33), we get (3.25).
For t # 0, by (3.31) and changing the variables v  vt2, we have

+oo imW9—
v / / D5 [(d Wi: 1)/2] (dﬁK)k . ( |KX |2> dv (3.34)
= — 1 X - « i .
9.tk 2vimt (2uimt)k k! P v Y
0 X9

k=0

From the arguments in the proof of (3.23), we get (3.26). From (2.15), (2.16) and (3.6),
we see that a;k is real analytic on t for |¢| < 1. Following the proof of (3.23),

400
g (dig\" | KX |2 dv
—(—) exp(- QK —
v v v v
0 X9

is uniformly absolutely integrable on v for [¢| < 1. Thus ¢tL(dmW?+D/2Ipq e is rveal

analytic on ¢ for |t| < 1.
The proof of Proposition 3.2 is completed. 0O

From Proposition 3.2, we could state our main result, Theorem 0.2 as follows.

Theorem 3.3. For any g € G, Ko € 3(g), there exists § > 0 such that for K = zK,,
—B<z< B, K#0, we have

Mg,k = TNgex + My x € Q*(B,C)/dQ*(B,C). (3.35)
Observe that by (2.40), fyx is analytic on t for ¢ small. By (3.35), when ¢t — 0,
modulo exact forms, the singularity of 7jg.:x is the same as that of —M, ;x in (3.26).

Note that Theorem 3.3 is compatible with (1.44), (1.49), (2.32), (2.37) and (3.25).

Remark 3.4. For K € 3(g), M = [(dim W9 —1)/2], on W9\ {K* = 0}, we have

M +oo

1/ 1\ 19K<d19K>j <|KX|2>dv
QK—‘Z@(%) [ (S e (-50) S

J= 0
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i+1 . +oo
( )j Uk (dVk)’ / j v
= — I — vie dv
Z 2in)  [KX]2|KX[%
0

f: 19K dﬁK) 19K ( d'l9K

-1
_2m|KX|2) - (336)

From (3.18)-(3.21), we know that there exists C' > 0 such that

(2im)i+1 KX 2742~ 2in| KX |2

Jj=

KX (y, 2)|" > C|2)%, (3.37)
and for Yy € T,W9K,
iyt = OZ), iyuddy = O(|Z]). (3.38)
From (3.36)-(3.38) and the rank £ — ¢’ of Nxg.x /x4 is even, we know that near WK
Qx(y.2) = 0(1Z]'"). (3.39)

Thus as a current over W9, Q is in fact locally integrable over W9 and given by (3.36).
For g = e, and B = pt, this is exactly [37, Proposition 2.2].

Assume now KX has no zeros, for t # 0 small enough, by (3.6), (3.24), (3.35) and
(3.36), we have

_ _ 3% (1 di g ) -1
= + —_ — (0%
9.t = Tlgett< 2imt| KX |2 2imt| K X2 K
X9

€ Q*(B,C)/dQ*(B,C). (3.40)

In particular, for g = e and B = pt, (3.40) as Taylor expansion at t = 0 is [36, Theorem
0.5].

4. A proof of Theorem 3.3

In this section, we state some intermediate results and prove Theorem 3.3. The proofs
of the intermediate results are delayed to Section 6.

4.1. Some intermediate results

For ¢t >0, v > 0, set

Cv)t:Bﬁ\fc( )( 1 B B

——— ) +dtN = +doN 4.1
7 (Gu) e gy raon g (4.1)
Then C, is a superconnection associated with the fibration (R%)? x W — (R*)? x B.

From the argument in the proof of [3, Theorem 9.17], we have
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dRzXB,ﬁ[g exp(—Cp, — Lx)] =0. (4.2)
For a € A(T*(R? x B)),
a=ayt+dvAhag+dthNag+dvAdtANas, o € A(T*B),i=0,1,2,3, (4.3)
as in (0.6), set

[ :=ay, [a]¥ :=as, [T = as. (4.4)

Definition 4.1. We define 3, x to be the part of —Yr2x 5 Tr[g exp(—C3, — Li)] of degree
one with respect to the coordinates (v,t). We denote by

—~ duAdt
Qg = — {szxBTr[g exp(—Cg,t - ,CK)]} (4.5)
From comparing the coefficient of dv A dt part of (4.2), we have
(d /\£+dt/\2>ﬂ = —dvAdtNdP (4.6)
VA S oz ) Parc = —dv Qg K- .

Takea,A,0 <a <1< A< 4o00. LetI' =Ty 4 be the oriented contour in Ry , xR ;:

tlk

A ,,,,,,,,,,,,,,,,,,,

I's

A

The contour I' is made of three oriented pieces I'y,I'5,I'3 indicated in the above

picture. For 1 < k < 3, set I? = ka B¢,k - Also I' bounds an oriented triangular domain
A

By Stocks’ formula and (4.6),

3
0 0
2118:/597K:/<dUA%+th§) /3g,K:*dB /agyKdvAdt . (4.7)

k=1 an A A

The proof of the following theorem is left to Section 5.11.
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Theorem 4.2. For K € 3(g), |K| small enough, there exist § > 0, C > 0 such that for
anyt>1,v >t, we have

C
1By (0, )| < 5. (4.8)
For a € (B, C), we define
2 (2in 3 e’ if j is even;
6(c) = {Ymap(dona)y = * ° &T) b (4.9)
2im)” 7T -« if 7 is odd.

Comparing with (1.27), we set

—~ Tr if n is even;
Tr = S ! 4.10
8 {Treven if n is odd. ( )
For 0 <t < v, set
2
te(KX) (1 1
Bieso = <Bt N % (; _ ;>> Y Lk (4.11)

Then by Definition 4.1, (4.1) and (4.11), we have

[Bg.5c (v, )]

dt
(e ()

o (3 (1 ]

dv
[657K(U,t)]dv =- {w]RUxBTVlr {g exp <—BK,t,v — dULKX))}}

—~ {g Vie(KX)

= oTr g exp (—BK,M,)} .

(4.12)

Thus as B+t = B + L, by (4.12), on I'y, we have

~ [ OB
Bg. i (v, 1) = dt A ngTrl {ga—tt exp (—Bf - EK)}

:—dt/\{z/)RxBﬁ{gexp(—(Bt—l—dt/\%)z—ﬁK)}} . (4.13)
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In the remainder of this section, we use Theorem 4.2 and the following estimates to
prove Theorem 3.3. The proofs of these estimates are delayed to Section 6. Recall that
€, is defined in (3.6).

Theorem 4.3. For Ky € 3(g), there exists B > 0 such that for K = 2Ky, =8 < z < (3,
K #0,
a) when t — 0,
~ te(KX
6T {g% exp (BK,t,v)} — —€y; (4.14)

b) there exist C > 0, § € (0,1], such that fort € (0,1], v € [t, 1],

__ KX )
oY {QM exp (~Bro)| +2 <0 (L) s (4.15)
4v v

¢) there exists C > 0 such that for t € (0,1], v > 1,

— te(KX C

Tr {gfi—v) exp (=B i) || < o (4.16)
d) forv>1,

.~ [ o(KX) } _

}L%Tr {g v exp (—Bx tt0)| = 0. (4.17)

4.2. A proof of Theorem 3.3

We now finish the proof of Theorem 3.3 by using Theorems 4.2 and 4.3. By (4.7), we
know that I?+1I9+19 is an exact form on B. We take the limits A — +o00 and then a — 0
in the indicated order. We claim that the limit of the part IJQ (A,a) as A — +oo exists,
denoted by I]l(a), and the limit of Ijl(a) as a — 0 exists, denoted by 132 for j =1,2,3.

i) By (4.11) and (4.12), [By,x (v,t)]% is uniformly bounded for v > 1, ¢t € I, a compact
interval I C (0,400), and

lim By (v,)]% = [By,x (+00,1)] % (4.18)

v—+00
From Theorem 4.2, (2.24), (4.12) and the dominated convergence theorem, we see that

A +oo
__ dt
Ill(a) = AEI-EOO B,k (A, t)]dtdt =— / {wagTr [g exp (—B%()t — EK) } } dt.

(4.19)
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Thus by Theorem 2.2 and Definition 2.3, we have

+oo

I =— / {waB/T\; [gexp (_B%(,t — LK) ] }dt dt =g K. (4.20)
0

ii) From Definition 1.4, (2.3) and (4.13), we have

—+oo

- 9\2 dt
@:1/{MMBTTF@®<—(&+%HA59 —£K>H dt = —fgerc. (4.21)

0
iii) For the term I9(A,a), set

1

~d
le_/ev_v7
v

Jo = 7?$ﬁ/pxg%§jiemﬂ—Bxﬂwﬂf%, (4.22)
1
e (6 ) ] 150)

1

Clearly, by Theorem 4.3 ¢) and (4.12), we have

La)=J, + Jy + Js. (4.23)
By (4.14), (4.16) and (4.22), from the dominated convergence theorem, we find that as
a— 0,

b%E:f/%j. (4.24)
1

By (4.15), there exist C > 0, § € (0,1] such that for a € (0,1], 1 <v < 1/a,

c(KX)
4\/av

Using Lemma 3.1, (4.17), (4.22), (4.25), and the dominated convergence theorem, as
a— 0,

~ ~ C
¢Tr, |:g €xp (_BK,a,av)} +ean| < ’()_5 (425)

Js — J; =0. (4.26)
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By (3.24), (4.22)-(4.24) and (4.26), we have

_d
2=- / e,,%’ =M, k. (4.27)

By [30, §22, Theorem 17|, dQ*(B, C) is closed under the uniformly convergence. Thus,
by (4.7),

3
Y I? =0 mod d2°(B,C). (4.28)
j=1

By (4.20), (4.21), (4.27) and (4.28), the proof of Theorem 3.3 is completed.
5. Construction of the equivariant infinitesimal n-forms

In this section, we prove Theorems 2.2 and 4.2 following the lines of [19, §7] and give
a heat kernel proof of the family Kirillov formula, Theorem 2.1. For the convenience to
compare the arguments in this section with those in [19], especially how the extra terms
for the family version appear, the structure of this section is formulated almost the same
as in [19, §7].

This section is organized as follows. In Section 5.1, we prove Theorem 2.2 a). In
Sections 5.2-5.10, we give proofs of Theorems 2.1 and 2.2 b). In Section 5.11, we prove
Theorem 4.2.

5.1. The behavior of the trace ast — 400

Set
c(KX) 0
Cki=B;+ +t-dt N —. 5.1
T e ot (5-1)
For z € C, we denote by
AzK,t = C?K,t +2Lk. (5.2)

Then Theorem 2.2 a) is implied by the following estimate.

Theorem 5.1. For 8 > 0 fixed, there exist C > 0, § > 0 such that if K € g, z € C,
2K < B, t>1,

‘{ﬁ[g exp(— Ao )]} | < t% (5.3)
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Proof. This subsection is devoted to the proof of Theorem 5.1. 0O

In this subsection, we fix 5 > 0. The constants in this subsection may depend on /.

For b € B, recall that E; is the vector space of the smooth sections of £ on Xj. For
w € R, let Ef' be the Sobolev spaces of the order y of sections of £ on Xj;,. We equip E
by the Hermitian product ( , )o in (1.17). Let || - |lo be the corresponding norm of EY.
For p1 € Z, let || - ||, be the Sobolev norm of Ef' induced by VT¥X and V¥¢.

Recall that we assume that the kernels Ker(D) form a vector bundle over B. We
denote by P the orthogonal projection from E° to Ker(D) and let P+ =1 — P.

Recall that PTX : TW = THW @ TX — TX is the projection defined by (1.4). For
s,8 €E, t>1, we set

f20 : = 12, o
2, ¢ = IPsI3 + LIP3 + LTS P52
Set
!
shy 1 = sup Lol (5.5)

0#s'€El |5’|t,1 '

Then (5.4) and (5.5) define Sobolev norms on E! and E~!. Since V%, P is an operator
along the fiber X with smooth kernel, we know that |- |1 (resp. |- |¢,—1) is equivalent to
I 112 (resp. [ - [|-1) on E* (resp. E-1).

Let Ag){’t be the piece of A,k which has degree 0 in A(T*(R x B)).

Lemma 5.2. There exist ci,ca,c3,c4 > 0, such that for any t > 1, K € g, z € C,
|2K| <3, s, €E,
0
Re (AR 5.5), > elsl?y — ealso,
0
[t (AL 5,5) | < ealslalsleon (5.6)

(A is.57), | < calslials'lea
Proof. From (1.23), (5.1) and (5.2), we have

0 Z |KX|2
Ail)(,t = tDz + - I:D,C(KX)} — 221—6t

So we have
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(Aths s)o = <(tD2 + Im(z)i (% [D,c(KY)] —|—£K) - Re(z%%) s,s>0,

(0) <(—Re(z)i <i [D,ce(K¥)] + .CK) —Im(z?) |Ii;(t|2) 3’3>0.

Im(Aths $)o

(5.8)
From (5.4), there exist ¢}, ch, ¢4, ¢y > 0 such that for any ¢t > 1, |zK| < 3, € > 0,
2 oy [ KX ? r o2 1 lol2
tD” — Re(z7) s,8) Zclslin = calslion
16t o : !
Im(z
(P (D)) s5) | < chlsualoho < chelsy + (9)
0

/
Cqy 12

—|s
4e’

[{[2]L s, 5)o| < chlslealsleo < chelsl?, +
By taking e = min{c}/(4¢c%), ¢} /(4c))}, from (5.8), we get the first estimate of (5.6).

6) follow directly from (5.4) and (5.8).

The other estimates in (
The proof of Lemma 5.2 is completed. 0O

By using Lemma 5.2 and exactly the same argument in [21, Theorem 11.27], we get

Lemma 5.3. There exist ¢,C > 0, such that ift >1, K € g, z € C, |zK| < 3,

2
relU,:= {/\ € C:Re(N) < IH;(CZ\) - 02} , (5.10)

the resolvent (\ — Ai(}){)t)_l exists, and moreover for any s € E,

(A= ALY ) sl < Clslio

o (5.11)
(A = Al )" slea < O+ A sle,—1-

The following lemma is the analogue of [11, Theorem 9.15].
Lemma 5.4. There exist C > 0,k € N, such that fort > 1, K € g, z € C, |zK| < 3,
A € U., with ¢ in Lemma 5.3, the resolvent (\— A, ;)" exists, extends to a continuous

linear operator from A(T*(R x B)) @ E~1 into A(T*(R x B)) ® E', and moreover for
sek,

IO\ — A.x.r) Vsl < C(L+INDFs]s 1. (5.12)

Proof. From (1.1), (1.23), (5.1) and (5.2),
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Ay = A, = VE(ID, 954 4+ 2dt A D) + (V5+) = 1[D,e(7")

z

5 \/( [VE, 2e(KX) = ()] = di A (2e(KX) = o(T1)))

n 1L6t (245,71 + o(T)?). (5.13)

By [8, Theorem 2.5], [D, VE*] and (VE’“)2 are first order differential operators along
the fiber. From P[D, VE“]|P =0, we get

(V[D, VE]s, 5" 0)- (5.14)

By (5.13) and (5.14), there exists C’ > 0 such that for any ¢t > 1, we have
[(Azk e — AzK )8le,—1 < C'|sle 1. (5.15)
Take A € U,. Then since A,k — .A(Z(})(’t has positive degree in A(T*(R x B)), we have

14dim B

A=A = Y A= AR ) (ks — AR DO = AG)) L (G16)

m=0
Therefore, by (5.11), (5.15) and (5.16), we obtain (5.12).

The proof of Lemma 5.4 is completed. O

Proposition 5.5. There exists C > 0, such that fort > 1, K € g,z € C, |zK| < ,s€E,

H (exp(—.A,zK,t) - eXp(—BgK,t - z,CK)> H (5.17)

\f” sllo-

Proof. From (5.4) and (5.5), we know for s € E,

Pts, s 1 1
Ptsl, 4 = sup Ki’ = —||Pts|_; < —||Ptso. (5.18)
[P ss, I A P i 1P~ s]| i 12|l
Note that from (2.20), (5.1) and (5.2), we have

Ak = B§K7t + 2L +dt A (%\/iD — (zc(KX) — c(TH))) . (5.19)

1
8V
Thus ]B%g et 2Lk has the same spectrum as A, g and by omitting dt part, we know
Lemma 5.4 holds for B? , + 2Lx. Thus from (5.12) and (5.18), for A € U,, we have
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—1
H()\ Aict) VID(A = (B2, + 2Lx)) s
0
c k 2 -
< 70+ (A= B2, +2L1)) s O
C —1
< —(1 4 \DE(A— (B2 L
< 20+ (A= (B, + 2Lx)

C 2k 2k
\/(1+I/\|) ||t71<\/—(1+‘)‘|> Isllo- (5.20)

Note that

1
exp(—.AzK’t) = ﬁ / 6_)\()\ — .AZK’t)_ld)\,

(5.21)
U,

and (5.21) also holds for B , 4+ 2Lk . From (5.19),

A= Aorc) ™ = (A= (Big, + 2LK)) 7

= = Ausca) ™ (e (GVID = S (elKX) = eT7)) ) ) - (= (B o+ 2)

(5.22)
Now from (5.20)-(5.22), we get (5.17). The proof of Proposition 5.5 is completed. O

Since B is compact, there exists a family of smooth sections of T X, Uy,

,U,, such
that for any z € W, Uy (), -+ , Uy (z) spans T, X.
Let D be a family of operators on E,
D= {P'V§ P}, (5.23)

From (5.7) and (5.13), by the same argument as the proof of [21, Proposition 11.29]
(see also e.g., [11, Theorem 9.17], [39, Lemma 5.17]), we get the following lemma

Lemma 5.6. For any k € N fized, there exists Cy, > 0 such that fort > 1, K €g, z€ C
|ZK| S/B) Q17"' 7Qk €D and 3,3, E]E, we have

@1, [Q2, - [Qrs Ak i), -+ - 1]s, 8"o| < Chlslea]s |1 (5.24)

For k € N, let D* be the family of operators @ which can be written in the form

Q=Q1Qr QieD.

(5.25)
If k € N, we define the Hilbert norm | - ||}, by
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k
IsliZ =" > Qs (5.26)

{=0 QeD*

Since PVISJT x. and V%TX.P are operators along the fiber with smooth kernels, the
Sobolev norm || - ||}, is equivalent to the Sobolev norm || - ||5. Thus, we also denote the
Sobolev space with respect to | - ||}, by EF.

By using Lemma 5.6, as the proof of [21, Theorem 11.30], we get

Lemma 5.7. For any m € N, there exist p,, € N and C,, > 0 such that fort > 1, A € U,
seE,

IO = Aekt) " slngr < (14 [ADP™ 517, (5.27)

Let exp(—A.r1)(x, '), exp(~=B2x , — 2L ) (x, ') be the smooth kernels of the oper-
ators exp(—Azx.¢), exp(—BZ , — 2Lx) associated with dvx (z'). By using Lemma 5.7,
following the same progress as in the proof of [21, Theorem 11.31], we get

Proposition 5.8. For m € N, there exists C > 0, such that forbe B, x,2’ € X, t > 1,
Keg, zeC, |zK| <8,

plal+la]
sup |=————exp(—A.x4)(z,2")| < C. (5.28)

/ ’
jal o] <m | 920"

By omitting dt part, we know Proposition 5.8 holds for exp(f]BgKJ — 2Lk )(z, x').
From Propositions 5.5, 5.8 and (5.19), by the arguments in [21, §11 p)], there exist
C >0,6>0,such that fort > 1, K € g, |2K| < f,

s1Q

|exp (— Ak 1) (z,2") — exp(—IB%gK’,5 — 2Lk)(z, ac’)| < (5.29)

From (5.19),

. dt

dt A Tr [gexp (—Aug)]} = Tr [g(exp(—Ath) — exp(— B, — ZLK))} . (5.30)
From (5.28) and (5.30), we get Theorem 5.1.
5.2. A proof of Theorems 2.1 and 2.2°b)

Section 5.3 is devoted to the proof of the following theorem.

Theorem 5.9. There exist § > 0, C > 0, 0 < § < 1 such that if K € 3(g), z € C,
zK| < 5,0<t<1,
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UrxsTE [gexp (—Asic)] - / Ry-kc (TX, VTX) chy . (£/S. V)| < 1. (5.31)
X9

Since [y, Kg7zK(TX, VIX) chy .k (E/S, VE) does not have the dt term, we get The-
orem 2.2 b) from Theorem 5.9, which we reformulate as follows.

Theorem 5.10. There exist 5 >0, C >0, 6 > 0, such that if K € 3(g), z € C, |zK| < 3,
0<t<1,

{Tilsown (- )]} <0 (532)

Proof of Theorem 2.1. If we omit the dt term in (5.31) and take z = 1, it follows that

¢BT;PGXP((Bt+Cﬁ§;))2LK)}

- / Ay ik (TX,VTX) chy 1 (£/8,VE)| < Ct. (5.33)

X9

From (5.33), we get (2.21) and (2.22).
From (2.27), (2.29), (2.33) and (2.35), we get other parts of Theorem 2.1.
The proof of Theorem 2.1 is completed. O

For simplicity, we will assume in the remainder of this section that n = dim X is even.
The functional analysis part is exactly the same for even and odd dimensional. We only
explain in Remark 5.22 how to use the argument in the proof of [17, Theorem 2.10] to
compute the local index in odd dimensional case.

5.3. Finite propagation speed and localization

The proof of the following lemma is the same as Lemma 5.2.

Lemma 5.11. Given 8 > 0, there exist C1,Ca, C5(8),C3(8),C%(B),Cq,C5(B) > 0 such
that if K €g, z€ C, |zK| <, 5,8 €k, 0<t <1,

Re(tA) 5,80 > Crt?||s|3 — (Cat® + C5(8)) 15112,
tm(tA) s, 8)0] < C3(B)t]s|1lIsllo + C5(8)s]12, (5.34)
1A 5, 8"l < Ca(tllslly + Cs(B)lIsllo) ('l + C5(B)s"llo)-

Moreover, as 8 — 0, C4(5), C5(8), C5(B), Cs(8) — 0.



B. Liu, X. Ma / Advances in Mathematics 404 (2022) 108163 41

In the sequel, we take S > 0 and always assume that K € g, |zK| < .
For ¢ > 0, put

%:{AG(C:Re()\)ZIH;(—)Q\)Z_g}’
. (5.35)
r, = {)\ €C :Re(\) = hzg) - 02} .

Note that U, V., I'. are the images of {\ € C : [Im()\)| > ¢}, {A € C : [Im()\)| < ¢},
{A € C : |Im()\)| = ¢} by the map A — A\2.
The following lemma is an analogue of [19, Theorem 7.12].

Lemma 5.12. There exists C > 0 such that given c € (0,1], for 8 > 0 and t € (0, 1] small
enough, if A € Ue, |2K| < 3, the resolvent (A —tAg%t)_l exists, extends to a continuous
operator from B~ into E, and moreover, for s € E,

2

1O = AR ) sllo < sl
(5.36)
C
0 _
IO = 2AG ) sl < g (T D sl

Proof. From the same arguments in [19, (7.47)-(7.49)], by Lemma 5.11, if A € R, A <
—(Cat? 4+ C5(B)), the resolvent (X — tAg)w)*l exists.
Now we take A = a + b, a,b € R. By (5.34),

(AT, = Vs, )| = sup { 12512 = (Cat? + C(8) + a) 3,
— Ca(B)tlsllsllo + (bl - C3(B) 53} (5.37)
Set
C(\1) = inf sup {C’l(tu)Q — (Cot? + C(B) + a), —Cs(B)tu — CL(B) + |b\}. (5.38)
Since ||s|lo < ||s||1, using (5.37), (5.38), we get
(AT, = Vs, )] = CON1)ls]2. (5.39)

Now we fix ¢ € (0,1]. Suppose that A € Uy, i.e.,

b2

0< 15— . (5.40)

Assume that v € R is such that
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|b] — C3(B)tu — C4(B) < 2. (5.41)
Then by (5.40) and (5.41),

2
Ci (tu)? — (Cot? + CL(B) + a) > Oy (tu)? — b +* — Cot? — Ch(PB)

4c?
GO o - AU, 2+ Yo

4c2

> (- — Cot? — Cy().

(5.42)

The discriminant A of the polynomial in the variable tu in the right-hand side of (5.42)
is given by

A = =3c”Cy + 201 (C5(8) + 2Cat” + 2C5(B)) + Cs(8)*
1
+ C—Q(Clcé(ﬂ)z — CaC3(B)*1* — C3(B)C3(B)%).  (5.43)
Clearly, for 3, t small enough,

3 (8)

Ml

> 0. (5.44)

= (W
(o)

A< —2C201, Ci—
From (5.42)-(5.44), we get

A 2
> % (5.45)

C1(t*u)? — (Cot* + CH(B) +a) > TA(CL = C2(B)/(4c?))

Ultimately, by (5.38)-(5.45), we find that for § > 0, t € (0, 1] small enough, if A € U,,

C2

CAt) > 5 (5.46)

From (5.37), (5.38) and (5.46), we get the first equation of (5.36). Then combining
with (5.34) and the argument in [19, (7.64)-(7.68)], we get the other part of Lemma 5.12.
The proof of Lemma 5.12 is completed. O

As in (5.15), from (5.13), there exists C' > 0, such that for any 0 <t < 1, s € E!,
l(tAsc = LA sl -1 < Cllslla. (5.47)

From Lemma 5.12, following the same process as the proof of (5.12), we get the
following lemma.
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Lemma 5.13. There exist k,m € N, C > 0, such that given ¢ € (0,1], for 8 > 0 and
t € (0,1] small enough, if A € U,, |2K| < B, the resolvent (A —t A,k )~ ! emists, extends
to a continuous operator from A(T*(R x B))®E~! into A(T*(Rx B))®E!, and moreover,
for s € E,

_ C m
(A = tA.k0) sy < @(1 + [AD™ [Isll-1- (5.48)

Definition 5.14. If H, H' are separable Hilbert spaces, if 1 < p < +o0, set
Z(H,H')={Aec L(HH): Tr[(A*A)P/?] < +00}. (5.49)
If Ae £,(H,H), set

1
" (5.50)

Al = (Te{(A”4)7%])
Then by [52, Chapter IX Proposition 6], || - [|(p) is a norm on Z,(H, H'). Similarly, if
A€ Z(H,H'), let ||A]l ., be the usual operator norm of A.

In the sequel, the norms || - || (), || - |(oc) Will always be calculated with respect to the
Sobolev spaces E°.

From Lemma 5.13, we get the following lemma with the same proof as in [19, Theorem
7.13].

Lemma 5.15. Given ¢ > 2dim X + 1, there exist C > 0, k,m € N, such that given
c € (0,1], for B> 0 and t € (0,1] small enough, if X € U, |2K| < 3,

C

1O = tAesc) o) < g (1 )™
5.51)
. cu . (
0= teic) i < s ()™

Let ax be the inf of the injectivity radius of the fibers X. Let @ € (0,ax/8]. The
precise value of a will be fixed later. The constants C' > 0, C' > 0,... may depend on
the choice of a.

Let f: R — [0, 1] be a smooth even function such that

1 for |u| < «a/2;
u) = (5.52)
0 for |u| > a.

Set

glu) =1— f(u). (5.53)
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For t > 0, a € C, put

+o0 9 d
Fi(a) = / exp(v/2iua) exp (—%) f(\/Zu)\/—zu_ﬂ,
- (5.54)
Gi(a) = / exp(V/2iua) ex (—U—Q) (\/Zu)d—u
Then Fi(a), G¢(a) are even holomorphic functions of a such that
exp(—a?) = Fi(a) + G¢(a). (5.55)

Moreover when restricted on R, F; and G; both lie in the Schwartz space S(R). Put
Ii(a) = Gi(a/V1). (5.56)

Clearly, there exist uniquely defined holomorphic functions E(a), 5t(a), I,(a) such that

Fy(a) = Fy(a®), Gi(a) = Gi(a®), ILi(a) = I(a®). (5.57)

By (5.55) and (5.56), we have

exp(—a) = Fy(a) + Gy(a), IL(a) = Gy(a/t). (5.58)

From (5.58),

exp(—Azi 1) = Fi(Asxs) + L (EAL k). (5.59)

From Lemma 5.15, the proof of the following lemma is the same as that of [19, Theorem
7.15].

Lemma 5.16. There exist § > 0, C > 0, C’ > 0 such that if t € (0,1], K € g, |2K| < 8,
1T (tAzr,0) | (1) < Cexp(—C' /t). (5.60)

By (5.59) and (5.60), we find that to establish (5.31), we may as well replace
eXP(—AzK,t) by Ft(AzK,t)~

Let Fi(A.x)(z,2'), (z,2" € Xp,b € B) be the smooth kernel associated with the

operator Fi (A, ) with respect to dvx (z’). Clearly the kernel of gE(Adw) is given by
gFt(AzK,t)(g_lw,x’). Then,

TFS[QE(AzK,t)] = /Trs[gft(.AzK,t)(g_lx,x)]dvx(x). (5.61)
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For e > 0,z € X3, b € B, let BX(x,¢) be the open ball in X} with center  and
radius e. Using finite propagation speed for solutions of hyperbolic equations (cf. [48,
Appendix D.2]), we find that given z € Xj, E(.Azz{’t)(x, -) vanishes on the complement
of BX(z,a) in X3, and depends only on the restriction of the operator A,k ¢ to the ball
BX(z,a). Therefore, we have shown that the proof of (5.31) can be made local on Xj.
Therefore, we may and we will assume that 7'X} is spin and

E=SxRFE (5.62)

over X3, where Sx is the spinor of T X and FE is a complex vector bundle, and the metric
and the connection on & are induced from those on T'X and FE.

By the above, it follows that gE(AzK)t)(g_lx,x), r € X, vanishes if d** (g7 1z, z) >
a. Here d** is the distance in (X3, g7*%).

Now we explain our choice of . Recall that Ny, x is identified with the orthogonal
bundle to TX9 in TX|xs. Given € > 0, let Uz be the e-neighborhood of X} in Nxo/x.
There exists €9 € (0,ax/32] such that if e € (0, 16¢], the fiberwise exponential map
(z,2) € Nxo/x — expy (Z) is a diffeomorphism of U on the tubular neighborhood V.
of X9 in X. In the sequel, we identify Y. and V.. This identification is g-equivariant.
We will assume that o € (0,¢0] is small enough so that for any b € B, if z € X,
dXv(g7tz, ) < a, then x € V..

By (5.60), (5.61) and the above considerations, it follows that for 5 > 0 small enough,
the problem is localized on the eg-neighborhood V., of X9.

As in (3.11), let k(x, Z) be the smooth function on U, such that

dvx (z,2) = k(z, Z)dvxs (x)dvny, , (2). (5.63)

In particular, k|xs = 1.
For w € A(T*R)®RA(T*WY), via (1.4) and (1.5), we will write

w= Y wi g, NETAAET, forw, .., € MT*R)@TA(T"B).
1<iy <+ <ip <L

We denote by
W = ) € A(T*R)®7*A(T*B). (5.64)

Note that if the fiber is odd dimensional, our sign convention here is compatible with
that in (0.15).

Theorem 5.17. There exist 8 > 0, 6 € (0,1] such that if K € 3(g), z € C, |2K| < 83,
te (0,1, z € X9,
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43 dim Ncax / Uren Trs[gFy (Asie.e) (9~ N, VEZ), (2, VEZ))]

ZENxg x| Z|<e0/VE

k(@ VD) dony, (Z) = {Rg ok (TX, V) chy i (B, VE)} 7 | < O, (5.65)

Proof. Sections 5.4-5.10 are devoted to the proof of this theorem. O

Proof of Theorem 5.9. By (5.61) and the finite propagation speed argument above, we
have

/ Try[gFy (Asr) (97 ", @) dv () = / Try[gFy (Asr) (97 ', @) dv (2)

X Ue,
- / t% i Mo/ TrS[gE(AZK,t)(gil(xa\/gZ)’(xa \/ZZ))]
(LZ)EUEO/\/;
k(a, VIZ)dvxo (x)dun gy, (Z).  (5.66)

By Lemma 5.16, Theorem 5.17 and (5.66), there exist 8 > 0, § € (0, 1] such that for
K €3(9), 2K < 8, t € (0,1],

Vrx B Trs [gexp (— Ak 1)) — / Ay (TX,VTX) chy .k (£/S,VE)| < Ct0. (5.67)
X9

So we obtain Theorem 5.9. O
5.4. A Lichnerowicz formula

Let ey, , e, be a locally defined smooth orthonormal frame of TX. Let (F, V) be
a vector bundle with connection on X. We use the notation

n

(VE)? = Z(Vﬁf ~ Vi VIXe, (5.68)
i=1

Let H be the scalar curvature of X. The following result is a combination of [7,
Theorem 1.6, [19, Proposition 7.18] (for the term involved K* and base B = pt), [8,
Theorem 3.5] (for Bismut’s Lichnerowicz formula for Bismut superconnection) and [18,
Theorem 2.10] (for the term involved dt).

Proposition 5.18. The following identity holds,
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Acker = =t (VE + 32(S(edes. fiT)cler) 17

(S I T AT A

2(KX e;) c(ei))
4t 4/t

+ %H + %Rg/s(ei, ej)ce)c(e;) + \/%Rg/s(ei, ff)c(ei)fp/\
+ %RS/S(ff, FEVP A FIA —2mE/S (K. (5.69)

Proof. From Bismut’s Lichnerowicz formula (cf. [8, Theorem 3.5]),

Listerstt ity gin)

B2 =~ (V5 + 5 (S(e)es, £T)elen) 7 A+,

2
 LH 4 DRES (e eg)elen)eleg) + VRS (er, filelen) 7 A+ g BES (L VP A FOA
(5.70)

From (1.19), (2.5) and (2.7),

1 1 1 1
11D e(K)] = Jeler)e (VENKY) = S{K™,¢,)VE, =m®(K) = ;Viex. (5.71)

Since the G-action preserves the splitting (1.4), ([K*X, f],e;) = 0. Thus from (1.9),
(1.19) and (1.22),

VB (KX = 7 Ae (VIFEY) = ~(VE KX ej)e(e) /7
= (View “egs falheles) fPA = (S(E X )ej, fil)eley) 7 1. (5.72)

From (1.10)-(1.12), we get

S(ej)er = S(er)ej,  (S(e) i £ = (@ (1 1), e5)- (5.73)

l\.')l»—l

Thus from (1.22),

[e(TT), e(KX)] = (S(ej) fls fi) P A FON [eles), (K™
= —2S(KX) [ fI A fIn. (5.74)

Thus from (5.1), (5.2) and (5.70)-(5.74), we get (5.69) without dt term. By comparing
directly the coefficient of dt on both sides of (5.69) as in [18, Theorem 2.10], we get
(5.69).

The proof of Proposition 5.18 is completed. O
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5.5. A local coordinate system near X9

Take € WY. Then the fiberwise exponential map Z € T, X — exps(Z) € X
identifies BT=*X (0, 16eq) with B~ (z, 16e¢). With this identification, there exists a smooth
function k..(Z), Z € BT+%X(0,ax /2) such that

dvx (Z) = K, (Z)dvpx(Z), with K.(0) = 1. (5.75)

We may and we will assume that g is small enough so that if Z € T, X, |Z] < 4ey,

1

3
59 <0z <5 (5.76)

Assume from now, K € 3(g). Recall that ¥ is the one form dual to KX defined in
(3.1).

Definition 5.19. Let V4" be the connection on A(T*R)&7*A(T*B)QE along the fibers,

N = U 4 S Ces S P A SO A
20k () c(-)
- —dt/\4\/g. (5.77)

In the sequel, we will trivialize A(T*R)&n*A(T*B)®E by parallel transport along
u € [0,1] — uZ with respect to the connection *V¢:*. Observe that the above connection
is g-invariant.

From (1.10) and (1.13), we have S(e;)e; = S(ej)e;. Let L be a trivial line bundle over
W. We equip a connection on L by

vi=ad-="%~. (5.78)

Thus

RE = (VE)? = (5.79)

From (1.30), (3.3), (3.5), (5.73), (5.78) and (5.79), we could calculate that

(1v571)2 (ei,€5) = i(RTX(ek, er)ei, ej)c(er)cler) + %(RTX(e;€7 ff)ei, ejrc(er) fPA
+ LRI e e 17 A £ A S RP (e e) 2T (Ker,es). (5.80)

q;



B. Liu, X. Ma / Advances in Mathematics 404 (2022) 108163 49

Note that when K = 0, (5.80) is [8, Theorem 4.14], [3, Theorem 10.11] or [11, Theorem
11.8]. Note that from (5.77), (1v5¢)2 could be obtained from (1V5’1)2 by replacing fPA,
f* b K
fq/\ and K by W/\, W/\ and T
Let A, A’ be smooth sections of TX. By (5.77),

Wae(A) = «(VEX A + (S(A) A, e A +%<A, A'Vdt. (5.81)

Let ¢! (TX) ~ TX be the set of elements of length 1 in ¢(TX). It follows from (5.81) that
parallel transport along the fiber X with respect to 'V¢:! maps ¢'(T'X) into ¢! (TX) @
T*B @ T*R, while leaving A(T*B)@A(T*R) invariant.

5.6. Replacing X by T, X

Let v(u) be a smooth even function from R into [0, 1] such that

W) 1 if jul <1/2; (5.82)
~y(u) = .
0 if Ju| > 1.
If ZeT, X, put
|Z|)
7)) = (— . 5.83
o2) = (12 (5.59)
Then
1 if |Z] < 2¢0;
p(Z) = , (5.84)
0 if |Z] > 4eo.

For x € W9, let H, be the vector space of smooth sections of A(T*R)&7* (A(T* B))®E,
over T, X. Let ATX be the (negative) standard Laplacian on the fiber of TX.
Let Lglci x be the differential operator acting on H_,

Ly g = (1= 2 (2))(—tATY) + p*(Z) Acke - (5.85)

Let E(L;:ZK)(Z, Z") be the smooth kernel of E(LiiK) with respect to dvrx(Z').

Using the finite propagation speed for solutions of hyperbolic equations [48, Appendix
D.2] and (5.75), we find that if Z € Nx4/x 4, |Z] < €0, then

E(AZK,t)(g_lz’ Z)klz(Z) - E(Lglc,fzK)(g_lzv Z) (586)

Thus in our proof of Theorem 5.17, we can then replace A, ; by Litz e
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5.7. The Getzler rescaling

Let Op, be the set of scalar differential operators on 7, X acting on H,. Then by
(5.62),
LY € (MT*R)&7* (A(T*B))&c(TX) ® End(E)), ® Op,. (5.87)

32

For t > 0, let H; : H, — H, be the linear map
H:WZ) = h(Z/V?). (5.88)
Let Lii x be the differential operator acting on H, defined by
L2 = H 'Ly Hy. (5.89)
By (5.87),

L2 € (MT*R)&7 (A(T*B))®c(TX) ® End(E)), ® Op,. (5.90)
Recall that dim X9 = £ and dim Nxo,x =n —£. Let (e1,--- ,e¢) be an orthonormal
oriented basis of T, X9, let (es41,--- ,e,) be an orthonormal oriented basis of Nxo,x, so
that (e, - ,ey,) is an orthonormal oriented basis of T, X. We denote with an superscript
the corresponding dual basis.
For 1 < j < ¢, the operators e/ A and ic; act as odd operators on A(T™*X7).

Definition 5.20. For ¢ > 0, put

1 .
ci(ey) = —=e! A —VVti.,, 1<j<L (5.91)

Vit

Let in x be the differential operator acting on H, obtained from Lii x Dby replacing

c(e;) by c(e;) for 1 < j < ¢.

For A € (MT*R)&r*(A(T* B))@c¢(TX) ® End(E)), ® Op,, we denote by [A]*) the
differential operator obtained from A by using the Getzler rescaling of the Clifford vari-
ables which is given in Definition 5.20.

Let 7e;(Z) be the parallel transport of e; along the curve ¢t € [0,1] — tZ with respect
to the connection V7. Let O;(]Z|?) be any object in A(T*R)@7*(A(T*B))&c(TX)
which is of length at most 1 and is also O(]Z|?). By (5.81), in the trivialization associated
with 1V&1,

i<S<Z>ej,f£’>ﬂ”A !

c(rej(Z)) = c(ej) + N i

(Z,ej)dt A +O1(t7Y%Z]%). (5.92)

From (5.92), for 1 < j <,
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[Vie(re,(viz))]\” = & A +O(Vil2)); (5.93)

for {4+1<j<n,
[ (Te](\/Z))] = cle;) + (S(Z)ej, FEVFP A+ <Z e;)dt A+O(VEZ|?). (5.94)

From [3, Proposition 1.18], (5.69), (5.80), (5.85), (5.89) and (5.91), we calculate that

L3 = (1= P (VI2)(-A"Y) + p(ViZ) - {~g" (ViZ) (V. V., — T (VIZ)VIV.,)

+£H\/EZ + %R\L;EZ(T@@, 7)) |e(rei(ViZ))e(re;(VEZ))] is)

VRS, (reg, 30 [elres (VEZD)\” 7 A g RE (P8 TV 17 A 12 A=, ()
(5.95)

where (¢"/(Z)) is the inverse matrix of (¢;;(Z) = (ei, e5)z), (VIXe;), = I‘fj(Z)ek and

Ve = Veavin §(<R5X(ek’ a)Z,ei) + O(\/E\ZF)) [C(Tei(\/EZ))C(Tej(\/EZ))} ig)
+ (B e, 1812, + OWRIZD) [etres (V)] 71

+ %((fo( L INZ e +O(x/%|Z|2))prf‘ZA+ (RE(Z,e:) + O(VH|Z]?))

- IR Ze) +
Here Vy is the ordinary differentiation operator on T'X in the direction U, h;(zK, Z) is
a function depending linearly on zK and h;(2K, Z) = O(|Z|?) for |zK| < j3.
Let Ft(Li ' x)(Z,Z") be the smooth kernel associated with Ft(Li ) With respect to
dvrx (Z').
From the finite propagation speed argument explained before (5.62), we could also

hi(2K,VtZ). (5.96)

assume that TX9 and Nx,,x are spin. Let Sxs and Sy be the spinors of TX9 and
Nxq/x respectively. Then Sx = Sxs@Sn. Recall that g acts on (Sy ® F),.
We may write Ft(Li ' )(Z,Z") in the form

3, i .
F(Lx’;K Z, 7" ZF” Je(Z,7)en Ao Newig, i,

t,iq-- zp

1<ip < <ip <L, 1< g1 <o < gg <, (5.97)

and F1'7 (2,2") € AT*R)&m*A(T*B) ® (c(Nxayx) ® End(E)),. As explained in

tyige-ip

Section 1.3, ¢ = dim X9 has the same parity as n = dim X. As in (5.64), put
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[F(L2E (2, 2™ = Fyi(Z,2). (5.98)
In other words, F},l...g(Z, Z') is the coefficient of e! A --- Aef in (5.97).
Proposition 5.21. If Z € T, X, |Z| < eo/V/1,
H0 O T (R (Asrca) (07 (VEZ), VEZ)IK, (VEZ)

= (i) 2P TP R (LY ) (971 2. D)™ (5.99)

Proof. As K € 3(g), V&' is g-equivariant. Thus the trivialization A(T*R)®7*A(T*B)
®E is g-equivariant and the action of g on (A(T*R)@ﬂ'*A(T*B)@é’)g,lz

of g on (A(T*R)@W*A(T*B)@f;)x, which is an element in (¢(Nxs,x)® End(E))_. Now
we get Proposition 5.21 by the same proof of [19, Proposition 7.25]. O

is the action

Remark 5.22. As in [17, (1.6) and (1.7)], if n = dim X is even,

TeS* [e(es,) - - clei,)] =0, forp<n,1<ip <--- <ip <n, (5.100)
Te* [e(er) -+ clen)] = (—20)"/%
if n = dim X is odd,
TeSx[1] = 207D/2 ) TeSX[e(ey) -+ e(en)] = (—i)HD/2200=D/2 0 (5101)
and the trace of the other monomials is zero.

If n = dim X is odd, since (5.101) holds and the total degree of E(.AzK,t) is even, we
only take the trace for the odd degree Clifford part. In this case, (5.65) is replaced by

t(n=0/2 / YRxB TTOdd[gE(AzK,t)(g_l(xv \/iZ), (z, \/IFZ))]

ZeN,|Z|<%

k(@ VEZ)dony, , (Z) = {Rg ok (TX, V) chy i (B, VE)} T | <O (5.102)
In particular, since n — £ is even,

T [e(e) - c(en)]

max

= (—i)FD/29U=1)/248/2 {TrfN [ci(er) - coer)c(epyr) - c(en)]} . (5.103)

the analogue of (5.99) is
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=02 TN G F (AL ki) (g7 (VEZ), VEZ) K, (VEZ)
= (i) DRIV B (L L) (97 2, Z) . (5.104)
Let 3: W9 — W be the obvious embedding.
Definition 5.23. Let Li’,g x be the operator in
(7" (A(T*B))@A(T* X?)@c(Nxs/x) © End(E)), ® Op,, (5.105)

under the notation (5.68), given by

1 * 2 *
Li 0 =— (Vei +3 ((*RIX —m™ (2K),)Z, ei>> + 7' RE —mP(zK),.  (5.106)

In the sequel, we will write that a sequence of differential operators on T, X converges if
its coeflicients converge together with their derivatives uniformly on the compact subsets
inT,X.

Comparing with [19, Proposition 7.27], from (5.93)-(5.96), we have
Proposition 5.24. Ast — 0,

3t 3,0
Ly = Ly k- (5.107)

5.8. A family of norms

For z € W9, let I, be the vector space of smooth sections of (A(T*R)®7*A(T*B)®
A(T*Xg)@?SN ® E), on T, X, let I, 4y » be the vector space of smooth sections of

((T*R@ﬂ*A’”‘l(T*B) © 7 A (T*B)) @AY (T X9)BSy ® E)

on T,X. We denote by I = D, I ().
integrable sections. Put k = dim B.

the corresponding vector space of square-

Definition 5.25. If s € I, ;) has compact support, put

2(k+L+1—q—1)
o= [ 2 (1+|Z|p<”>) dorx(Z). (5.108)

T, X

Recall that by (5.84), if p(v/tZ) > 0, then |VtZ| < 4eo. If Vt|Z| < 4eg, then
p(VtZ/2) = 1. By the same arguments as in [21, Proposition 11.24], for ¢ € (0,1],
the following family of operators acting on (I, ] |; . 0) are uniformly bounded:
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1|\/ZZ|§450\/7?015(6J')7 1\\/ZZ|§450‘Z|\/ZCt(6j), for 1 <j </,

(5.109)
1|\/EZ|§450|Z|fp/\7 1|\/EZ\§4EO|Z|dt/\'
Definition 5.26. If s € I, has compact support, put
51721 = Il a0 + D [Verslao, (5.110)
i=1
and
/
S, 1 = sup LE:umol (5.111)

0#s’€l, ‘5/|t,ac,1

Let (IL,|-|+.2,1) be the Hilbert closure of the above vector space with respect to |-|¢ 4.1
Let (I;1,]|¢z—1) be the antidual of (IL,| - |;z1). Then (IL,]|;21) and (I, ] - |¢.z.0)
are densely embedded in (I2,| - |.0) and (I;',] - |t.z,—1) with norms smaller than 1
respectively.

Comparing with [19, Proposition 7.31], by (5.95) and (5.109), we get the following
estimates.

Lemma 5.27. There exist constants C; > 0, i = 1,2,3,4, such that if t € (0,1], z € C,
|zK| <1, ifneN, xe X9, if the support of s,s" € I, is included in {Z € T, X : |Z| <
n}, then

Re(Ly" 18, 8)t0,0 > Clls[f o1 — Co(1+ [nzK )57 1 o,

(3 15, 8) 1m0l < Cs((1+ 12K sl lslewo + 02K PlsE L), (5.112)

(LY s 8 )0l < Call + [nzK?)|s]0]8 |10.1-

Proof. We only need to observe that the terms containing |nzK|? come from terms

1 1 ?
(p(\/ZZ) (77<mTX(zK)Z, e;) + —=hi(zK, \/fZ))) s, , (5.113)
4 \/E t,x,0
which can be dominated by C(1 + [nzK|?)|s|7, .
The proof of Lemma 5.27 is completed. O
5.9. The kernel F}(LitK) as an infinite sum
Let h be a smooth even function from R into [0, 1] such that
1
1 if Ju| < =
h(u) = 2 (5.114)

0 if Jul >1.
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For n € N, put

hn () :h(qug) +h<u7 g) (5.115)

Then h,, is a smooth even function whose support is included in [—2 -1,-5+ 1] U

2
[2-1,2+1].
Set

H(u) = ha(u). (5.116)

neN

The above sum is locally finite, and H(u) is a bounded smooth even function which takes
positive values and has a positive lower bound on R.
Put

kn(u) = —(u). (5.117)
Then the k,, are bounded even smooth functions with bounded derivatives, and moreover
> k=1 (5.118)

neN

Note that here we use n as an index for the natural numbers, not the dim X in the
previous sections.

Definition 5.28. For ¢ € [0,1], n € N, a € C, put

e 2
Fin(a) = / exp(V/2iua) exp <—%) f(ﬁu)kn(u)% (5.119)

By (5.54), (5.118) and (5.119),

Fi(a) =Y Fin(a). (5.120)

neN

Also, given m,m’ € N, there exist C' > 0, ¢/ > 0, C" > 0 such that for any ¢t € [0, 1],
neN,c>0,

sup a|™

a€C,|Im(a)|<c

Ft(fﬁ/)(a)‘ < Cexp(—=C'n® +C"c?). (5.121)

Let F‘tm(a) be the unique holomorphic function such that

Fyn(a) = Fy(a?). (5.122)
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Recall that V. was defined in (5.35). By (5.121), given m,m’ € N, there exist C' > 0,
C’' >0, C"” > 0 such that for any t € [0,1],n € N, ¢ >0, A € V,

IA[™ ‘F“’L )' < Cexp(—C'n? + C"c?). (5.123)
By (5.120),
=Y Finla). (5.124)
neN

Using (5.124), we get

ngK Z Fyn( ngK (5.125)
neN

More precisely, by (5.123) and using standard elliptic estimates, given ¢ € (0, 1], we have
the identity

(LS 0(Z,2) = Y FalL2L (2, 7)) (5.126)
neN

and the series in the right-hand side of (5.126) converges uniformly together with its
derivatives on the compact sets in T, X x T, X.

Definition 5.29. For v in (5.82), put

Z| 1Z|
3 (1 2 (|_>> ATX | 2 <7> L (5127
z,zK,n Y 2(Tl+2) _1_7 2(n+2) z,zK ( )

Observe that if k,(u) # 0, then |u| < § + 1. Using finite propagation speed and
(5.76)7 we find that if Z € T,X, the support of Ftn(LiiK)(Z, -) is included in {Z’ €
112" — Z] < n+ 2}. Therefore, given p € N, if Z € T, X, |Z| < p, the support of
E,n(Li L x)(Z,+) is included in {Z' € T,X : |Z'| <n+p+2}.
If | Z]| <n+p+2, then v(|Z|/2(n+p+2)) = 1. Using finite propagation speed again,
we see that by (5.127), for Z € T, X, |Z] < p,

Frn( L3 (2, 2') = Fon( Ly ) (2, Z)- (5.128)
From Lemma 5.27, we have

Re(L>"

z,zK,n

$,8)w0 = Cilsl 1 — Co(1+ [nzK?)[sl} .o,

(L3 s, 80l < 03((1 ¥ InzK|)s 252, ) (5.129)

|<L3t

z,zKn

$,8")ta0l < Ca(1 + [nzK|?)|s
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Put

Z| X |Z| 3,0
L3’0 = — <1 —~2 <—| >> A + 2 (7) Lo . 5.130

By Proposition 5.24, as t — 0,

LSt _)LSO

z,zK.n z,zK.n*

(5.131)

By (5.129), the functional analysis arguments in [19, §7.10-7.12] work perfectly here.
We have the following uniform estimates, which is formally the same as [19, Theorem
7.38]. In particular, since the estimates in (5.112) and (5.129) are the analogue of [19,
(7.131) and (7.148)], the proof of the following theorem is exactly the same as that of
[19, Theorem 7.38].

Theorem 5.30. There exist C' > 0, C"" > 0, C"" > 0 such that for n > 0 small enough,
there is ¢, € (0,1] such that for any m € N, there are C > 0, r € N such that for
€ (0,1, |2K|<e¢y,neN,ze X9, Z,Z' € T, X,

plaltla’l _
|aHSB'F|)<m 97007 Tt (L k)2, 2")

< C(UL+ 12| +12) exp (= C'n2/a+ 20" swp(|Z 1%, |2 [2) = C"'|Z — 7).
(5.132)

5.10. A proof of Theorem 5.17

Remark that as explained in the introduction of [19], Lii  does not have a fixed lower
bound. So it is not possible to define a priori a honest heat kernel for exp(fLi’tz x)- So
we cannot prove Theorem 5.17 following the arguments in [21, §11].

3,0
Since Lx Kot

well-defined. Also, by proceedlng as in (5 128), if |Z],|Z'| < p, using finite propagation
speed, we find that the kernel Fo,n(Lw’zK n+p)(Z, Z'") does not depend on p. Finally

this kernel verifies estimates similar to (5.132) for n > 0 small enough and [2K| < ¢,.
Therefore we may define the kernel exp(—Li:OZ )(Z,2") by

coincides with —ATX near infinity, the operator Fyn(Lo%y ., ,) is

exp(—L20)(2,2") = > Fou(LY W2,2"), for|Z|,|Z'|<p.  (5.133)

z,zK,n+p
neN

Note that the estimate in (5.132) also works for ¢ = 0. Thus the series in (5.133) converges
uniformly on compact subsets of T,, X x T, X together with its derivatives.

From (5.95), (5.106), (5.127) and (5.130), there exists C' > 0 such that for t € (0, 1],
z€C, |zK|<1,neN, ze X9, if s € I, has compact support, then
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(Lo e — Lok )5 < CVH(L +n)|3[00,1- (5.134)

t,x,—1

From Theorem 5.30, (5.133) and (5.134), the proof of the following theorem is exactly
the same as that of [19, Theorem 7.43].

Theorem 5.31. There exist C"” > 0, C"" > 0 such that for n > 0 small enough, there
exist ¢, € (0,1], r € N, C > 0, such that fort € (0,1], z € C, [2K| < ¢, x € X9,
7,7 € T, X,

(L3 ) — exp(=L32)) (2,2)| < Ctmamxm (14| 2] +|2'])"

~exp (20" sup(|Z|*, |Z'|?) — C""|Z — Z'/2). (5.135)

Now there is C' > 0 such that if Z € Nx,,x, then
g~ Z - 7z| > C|Z). (5.136)
By (5.135) and (5.136), we find that there exists C"”" > 0 such that if Z € Nx,,x,
(E(Liil() - exp(—Li”gK))(g_lZ, Z)
< CtTEmxTD (1 4 |Z))" - exp (2C" 02| Z)> — C™|Z)%) . (5.137)
For n > 0 small enough,
20" * =" < —C" 2. (5.138)
So by (5.137), if Z € Nxo/x,
(FUL3L) = exp(=L320)) (9712, 2)| < Ctsamsm exp (=C™|Z2/4) . (5.139)
For K € 3(g), put
HTX = #RTX — mTX(2K). (5.140)
Clearly HTX splits under TX = TX9 @ Nxo/x as
HTX = gTX° 4 g, (5.141)

Using the Mehler’s formula (cf. e.g., [43, (1.34)]), by (5.106), for |zK| small enough,
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HTX /2 )

73,0 —1 _ —dim X/2 1 <7
exp(~Ly ) (97" 2, 2) = (4m) 4 \ Sh(HTX 2)

N
- exp (—% <%(cosh(HN/2) - exp(HN/Q)g_l)Z, Z>)
cexp(—7*RF + mP(2K)). (5.142)

Observe that for z € C, |zK| small enough, the right-hand side of (5.142) is well-
defined. Using (5.142), comparing with [43, (1.37)], if [2K| is small enough,

. TX9
[ expl- L2002, 2o (2) = (am) et (M)

Nxg/x

-1
: (det1/2(1 — g7 n)det/2(1 — gexp(—HN))) cexp(—7*RE + mE(2K)). (5.143)
Also compare with [43, (1.38)],

TedV 9P g exp(—y"RP + mP (2K))]
= (=i)[dmX=0/24et1/2(1 — g7 N) TeP[gexp(—s* RF + mP (zK))].  (5.144)
Using (2.15), (2.16), (5.143) and (5.144), we get

YR B / (=) 22" { TSP [gexp(~ L3, ) (97 2, 2)]} T dvw(2)

Nxg/x

= (R (TX, V™) chy i (B, VE)} . (5.145)
From (5.99), (5.139) and (5.145), we obtain Theorem 5.17 for dim X even.
If dim X is odd, following the explanation in Remark 5.22, the proof is the same.
The proof of Theorem 5.17 is completed.
5.11. A proof of Theorem 4.2
Since v >t > 0, we have

0<tt—vt<t (5.146)

Set

Vie(KX) (1 1) o\’
/ _ A S - - .
Ko = (Bt + sy Ttdtag )+ L (5.147)
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Let A/[g)t)’v be the piece of A%, , which has degree 0 in A(7*(R x B)). Then from (5.146),
.A;é?t)m satisfies the same estimate in Lemma 5.2 and the estimate (5.15) of A — .Agg,)t

also holds for A’Kmv — A’IS’QU uniformly on v > ¢ > 1. Since v > t, as t — +00, we have

c o(TH
HEG-Y - o

t v 4/t

Then the analogue of Propositions 5.5 and 5.8 holds for A’K ¢ uniformly for v > ¢ > 1.
Thus replacing A,k by .AK t,» in the proof of Theorem 5.1, we obtain Theorem 4.2.

6. A proof of Theorem 4.3

In this section, we prove Theorem 4.3. This section is organized as follows. In Sec-
tion 6.1, we establish a Lichnerowicz formula for B s, in (4.11). In Section 6.2, we prove
Theorem 4.3 a). In Sections 6.3-6.8, we prove Theorem 4.3 b). In Section 6.9, we prove
Theorem 4.3 c). In Section 6.10, we prove Theorem 4.3 d). In this section, we use the
assumptions and the notations in Section 4.

6.1. A Lichnerowicz formula

Let L be a trivial line bundle over W. We equip a connection on L by

)
L—g- 2K 1
Vs 10 (6.1)
Thus
d19
L L K
2
Ry = (V, ) o (6.2)

Let VE®L be the connection on £ ® L induced by V¢ and VL. The corresponding Dirac
operator is

=> c(e))ViEE =D - SO (6.3)
pat i 4v
Since
Ve = Vg, (6.4)

from (6.3), the new Bismut superconnection associated with £ ® L is

te(KX
Btv:]gt_w.
4v
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Theorem 6.1. The following identity holds,

BK,t,v = <v5 + W< (ei)ejaf;[>c(€j)fp/\
X 2
st iS50 2)

£ L1 L (RO (es ) — g (VIXEX ) ) eler)eley)

1

+Vt <R5/S(ei, fHy - o

(e, £, K%) ) elei) 721

1 1

(RS (72 = AT S X)) 2 A7 /S () 4 | P

1
*3
(6.6)

Proof. From (4.11), (5.1), (5.2), (5.69) and (6.5), we have

KX)\? 1
Biiw = (B: + M) Ny J— (vif} + —=(S(e)es, F)e(e) fPA

4Vt 2/t
1 KX e\’
+E<S(ei) TRV A fIN —%) + EH + %R5®L/S(ei,ej)c(ei)c(ej)

+ VEREPLS (ey, £l )eleq) 7 A %Rm“( sSSP AU —mEEE S (KX (6.7)

Since G acts trivially on L, the corresponding m%(K) in the sense of (2.4) is given by

LiprX X L |KX[?
mP () = —KX + Ve = = (6.8)
Then (6.6) follows from (3.3)-(3.5), (6.2), (6.7) and (6.8).
The proof of Theorem 6.1 is completed. O
6.2. A proof of Theorem 4.3 a)
Comparing with (5.77), we set
2T = V4 LSO, ele) 1P A+ SO S A pr A (14 1),
' Wt 7 ’ 4t poia 4t v
(6.9)

We trivialize 7* A(T* B)®E by parallel transport along u € [0,1] — uZ with respect to
the connection 2V¢-t. Observe that the above connection is g-equivariant as K € 3(g).
Let A, A’ be smooth sections of TX. As in (5.81), from (6.9),
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2VE (A = o(VEXA) + (S(A)A' FHV P A (6.10)

For x € WY, in this section, we denote by H, the vector space of smooth sections of
7 (A(T* B))®E,. Let L;:(I{M) be the differential operator acting on H,

Ly = (1 pX(2))(—tATY) + p*(Z)Brc g0 (6.11)

3
We define L (t v Ht_lLi:%U)Ht and Li’,(Kt’v) = [Li%v)]i ) as in Section 5.7. By
Proposition {).24 for (£ ® L, VE®L), we have

1 2
—{(*REX —m™(K),)Z, ei>> + J*RECL _ mPOL(K),, (6.12)

L&w”):——( .
20 Ve 47

and as t — 0,

L2 5 L3 (6.13)
By (6.10), as in (5.92) and (5.94),
(3)
[Vie(K¥)(V12)] " = 7ok + OWVEZ + V). (6.14)
By (2.9), (2.17), (3.2), (6.2) and (6.8), we get
* pL * pL . L 1 %74 . X2 d{]/{[/y/ng
SRy =7"Ry —2irm*~(K) = ——(d" 9x — 2in|K*|*) = ————.  (6.15)
' 4v 4v
Then by (2.18),
dy’ v
Ly _ K VK
chy (L, Vy) = exp ( S ) . (6.16)

From (2.15), (2.16), (3.1), (3.2) and (3.6), set

UK (dKﬁK
X

Suin Soin ) Ay ik (TX,VTX) ch, x(£/S,VE/S) € QWY, det(Nx, /x))-

(6.17)

YTKov = —

By (4.9), (6.12) and (6.17), if dim X is even, as in (5.145), we get

*19 . v max
o [ iz {msverer T (L) 2,2) |} dew(2)
Nxg/x

= —{ykw}a™. (6.18)
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By (3.6), (6.13)-(6.18), from the same argument of Section 5.7 and (5.139) for
(€ @ L,VE®L), we obtain Theorem 4.3 a) for dim X even.

If n is odd, following the explanation in Remark 5.22; the proof is the same.

The proof of Theorem 4.3 a) is completed.

6.3. Localization of the problem

The proof of Theorem 4.3 b) is devoted to Sections 6.3-6.8.

Let BY be the piece of Bk, which has degree 0 in A(T*B). Then for ¢t € (0,1],
v € [t,1], by (5.146), tBY satisfies the same estimates as Lemma 5.11 uniformly for
v € [t,1].

Thus following the same arguments in the proof of Lemma 5.16, we have

Theorem 6.2. There exist 5 >0, C > 0, C' > 0 such that if K € g, |K| < 8, t € (0,1],
v et 1],

IZe(tBx t.0)lla) < Cexp(=C'/t). (6.19)

So our proof of inequality (4.15) in Theorem 4.3 can be localized near X9. As in
Section 5.3, we may and we will assume that W = B x X, TX isspinand £ =Sx ® F.

6.4. A rescaling of the normal coordinate to X 9% in X9
In the sequel, we fix g € G, 0 # K € 3(g) and
K = 2K,, z€R*. (6.20)

Recall that X9 and X9¥ are totally geodesic in X. Given ¢ > 0, let U’ be the
e-neighborhood of X9% in Nxo.x/xo (cf. the notation in the proof of Lemma 3.1). By
zooming out g9 € (0,ax/32] in Section 5.3, we can assume that the map (yo, Zy) €
Nxo.x/x0 — expy)‘; °(Zy) € X9 is a diffeomorphism from U’ into the tubular neighbor-
hood V! of X9K in X9 for any 0 < € < 16¢y.

Since X9 is totally geodesic in X, the connection V7% induces the connection V¥x9/x
on Nxg/x (cf. (1.31) and (3.8)).

For (yo, Zo) € U, we identify Nxo/x. (y,,2,) With Nxo,x 4, by parallel transport along
the geodesic u € [0, 1] — uZy with respect to VIX . If yo € X9 K, Z, € Nxo.x/x0.4, Z €
Nxo/x.yor 120, |Z] < 420, we identify (yo, Zo, Z) with expjf(pﬁ(zo)(Z) € X. Therefore,
(Y0, Zo, Z) defines a coordinate system on X near X9-%.

From (2.15), (2.16) and (6.17), for |z| small enough, vk , is a smooth form on W¥9.
Recall that the function k is defined in (5.63) and ¢’ = dim X9-%.
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Theorem 6.3. There exist 5 € (0,1], § € (0,1] such that for p € N, there is C > 0 such
that ZfZ € R*> |Z‘ < ﬂ; te (07 1]’ CAS [ta 1]; Yo € Xg’K; Zy € NX%K/Xﬂ,y(w |ZO‘ < 60/\/57
then for K = zK,

1 qim -~/ t KX ~
vid NXQ*K/X9(¢> / Tr {g—fciv JF (Brcs)
ZENxg /X yo:|Z|<e0

(9~ (0, V020, Z), (0, V020, Z))] - k(y0, V020, Z)dvn ¢4, (Z)

(14 |Zo|)!'+? <t

4
L+ 2 Z0))? 5)' (6:21)

+ {vr0 " (Yo, ﬁZo)> <C

Proof. Sections 6.5-6.7 will be devoted to the proof of Theorem 6.3. O
6.5. A new trivialization and Getzler rescaling near X 9%

Since g preserves geodesics and the parallel transport, in the coordinate system in

above subsection,
9(Zo, Z) = (Zo,92). (6.22)

By an abuse of notation, we will often write Zy + Z instead of expéf(pi(g(zo)(Z).

Firstly, we fix Zo € Nyox/xo0: |Z0] < 20, and we take Z € T), X, |Z| < 4.
The curve u € [0,1] = Zo + uZ lies in B;y (0,5e0). Moreover we identify TX 7,7,
T*A(T*B) ® Ez,+z with TX z,, 7*A(T*B) ® €z, by parallel transport with respect to
the connections V7X, 2V&? along the curve.

When Zy € Nxo.x/x0.,, is allowed to vary, we identify TXz,, 7*A(T*B) ® £z, with
TXy,, ™ A(T*B) ® &,, by parallel transport with respect to the connections VX, v¢
along the curve u € [0,1] — uZy. Then Hy, is identified with H,, associated with this
trivialization. Furthermore the fiber of 7*A(T*B) ® £ at Zy + Z and yg are identified by
parallel transport along the broken curve u € [0, 1] — 2uZy, for 0 < u < %; Zo+(2u—-1)Z
for % <u<l.

Note that here we use the trick in [11, Section 11.4] (cf. also [19, Section 9.5]) and the
trivialization here is different from that in the proof of Theorem 4.3 a) in Section 6.2.
Under this new trivialization, the identification between H,, and Hz, is an isometry
with respect to (1.17).

For Zo € Nxo.x/x9,y0s |Zo| < e, the considered trivializations depend explicitly on
Zy. We denote by (Bg i)z, the action of Bg .y, centered at Zy. Thus the operator
(Br,t,0)z, acts on Hyz . As Hy, is identified with H,,, so that ultimately, (Bx o)z,
acts on H,,.

We may and we will assume that g¢ is small enough so that if |Zy| < g, |Z] < 4eo,
then
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1 X 3 Tx
390 < 9z0vz < 50 - (6.23)
We define kéy 20)(Z) as in (5.75). Recall that p(Z) is defined in (5.84).

Definition 6.4. Let L7, Z K ) be the differential operator acting on H,

L35 = —(1= p(2))(~tATX) + p*(2) (B.1.0) 20 (6.24)

By proceeding as in (5.86), and using Theorem 6.2 and (6.22), we find that if Z; €
Nxo.x/x0.450Z € Nxa/x .40, 12|, 20| < €0,

Fi(Bii)(97 (20, 2), (Z0, 2)K(yy 20)(Z) = FU(L7 )97 2, 2).  (6.25)
We still define H, as in (5.88). Let
LG = L (6.26)

Let (e1, -+ ,ep), (€prq1, -+ ,e0), (€ey1, - ,€n) be orthonormal basis of TyOXg’K,
Nxo.5 /x9.400 Nxo/x,y, respectively.

Deﬁnition 6.5. Let leg’(lt(’”) be the differential operator acting on H,, obtained from
L/;O ) by replacing c(ej) by ci(ej) (cf. (5.91)) for 1 < j <, by ¢;/(e5) for £/ 41 <
j < ¢, while leaving unchanged the c(e;)’s for £ +1 < j <mn.

For A € (*(A(T*B))®c¢(TX)®End(E)), ®Op,, we denote by [A] () the differential
operator obtained from A by using the Getzler rescaling of the Clifford variables which
is given in Definition 6.5.

If Zy € Nxox/x0.4, 1 20| < €0, Z € Ty X, |Z] < 4deo, if U € Ty, X, let T%U(Z) €
TXz,+z be the parallel transport of U along the curve u — 2uZp, 0 < u < %, u —
exp)Z(O((Qu -1)2), % < u < 1, with respect to VIX.

By (6.10), under the identification of 7*A(T*B) ® £z,+z and 7*A(T*B) ® &,, at the
beginning of this subsection, in the trivialization

%((S(Z)ej,ff Y20+ O(Z12) 7 A (6.27)

Then comparing with (5.95) and (5.96), from (6.6), we have

c(r%e;(2)) = c(e;) +

Ly = (1= (VIZDA™ + 3 (ViZ) - { 9" (Vi2) (V! VL, ~ TH(VIZ)ViVL,)

t( _ess 1 orx,.x Zo Zo
+3 (R(Zo,ﬁzgei,ej)—%wei KX, e viny ) e (17ei(V1Z)) e (r%0e;(VE Z))](“,)
1

FVE(RELS (e ) = oo (Tle S KY) (i) [e (Foes V)], o
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1/ e 1
b5 (B o G S = TG I, K iy ) 7 N SO

t £/8 X Lox 2
+ZH(Z07\/ZZ) - m(zm\/{z)(K ) + E‘K (Z07 \/ZZ)| ’ (628)

where

§(<R§§((€k7 e Z,e;) + O(\/ﬂZ'Q))

(a2 e (i),

vle/i = VTZOei(\/ZZ) +

)

+ (B (00 1) 2,0 + OWAZP)) [e (Vi)' 0
+ S ((BEXGHL A Z,e0) + OWAZI) 12 1 9 A+ (RE,(Z,e0) + O(VHZP))
- % (1 + %) (mLX(K)Z, e;) + Vthi(K,VtZ) (% + %) . (6.29)

Here h;(K,Z) is a function depending linearly on K and h;(K,Z) = O(|Z|?) for |K|
bounded.
Let 9, € End(A(T*X9)) be the morphism of exterior algebras such that

Yoled)=¢l, 1<j<P,

, , 6.30
Uo(el) = Voel, 0 +1<j<0 (6.30)

Recall that for x = (yo, Zo) € X9, A(T*X9)( y has been identified with A(T*X9),,.

Y0,Z0

Definition 6.6. Let L;::s}go,v) be the operator

L3O =, Ly (6.31)
By Definitions 6.5 and 6.6, (6.13) and (6.30), as t — 0,
13,(t,v) 13,(0,v)
LZO,K — L(yg,Zg),K' (6.32)
6.6. A family of norms
For0<p</{,0<qg<{—/, put

APO(TX9), = AP(T*XOH), @A (Nok s x0)yo- (6.33)

The various AP9)(T*X9),, are mutually orthogonal in A(T*X9),, . Let I, be the vector
space of smooth sections of (7*A(T*B) @ A(T* X9)@Sn ® E),, on Ty, X, let I p.q).90 DE
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the vector space of smooth sections of (7*A”(T*B) @ AP (T*X9)@Sy @ E), on Ty, X.

Let IgO’I(()'I’ 2.0)%0 be the corresponding vector spaces of square-integrable sections.

Now we imitate constructions in [21, §11]. Recall that dim B = k.

Definition 6.7. For ¢ € [0,1], v € R%, yo € X9, Zy € Nxox/x0,4,, |Z0] < €0/+/,
5 € Lirp.g).y0» SO

2(k+4' —p—r)
VtZ
Bozoo= [ (2P <1 +(1Zo] + 121} (2

Ty X
2(4—¢'—q)
-(1+ﬁ|Z|p (g)) dvpx(Z). (6.34)

Then (6.34) induces a Hermitian product (-,-);.4, 2,0 on I(()qu) s We equip L =
DI, , .y, With the direct sum of these Hermitian metrics.

Recall that by (5.84), if p(v/tZ) > 0, then |\/tZ| < 4eq. The proof of the following
proposition is almost the same as that of [19, Proposition 8.16] (cf. also [21, Proposition
11.24]).

Proposition 6.8. For t € (0,1], v € [t,1], yo € X9, Zy € Nxax /x4, |Z0| < 0/y/0,
the following family of operators acting on (Ig07 | “ |t.0.20,0) are uniformly bounded:

1|ﬁ2\g450\/50t(€j)a 1|\/EZ|§450|Z|\/ZCt(6j)a 1|\/Ez\§450|ZO|\/ECt(6j)7 for 1<j </,
L izi<aeo| Zol PN 1) iz <ac, [ 21PN
t .
1|\/ZZ|§4EO\/;C%<€J‘), 1|\/ZZ‘S4EO|Z|\/EC%(€J‘), for ! +1<5</( (6.35)

Definition 6.9. For ¢ € [0,1], v € RY, yo € X9K 7, ¢ Nxo.x /x99, 120 < €0/\/v, if
s € 1, has compact support, set

1
s Fozo0 5 [PVED) KX (V0Zo + VEZ)s|

2
t,

2 _ | 2
t,v,Z0,1 — IS t,0,20,0"

v,%4o0

n
+ E |Ve,s
Zo,0 4
i=1

(6.36)

Note that |s|¢,z,1 depends explicitly on K = zK. In fact, |s|;., 2,1 depends on
z € R*.

Theorem 6.10. There exist constants C; > 0,1 = 1,2, 3,4, such that if t € (0,1], v € [t, 1],
neN, y € XK, 7, € Nxo.x/x0.40 |20l < €0/v/v, 2 €R, |2| <1, and if the support
of s,8" € 1, is included in {Z € T, X : |Z| < n}, then
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13,(t,
Re(L' 20" s, 8)tm20.0 = ClslE 200 — Co1+ [n2?)[s[24 2.0

3,(t,
‘Im<LI\/{,(Z(:iKOS’ S>t7U7Z070

(L) 08 ) 200 < Call+ 022 [s]1.0, 20,118 |t.0, 20,1

< C3((L+ [nz])lslev.zo.1 110, z0.0 + 027 |s[7 1 2,0), (6:37)

Proof. Comparing with LitK in (5.95) and (5.112), there are four additional terms in
(6.28) which should be estimated:

- [PV RS Vzo + Vizs|,

10,200 (6.38)

t
~PP(V1Z) - (VT i) A (V0 2o+ V1Z) 7V %05 (V12))

. [c (TﬁZoei(\/iZD c (TﬁZoej(\/;fZ))r’ : s, s>t oo (6.39)

(t,v

- pQ(ﬂZ);/—j (T (eq, 1), 2K ) (Vo Zo + V1 2Z)

. [c (TﬁZoei(\/EZ))} ?t,v) fP N s, s>t 070" (6.40)

and

—pQ(ﬁZ)% <<T( ), 2K (VoZo + VIZ) [P A AN s, s>t (6.41)

,0,20,0

The first term is controlled by (6.36) and the second term was estimated in the proof
of [19, Theorem 8.18]. We only need to estimate (6.40) and (6.41), which are new terms
in the family case.

By (3.4), T is G-invariant, thus [KX,T] = 0. Since mTX (K) is skew-adjoint, by (2.5),
Z(T, KXY = (VEXT, KXY + (T, VEXKX) = (VIXT, KXy — (VIXT, 7). (6.42)

As yo € X9F € XK we know K,\ = 0. Thus from (6.42), we have

0 ~

£<T7 KX>(y0,sZ)|s:O =0. (643)
From (6.43), we have

(T, KX)o, 2) = O(2)%). (6.44)

Thus we have

P2 LT e £, 25N+ Vi) [o (06, (Vi) oy

= PP(VEZ) V2| [c (Tﬁ%eMsz’m 7 N-O((Vol Zo| + VH|Z))?),  (6.45)
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and

PP (VEZ) s (DU S, 2KV 020 +AZ) P A FoN
= PP(VAZ)|AAS7 A £7 1 -O((1Z0 +/t/v]Z)?). - (6.46)

Using the fact that v < 1 and t/v < 1 and also Proposition 6.8, from (6.27), we find that
the operators in (6.45) and (6.46) remain uniformly bounded with respect to | - |¢.4,2,,0-
The proof of Theorem 6.10 is completed. O

Definition 6.11. Put

3,(t,v |Z| |Z| 3,(tv
LZ[E,K,)N = - <1 - 72 <2(n ¥ 2))) ATX +72 (2(n + 2) LZO(,K)' (647)

Let E(L%tKv))(Z, Z') and E(L%étKv)n)(Z, Z") be the smooth kernels associated with
Ft(L3 (8, U)) and Ft(L?)Z’st;)n) with respect to dvrx(Z'). Using (6.23) and proceeding as
(\).128), i.e., using finite propagation speed, we see that if Z € T, X, |Z| < p,

Fon(Ly 502, 2 = Fon( LY )2, 2)). (6.48)
Clearly, when replacing L%é?,zK in (6.37) by Lf’f(t;)zK , the estimates (6.37) still

hold.
6.7. A Proof of Theorem 6.3

Since W is a compact manifold, there exists a finite family of smooth functions
fi,-+, fr : W — [—1,1] which have the following properties:

o« WK = ﬂ;zl{:c eW: fij(x) =0}
e On WX df;---,df, span Nxo.x/x.

Definition 6.12. Let Q; , z, be the family of operators

Qt,v,Zo = {veml << dlmX7 %p(\/EZ)fj(ﬁZ() + \/EZ), 1 S] < T} . (649)

For j € N, let Q]  , be the set of operators Q1 - Q;, with Q; € Q4 z,, 1 <i < j.

Following the arguments in [19, §8.8-8.10], we have the following uniform estimate,
which is formally the same as [19, (8.76)]. We only need to take care that in the proof of
the analogue of [19, Proposition 8.22 and Theorems 8.23, 8.24], there are two new terms
like (6.40) and (6.41) appear in our family case. However, they are easy to be controlled
as in (6.45) and (6.46).
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Theorem 6.13. There exist C > 0, C' > 0 such that given m > 0, there exists 81 > 0 such
that ift € (Oa 1]} CAS [ta ]-L z € Rf |Z| < ﬂl; Yo € Xg’K; Zy € NXg’K/Xg,ym |ZO‘ < 50/\/67
Z € Nxosxyo» 2] < &0/ V2,

‘(E (L%g;),zl(o) — eXp (_L%()Z,Z?ZKO)) (g—lz’ Z)‘

1 '
t) I(dim X+1) . (]_ + |ZODZ 1 exp (7C/|Z|2/4) . (650)

<o(! Uiz~
=3 A+ [2Zo)™

The kernel exp(—Li’)(EOZ’z)zKo))(g’lZ, Z) here is defined in the same way as in (5.133).

From (6.27), we get

%ej/\Jr\/%(O(\/Z)wLOOZD), if1<j</t;

\/% e (TﬁZOGJ(ﬁZ))]iM =96 A +\/§C’)(1 +12)), if 0 +1<j<t
\/g(c(ej)+0(|2|)), if0+1<j<n.

(6.51)

Moreover as KX vanishes on W9 ¥ we have

(K3 (VoZo +ViZ), 7V"%0e;(Vi2)) = (K§ (Vo Zo), 7V %)y oz + O(VUZ)),

(K3 (V0Z0), 7€) (o foz0) = OW0| Z0)).
(6.52)

By (3.1), (6.30), (6.51) and (6.52), we get

Vit Vg
e (K%)= (02

+ Y020 +VilZ)OG +12)

(6.53)

) e

Note that we have (65a)z, = (Vpath; ') 5z, for any o € Q(W?9) with 6, defined above
(3.12). Therefore, from (3.18), (6.50) and (6.53), we get Theorem 6.3.
6.8. A Proof of Theorem /.3 b)

Theorem 4.3 b) follows directly from the following theorem.

Theorem 6.14. There exist f1 > 0, r € N, C > 0, § € (0,1], such that if t € (0,1],
v € [t, 1], if z € R\{0}, |z| < b1, then
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<C (%)6 (6.54)

2"

— X
(bTI‘ {g% €exXp (_BK,t,v>:| + gv

Proof. Recall that U, U, U are e-neighborhoods of X9, X9K X9K in Ny, x,
Nxo.x/x, Nxo.x/xo respectively. Let k(yo, Zo) be the function defined on X9 NU. by
the relation

dvxs (Yo, Zo) = k(yo, Zo)dvxse.x W0)dvN 1, o (Z0)- (6.55)
Then
E|xox = 1. (6.56)

Recall that E(BK7t,U)(g_lac,x) vanishes on X\U.,. Using (5.75), (6.55), we get

10 / Tr {g% exp (—Brk,t.v) (g_lx,x)} dvx (z) + / {Vr W} duxe

u XonuL,

<0
/ OOV / [ Vie(KX)

¢ / TI' gT exp (_BK,tﬂ))

YyoEX 9K |Zo|<eo/v/v |Z]|<eo

(g_l(ym\/1_)Zo7z),(yo7\/1_)Zo7Z))} kYo, VvZo, Z)dun g, (Z)

+{7K.0 1 (Yo, \/EZO)} k(yo, V0Z0)dUN i oy (Z0)dvxosc (yo).  (6.57)

Using Theorem 6.3 and (6.57), we find that there exist C' > 0 and $; > 0 such that
for z € R*, |2| < i,

exXp (_BK,t,v) (g_lx,x)} d'UX(fL') + / Y v
U o

, , N N
<clt [ / (1t 12z az- (L) <o (L)

v
Yo€X 9K ZoEN v 9.k /xg:1Z0]<€0

(6.58)

Similar estimates can be obtained for

_, (KX
0] / Tr {g% exp(—BKi,U)(gla:,x)} dvx(x) + / VK| (6.59)

x\uz, Xa\UL,
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In fact, on X\U. , we observe that |[KX|?/2v has a positive lower bound. Then we

adopt the above techniques to the case where X 9% = (). The potentially annoying term
X

% can be controlled by the term |KX|?/2v.

The proof of Theorem 6.14 is completed. O
6.9. A Proof of Theorem 4.5 c)

When v € [1,+00), % remains bounded. By using the methods of the last section and
of the present section, one sees easily that for Ky € 3(g), K = 2K, there exist C' > 0,
B > 0 such that for t € (0,1], v € [1,4+00), |2Kp| < B, we have

‘ﬁ/ [g\/fc(KX) exp (fBK,M)] ‘ <C, (6.60)

which is equivalent to Theorem 4.3 ¢).
The proof of Theorem 4.3 c) is completed.

6.10. A Proof of Theorem /.3 d)

In this subsection, we will prove Theorem 4.3 d) by using the method in [19, §9]. Since
the singular term there does not appear here, our proof is in fact much easier.

We fix g € G, 0 # Ky € 3(9), and take K = 2K, with z € R*.

From Theorem 6.1, we have

Brcain ==t (V5 + 5 (S(e0es Sl eles) 17

1 <KX,61'> 1
E(S(ei) ,fl,ffﬁp/\fq/\—T (14_;))

2
+

+ EH 4 (B (erreg) - 5 AVINE ) ) elen)eles)
+ \/E <R£/S(eiafzf[) - ﬁ<T(ei>f;f)vKX>) C(ei)fp/\

1 1
(RESCE I = o (TG S X)) 7 A 798 —m®IS(K) 4 KNP

N | =

+
(6.61)

As in sections 5.3 and 6.3, the proof of Theorem 4.3 d) can be localized near X9. In
the following, we will concentrate on the estimates near X9¥. As in (6.59), the proof of
the estimates near X9 and far from X9 ¥ is much easier.

We may assume that for gy taken in Section 6.4, if € € (0,8¢q], the map (yo, Z) €
Nxox/x — expii) (Z) € X induces a diffeomorphism from the e-neighborhood U! of
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X9K in Nxox/x on the tubular neighborhood V. of X9K in X as in the proof of
Theorem 6.14.
As in (5.77) and (6.9), we put

PVEL=VE 4+ W< (e, ol )eles) fPA

1 H\ fp r rq Ik () ( 1)
1 . .62
bSO a0 (0 1) e
Take yo € WK in (2.12). If Z € Nxo.x/x,y,, |Z] < 4o, we identify ™ A(T*B)®Ey
with W*A(T*B)@Eyo by parallel transport with respect to the connection V¢ along
the curve u € [0,1] = uZ.
Recall that p is the cut-off function in (5.84). Let

L2 — (1= p2(2))(—tA™Y) + p2(2) (Bici). (6.63)

We still define H; as in (5.88) and define L2 (tKv) as in (5.89) from L;O(tKv) Let Li;)(’t’Kv) be
the operator obtained from Lyo’tKv) by replacing c(e;) by c(e;) asin (5.91) for 1 < j < ¢
(cf. (2.14)), while leaving the c(e;)’s unchanged for ¢/ +1 < j < n.

As in (3.21), we have

[K¥ (50, Z)I* = [y, (K)ZI* + O(| ). (6.64)

Let 5/ : W9 — W be the obvious embedding. Put

2
L == (Tt G {7 = (14 5) ™00 2.

% 1
3Ry, = mP (K = 1= Y (m N (K )eg en)yele;)eler)
G k>0 41

1,,, 1
+ 3 TR TN () Z), Z)y, + o lmy, (K) 2P (6.65)

From (3.5), (3.19), (3.20), (6.44), (6.61) and (6.65), as in Proposition 5.24, we have

L2 5 L3O, (6.66)

Now we take a new trivialization as in Section 6.5. Take Zo € Nxo.x/x0.4,,|Z0| < €0.
If Z € T,X, |Z| < 4eo, we identify 7*A(T*B)REz, z, with 7 A(T* B)&Ez, by parallel
transport along the curve u € [0,1] — exp)Z(U (uZ) with respect to the connection 3V,
Also we identify 7*A(T*B)®Ez, with 7*A(T*B)®E,, by parallel transport along the
curve u € [0, 1] — uZy with respect to the connection V€. Using this trivialization, the
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analogues of [19, Theorems 9.19 and 9.22] hold here following the same arguments except
for replacing the norm in [19, (9.43)] by

2(k+£' —p—r)
f o0 = / |s(2)|? (1+(IZI+|Zo|)p(\/§Z>) dvrx(Z). (6.67)

Tyo X

|s

Here s is a square integrable section of (W*AT(T*B)@AP(T*X‘(]’K)@SN
over Ty, X, and dim B = k.

As in [19, (9.52)-(9.57)], combining with (3.18), if n is even, there exists 8 > 0, if
z € R*, |z] < B, for t — 0,

x9:K/x ® E)yo

C(KX)N -1
TI'S|: F BZ v 7Z aZ7
94\/&) t( Ko,t,t )(9 (yo 0 )
X9 K (ZC”Z)GNngK/Xg ><]\fxg/x7
|Zol,|Z|<e0
(Y0, Zo, Z))] dvx (Yo, Zo, Z)
N ’ C mTX(K)Z v
o [ o | B8 o () 2. 2)
X9 K Nygr,x
don,, ., (Z). (6.68)

The heat kernel exp (—L?IO(Z;QO) (9712, Z) could be calculated as in (5.142) by [19, The-
orem 4.13], which is an even function on Z and can be controlled by C exp(—C’|Z|?). So
the right-hand side of (6.68) is an integral of an odd function on Z over Nxy x /x, which
is zero.

If n is odd, by Remark 5.22, from the same argument above, as t — 0,

C( KX)
Trever { -B )| — 0. 6.69
/ r g 4\/1?’0 eXp( Kt,t ) ( )
u!

€0

After adopting the above technique to the case where X 9% = (), for z € R*, |z| small
enough, as t — 0, we have

T oKX
/ Tr {g i{jfv) exp (—Br t,t0)| — 0. (6.70)

The proof of Theorem 4.3 d) is completed.
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