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From September 1989 until July 1993, I was a student at the Sino-French mathematics class

in Wuhan University founded by Professor Jiarong Yu. As a young person from the countryside,

it was the most precious chance of my life, and the starting point of my mathematical career.

I am very lucky to have witnessed Professor Yu’s great contribution to the development of

modern mathematical education in China.

In this note, we will review some recent progress on the idea “Quantization commutes with

reduction”, or briefly, that “[Q,R] = 0”, which first appeared as the famous Guillemin-Sternberg

conjecture for compact symplectic manifolds.

Note that the phase space of a classical mechanical system is a symplectic manifold. Geo-

metric quantization, introduced in the 1960’s by Kostant and Souriau, gives a geometric method

to properly quantize classical mechanical systems. To quantize a compact symplectic manifold,

i.e., to associate a Hilbert space, we need a (prequantum) line bundle whose first Chern form

equals the symplectic form.

Bott suggested that the Hilbert space appearing in the quantization should be the kernel

of the Dirac operator acting on spinor bundles twisted by the line bundle. The way in which

symmetries of the classical systems are reflected in the quantization has been formulated into

the principle that “quantization commutes with reduction”.

Let (M,ω) be a symplectic manifold with a prequantum line bundle L. Assume that a

compact connected Lie group G acts onM , and that the action lifts to L. Then the quantization

of M should be a G-virtual representation, and it is interesting to determine the multiplicity

of the irreducible representations of G.

∗Received March 8, 2021; revised July 9, 2021.
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The Guillemin-Sternberg conjecture that “quantization commutes with reduction” gives a

precise geometric answer to this problem. By using the associated moment map when M is

compact, roughly, they conjectured that the following diagram commutes:

(M,L)

reduction

� �

quantization
// Q(L)

reduction

��

(Mν , Lν)
quantization

/ / Q(Lν).

(0.1)

New difficulties appear when the manifold M is no longer supposed to be compact, since in

this case the index of the Dirac operator is not well defined. In her ICM 2006 plenary lecture,

Michèle Vergne proposed to replace this by a certain transversal index introduced by Atiyah,

under the natural hypothesis that the moment map is proper, and that the zero-set of the vector

field induced by the moment map is compact. She conjectured that the idea that“quantization

commutes with reduction” still holds in this case.

This note is organized as follows. In Section 1, we review the principle that “quantization

commutes with reduction” in the symplectic case; in particular, we discuss our solution with

Zhang [11, 12] on Vergne’s conjecture. In Section 2, we review our recent work with Hsiao and

Marinescu [7], on the principle “quantization commutes with reduction” for Cauchy-Riemann

(CR) manifolds. An important difference between the CR setting and the symplectic setting

is that the quantum spaces in the case of compact symplectic manifolds are finite dimensional,

whereas for the compact strictly pseudoconvex CR manifolds that we consider, the quantum

spaces consist of CR functions and are infinite dimensional.

Due to space limitations, we only cite few references. One can find more comments, refer-

ences and motivations in [9, 10] and [25].

1 Quantization Commutes with Reduction on Symplectic Manifolds

This Section is organized as follows. In Section 1.1, we recall the definition of the Dirac

operator on an almost complex manifold and the Atiyah-Singer index theorem. In Section 1.2,

we review the Guillemin-Sternberg conjecture for compact symplectic manifolds. In Section 1.3,

we explain our solution to Vergne’s conjecture regarding noncompact symplectic manifolds. In

Section 1.4, we give the refinement of [Q,R] = 0 in the compact Kähler case.

1.1 Dirac operators

Let M be a manifold of real dimension 2n with a compatible almost complex structure J .

We endow M with a Riemannian metric gTM compatible with J , i.e., gTM (J ·, J ·) = gTM (·, ·).
Let (E, hE) be a Hermitian vector bundle on M with Hermitian connection ∇E and curvature

RE = (∇E)2.

The almost complex structure J induces a splitting of the complexification of the tangent

bundle TM ⊗R C = T (1,0)M ⊕ T (0,1)M , where T (1,0)M and T (0,1)M are the eigenbundles of J

corresponding to the eigenvalues
√
−1 and −

√
−1 respectively. Let T ∗ (0,1)M be the dual space

of T (0,1)M .

Let dvM be the Riemannian volume form of (TM, gTM). The L2–Hermitian product in-

duced by gTM , hE on the space Ω0,•(M,E) of smooth sections of Λ•(T ∗ (0,1)M) ⊗ E is given
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by

〈s1, s2〉 =

∫

M

〈s1(x), s2(x)〉 dvM (x) . (1.1)

For any v ∈ T (1,0)M , let v∗ ∈ T ∗ (0,1)M be the metric dual of v, so

c(v) =
√

2 v∗∧, c(v) = −
√

2 iv (1.2)

define the Clifford actions of v and v on Λ0,• := Λ•(T ∗ (0,1)M), where ∧ and i denote the

exterior and interior multiplications, respectively. In particular, for any U, V ∈ TM , we have

c(U)c(V ) + c(V )c(U) = −2 〈U, V 〉 , (1.3)

where 〈U, V 〉 is the scalar product of U, V in (TM, gTM ).

Consider the Levi–Civita connection ∇TM of (TM, gTM ) with associated curvature RTM .

Let ∇T (1,0)M be the connection on T (1,0)M induced by projecting ∇TM ; ∇T (1,0)M induces the

connection ∇det on det(T (1,0)M) := Λn(T (1,0)M). The Clifford connection ∇Cl on Λ0,• is

induced canonically by ∇TM and ∇det (cf. [10, §1.3]). Finally, let ∇Λ0,•⊗E be the connection

on Λ0,• ⊗ E induced by ∇Cl and ∇E .

We recall briefly the construction of the Clifford connection ∇Cl here. Let {wj}n
j=1 be a

local orthonormal frame of T (1,0)M with dual frame {wj}n
j=1. Then

e2j−1 =
1√
2
(wj + wj) and e2j =

√
−1√
2

(wj − wj) , j = 1, · · · , n (1.4)

form an orthonormal frame of TM . Let ΓTM ∈ T ∗M⊗End(TM), Γdet be the connection forms

of ∇TM , ∇det associated with the frames {ej}, w1 ∧ · · · ∧ wn, i.e.,

∇TM
ei

ej = ΓTM (ei)ej , Γdet =
∑

j〈ΓTMwj , wj〉. (1.5)

The Clifford connection ∇Cl on Λ(T ∗(0,1)M) is defined for the frame {wj1 ∧ · · · ∧wjk , 1 6 j1 <

· · · < jk 6 n} by the local formula

∇Cl = d+
1

4

∑

i,j

〈
ΓTMei, ej

〉
c(ei)c(ej) +

1

2
Γdet. (1.6)

Definition 1.1 The spinc Dirac operator DE is defined by

DE :=
∑

j

c(ej)∇Λ0,•⊗E
ej

: Ω0,•(M,E) −→ Ω0,•(M,E) , DE
± := DE |

Ω0, even
odd

. (1.7)

The operatorDE is a formally self–adjoint, first order elliptic differential operator on Ω0,•(M,E),

which interchanges Ω0,even(M,E) and Ω0,odd(M,E) (cf. [10, §1.3]).

If M is compact, then Ker
(
DE

+

)
and Ker

(
DE

−
)

are finite dimensional Hilbert spaces and

the quantization space of E is defined as their formal difference,

Q(E) := Ind(DE
+) := Ker

(
DE

+

)
− Ker

(
DE

−
)
. (1.8)

To explain the Atiyah-Singer index theorem which computes the virtual dimension of Q(E)

by using characteristic numbers, we need to introduce first some characteristic classes. For any

Hermitian (complex) vector bundle (F, hF ) with Hermitian connection ∇F and curvature RF
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on M , set

ch(F,∇F ) := Tr

[
exp

( −RF

2π
√
−1

)]
,

c1(F,∇F ) := Tr

[ −RF

2π
√
−1

]
,

Td(F,∇F ) := det

(
RF /(2π

√
−1)

exp(RF /(2π
√
−1)) − 1

)
.

(1.9)

These are closed real differential forms on M and their cohomology classes do not depend on the

choice of the metric hF and connection ∇F . The corresponding cohomology classes are called

the Chern character of F , the first Chern class of F , and the Todd class of F , respectively, and

we denote them by ch(F ), c1(F ) and Td(F ) ∈ H2•(M,R).

Theorem 1.2 (Atiyah-Singer index theorem cf. [2, §4.1], [10, Th. 1.3.9]) If M is compact,

we have

dimQ(E) =

∫

M

Td(T (1,0)M)ch(E). (1.10)

In particular, the virtual dimension of Q(E) does not depend on the choice of gTM or the

metric and connection on E. If Ker(DE
−) = 0, then the quantization space Q(E) is an ordinary

vector space.

1.2 Quantization commutes with reduction

We explain now the idea of the geometric quantization introduced by Kostant [8] and

Souriau [21].

Let (M,J, ω) be a compact symplectic manifold of real dimension 2n with a compatible

almost complex structure J , i.e., gTM = ω(·, J ·) is a J-invariant metric on TM .

Let (L, hL) be a Hermitian line bundle over M endowed with a Hermitian connection

∇L with curvature RL = (∇L)2. We assume that (L, hL,∇L) satisfies the prequantization

condition, that is, that

ω =

√
−1

2π
RL . (1.11)

In this case, we say that (L, hL,∇L) is a prequantum line bundle on M .

Let G be a compact connected Lie group with Lie algebra g. We assume that G acts on

the left on M and that this action lifts to L. Moreover, we assume that G preserves gTM , J ,

hL and ∇L.

Thus the G-action commutes with the Dirac operator DL, and Ker
(
DL

±
)

are finite dimen-

sional G-representations. The quantization space Q(L) of L (cf. (1.8)) is an element in the

representation ring R(G) of G.

For K ∈ g, let KM be the vector field on M generated by K, and let LK be the correspond-

ing Lie derivative. Let Λ∗
+ ⊂ g

∗ be the set of dominant weights, and let V G
γ be the irreducible

representation of G with highest weight γ ∈ Λ∗
+. Let Q(L)γ ∈ Z be the multiplicity of V G

γ in

Q(L). Then we have

Q(L) =
⊕

γ∈Λ∗

+

Q(L)γ · V G
γ ∈ R(G), (1.12)

and there are only finitely many γ ∈ Λ∗
+ such that Q(L)γ 6= 0.
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It is not easy to read off Q(L)γ directly from the Atiyah-Bott-Segal-Singer equivariant index

theorem for its character. Guillemin and Sternberg [4] suggested a geometric way to compute

Q(L)γ by using the associated moment map.

Definition 1.3 The moment map µ : M → g
∗ is defined by the Kostant formula [8]

2
√
−1πµ(K) = ∇L

KM − LK , for K ∈ g. (1.13)

Then µ is G-equivariant and one has that iKMω = dµ(K).

For a regular value ν ∈ g
∗ of µ, the Marsden-Weinstein symplectic reduction Mν := µ−1(G ·

ν)/G is a compact symplectic orbifold with the symplectic form ων induced by ω. Moreover,

L (resp. J) induces a prequantum orbifold line bundle Lν (resp. an almost complex structure

Jν) over (Mν , ων). One can then construct the associated spinc Dirac operator (twisted by Lν),

DLν

+ on Mν , of which we have the index Q (Lν) ∈ Z (identified as the virtual dimension of

Q (Lν) in (1.8)).

If γ ∈ Λ∗
+ is not a regular value of µ, then by [16] (cf. [17, §7.4] for a standard perturbation

definition), Q(Lγ) is still well defined. Now we can state the

Guillemin-Sternberg conjecture For any γ ∈ Λ∗
+,

Q(L)γ = Q (Lγ) . (1.14)

By the classical shifting trick (i.e., by working on M ×Oγ , where Oγ = G · γ is the orbit of the

co-adjoint action of G on g
∗), we only need to prove (1.14) for γ = 0.

This conjecture was proved by Meinrenken [14] and Vergne [24] when G is abelian, and by

Meinrenken [15] and Meinrenken-Sjamaar[16] for non-abelian groups G, by using the symplectic

cut technique of Lerman.

Tian and Zhang [22] gave an analytic proof of the Guillemin-Sternberg conjecture using

a deformation of the Dirac operator which is associated with the function |µ|2, and also the

analytic localization technique in the local index theory developed by Bismut-Lebeau [3]. Their

approach works for a general vector bundle E satisfying certain positivity conditions [22, (4.2)]

(used afterwards by Paradan [17, p. 445]), and also for manifolds with boundary [23]. Paradan

[17] developed later a K-theoretic approach by making use of the theory of transversally elliptic

operators; see [25] for a survey and complete references on this subject.

1.3 [Q,R] = 0: the noncompact case

We use the same notation and assumption as in Section 1.2, but we now assume that M is

noncompact.

Then the quantization space Q(L) = Ind(DL
+) of L is not well defined, since usually DL is

not a Fredholm operator, and we need to make precise the self-adjoint extension ofDL|Ω0,•
0 (M,L),

where Ω0,•
0 (M,L) denotes the space of sections with compact support.

Let τ : TM →M be the natural projection. Following [1, p. 7] (cf. [17, §3]), set

TGM =
{
(x, v) ∈ TxM :

〈
v,KM (x)

〉
= 0 for all K ∈ g

}
. (1.15)

We suppose that the moment map µ : M → g
∗ is proper. Then the right hand side of (1.14) is

well defined.

We identify g with g
∗ by using an AdG-invariant metric on g. Let µM (x) := (µ(x))M (x)

(x ∈M) be the vector field induced by µ : M → g.
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We suppose for the moment that {x ∈M : µM (x) = 0} is compact.

Recall that c(·) is the Clifford action defined in (1.2). For x ∈M, ξ ∈ TxM , set

σM
L,µ(x, ξ) = τ∗

(√
−1c(ξ + µM ) ⊗ IdL

)∣∣
(x,ξ)

: τ∗(Λeven(T ∗(0,1)M) ⊗ L) → τ∗(Λodd(T ∗(0,1)M) ⊗ L). (1.16)

Then σM
L,µ is a transversally elliptic symbol1 on TGM in the sense of Atiyah [1, §1, §3] and

Paradan [17, §3], [18, §3], which determines a transversal index Ind
(
σM

L,µ

)
in the formal repre-

sentation ring R[G] of G,

Ind
(
σM

L,µ

)
=

⊕

γ∈Λ∗

+

Indγ

(
σM

L,µ

)
· V G

γ ∈ R[G]. (1.17)

The index Ind
(
σM

L,µ

)
does not depend on gTM , hL,∇L; it depends only on the homotopy classes

of J , µM . The set {γ ∈ Λ∗
+ : Indγ

(
σM

L,µ

)
6= 0} can be infinite. Michèle Vergne suggested to use

Indγ

(
σM

L,µ

)
to replace the left hand side of (1.14).

Vergne’s conjecture (ICM 2006 plenary lecture [26, §4.3]) If µ : M → g
∗ is proper and

if {x ∈M : µM (x) = 0} is compact, then for any γ ∈ Λ∗
+,

Indγ

(
σM

L,µ

)
= Q (Lγ) . (1.18)

Special cases of this conjecture, related to the discrete series of semi-simple Lie groups,

have been proved by Paradan [18].

For a > 0, set Ma = {x ∈ M : |µ|2(x) 6 a}. If a is a regular value of |µ|2, then Ma is

a compact manifold with boundary ∂Ma, and µM is nowhere zero on ∂Ma. Thus σMa

L,µ is a

transversally elliptic symbol on Ma.

Theorem 1.4 (Quantization commutes with reduction, Ma-Zhang [11, 12]) Suppose that

µ : M → g
∗ is proper. For any γ ∈ Λ∗

+, there exists aγ > 0 such that the function a 7→
Indγ

(
σMa

L,µ

)
is constant on {a > aγ : a is regular value of |µ|2}. Denote by Q(L)γ this constant.

Then, for any γ ∈ Λ∗
+, we have

Q(L)γ = Q(Lγ). (1.19)

If {x ∈ M : µM (x) = 0} is compact, then Q(L)γ = Indγ

(
σM

L,µ

)
. Therefore Theorem

1.4 implies Vergne’s conjecture. Note that Paradan [19] gives a new proof of Theorem 1.4 by

using symplectic cuts and the wonderful compactifications of the complexification of G of de

Concini-Procesi.

Note that the most difficult part of the proof of Theorem 1.4 is to show that the shifting

trick (i.e., by working on M×Oγ to reduce to the case γ = 0) still works in the current situation.

A new twist was introduced by Paradan and Vergne [20], who considered so-called spin

quantization and established a version of [Q,R] = 0 in the compact setting. Hochs and Song

[6] then established a version of [Q,R] = 0 in the noncompact setting along the lines of [12].

Thus the next natural step is to consider [Q,R] = 0 for noncompact groups and manifolds.

Such a generalization is relevant to physics, since most classical mechanical phase spaces are

noncompact, and to representation theory, since the representation theory for noncompact

1The symbol σM
L,µ is the (semi-classical) symbol of Tian-Zhang’s [22] deformed Dirac operator DL

T = DL +√
−1Tc

(
µM

)
in their approach to the Guillemin-Sternberg geometric quantization conjecture.
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groups is much more intricate than for compact groups. Besides the problem of how to define the

index, we need to work on the multiplicities of an infinite dimensional irreducible representation

of G (Cf. [5, 13] and their recent works for the progress in this direction).

1.4 [Q,R] = 0: the Kähler case

In this subsection, we will explain the refinement of Section 1.2 in the Kähler case.

Let E be a holomorphic vector bundle over a complex manifold M . The operator ∂̄E :

C∞(M,E) → Ω0,1(M,E) is well-defined. Any section s ∈ C∞(M,E) has the local form

s =
∑

l ϕlξl, where {ξl}r
l=1 is a local holomorphic frame of E and ϕl are smooth functions. In

holomorphic coordinates (z1, · · · , zn), we set

∂̄Es =
∑

l

(∂̄ϕl) ξl with ∂̄ϕl =
∑

j

dzj

∂

∂zj

ϕl. (1.20)

Since E is holomorphic, the operator ∂̄E extends naturally to ∂̄E : Ω0,•(M,E) → Ω0,•+1(M,E),

verifying that for α ∈ Ω0,q(M), s ∈ Ω0,•(M,E), we have

∂̄E(α ∧ s) = ∂̄α ∧ s+ (−1)qα ∧ ∂̄Es. (1.21)

Then, from ∂̄2 = 0, we verify that (∂̄E)2 = 0.

The complex (Ω0,•(M,E), ∂
E

) is called the Dolbeault complex and its cohomology, called

the Dolbeault cohomology of M with values in E, is denoted by H•(M,E), i.e., for q ∈ N,

Hq(M,E) :=
Ker(∂̄E |Ω0,q(M,E))

Im(∂̄E |Ω0,q−1(M,E))
. (1.22)

From now on, we assume that (M,ω, J) is a compact Kähler manifold, and that (L, hL) is

a holomorphic Hermitian line bundle with Chern connection ∇L verifying (1.11).

Let ∂
L,∗

be the adjoint of the Dolbeault operator ∂
L

on Ω0,•(M,L). In this case, DL in

(1.7) is given by

DL =
√

2 (∂
L

+ ∂
L,∗

). (1.23)

Thus

(DL)2 = 2 (∂
L
∂

L,∗
+ ∂

L,∗
∂

L
) (1.24)

preserves the Z-grading on Ω0,•(M,L). By the Hodge theory, we have that

Ker(DL|Ω0,q(M,L)) ≃ Hq(M,L). (1.25)

Let a compact Lie group G act holomorphically on M , and let the G-action lift on a

holomorphic action on L which preserves the metric hL.

For a G-representation F , we will denote FG as its G-invariant part.

Let µ : M → g
∗ be the associated moment map in (1.13). Assume that G acts freely on

µ−1(0), so the line bundle LG on MG = µ−1(0)/G is defined by

C
∞(MG, LG) = C

∞(µ−1(0), L)G. (1.26)

Let JG, ωG, h
LG ,∇LG be the objets on MG induced by J, ω, hL,∇L on M as in Section 1.2.

Theorem 1.5 If G acts freely on µ−1(0), then (MG, JG, ωG) is also a Kähler manifold, and

(LG, h
LG) is a holomorphic Hermitian line bundle over MG, and ∇LG is the Chern connection

on (LG, h
LG).
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Let N be the normal bundle to µ−1(0) in M . Then one verifies that JN is the vertical

tangent vector bundle of the G-principal bundle π : µ−1(0) → MG. Let THµ−1(0) be the

orthogonal complement of JN in Tµ−1(0). Thus one has the canonical orthogonal splittings

TM |µ−1(0) = N ⊕ JN ⊕ THµ−1(0), (1.27)

and J preserves N ⊕ JN and THµ−1(0), and THµ−1(0) is isomorphic to π∗(TMG). Thus we

have a canonical splitting of Hermitian vector bundles

T ∗(0,1)M |µ−1(0) = N∗(0,1) ⊕ π∗(T ∗(0,1)MG),

Λ(T ∗(0,1)M)|µ−1(0) = Λ(N∗(0,1))⊗̂π∗(Λ(T ∗(0,1)MG)),
(1.28)

where N (0,1) is the eigenbundle of J associated with the eigenvalue −
√
−1 in (N ⊕ JN) ⊗R C.

Let q be the canonical orthogonal projection on µ−1(0):

q : Λ(T ∗(0,1)M) ⊗ L = Λ(N∗(0,1))⊗̂π∗(Λ(T ∗(0,1)MG)) ⊗ L

→ Λ0(N∗(0,1))⊗̂π∗(Λ(T ∗(0,1)MG)) ⊗ L = π∗(Λ(T ∗(0,1)MG)) ⊗ L. (1.29)

The following result of Zhang refines and extends an earlier result of Teleman and Braver-

man.

Theorem 1.6 (Zhang [27, Theorems 0.1 and 1.2]) If G acts freely on µ−1(0), then we

have the map

ψ : (Ω0,•(M,L)G, ∂̄L) → (Ω0,•(MG, LG), ∂̄LG), (1.30)

by the restriction first on µ−1(0), and then using (1.26) and (1.29) to induce a section on MG,

this is a morphism of complexes and induces an isomorphism

Hj(M,L)G ≃ Hj(MG, LG) for any j ≥ 0. (1.31)

For j = 0, (1.31) is the main result of [4], and based on this result, Guillemin-Sternberg

made the famous conjecture that “quantization commutes with reduction”, explained in Section

1.2 for compact symplectic manifolds.

2 Quantization Commutes with Reduction on CR Manifolds

This Section is organized as follows. In Section 2.1, we recall in detail the definition of

Cauchy-Riemann manifolds. In Section 2.2, we explain an important example of CR manifolds:

the circle bundle of a holomorphic line bundle on a complex manifold. In Section 2.3, we present

our recent work [7] on [Q,R] = 0 for CR manifolds.

2.1 CR manifolds and CR functions

Let (X,T 1,0X) be a compact, connected and orientable Cauchy-Riemann (CR) manifold

of dimension 2n+ 1, n ≥ 1, where T 1,0X is a CR structure of X ; that is, T 1,0X is a complex

vector sub-bundle of rank n of the complexified tangent bundle CTX := TX ⊗R C satisfying

T 1,0X ∩ T 0,1X = {0}, [V ,V ] ⊂ V , with T 0,1X = T 1,0X,V = C
∞(X,T 1,0X). (2.1)

Denote by T ∗1,0X and T ∗0,1X the dual bundles of T 1,0X and T 0,1X , respectively. Define the

vector bundle of (0, q)-forms by

T ∗0,qX := Λq T ∗0,1X. (2.2)
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The Levi distribution (or holomorphic tangent space) HX of the CR manifold X is the real

part of T 1,0X ⊕ T 0,1X , i.e., the unique sub-bundle HX of TX such that

CHX = T 1,0X ⊕ T 0,1X. (2.3)

Let J : HX → HX be the complex structure given by J(u + u) =
√
−1u −

√
−1u for every

u ∈ T 1,0X . If we extend the J complex linearly to CHX , we have

T 1,0X =
{
V ∈ CHX : JV =

√
−1V

}
. (2.4)

Thus the CR structure T 1,0X is determined by the Levi distribution and we shall also write

(X,HX, J) to denote the CR manifold (X,T 1,0X).

The annihilator (HX)0 ⊂ T ∗X of HX is called the characteristic bundle of the CR man-

ifold. Since X is orientable, the characteristic bundle (HX)0 is a trivial real line sub-bundle.

We fix a global frame of (HX)0, that is, a real non-vanishing 1-form ω0 ∈ C∞(X,T ∗X) such

that (HX)0 = Rω0: this is called a characteristic 1-form. We have

〈ω0(x), u 〉 = 0, for any u ∈ HxX, x ∈ X. (2.5)

Then, by (2.1), the restriction of dω0 on HX is a (1, 1)-form. The Levi form of X at x ∈ X is

the Hermitian quadratic form on T 1,0
x X given by

Lx(u, v) = − 1

2
√
−1

〈 dω0(x), u ∧ v 〉 = − 1

2
√
−1

dω0(u, v), for u, v ∈ T 1,0
x X. (2.6)

A CR manifold X is said to be strictly pseudoconvex if, for every x ∈ X , the Levi form Lx

is positive definite (negative definite). By (2.6) we see that the definition does not depend on

the choice of the characteristic 1-form ω0. By a change of sign of ω0 we can and shall assume

in the sequel that the Levi form is positive definite. If X is strictly pseudoconvex, then ω0 is a

contact form and the Levi distribution HX is a contact structure.

Let T ∈ C∞(X,TX) be a vector field, called characteristic vector field, such that

CTX = T 1,0X ⊕ T 0,1X ⊕ CT, (2.7)

and

iT ω0 = 1. (2.8)

Let gCTX be a Hermitian metric on CTX such that the decomposition (2.7) is orthogonal. For

u, v ∈ CTX , we denote by 〈u, v〉g the inner product given by gCTX , and for u ∈ CTX , we write

|u|2g := 〈u, u〉g.
The Hermitian metric gCTX on CTX induces, by duality, a Hermitian metric on CT ∗X

and also on the bundles of (0, q) forms T ∗0,qX , q = 1, 2, · · · , n. We shall also denote the inner

product given by these metrics by 〈 · , · 〉g. The metric gCTX induces a Riemannian metric gTX

on TX and gTX induces in turn a Riemannian volume form dvX on X .

The natural global L2 inner product 〈 · , · 〉 on Ω0,q(X), induced by dvX and 〈 · , · 〉g, is given

by

〈u, v〉 :=

∫

X

〈u(x), v(x) 〉g dvX(x) , u, v ∈ Ω0,q(X) . (2.9)

We denote by (L2
(0,q)(X), 〈 · , · 〉) the completion of Ω0,q(X) with respect to 〈 · , · 〉. We set

L2(X) := L2
(0,0)(X).
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Let ∂b : Ω0,q(X) → Ω0,q+1(X) be the tangential Cauchy-Riemann operators on X , which

is the composition of the exterior differential d and the projection π0,q+1 : Λq+1(CT ∗X) →
T ∗0,q+1X . We extend ∂b to L2 spaces by taking the weak maximal extension

Dom∂b =
{
u ∈ L2

(0,q)(X) : ∂bu ∈ L2
(0,q+1)(X)

}
,

Dom∂b ∋ u 7−→ ∂bu ∈ L2
(0,q+1)(X).

(2.10)

The space of L2 CR functions on X is given by

H0
b (X) :=

{
u ∈ L2(X) = L2

(0,0)(X) : ∂bu = 0
}
. (2.11)

Note that in contrast to holomorphic functions, a CR function does not even need to be

continuous. Here is a trivial example: consider a compact complex manifold M , such that

X = S1 ×M is a compact CR manifold with the CR structure defined by T (1,0)M . Now a

function f onX is CR if and only if there is a function h on the circle S1 such that f(t,m) = h(t)

for any t ∈ S1, m ∈M .

2.2 An important example: Grauert tube

Let (L, hL) be a Hermitian holomorphic line bundle over a connected compact complex

manifold (M,J). Let hL∗

be the Hermitian metric on L∗ induced by hL. Let

X :=
{
v ∈ L∗ : |v|2

hL∗ = 1
}

(2.12)

be the circle bundle of L∗ (Grauert tube); this is isomorphic to the S1 principal bundle asso-

ciated to L. Since X is a hypersurface in the complex manifold L∗, it a has a CR structure

inherited from the complex structure of L∗ by setting T 1,0X = TX ∩ T (1,0)L∗.

In this situation, S1 acts on X by fiberwise multiplication, denoted (x, e
√
−1θ) 7→ xe

√
−1θ.

A point x ∈ X is a pair x = (p, λ), where λ is a linear functional on Lp, and the S1 action is

xe
√
−1θ = (p, λ)e

√
−1θ = (p, e

√
−1θλ).

On X , we have a globally defined vector field ∂θ, the generator of the S1 action. The span

of ∂θ defines a rank one subbundle T VX ∼= TS1 ⊂ TX , the vertical subbundle of the fibration

π : X →M . Moreover, (2.7) holds for T = ∂θ.

For m ∈ Z, the space C ∞(X,Lm) of smooth sections of Lm can be identified with the space

m-equivariant smooth functions

C
∞(X)m = {f ∈ C

∞(X,C) : f(xe
√
−1θ) = e

√
−1mθf(x), for e

√
−1θ ∈ S1, x ∈ X}

by

C
∞(X,Lm) ∋ s 7→ f ∈ C

∞(X)m, f(x) = f(p, λ) = λ⊗m(s(p)), (2.13)

where λm = λ⊗m for m ≥ 0 and λm = (λ−1)⊗(−m) for m < 0. Through the identification

(2.13), the holomorphic sections correspond to CR functions as follows:

H0(X,Lm) ∼= H0
b,m(X) := {f ∈ C

∞(X)m : ∂bf = 0}. (2.14)

We construct now a Riemannian metric on X . Let gTM be a J-invariant metric on M . The

Chern connection ∇L on L induces a connection on the S1-principal bundle π : X → M , and

we let THX ⊂ TX be the corresponding horizontal bundle. Let gTX = π∗gTM ⊕ dθ2

4π2 be the

metric on TX = THX ⊕ TS1, with dθ2 the standard metric on S1 = R/2πZ.
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Pertaining to gTX , we construct the L2 inner product 〈 · , · 〉X given by (2.9) on X . The

metric gTM induces a Riemannian volume form dvM on M , which, together with the fiber

metric hLm

, gives rise to an L2 inner product 〈 · , · 〉m on C∞(X,Lm). Then the isomorphism

(2.13) becomes an isometry (C∞(M,Lm), 〈 · , · 〉m) ∼= (C ∞(X)m, 〈 · , · 〉X), and accordingly, an

isometry L2(M,Lm) ∼= L2(X)m, where the latter space is the completion of (C ∞(X)m, 〈 · , · 〉X).

Moreover, (2.13) induces an isometry

(H0(M,Lm), 〈 · , · 〉m) ∼= (H0
b,m(X), 〈 · , · 〉X). (2.15)

The S1-action gives rise to a Fourier decomposition L2(X) ∼=
⊕̂

m∈Z
L2(X)m and this induces

the following decomposition at the level of CR functions:

H0
b (X) ∼=

⊕̂
m∈Z

H0
b,m(X) ∼=

⊕̂
m∈Z

H0(M,Lm). (2.16)

Let ω0 be the connection 1-form onX associated to the Chern connection ∇L. Then ω0(∂θ) = 1,

and thus (2.7) and (2.8) are fullfiled and T = ∂θ is a characteristic vector field on X and ω0 is

a characteristic 1-form for the CR structure on X . Moreover,

dω0 = π∗(
√
−1RL), (2.17)

where RL is the curvature of ∇L. On account of (2.6), X is strictly pseudoconvex at x ∈ X if

and only if (L, hL) is positive at π(x) ∈ M . In particular, if (L, hL) is positive on M , X is a

strictly pseudoconvex CR manifold, ω0 is a contact form, and ∂θ is the associated Reeb vector

field. Note also that in this case, by the Kodaira vanishing theorem, H0(X,Lm) = 0 for m < 0,

so the decomposition (2.16) becomes

H0
b (X) ∼=

⊕̂
m∈N

H0
b,m(X) ∼=

⊕̂
m∈N

H0(M,Lm). (2.18)

2.3 [Q,R] = 0 on CR manifolds

Let (X,HX, J) be a compact connected and orientable CR manifold of dimension 2n+ 1,

n ≥ 1, and let ω0 be a characteristic 1-form.

Let G be a d-dimensional compact Lie group with Lie algebra g. We assume that G acts

smoothly on X and that the G-action preserves J and ω0.

Definition 2.1 The moment map associated to the characteristic 1-form ω0 is the map

µ : X → g
∗ defined by

〈µ(x),K〉 = ω0(K
X(x)) , x ∈ X, K ∈ g . (2.19)

Let ι : Y := µ−1(0) → X be the natural inclusion and let ι∗ : Ω•(X) → Ω•(Y ) be the

pull-back of differential forms by ι. Let π : Y → Y/G be the natural projection.

Theorem 2.2 If G acts freely on Y = µ−1(0) and the Levi form is positive on µ−1(0),

then the reduced space XG = Y/G is a strictly pseudoconvex manifold with contact form ω0,G

satisfying ι∗ω0 = π∗ω0,G. Moreover, we can choose the characteristic vector field T (cf. (2.7),

(2.8)) such that T |Y ∈ C∞(Y, TY ) and T is G-invariant.

The space XG is called the CR reduction. Under our hypotheses, if dimXG ≥ 3, XG is

a strictly pseudoconvex CR manifold with characteristic 1-form (in this case also the contact

form) ω0,G induced canonically by ω0. If dimXG = 1, then each of the finitely many components

of XG is diffeomorphic to a circle.

We will mainly work in the following setting:
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Assumption 2.3 The G-action preserves the complex structure J on HX and the char-

acteristic 1-form ω0, is free on µ−1(0), and one of the following conditions are fulfilled:

(i) dimX ≥ 5, and the Levi form of X is positive definite near µ−1(0);

(ii) dimX = 3, and the Levi form of X is positive definite everywhere and ∂b has closed

range in L2 on X .

If dimXG ≥ 3, let ∂b,XG
: C ∞(XG) → Ω0,1(XG) be the tangential Cauchy-Riemann

operators on XG. We consider the spaces of L2 CR functions

H0
b (XG) :=

{
u ∈ L2(XG) : ∂b,XG

u = 0
}
. (2.20)

If dimXG = 1, XG is a finite union of circles, and we set H0
b (XG) to be the direct sum of the

Hardy spaces of the components, that is, the L2 subspaces of functions with vanishing Fourier

coefficients of negative degree. The common feature of the spaces H0
b (XG) for dimXG ≥ 3 and

dimXG = 1 is the fact that they are boundary values of holomorphic functions in a filling of

XG by a complex manifold.

Note that H0
b (X) is a (possible infinite dimensional) G-representation, so its G-invariant

part is formed by the G-invariant L2 CR functions on X ,

H0
b (X)G :=

{
u ∈ H0

b (X) : h∗u = u, for any h ∈ G
}
. (2.21)

For every s ∈ R, let Hs(X) and Hs(XG) denote the Sobolev space of X of order s and the

Sobolev space of XG of order s, respectively. For every s ∈ R, put

H0
b (X)s :=

{
u ∈ Hs(X) : ∂bu = 0 in the sense of distributions

}
,

H0
b (XG)s :=

{
u ∈ Hs(XG) : ∂bu = 0 in the sense of distributions

}
.

(2.22)

If dimXG = 1, we set H0
b (XG)s to be the direct sum of the Hardy-Sobolev spaces of the

components, that is, the subspaces ofHs(S1) of distributions with vanishing Fourier coefficients

of negative degree.

Let ιG : C∞(Y )G → C ∞(XG) be the natural identification. Let

σG : H0
b (X)G ∩ C

∞(X)G → H0
b (XG), σG = ιG ◦ ι∗. (2.23)

The map (2.23) is well defined; see the construction of the CR reduction in Section 2.3. The

map σG does not extend to a bounded operator on L2, so it necessary to consider its extension

to Sobolev spaces.

Theorem 2.4 ([7]) Let X be a compact orientable CR manifold and let G be a compact

Lie group acting on X such that the G-action preserves J and ω0 and that Assumption 2.3

holds. Suppose that ∂b,XG
has closed range in L2. Then, for every s ∈ R, the σG extends by

density to a bounded operator

σG = σG,s : H0
b (X)G

s → H0
b (XG)s− d

4
, for every s ∈ R, (2.24)

and it is Fredholm. Actually, Ker(σG,s) and (Im(σG,s))
⊥ are finite dimensional subspaces

of C∞(X) ∩ H0
b (X)G and C∞(XG) ∩ H0

b (XG), respectively, and Ker(σG,s) and the index

dimKer(σG,s) − dim (Im(σG,s))
⊥ are independent of s.

This operator σG can be thought as a Guillemin-Sternberg map in the CR setting. It maps

the “first quantize and then reduce” space (the space of G-invariant Sobolev CR functions on

X) to the “first reduce and then quantize” space (the space Sobolev CR functions on XG).
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Under Assumption 2.3 (i), the hypothesis that dimX ≥ 5 is used in order to have local

subelliptic Sobolev estimates on the set where the Levi form is positive definite and leads to

the fact that the G-invariant Kohn Laplacian has closed range in L2. Note also that the Kohn

Laplacian on strictly pseudoconvex CR manifolds of dimension greater than or equal to five

always has closed range in L2 but this is not true for all three dimensional strictly pseudoconvex

CR manifolds.

We turn now our attention to Sasakian manifolds. Let (X,T 1,0X) be a compact connected

Sasakian manifold, i.e., the metric cone (C(X) = R+×X, dr2+r2gω0) is a Kähler manifold. We

fix a contact form ω0 and an associated Reeb vector field R (defined by iR ω0 = 1, iR dω0 = 0).

We assume that

R is G-invariant. (2.25)

Then the R-action preserves HX , J and the natural metric gω0 on TX . As X is compact, this

implies that the R-action generates a compact torus T-action on X and this T-action commutes

with the G-action. This naturally induces a T-action on XG and the generator R induces the

Reeb vector field R̂ on XG. It is clear that XG is also a compact Sasakian manifold and that

R̂ preserves the CR structure T 1,0XG, and that R̂, T 1,0XG ⊕ T 0,1XG generate the complex

tangent bundle of XG.

Now H0
b (X)G and H0

b (XG) are both T-Hilbert spaces, so we have the decomposition of

Hilbert spaces via the weight α ∈ T
∗(≃ Z

dim T) of T-action:

H0
b (X)G =

⊕

α∈T∗

H0
b,α(X)G, H0

b (XG) =
⊕

α∈T∗

H0
b,α(XG). (2.26)

Both H0
b,α(X)G and H0

b,α(XG) are finite dimensional subspaces of C ∞(X)G and C ∞(XG),

respectively, as subspaces of the eigenspaces of the elliptic operators ∂
∗
b,X∂b,X−R2, ∂

∗
b,XG

∂b,XG
−

R̂2, respectively, of eigenvalues |α(R)|2. From (2.23), we see that

σGRu = R̂σGu, for any u ∈ H0
b (X)G, (2.27)

and hence σG maps H0
b,α(X)G to H0

b,α(XG). From this observation, Theorem 2.4, and the fact

that ∂b has closed range in L2 on Sasakian manifolds, we deduce:

Theorem 2.5 (Quantization commutes with reduction for Sasakian manifolds) Let X

be a Sasakian manifold. Assume that the Reeb vector field is G-invariant. Then with the

exception of finitely many α, the map

σG : H0
b,α(X)G → H0

b,α(XG) (2.28)

is an isomorphism.

We now apply Theorem 2.4 to the case of complex manifolds.

Theorem 2.6 Let M be a compact connected complex manifold, dimC M ≥ 2, and let

(L, hL) be a Hermitian holomorphic line bundle over M . Let G be a compact Lie group acting

holomorphically on M , whose action lifts to (L, hL). Suppose that
√
−1RL is positive near

µ−1(0) and that G acts freely on µ−1(0) with µ : M → g
∗ in (1.13). Then, for m large enough,

the canonical map between H0(M,Lm)G and H0(MG, L
m
G ) by restriction is an isomorphism, in

particular,

dimH0(M,Lm)G = dimH0(MG, L
m
G ). (2.29)
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If L is positive on the whole M , Theorem 2.6 is a weaker version of Theorem 1.6, which

holds for any m ∈ N∗.

Inspired by Theorem 1.6, we expect that σG in Theorem 2.4 is in fact an isomorphism if X

is a compact strictly pseudoconvex CR manifold.
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