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An arithmetic Lefschetz—Riemann—Roch theorem
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with an appendix by Xiaonan Ma

ABSTRACT

In this article, we consider regular projective arithmetic schemes in the context of Arakelov
geometry, any of which is endowed with an action of the diagonalizable group scheme associated
to a finite cyclic group and with an equivariant very ample invertible sheaf. For any equivariant
morphism between such arithmetic schemes, which is smooth over the generic fiber, we define a
direct image map between corresponding higher equivariant arithmetic K-groups and we discuss
its transitivity property. Then we use the localization sequence of higher arithmetic K-groups
and the higher arithmetic concentration theorem developed in Tang (Math. Z. 290 (2018) 307—
346) to prove an arithmetic Lefschetz-Riemann-Roch theorem. This theorem can be viewed as
a generalization, to the higher equivariant arithmetic K-theory, of the fixed-point formula of
Lefschetz type proved by Kohler and Roessler (Invent. Math. 145 (2001) 333-396).
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1. Introduction

The aim of this article is to prove an arithmetic Riemann—Roch theorem of Lefschetz type
for the higher equivariant arithmetic K-theory of regular arithmetic schemes in the context
of Arakelov geometry. This theorem is an arithmetic analogue of a special case of Kock’s
Lefschetz theorem in higher equivariant K-theory (cf. [23]), and it also generalizes Kohler—
Roessler’s Lefschetz fixed point formula [24, Theorem 4.4] to the case where higher arithmetic
K-groups are concerned. To make things more explicit, let us first recall the study of such
Lefschetz—Riemann—Roch problems.

Let X be a smooth projective variety over an algebraically closed field k, and suppose that
X is endowed with an action of a cyclic group (g) of finite order n such that n is prime to the
characteristic of k. A (g)-equivariant coherent sheaf on X is a coherent Ox-module F on X
together with an automorphism ¢ : g*F — F such that ¢" is equal to the identity map. Then
the classical Lefschetz trace formula gives an expression of the alternating sum of the trace of
H'(y) on the cohomology space H'(X, F'), as a sum of the contributions from the components
of the fixed-point subvariety X,. For k = C, the field of complex numbers, such a Lefschetz
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trace formula was presented via index theory and topological K-theory in [1, III]. While for
general k, a Grothendieck-type generalization to the scheme theoretic algebraic geometry is
very natural to expect. Precisely, denote by K(X, ¢g) the Grothendieck group of the category of
equivariant locally free coherent sheaves on X, then K((Pt,g) is isomorphic to the group ring
Zlg) 2 Z[T)/(1 —=T™) and Ky(X,g) has a natural Ky(Pt, g)-algebra structure (Pt stands for
the point Spec(k)). Let Y be another (g)-equivariant smooth projective variety, let f : X — Y
be a projective morphism compatible with both (g)-actions on X and on Y, then we have a
direct image map f, : Ko(X,g9) = Ko(Y,g) given by

EHZ )R f.(E).

20

Unsurprisingly, the direct image map f. does not commute with the restriction map
T: Ko(-,9) = Ko((+)g,9) from the equivariant Ko-group of an equivariant variety to the
equivariant Ky-group of its fixed-point subvariety. Namely, the restriction map 7 is not a
natural transformation between the covariant functors Ky(-, g) and Ko((-)4, ). Like the other
Riemann—Roch problems, the Lefschetz—Riemann—Roch theorem makes a correction of 7 such
that it becomes a natural transformation. In fact, for any (g)-equivariant smooth projective
variety X, let Ny, x, stand for the normal bundle associated to the regular immersion
Xy < X and let /\,1(N)V(/Xg) be the alternating sum > (—1)7 A/ N)V(/Xg7 then A,l(N)\g/Xg)
is an invertible element in Ko(Xg,g) ®z(y R, where R is any Z[g]-algebra in which 1 —T*
is invertible for k =1,...,n —1. We formally define Lx : Ko(X,g) = Ko(X,,9) @z R as
AT1(NY /X, ) - 7, the Lefschetz—Riemann-Roch theorem reads: the following diagram

Ko (X g) *> Ky Xg7g) ®Z[g

lf* . (1)
Ko (Y g) — Ky Ygag) ®Z[g

is commutative.

This commutative diagram (1) was presented by Donovan in [19], and later it was generalized
to singular varieties by Baum, Fulton and Quart in [2]. Note that the settings in [2, 19] are
more general than that in this introduction. The reasoning in the first paper runs similarly to
the technique used in Borel-Serre’s paper [15], while the reasoning in the second paper relies
on the deformation to the normal cone construction. These two processes are both traditional
for producing the Grothendieck-type Riemann—Roch theorem.

After Quillen and other mathematicians’ work, algebraic K-groups are extended to higher
degrees and the higher (equivariant) algebraic K-groups of X are defined as the higher
homotopy groups of the K-theory space associated to the category of (equivariant) locally
free coherent sheaves on X. There are many methods to construct this ‘K-theory space’, but
no matter which construction we choose, the tensor product of locally free coherent sheaves
always induces a graded ring structure on Ko(X, g). In particular, each K,, (X, g) is a Ko(X, g)-
module. Moreover, the functor K,(-,g) is again covariant with respect to equivariant proper
morphisms. Then, for any m > 1, the following diagram for higher algebraic K-groups which
is similar to (1) does make sense:

L
Km(X7 g) — Km(ngg) ®Z[g] R

lf* lfg* (2)

L
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The commutativity of diagram (2), which is named the Lefschetz-Riemann-Roch theorem
for higher equivariant algebraic K-theory, was proved by Kock in [23]. The main ingredient is
an excess intersection formula whose proof also relies on the deformation to the normal cone
construction. Moreover, it is worth indicating that the commutative diagram (2), combined
with the Gillet’s Riemann-Roch theorem for higher algebraic K-theory (cf. [20]), implies a
higher Lefschetz trace formula.

In the field of arithmetic geometry, one considers those Noetherian and separated schemes
f: X — Spec(Z) over the ring of integers (actually over any excellent regular Noetherian
domain). In this context, it is possible to produce an analogue of the commutative diagram
(1), by endowing X with an action of the diagonalizable group scheme p,, = Spec(Z[Z/nZ])
of nth roots of unity rather than with the action of an automorphism of order n. Here, a p,,-
action on X is a morphism of schemes mx : pu,, X X — X which satisfies the usual associativity
property. The reason for this choice is that the fixed-point subscheme X, of a regular scheme
X equipped with an action of u, is still regular and the natural inclusion ix : X, — X is a
regular immersion, while the fixed-point subscheme of a regular scheme under an automorphism
of order n can be very singular over the fibers lying above the primes dividing n. By a p,-
equivariant coherent sheaf F' on X, we understand a coherent Ox-module F' together with an
isomorphism

mp:myF — pry F
of O, xx-modules which satisfies the following associativity property:
(pryzmp) o (1 x mx) mp) = (my, x 1) mp.

Here, m,, denotes the multiplication g, X p, = pin, Pry : ptn x X — X and Prys @ fin X
tn X X = p, x X denote the obvious projections. Under this situation, Baum—Fulton—Quart
method still works, so that the commutative diagram (1) holds for regular pu,-equivariant
schemes over Z.

In [35], Thomason used another way to do the same thing and he even got a generalization
of the commutative diagram (2) for regular p,-equivariant schemes. Thomason’s strategy
was to use Quillen’s localization sequence for higher equivariant algebraic K-groups to
show a concentration theorem. This theorem states that, after a suitable localization, the
equivariant algebraic K-group K,,(X,, ,un), is isomorphic to K,,(X,u,), for any m >0,
and the inverse map is exactly given by )\:%(N)\é / XH”) -i%. Here, p is any prime ideal in
R(py) := Ko(SpecZ, p,) = Z[T)/(1 — T™) which does not contain the elements 1 —T* for
k=1,...,n—1. For instance, p can be chosen to be the kernel of the natural morphism
Z[T)/1—=T") — Z[T]/(®,), where ®,, stands for the nth cyclotomic polynomial. Then the
Lefschetz-Riemann—Roch theorem for regular u.,-equivariant schemes

L
Km(X7 Mn) *X> Km(XMn ’ ﬂ”)ﬁ

lf* ifum (3)

L
Km(Y, ,Un) — Km(Yun ) ﬂn)p

follows from the covariant functoriality of K, (-, u,,) with respect to proper morphisms.

Now, let us turn to Arakelov geometry. Let X be an arithmetic scheme over an arithmetic
ring (D, X, F) in the sense of Gillet—Soulé (cf. [21]), then X is quasi-projective over D with
smooth generic fiber. We denote p,, := Spec(D[Z/nZ]) the diagonalizable group scheme over
D associated to a cyclic group Z/nZ. By saying X is p,-projective, we understand that X
is endowed with a projective u,-action. That means X is projective and there exists a very
ample invertible p,,-sheaf on X.
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For each regular pu,,-projective arithmetic scheme X, K. Kéhler and D. Roessler have defined
an equivariant arithmetic Ko-group Ko (X, u15,) in [24]. This arithmetic Ko-group is a modified
Grothendieck group of the category of equivariant hermitian vector bundles on X, it contains
some smooth form class on X, (C) as analytic datum. The same as the algebraic Ko-group
Ko(X, pin), I/(\O(X, tn) has a ring structure and it is an R(uy,)-algebra. Moreover, direct image
maps between equivariant arithmetic Kg-groups can be defined for an equivariant morphism
which is smooth over the generic fiber, by using Bismut—Ko&hler—Ma analytic torsion forms.
Choose a Kahler metric for X (C), and let WX/ x,, be the normal bundle endowed with the

quotient metric, then the main theorem in [24] reads: the element A_l(N;/( /x,, ) 18 a unit in

I/(\O(XM,M”),, and the following diagram

—~ Ap-T —~
Ko(X, pin) —_— Ko(Xpups tin)p

f*l \qun* (4)
Ko(D, in) . Ko(D, in),

is commutative, where p is any prime ideal in R(u,) which does not contain the elements
1—TF for k=1,...,n—1, Ap is defined as (1 — Ry(Nx/x, ) - AT1(Nx/x, ), and Ry(") is
the equivariant R-genus due to Bismut (see below).

Later, two refinements of (4) were presented by the author in [33] and in [32], respectively.
In [33], D was replaced by a general regular p,,-projective scheme Y. In [32], X was allowed to
have singularities on its finite fibers. The aim of this article is to show an Arakelovian analogue
of a special case of (3), in which the higher equivariant algebraic K-groups are replaced by
the higher equivariant arithmetic K-groups. Hence, our work is a generalization of Kohler—
Roessler’s Lefschetz fixed-point formula to the higher equivariant arithmetic K-theory.

Let us describe the main result more precisely. First, note that we have constructed a
group endomorphism ®)\,1(W§(/X“n) Ko, (Xps fn) = I?m(XMn, tn) and its formal inverse

®)‘j(ﬁ§(/x“ ): Ko, (Xps on)p — Ko, (Xu,, in), in [34, Section 5]. As what we stated before,
p is any prime ideal in R(u,) := Ko(SpecZ, pun) = Z[T]/(1 — T™) which does not contain
the elements 1 — T* for k=1,...,n — 1. For instance, p can be chosen to be the kernel of
the natural morphism Z[T]/(1 —T") — Z[T]/(®,), where ®, stands for the nth cyclotomic
polynomial. In this article, we shall further construct a group endomorphism R, (N x IRE

[A(m(XM,Mn) — I?m(X“n,,un) and we shall prove that this endomorphism Ry(Nx,x, )
is independent of the choice of the metric over Nx/,x, —after tensoring by Q. So, the
expression Ap = (1 — Ry(Nx/x,, )" )\:%(N;/(/X“ ) still makes sense as an endomorphism of
I?m(X 1 ) p © Q. Moreover, for any equivariant morphism f : X — Y between regular p,,-
projective arithmetic schemes, which is smooth over the generic fiber, we shall prove that there
exists a reasonable direct image map fi : K (X, pn) = K (Y, ) with m > 1 and we discuss
the transitivity property of the direct image maps up to torsion. Assume that the pu,-action
on Y is trivial and still use the notation 7 to denote the morphism

I?m((')a ,U,") — I?M((')/Lna ,u‘ﬂ)p & Q

z—71(z)®1,

Our main theorem reads: the following diagram

~ Ag-T ~
Ko (X, pn) ———— K (X, 110), © Q

f*l lfun* (5)

I?m(x Mn) — I?T’L(K Mn)ﬂ ®Q
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is commutative. In such a formulation, the equivariant R-genus again plays a crucial role.

To this aim, the definition of higher equivariant arithmetic K-groups and some reasonable
technique that can be carried out for higher equivariant arithmetic K-theory should be
clarified. We have settled these in [34]. In fact, we have defined the higher equivariant
arithmetic K-groups via the simplicial description of the Beilinson’s regulators (cf. [17]) and
we have developed a localization sequence as well as an arithmetic concentration theorem. So,
principally, we shall follow Thomason’s approach to prove the commutativity of (5), but the
fact that the direct image maps are only defined for the morphisms which are smooth over
the generic fibers will lead to a big gap comparing with the purely algebraic case. Some highly
non-trivial analytic machinery should be involved, such as the transitivity property of analytic
torsion forms and the Bismut-Ma immersion formula.

The Kohler—Roessler arithmetic Lefschetz fixed-point formula has fruitful applications in
number theory and in arithmetic geometry. One important reason is that the equivariant R-
genus is closely related to the logarithmic derivative of certain L-functions. K&hler—Roessler
and Maillot—Roessler have shown in [25] and in [29] that the Faltings heights and the periods
of C.M. abelian varieties can be expressed as a formula in terms of the special value of
logarithmic derivative of L-functions at 0. Further, in [28], Maillot—Roessler presented a series
of conjectures about the relation between several invariants of arithmetic varieties and the
special values of logarithmic derivative of Artin L-functions at negative integers. We hope that
our Lefschetz—Riemann—Roch theorem for higher equivariant arithmetic K-groups would be
helpful to understand these conjectures.

The structure of this article is as follows. In Section 2, we define the direct image maps
between higher equivariant arithmetic K-groups. As an opportunity, we recall the analytic
torsion for cubes of hermitian vector bundles introduced by Roessler in [30], actually our
construction is slightly different to Roessler’s construction. In Section 3, we discuss certain
transitivity property of the direct image maps, the relation of equivariant analytic torsion
forms with respect to families of submersions will be presented. In Section 4, we formulate and
prove the commutativity of the diagram (5), an accurate computation via the deformation to
the normal cone construction is given. In the last section, we attach an Appendix on some
properties of equivariant analytic torsion forms and immersion formula. These purely analytic
properties are crucial for the main arguments in this article, the author is very grateful to Prof.
Ma Xiaonan for writing this Appendix.

2. Higher equivariant arithmetic K-theory

2.1. Bott—Chern forms and arithmetic K-groups

Suggested by Soulé (cf. [31]), and also by Deligne (cf. [18]), the higher arithmetic K-groups
of an arithmetic scheme X can be defined as the homotopy groups of the homotopy fiber of
Beilinson’s regulator map, so that one obtains a long exact sequence

~ ~

e K (X) ——= K (X) == @50 HY " (X, R(p)) —= K1 (X) —= -+,

where H} (X, R(p)) is the real Deligne-Beilinson cohomology and ch is the Beilinson’s regulator
map. In order to do this, a simplicial description of Beilinson’s regulator map is necessary.
In [17], such a simplicial description was given by Burgos and Wang by using the higher
Bott—Chern forms. Recently, in [34], we followed Burgos—Wang approach to define the higher
equivariant Bott—Chern forms and further the higher equivariant arithmetic K-theory. In this
subsection, we shall recall some relevant constructions and definitions, for more details the
reader is referred to [17, 34].
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At first, let X be a smooth algebraic variety over C. In this subsection, we shall work
with the analytic topology of X. Denote by Ef;g(X ) the complex of differential forms on
X with logarithmic singularities along infinity (cf. [34, Definition 2.1]), then Ej (X) has

a natural bigrading Efég(X )=Prigen Eﬁ)g (X) and this grading induces a Hodge filtration

FpE{(L)g(X) =& p'>p Elza))g,q (X). Write Elog ]R(va) = (QWi)pEl*og ]R(X) with El*og ]R(X) the
W : : ;

subcomplex of Ef, (X) consisting of real forms, then we have a decomposition Ej,(X) =

Bl v(Xop) ® B, g(X,p—1) and the projection m, : By, (X) — Ef, x(X,p) is given by

mp(z) = 5 (2 + (=1)PT). Moreover, for any z € E!,(X), we define two filtered functions

i ’
E 2b0 and FFz = E bl
1>k, >k I>k

Then we set 7(x) := m,_1 (F"PHLn=ply),
The main result in [16, Section 2] states that the following Deligne complex

E{(L)g %@( )m @P ‘%<>q/*n<1 lzz)gq (X), n < 2p;
n p'<p,q'<p
D" (Elog(X),p) = hy
El%g,R(va> ﬂ @ p'+q’=n Elog (X)7 n 2 2p,
p'2p,q' 2p

with differential
—7(dx), n<2p-—1;
dpr =<{ —200x, n=2p—1;
dx, n>2p—1.

computes the real Deligne-Beilinson cohomology of X. Namely, one has
Hp(X,R(p)) = H" (D" (Elog(X), p))-
We shall write D*(X, p) := ©*(Ejos(X),p) for short.

REMARK 2.1. (i) According to the definition, the real Deligne—Beilinson cohomology of X
at degrees 2p and 2p — 1 are given by

H(D (Biog(X).p)) = {z € BLZ(X) N B2 (X.p) | dr = 0}/Im(9D)

log
and
H2[)—1(©*(Elog(X),p)) ={z e Eﬁng 1(X) N Eﬁoffgfﬂg(x,p —1)| 00z = 0}/(Im 9 + Im ).

(ii) Let z € D™(X,p) and y € D™(X,q), we write | =n +m and r = p+ ¢. Then

(=D)"rp(z) Ay +x Arg(y), n < 2p,m < 2q
cey— d TEAY), n<2p,m>2q,1<2r
Y=Y Frr(rp(e) Ay) +2m0((x Ay) =57, n < 2p,m > 2q,0 > 2r

T Ay, n = 2p,m = 2q

induces a product on EB D*(X,p) which is graded commutative and is associative up to
chain homotopy. Here, rpx = 27, (FPdz) if n < 2p — 1 and rpz = = otherwise. At the level of
cohomology groups, this product coincides with the product defined by Beilinson. Note that if
x € D?"(X,p) is a cocycle, then for all y, z we have ey =yerand ye (ze2) = (yex)ez =
ze(yez).

In order to introduce the higher Bott—Chern form, let us construct a new complex 5*(X ,D)
using the cocubical structure of the cartesian product of projective lines (P')". This complex
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D*(X,p) has the same cohomology groups as D*(X, p). First, one note that D*(X x (P!)", p)
form a cubical complex with face and degeneracy maps

d] = (Id x d2)* and s; = (Id x s')",
where
di: (PP — (PHM, i=1,... k=01,
st (PHY — (PHYL i=1,.. .k,

which are given by

dé(ﬂh,...,l‘k) = (xla"'axi—lv(o : 1),$i,. "a'rk‘)v
di(z1,. . xp) = (21, i1, (1:0), 24, ..., 28,
si(xl,...,mk) = (1‘1,...,xi_1,$i+1,...,xk)

are the coface and the codegeneracy maps of (P!). Then we write Dg,*k(X ,p) = D"(X x
(P1)=k,p) and denote by Dy (X, p) the associated double complex with differentials

d =dp and d’"=>) (-1)"7"'d.

Next, let (z : ) be the homogeneous coordinates of P!, and let w = 99 log =L € (27i)E2,

rxr
be a Kéhler form over P*. We shall write w; = pjw € B (X x (PHY*), where p; : X x (P)F —
P',i=1,...,k is the projection over the ith projective line. The complex 5*(X, p) is
constructed by killing the degenerate classes and the classes coming from the projective spaces.

DEFINITION 2.2. We define D* (X, p) as the associated simple complex of the double complex
D**(X,p) which is given by

—k
DH(X,p) = DE(X,p)/ 3 s:(DEF (X p) ) @i hosi(DF > (X p = 1)),

i=1
The differential of this complex will be denoted by d.

A repetition of the proofs of [17, Proposition 1.2, Lemma 1.3] gives that the natural morphism
of complexes

v: D*(X,p) = D*°(X,p) — D*(X,p)

is a quasi-isomorphism. R

Now, let X be a smooth pu,,-projective variety over C and denote by U := P (X, u,,) the exact
category of u,-equivariant vector bundles on X equipped with p,,-invariant smooth hermitian
metrics. We consider the exact cubes in the category U. By definition, an exact k-cube in U
is a functor F from (—1,0,1)*, the kth power of the ordered set (—1,0,1), to U such that for
any a € (—1,0,1)*~ and 1 < i < k, the 1-cube 9 defined by

‘7:041-,--»,047:—17—1-,067:7~~--,£¥k71 ? ]:01,.---,6!7,—1,0,017,7---7041@71 ? ‘7:041-,--»,047,—171-,047:7~~--,0tk71

which is called an edge of F is a short exact sequence. From now on, we shall write cubes
instead of exact cubes for short. Let F be a k-cube in U, for 1 <i < k and j € (—1,0,1), the
(k = 1)-cube 9] F defined by (8 F)a,....an1 = Fourcviorjicvirman_ 18 called a face of F. On
the other hand, for any 1 < i < k + 1, we denote by S} F the (k + 1)-cube

0, a; = 1,

‘F(xl,...,ai,l,(17-,+1,...,(yk+17 Qg ?é 1,

(Sz‘lf)a1,.-->ak+1 = {
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such that the morphisms (S} F)a,,..ai 1.~ Lawisarss = (STF ot o 1.0,0141. are the
identities of (S!F)ay, . ar 1,ai1,anss- Similarly, we have (k + 1)-cube S; ' F.

Denote by CrU the set of all k-cubes in U, then we have the face maps 87] :ClU — Cr U
and the degeneracy maps SZ : Ckd = Cr1U. The cubes in the image of SZ are said to be
degenerate. Let ZCyU be the free abelian group generated by CiUf and Dy be the subgroup of

ZCwU generated by all degenerate k-cubes. Set ZCyU = ZCrU /Dy, and

k41

d:

k
1=

1
(=10 ZOWU — ZCk U
j=—1

1j=—

Then ZC,.U = (ZCU, d) is a homological complex.

Assume that E is a hermitian k-cube in the category U = 73(X ,fin). If E is an emi-cube,
namely the metrics on the quotient terms in all edges of E are induced by the metrics on the
middle terms (cf. [17, Definition 3.5]), one can follow [17, (3.7)] to associate a hermitian locally
free sheaf trj,(E) on X x (P!)*. This try(E) is called the k-transgression bundle of E. If k = 1,
as an emi-1-cube, F is a short exact sequence

O E,1 4 E() El O )

where the metric of E is induced by the metric of Ey. Then tr;(E) is the cokernel with quotient
metric of themap F_1 — E_1 @ O(1) ® Ey ® O(1) by therule e_; — e_1 ® 00c @ i(e_1) ® 0.
Here, o (respectively, o) is the section of the tautological bundle O(1) on P! which vanishes
only at 0 (respectively, oo), and O(1) is endowed with the Fubini-Study metric. If k& > 1,
suppose that the transgression bundle is defined for k& — 1. Let tr;(E) be the emi-(k — 1)-cube
over X x P! given by tr1(E), = tri(0{(FE)), then try(E) is defined as try_; (tr(E)).

Moreover, according to [17, Proposition 3.6, for any hermitian cube E in the category U,
there is a unique way to change the metrics on E, for a & 0 such that the obtained new
hermitian cube is emi. In fact, for i = 1,..., k, define A} E to be

_ FEq,he), ifa; =-—1,0;
()‘%E)a = ( ) .
(B, hl), ifa;=1,

where h/, is the metric induced by ha,,....a; 1,0.0 an- Thus, Al E has the same locally free

i it lyeens o
sheaves as E, but the metrics on the face 8] E are induced by the metrics of the face 9{E. To
measure the difference between E and A} E, let )\;i(E) be the hermitian k-cube determined by
07N} (E) = O} E, 00X} (E) = 0} \}(E), and O} X} (E) = 0. Set A\; = Al + A7, A= Ao+ 0 Ay if

k > 1 and A = Id otherwise. Then the map A induces a morphism of complexes
ZCU — ZC™Y

which is the quasi-inverse of the inclusion ZCﬁmiZ/I — ZC.U. To specify the p,-equivariant
variety X, we shall write ZC\ (X, ) := ZC.U.

DEFINITION 2.3. Fix a primitive nth root of unity (,, the restriction of an equivariant
hermitian vector bundle F' |x, over the fixed-point subvariety splits into a direct sum &, F,

where Fj is the eigenbundle of F'|x, corresponding to the eigenvalue (nl. Let K; be the

curvature form with respect to the unique connection on F'; compatible with both the hermitian
and the complex structure, the equivariant Chern—Weil form associated to F' is defined as

hO(F) = 3 ¢ Tr(exp(~ K2)).
=1
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Define R, =R if n =1 and R, = C otherwise, denote V @g R,, by Vg, for any real vector
space V, the equivariant higher Bott—Chern form associated to hermitian k-cube E is defined
as

k(E 0
Chg(E) = Chg(trk @D /Ln7p 2])]
p=0
DEFINITION 2.4. Let F' |x, = @], F be the restriction of an equivariant hermitian vector

bundle over the fixed-point subvariety, where [ is the eigenbundle of F' [x, ~corresponding to
the eigenvalue ¢,' and K is the curvature form of F;. The equivariant Todd form is defined

as
Td,(F) = det(l — eKﬂ) Hdet(l o e}q)

When X is proper, Burgos and Wang gave in [17, Section 6] a quasi-inverse ¢ :
5*(X,p) — D*(X,p) of the quasi-isomorphism ¢ : D*(X,p) — 5*(X,p). By means of this
quasi-inverse, the equivariant higher Bott—Chern form has another expression with value in
®D,>0 D" (Xy,,p)[2p]r, . To see this expression, let us set z = z/y which defines the coordinate

map C — P{. by sending 2z — [2,1]. Then log | z | defines an L' function on P{, which can be
considered as a current. We shall denote by log | z; |,...,log | z | the corresponding currents
on (PL)%. These currents can be formally considered as elements in D((P%)*,1), and they
satisfy the following differential equation

dp log | Zj = _28510g | Zj |= _Qiﬂ((sﬂj’éxﬂl’%xn»x{oo}x---xP}: - 6P%><IP%><»--><{O}><~--><]1”%)’

where oo and 0 stand at the jth place. Let u, ..., u), be k elements in @, D*~'(:,p), we
define an element in P, D?=k(..p) by the formula

k—1
Cr(ug, ... ug) = — (—;) Z (=1)7ug(1) ® (Ug(2) ® (- Uo)) - ),

gES

where &, stands for the kth symmetric group. Then we have

dpCr(u1, ... ,ux) = <—)/€Z J 1dD (uj) @ Cr1(u,. .., ay,...,uy)

k
= ()kz 17 dp (u) A Cr_1(un, .. Ty u). (6)

We refer to [30, Lemma 2.9] for a proof of these identities. With the above notations, the
equivariant higher Bott—Chern form associated to a hermitian k-cube E with k > 0 is given by
the expression

_ (—1)F 2
ot (®)) :%!(%i)k/@l)k e (B) A Ci(log | = ... log | 2 ).

THEOREM 2.5. The equivariant higher Bott—Chern forms induce a morphism of complexes

ch otr.

LC* (X, in) — LCH (X pin) ——= @0 D* (X, 9) 205, — = D50 D*(Xpu . 0)[20] ..,

which is denoted by ch,. Here, ZC’*(X ) and ZC*

emi

(X, p,) are the (cohomological)
complexes associated to the homological complexes ZC, (X, pn) and ZCem‘(X )
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Specify to the case k =1,let £: 0 = E_; = Ey — E; — 0 be a hermitian 1-cube, then
1
dpch, (& )dp(4m/P ch) (tr1(A(€))) log | 2 |2)

= Chg(E()) — Chg(Efl) — Chg(El).
If £ is split, by replacing z by 1/z, we know that

N )
chy(8) = 1 /P ch? (tr; (M) log | = |2
1 07 2 1 0 E—l(l)@E—l(l) 2
= 1 chg (E1(1))log | z | Y /]P)1 chg( o log | z |
0.

Let ch'g denote the usual equivariant Chern—Weil forms with the factor 27 inside

-K;
ch/ Z CalTr (exp ))
and let ® be an operator acting on 2n-forms by ®(«) = (27i) " «. Then

P (chy(E)) = chy(E)
and

90
2mi

This means, after a rescaling, ch,(&) satisfies the axiomatic conditions for a theory of
unique equivariant secondary Bott—Chern classes [24, Theorem 3.4] (see [9, §1, (f)] for
the non-equivariant case). Note that in [9], the authors used the supertraces of Quillen’s

ZZ (2®(chy (£))) = o, (Eo) — ch,(E_y) — chl, (Ey).

superconnections to define the non-equivariant secondary Bott—Chern form ch. Split & |x,
into a direct sum of short exact sequences of its eigenbundles ©;' ;&; and define

=Y Gileh(a).
=1

Then we get another way, using the supertraces of Quillen’s superconnections, to define the
equivariant secondary Bott—Chern form ch,(€) which satisfies the equation

00 ~ - - -
27TZCh ( ) = Ch/g(E()) — Ch/g(Efl) — Ch;(El)

So, 2®(ch,(€)) must be equal to Ch 4(8) modulo Im 8 + Im 8. Let us write 2®(chy(&)) — ch g(6) =
8A3( 5) 4+ OA;(2), the following theorem states that Ay(£) and A;(£) can be chosen to admlt
some functorial property.

THEOREM 2.6. Let notations and assumptions be as above. There is a functorial choice of
the differential forms Agy(€) and A;(g) such that
2®(chy(2)) — chy(2) = O, (E) + DA, (&)
and that Ay(5%€) = 7% Ay (&), A5(j*€) = j*A5(&) for any equivariant morphism j : X' — X.
Proof. For hermitian 1-cube £: 0 — E_; — Ey — E; — 0, we divide it into two emi-1-
cubes

£1:0—=FE 1 —Ey—E; =0
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and
E0:0—=E; — E; -0—0,

where Ef is F; endowed with the quotient metric. According to the definition of the morphism
A, the higher Bott—Chern form is additive chy (&) = chy(&1) + chy(é2). To study the secondary
Bott—Chern form constructed by the supertraces of Quillen’s superconnections, we write down
a double complex

0 0 0
0 ol F o 0
0 Jol Fo B 0 (7)
0 0 0 0 0

0 0 0

Restrict every bundle over X, and split it into the direct sum of eigenbundles, then one
can immediately repeat the argument given in [9, Theorem 1.20] (Where the non-equivariant
bundles were dealt with) to write down a proof of the fact that ch 4(&) = ch g(&1) + ch ¢(82)
modulo Im & + Im 9. In the proof of [9, Theorem 1.20], the error terms were explicitly written
down and were functorial (see [9, (1.71), (1.72), (1.78), (1.81) and (1.82)]). That means one
can fix a functorial choice of dlﬁerentlal forms A} (€) and A(¢) such that

chy(2) — (chy(1) + chy(2) ) = DA} (2) + DA)(E).

So, we may reduce our proof to the case, where € is an emi-1-cube.
Now, we consider the following exact sequence on X x P!

U0 By M27=%19 B (1)@ By(1) tr1 (2) 0,

we compute, using the fact that [, chy(E_1)log |z |=0, [5 chy(E_1(1) ® Eg(1))log |z |=0
and the Stokes formula,

20(ch,(2) = [ B(chy (i (@) log | =

_ 88 2
= leh( )log | z |
1 _ -
(8X +0.)(0x + 0.)chy(¥)log | = |2
27rz
= 8x0 i/éh()lom? +ox (= 3ch()lo|z|2
X 2w Pl & X\ omi &

—5X<./Plaz<§1( )log|z|2>+/880h( Yog | z |2
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- i_ chy (9)0.0. log | = |> +0xdx (1/ chy(¥)log | 2)
Pl 277'& Pl

271

1 . D = (1 ~ )
+ Ox (2m . 0.chy (V) log | z | > —Ox (27” /]P>l 0.chy (V) log | z | ) .

Set
_ 1 ~
Aa(a):ax(,/ ch()logz|2)+/8ch Ylog | 2 |2
21 Pl
and
Aj h, (0) 1 2
o6) = =5 [ 9-chy ()10 | 2 .
We get

20(chy(8)) = ch (¥ | x x{o0}) — ch (¥ [xxq0y) +0As(E) + 0A5(2).
By the construction, ¥ | Xx{o} is split and ¥ | X x{oo} is isometric to the direct sum of & and
a split exact sequence 0 - 0 — F_; — E_; — 0, we finally have
2B (chy (£)) — chy () = DAH() + DA5(2).

Since the 1-transgression bundle construction W is functorial, the differential forms Ay(¢) and
Aj5(¢) associated to chg( ) are also functorial, thus we complete the whole proof. O

REMARK 2.7. (i) According to Theorem 2.6, we can make a functorial choice of differential
forms Ap(g) and A5(¢) for any hermitian 1-cube & such that

20 (ch, (2)) — chy(8) = AH(E) + DA,(2).

Set A(&) = —fb’l(w), then A(Z) is functorial and by the definition of the Deligne
complex D*(Eiog(X), p) we have

chy(8) — ! <Chg2(€)> = —7((0+ 0)AE)) = dpA(2).

(ii) It is easily seen from the proof of Theorem 2.6 that if one uses another way to define the
equivariant Bott—Chern form chg which satisfies the axiomatic conditions in [9, Theorem 1.29]
(at the level of differential forms) and which is additive for direct sum of short exact sequences,
then one can also make a functorial choice of element A(€) for any hermitian emi-1-cube &

such that
chy () — @' <<;}1g2(5)> = dpA(?).

If X is a regular u,-projective arithmetic scheme over an arithmetic ring (D, X, Fi, ), we shall
denote X := (X(C), Fio) the real variety associated to X, where Fi is the antiholomorphic
involution of X(C) induced by the conjugate-linear involution F, over (D,X, F..). For any
sheaf of complex vector spaces V' with a real structure over Xg, we denote by o the involution
given by

w = Fx (w).

Write D*(Xg,p) := D*(X(C),p)? for the subcomplex of D*(X(C),p) consisting of the fixed
elements under o, we define the real Deligne—Beilinson cohomology of X as

Hp(X,R(p)) := H* (D" (X, p))-
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Let us denote by 73(X , i) the exact category of p,-equivariant hermitian vector bundles on
X, and by S(X, j1,) the simplicial set associated to the Waldhausen S-construction of P(X, 1i,,)
(cf. [34, Section 2.3]). The forgetful functor (forget about the metrics)  : P(X, pin) = P(X, i)
induces an equivalence of categories, so we have homotopy equivalence

| S(X, pn) =] S(X, pn) |
and isomorphisms of abelian groups
Km(Xa /J'n) = 7rm+l(| S(X7 /’Ln) |a 0)
for any m > 0. To give the simplicial description of the equivariant regulator maps, we associate
to each element in SyP(X, ) a hermitian (k — 1)-cube. First, note that an element A in
SkP(X, pr,) is a family of injections
Agq — Apo— = Ao

of pi,-equivariant hermitian vector bundles on X with quotients A; ; ~ Ay /Ao ; for each i < j.
For k =1, we write

Cub(AO,l) = AO,I-
Suppose that the map Cub is defined for all I < k, then CubA is the (k — 1)-cube with
Oy 'CubA = sp_y -+~ 51(Ao 1),

0y CubA = Cub(9yA).

Let Z:S';(X, i) be the simplicial abelian group generated by the simplicial set §(X, ),
and let N(ZS'\*(X, f1r)) be the Moore complex associated to ZS, (X, ) with differential d =
Zf:()(—l)i&», where 8, is the face map of S(X, ,,). Then, according to [17, Corollary 4.8], the
map Cub defined above extends by linearity to a morphism of homological complexes

Cub : N(Z@(X, un)) = ZO(X, ) [-1],
and hence one gets a simplicial map
Cub: Z8.(X, ) — IC(ZC* (X, un)[_u),

where /C is the Dold—Puppe functor.

DEFINITION 2.8. Let notations and assumptions be as above. We denote by D*~*(X,, | p)
the homological complex associated to the complex 7<o(D*(X,,,,p)[2p]) which is the canonical
truncation of D*(X,, ,p)[2p] at degree 0. We define a simplicial map

&19 : §(X, n) v ZS'\*(X7 n)

lCub

~ K(chy) L
K (ZC(X, pn)[-1]) =2 K (B0 DXy )~ 11, )
where Hu is the Hurewicz map.

DEFINITION 2.9. Let X be a regular p,-projective scheme over an arithmetic ring
(D,X,Fy), and let X, be the fixed-point subscheme. The higher equivariant arithmetic
K-groups of X are defined as

~

Ko( X, o) := Tt (homotopy fiber of | c~hg |) for

3
\Y%
“)—‘
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and the equivariant regulator maps

chy: K (X, pn) — @Hépim(Xuan(p»R

p=0

n

are defined as the homomorphisms induced by &19 at the level of homotopy groups.

REMARK 2.10. (i). We have the long exact sequence

o K (X i) = Ko (X 1) = @D HE ™™ (X0, R(0)) . — K1 (X, 1) = -+

p=0
ending with

2p—1
= K (X pn) ——>= @pso Hy (XumR(P))Rn

|

™ (homotopy fiber of c~hg> — Ko(X, n) = @50 H%p (Xpn R(P)g,, -

(i) When n = 1, the equivariant higher Bott—Chern forms given in Definition 2.3 coincide
with the higher Bott—Chern forms defined in [17] for non-equivariant proper varieties. So, in
this case,

chy s K (X, ) = @ HE ™(X,R(p))
p=0

is the Beilinson’s regulator map. R

(iii) The higher equivariant arithmetic K-groups K, (X, i,,) can be defined for non-proper
X, for details, see [34, Section 2].

(iv) Let s(chy) denote the simple complex associated to the chain morphism

~ chy Cx
chy : ZOW(X, pin) — Eszo D*=*(X ., DR, -

Then, for any m > 1, there is an isomorphism

Ko (X, p1n)g = Hp(s(chy), Q).

(v) A pp,-equivariant hermitian sheaf on X is a p,-equivariant coherent sheaf on X which is
locally free on X (C) and is equipped with a p,,-invariant hermitian metric. To a u,-equivariant
hermitian sheaf, the higher equivariant Bott—Chern form can still be defined in the same way.
Denote by P’ (X, un) the category of p,-equivariant hermitian sheaves on X, then instead of
73(X , in) one may define a new arithmetic K-theory K (X, ptp,) which is called the equivariant
arithmetic K'-theory. Since P'(X, ) and P (X, j1,,) define the same algebraic K-theory when X
is regular, it is easily seen from the Five-lemma that the natural inclusion 73(X i) C P’ (X, pen)
induces isomorphisms K, (X, 1) = K/, (X, ) for any m > 1.

2.2. Equivariant analytic torsion for hermitian cubes

In [12], Bismut and Kohler developed a theory of higher analytic torsion forms for holomorphic
submersions of complex manifolds. The higher analytic torsion form solves a differential
equation which gives a refinement of the Grothendieck—Riemann—Roch theorem at the level
of characteristic forms. Later, in [27], Ma generalized Bismut and Kohler’s results to the
equivariant case. Comnsidering the higher K-theory and the Deligne-Beilinson cohomology,
to make a refinement of the Riemann—Roch theorem at the level of higher Bott—Chern
forms representing the regulator maps, one needs an extension of higher analytic torsion



AN ARITHMETIC LEFSCHETZ-RIEMANN-ROCH THEOREM 391

for hermitian cubes, this has been done in [30]. In this subsection, we do the equivariant
case by using Ma’s equivariant analytic torsion forms. Our construction is slightly different to
Roessler’s construction.

Let X, Y be two smooth pu.,-projective varieties over C, and let f : X — Y be an equivariant
and smooth morphism. A Ké&hler fibration structure on f is a real closed (1,1)-form w on X
which induces K&hler metrics on the fibers of f (cf. [12, Definition 1.1, Theorem 1.2]). For
instance, we may fix a p,,-invariant Kéhler metric on X and choose corresponding Kéhler form
w as a Kihler fibration structure on f. Let (E, h¥) be a p,,-equivariant hermitian vector bundle
on X such that F is f-acyclic, that is, the higher direct image R?f.F vanishes for ¢ > 0. The
equivariant analytic torsion form Ty (f,w,h”) is an element of D,>0 D?**=Y(Y,, . .p)g,, which
depends on f,w and (E,h¥) and satisfies the differential equation

1
/ Td,(Tf,h"7)ch, (E, hT),
Xﬂn /Y#n

dDTg(f7wv hE) = Chg(f*E7 f*hE) - (27Ti)7‘

where h”7 is the hermitian metric induced by w on the holomorphic tangent bundle T'f, 7 is
the rank of the bundle T'f, , and f.h¥ is the L?-metric on f.E (see the end of [30, Section
2.2] for a definition). By definition, for elements u,v € (f.E), of the fiber of f,E over a point
y €Y, the L?-hermitian product is given by

1 wb
R L

where b is the relative dimension of X over Y.

We would like to caution the reader that the equivariant analytic torsion form we use
here coincides with Ma’s definition only up to a rescaling. If we denote by T} (f,w, h¥) Ma’s
equivariant torsion form, then the equality 2®(7T,(f,w,h)) = T,(f,w, h¥) holds. From now
on, we shall write T,(w,h¥) or T,(h¥) for T,(f,w,h”), if there is no ambiguity about the
underlying map or Kahler form. Now, let w’ be the form associated to another Kahler fibration
structure on f: X — Y and let W1 be the metric on T'f induced by this new fibration. Let
Td,(Tf, T/ hTT) be the equivariant secondary Todd form used in the Appendix (Section A.1

(A.1)), and set Td,(Tf, K'T/ 71y = o=t (TTLETIATN ) gy
dpTd,(Tf, KT hTTy = Td, (T f,hT7) — Td,(Tf, 7).

The following anomaly formula is useful for our later discussion.

THEOREM 2.11. Let notations and assumptions be as above. The following identity holds
in @py)(DQp_l(Yump)/Im dp):

Ty(w, hT) = Ty(w', W) = chy(fo B, W' T+F pI-F) - ! / Tdy(Tf, k' WT Y ehy (B, hF),
Xun /Yy

(2mi)"

in

where (f.E,h'7~F h!~F) stands for the emi-1-cubes of hermitian vector bundles
0 — (BB, WFP) s (£ B, W+ P) —— 0 — 0.
Proof. This is a translation of [27, Theorem 2.13], see also Theorem A.1l. Considering the

relation between the equivariant analytic torsion forms T (w, h”), T,(w’, h¥) and the ones used
in Ma’s paper, we only need to show

chy (fo B, W2 pSE
Chg(f*E,h/f*E,hf*E):(b_l (C q(f ’ ) )) E@(D%_l(yun,p)/lmdz))

2
p=0

But this is the content of Remark 2.7. O
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According to Remark 2.7 and Theorem A.2, there exists a functorial choice of the differential
form which measures the difference

1

E ! L E 1f«E 4 f+E
Tg(w,h )_Tg(wvh )_Chg(f*Evh 7h )+(27T’L)T

/ Tdg(Tf, b7 BT ey (E, hF)
Xun /Yun

in Theorem 2.11. With the same notations as in Remark 2.7 and Theorem A.2, we set
Ao(fa F7 w, w/) + Ao(f7 E7 w, w/)
2

A(f,E,w,w') := —<I>‘1< ) FA(fLE, BT BBy,

it satisfies the differential equation
dpA(f, E,w,w’) = Ty(w, h¥) — Ty(w', h¥) — chy(f. B, W'1+F hiF)

L
(2mi)"

/ Td,(Tf, K", h")eh, (B, hF).
X/bn /Yvﬂn

We consider the following setting. Let Z be a compact Kéahler manifold and let Z; be a
closed submanifold of Z. Choose a Kéahler metric on Z and endow Z; with the restricted

metric. Let f7 : X x Z — Y x Z be the induced map and let w,w’ be the Kahler forms of
the product metrics on X x Z with respect to two Kéhler fibrations on f : X — Y. Similarly,
let fz, : X x Zy =Y x Z; be the induced map and let wy,w] be the Kéhler forms of the
product metrics on X x Z; with respect to the same two Kahler fibrations on f: X — Y.
We shall denote by j (respectively, ¢) the natural embedding X x Z; — X x Z (respectively,
Y x Zy =Y x Z). Then j*w = w; and j*w’ = w}. Let E be an fz-acyclic hermitian bundle on
X x Z, we have the following result.

LEMMA 2.12.  The identity i¥, A(fz,E,w,w') = A(fz,,j*E,wi,w}) holds.
Proof. This is a consequence of Theorem A.2. O

DEFINITION 2.13. By a chain homotopy of a diagram of homological complexes

b,

C* $D*v

we understand a chain homotopy between the complex morphisms j o f and [ o 1.

Roughly speaking, the equivariant analytic torsion for hermitian cubes is a chain homotopy
of the following diagram:

% —a <h — %
Zcy C(Xnufn)49>@pzoD2p (X PR, )

lf* J/fun LoTdg(Tf)e(-) (8)
~ chy .
ZCW(Y, pin) —— @pzo D2 (Y,U‘n7p)Rn

where ZC{ (X, yi,,) is the subcomplex of ZC, (X, jun) made of f-acyclic bundles. Since the
Waldhausen K-theory space of P(X, i) is homotopy equivalent to the Waldhausen K-theory

space of the full subcategory of 73(X , i) consisting of f-acyclic bundles, we shall always work
with acyclic bundles.

Like the non-equivariant case treated in [30], the equivariant analytic torsion for hermitian
cubes induces a commutative diagram at the level of homology groups and hence one gets
an analytic proof of the equivariant version of Gillet’s Riemann—Roch theorem for higher

algebraic K-theory.
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To construct a chain homotopy of (8), let us move in two steps. Note that the equivariant
higher Bott—Chern form factors as

chO otr,
ZC, (X, pn) A chml(X fn) —— @p>0 D2 (X D) Ry
we first clarify the difference between f.(tro A(+)) and tro A(f.(-)). Let E be a f-acyclic
hermitian k-cube in P(X, i,,). The hermitian bundles f. (tr o A(E)) and try, o A(f.(E)) are
canonically isomorphic as bundles, but carry in general different metrics. For instance, assume
that E is a hermitian emi-1-cube, then f.(tr1(E)) and tr,(f.(E)) fit into the following two
exact sequences:

00— fe(Px E-1) — fo(px B-1)(1) © fu(p& Eo)(1) — fu (tr1(E)) —0,
and

0 ——py (f*(Efl)) — Dy (f*(Efl)) (1) @ py (f*(Eo)(l)) —tr (f*(E)) —0.

Here, px (respectively, py) stands for the obvious projection X x P! — X (respectively, Y x
P! — Y). By the definition of the L?-metric, over the point (y,t) in Y x P!, the hermitian
product on f,(tri(E))(, relies on the integral of certain power of the Kihler form wy . p:
over the fiber f; and hence relies on ¢. But the pullback hermitian products on p3 ( f*(Eo)(w)
and on p} (f.(E-1)(y,+) equal the hermitian products on f,(Ey), and on f.(E_1), which do not
rely on t, therefore the induced hermitian product on try (f.(E )(y,t) does not rely on ¢ neither.
So, in general, f.(tr1(E)) and tri(f.(E)) carry different metrics.
In the following, we shall write H(E) for the short exact sequence

0 —— f. (trp 0 A(E)) HtrkOA(f*(E)) —0——>0

which is an emi-1-cube of hermitian bundles on Y x (P!)*. The transgression bundle of H(E)
is a hermitian bundle on Y x (P1)**! =Y x (P!)* x P!. But here we change the order of the
P! let p; be the first projection from Y x P! x (P')* to Y x (P')*, we apply the transgression
bundle construction to the short exact sequence H(E) with respect to the projection p; to get a
hermitian bundle on Y x (P!)**!. With some abuse of notation, we still denote this hermitian
bundle by tr;(H(E)) and it satisfies the following relations:

try (H(E)) |Y><{0}><(]P’1)k: try o )\(f*(E))7 try (H<E)) |Y><{oc}><(]P’1)k: f* (trk o )\(E))
and
try (H(E)) |Y><(IP1)7'><{0}><(]P>1)1€_1,: try (H(@?E))7
61 (H(E)) ys(2r):x ooy x (pr)p—+= t11 (H(0; ' E)) & tr (H(9; E))

fori=1,...,k Now, we define

. _1)k+1 o
I, (E) = ( / h? H(E 1 20 .
K (E) 2(k + 1)!(2md)k+1 Py ¢ g(trl( ( ))) ACryi(log | zi |7, log | zpg1 |7)

The same reasoning as in [30, Lemma 3.3] proves that II) vanishes on degenerate k-cubes, and
hence we obtain a map I}, : ZC! (X, ) — D,>0 D?P=k=1(y, ' p)r, by linear extension.

PRoOPOSITION 2.14. The equality
dp oI} (E) + II),_; o d(E)

— —1)* _
= chy(f.F) — 215'(2732)’“ /(Pl)k chg(f,k (tri o A(E))) A Cr(log | 21 |7, ..., log | z [*)

holds.
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Proof. We compute

d’D o H;(E)

(_1)k+1 / o ) )
= h H(E 1 vl .
2(k + D127 Jipyeen © o (tr1 (H(E))) NdpCiyi(log | 21 [, log | 2y )

_ (_1)k+1 T 1 AR j—1 .
= S DI /(PI)M chy (tr1 (H(E))) A ((—2> (k+1)> (1)~ (—4mi)

Jj=1

X (82200 = 025=0) A Ci(log | z1 %, log | z; 2, log | 241 |2)>

(~1k+ - 1 SR
= 3+ D)!(2mi)F /(Pl)k+1 ch) (tr1 (H(E))) A ((2> (k+1) Z(—l) Y(—4ri)

X(82,—00 — 02,—0) A Cr(log | z1 [,... log | z; |2,...,log | 241 |2)>

(D! : -
SRR J g Utk 0 A (B)) A Cullog |21 .. o | 2 )

(_l)k/ 0 o 2 2
K@) e chy (f+(trk 0 A(E))) A Cr(log | 21 |7, log | 2 [*)

= % /( - ((kf(—l)j—lchg (tr (10 F 0 0}B)) ) — b (trs (H(@?E))))

=2
ACk(log | 21 |%,...,log | z |2)> + chy(f. E)

—1)* _
_M /(Pl)k Chg(f* (trk o )\(E))) A Ci(log | z1 \2, ..., log |z |2)

—1)k — —
= 2}5'(2;@)]{ /(Pl)k chg(trl (H(=dE))) ACy(log | z1 |*,...,log | zi [*) 4 chy(f.E)
—1)* —
215!(2722')’“ /w chy (£ (trr 0 A(E))) A Cilog | 21 1%, log | 24 )
_ _ —1)* _
= —IIj,_; od(E) + chy(f.E) — M /(W chy (f. (trx 0 M(E)))
/\Ck(log | 21 |2,' . .,log | 2k |2)

So, we are done.

On the other hand, we equip X x (P')* with the product metric and we define

o 1 k+1 o
I (E) = (k(—i—l))'(Qm)’f - Crop1 (Ty (tri o M(E)),log | 21 [%,... log | 2 [*),



AN ARITHMETIC LEFSCHETZ-RIEMANN-ROCH THEOREM 395

where Tj(tr o A(E)) is the equivariant higher analytic torsion of the hermitian bundle
try o A(E) with respect to the fibration f: X x (P1)* — Y x (P')*. By [30, Lemma 3.5], the
map II} vanishes on degenerate k-cubes and hence we obtain a map I} : ZC,{ X, ) —
D,-0 D?P=F=L(y,  p)g, by linear extension.

THEOREM 2.15. Set Il = II), + 117/, then Il defines a chain homotopy of the diagram
k k

(8). This map I : ZC} (X, un) — D,0 D * (Y, )R, is called the equivariant higher
analytic torsion for hermitian cubes.

Proof. Let E be a hermitian k-cube in ZC’,{*M(X, n), We compute

d'D (e} Hk (E) + Hk:—l e} d(E)
=dpoll},(E) +1I},_, o d(E) + dp o I}(E) + II}_; o d(E)

—1)* —
— 2]4('(2712)" /(Pl)k chg(f* (tr;c o )\(E))) ACr(log | 21 %,...,log | 21 [?)

= chy(f.E)
+dp o II)(E) + 11}, o d(E).
and
dp o IT}(E)

—1)k+1 .
= W /(Pl)k dDCk+1(Tg(trk o )\(E)),log | 21 |27 ..., log | 2z |2)

_ ey L E
~ (k+1)(@2mi)k /(Pl)k <_2> (k+1) (dDTg (tru o A(E)) @ Ci(log | 21 ;... log | 21, [?)
k
+Z(_1)j(—4m')(6zj:oo —0z,=0)

NCi (T, (tr 0 A(E)) log | 21 2, Tog | 25 %, log | z 2))

_1)F ~ ] —
= T oy S (OTy s o N o 2 Lo 2t )
=
—C (Tq (trk_l o /\(8]-_1E) @ trp_q 0 A(@;E)),log | z1 |2, .o log | zp—1 |2))

(=D* _
AT ((ch2<f*<trk o A(E))

.
(27T'L)T XHn X(Pl)k/}/lbnx(lpl)k

Tdy(TFf)ch) (try o A(E))>

OC;C(lOg | zZ1 ‘2, AN ,10g | Zk |2)>
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/ - (-1)* 0 - 2 2
~I}_, od(E)+ m o chg(f*(trk o /\(E))) ACk(log | z1 |%,...,10g | zx |°)

1 . _
- /X . Td,(TF) o ch,(E).

Combining these two computations, we finally get

dp oIk (E) + j_y 0 d(E) = chy(f. E) — (27:i)r /X /Y, Tdy(Tf) e chy(E).

So, we are done. O

__If we are given another fibration structure w’, then for any f-acyclic hermitian k-cube FEin
P(X, pr), the short exact sequence

0—— (f. B, W) 1 (B BF) —~0—>0

forms a hermitian (k+1)-cube Hy(E) on Y such that the transgression bundle
tri1(A(Hy(F))) satisfies the relations

i1 (MHF(E))) Iy oy« 1) = tre (A(f B, B 5)),

tr 1 (A(HF(E))) |y w ooy (prye = tr (A B, BT 7))
and

1 (AH(E))) Iy ey openye-o= b (AHy (97 E)))

tres1 (A(HF(E))) |y x(eryix ooy xpryi—i= tre (A(H (0] 'E))) @ tr, (A (Hf (0, E)))
for i = 1,..., k. Therefore, the following map

1 k+1 -
=1 /1)H1ch2(trk+1 oMH(E))) A Cri1(log | 21 [%,... log | zies1 |*)
P

I, (B) = 2(k + D)!2mi)F 1/,

which vanishes on degenerate cubes provides a chain homotopy of homological complexes
between the maps ch, o f. and chy o f/, where fi(E) := (f.E,h'/*F) is the pushforward with
respect to the new fibration w’. Similarly, by projection formula, the map

3) (—n)* / 1 / T L TFy 10 —
@) = L __ B Tdo(Tf, 1’77 hTHYehl (tr, 0 M(E
B = 1wt Jioye \\@ T S oy e Jehy (121 © A(E))

oCy.(log | z1 |2,...,log | 2 |2)>

gives a chain homotopy of homological complexes between the maps f,, o (Tdy(Tf, h'l) e
chy) and f,,, o (Tdy(Tf h'T/) echy). Finally we write H(Q) H/(2) +H//(2) for the chain
homotopy defined in Theorem 2.15 between the maps ch, o f* and fu . (Td (Tf,h'77) echy)
with respect to the new fibration w’. Then H,(‘,l) + Hgf) - HEE) defines a chain homotopy between
chyo fi and f,, o (Tdy(Tf, hT/)ech,). At the end of this subsection, we compare this
homotopy H,(c )+ H( ) H§€3) with I constructed in Theorem 2.15.

DEFINITION 2.16. Let f,1 be two morphisms of homological complexes A, — B,, and let
hi,he be two chain homotopies between f and I. We say that h; is homotopic to hs if there
exists a map H : A, — B,o satisfying the condition that Hd — dH = hy — ho.
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Now, we denote by H }N(E) the following emi-2-cube of hermitian bundles on Y x (P!)*

L (trg 0 M(E)) —2> try 0 A (£L(E)) ——

Ju

(

) l

fu (bt 0 A(E)) > trp, 0 A (o (E
-

l

0

C<—0o=<——0

Changing the order of the P! x P! in (P!)k*+2 = (P!)* x P! x P!, so that (P!)**2 = P! x P! x
(P1)*, we construct a hermitian bundle tro (H]J: (E))onY x (]P’l)k“ as the second transgression

bundle of H}CI (E) such that it satisfies the following relations:
tra (H (B)) Iy 0y x oy = i1 (A(H1(E)) ),
tI‘Q (HJ): (E)) |Y><{oo}><(]P’1)"'+1: trl (Hf (trk o )\(E))),
tra (H{ (B)) Iy ooy ey = tr1 (H(E)),  tr2 (H] (B)) Iy prspoopc iy = trs (H'(E))

and

tra (HJ (B)) Iy wqyior 0y o= tr2 (B (V) ),

tro (HL (E)) | L=ty (HE (07VE)) @ tro (HL (0)E)

Io i Y x (P1)i+1 x {oo}x (P1)k—i 1) f i Io f i

fori=1,...,k We set

' (E) := (- ch® (tr (Hf’(E))) A Crya(log | 21 |2 log | zise |?)
fk ’ 2(k+2)!(271’i)k+2 (P1)k+2 9 2 f k2 11 aeees k2 '

Then ij”k vanishes on degenerate k-cubes, and we obtain a map

I}, : ZC[ (X, ) = P D* " 2(Y,.,.p)r,

p=0

by linear extension.

PRroOPOSITION 2.17. Let notations and assumptions be as above. Then the chain homotopy
11 is homotopic to the chain homotopy Hg) + Hg) — H,(CS).

Proof. First, we set
(~)t+!
(k} + 1)'(27T1)k (P1)k

1 _
Td, (T f, KT hTT)eh? (tr), o M(E
<(27TZ)T /)(;m X (PL)E /Y, x (PL)k g( f’ ’ )C g( o ( ))’

log | z1 [%,...,log | zi 2).

H;(gs )(E) = Cr+1
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It also defines a chain homotopy between the maps f,, o (Td,(Tf,hT/)ech,) and
Jn, 0 (Tdy(Tf, h'TT) e ch,). Since the product e on Deligne complex is graded commutative

and is associative up to homotopy, we claim that H,(fl)(E) is homotopic to H,(Cs) (E), so that
we are left to show that II; is homotopic to HS) + H,(f) — Hl(ﬁ/). Actually, our claim follows
from the fact that dpIl\> (E) — dpIl* ) (E) = I®), (—dE) — 1I\*) (—dE) and [34, Remark 2.4,
Lemma 2.5]. R

Now, let E be a hermitian k-cube in P(X, u,,) which is f-acyclic. We compute

dp o H;‘k (E)

(—1)+2 .
= M DI Jpys (tv2 (] (B)) ) A doCraliog] =1 P, log ] 2t )

—1)k+2 , 1 k+2 . .
- +( 2)!>(2m)k+2 /(Pl)w chi) (tr2 (H{ (E)) ) A (( = 2>(k+2) > (-1 (i)

X (0200 = 02,—0) A Cryr(log | z1 7, og | 2 |2, log | Zxio 2))

, . _1\k+1 - _
=10}, 0 d(E) - ; C +( 1)1!)(%1-)%1 /<P1)k+1 [(chl (tr1 (H(E))) — b (tr1 (H'(E))))

ACiir(log | z1 %, log | zrp1 [%)]

(=D 0 = 0 =
AT o, [0 (HAEN)) — e omy (1 10 AE)))

ACri1(log | z1 [%,... log | 241 |*)]

(_1)k-+1
(k + 1)!(2mi)F+1

=11}, , 0 d(E) — I(E) + IL,*(E) + IV (E) — 5

X /( . chg(trl (Hy(try, 0 AM(E)))) A Cry1(log | 21 |7, ..., 10g | zpgr 7).
p1)k

On the other hand, according to the anomaly formula Theorem 2.11, we have

(D

W(E) - L) = G i

/ . Crr1 (Ty (tri o M(E)), log | 21 [,...,log | z |2)
(P1)*

—1)k+t , _
- (k4(+ 1))!(427@)’“ /W Crorr (T (tr 0 M(B)) log | 21 .. Jog | 21 )

(—1)k+1 / 1 / 0 - 2
= 7 C —_— ch, (tri (Hy (trr o M(E log | z0 |,
(k+ DIEmF Sy dmi Jy, X @R /Y x (B1)F ot (F (i 0 AE))) g | 0|

“w

log | z1 |°,...,1og | z& |2>

(=1)k+! / 1 / TF L TE 0 _
Tk + DI(2mi)F C Tdy(Tf, "7, B )ch) (try 0 A(E)),
(k+DICmF Jeye T\ @r) Jx, eyt v, < 1) 1) Jeh (tr 0 A(E))
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log | z1 |%,...,log | 2k |2)

(-1

CESNC L

/( . Chri1 (dDA(f,trk o )\(E),Mw'),log | z1 |27 ..., log | zk |2)
Bk

(-1

_ 0 . - 2 2
= 30t DR /(Pl)Hl chy (tr1 (Hy (trx 0 A(E)))) A Crya(log | 21 |7, ..., log | zey1 |7)

+( (_1)k+1

) - ’ 2 2y )
G D@k /(Pl)k Cry1(dpA(f, tre o ME),w,w’),log | 21 |,...,log | zx |7) =11,/ (E).

We formally define a product Cy.1(A(f,try o A(E),w,w’),log | 21 |%,...,1og | z [?) in a
similar way to Ciy1(-,...,-) like follows.

Crs1(A(f, tre 0 A(E),w,w'),log | 21 1%,...,1log | z \2)

1 k
_ () S (1)7A o (log | 201 |2 o108 | Zo(z) P o(-+1og | 700 ) )

2
ceSy

1 k
- () ™ (<17 log | 200 [2 o(A o (10g | 20z [2 o log | 2oy ) )

ceBy,

1\" i
— <2> Z (71) log | Za'(l) |2 o(log ‘ 20(2) |2 .(. . log | Zo’(k) |2 .A) . ) (9)
ceSy

Then we set

( 1)k / 2 2
A E = . A E w,w 1() e 1()
k( ) (k‘ 1)'(2 Z)k 1) Ck+1( (f,tI‘kO)\( )7 ’ )7 g|z1 | ) ) g|2k | )7

and it is readily checked by Lemma 2.12 that
(_1)k+1

Ap—1(dE) — dpAi(E) = G 1) mi)F

<[ Cror1 (dpA(f, tr, o M(E),w,w'), log | 21 1%,...,1log | z |2)
(P1)k

Combing all the above computations, we finally get
(I} ) + A1) 0 d(E) — dp o (I, + A)(E)
= I (E) + 10},(B) — I (E) + A1 (dE) — dpAy(E)

_1k+1
G
2

0 T 2 2
W /(\]Pl)k-*—l Chg (trl (Hf (trk o )\(E)))) A Ck_t'_l(log | zZ1 | geee ,log | Zk+1 | )

1O ®) + M(E) - 1) (B) - P (B) + U(E) + 1) (B)
= 1(B) - () (@) + 1 () - 1 (B) ).

So, we are done.
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2.3. Direct image map between arithmetic K-groups

In this subsection, we define the direct image map between arithmetic K-groups of regular p,,-
projective arithmetic schemes by means of the equivariant higher analytic torsion for hermitian
cubes constructed in last subsection.

Let now X and Y be two regular p,,-projective schemes over an arithmetic ring (D, X, F.).
Assume that f : X — Y is an equivariant and flat morphism from X to Y such that f is smooth
over the generic fiber. Note that the chain homotopy

I, : ZC{ (X (C), ) = P D* (Y (C)y,. D)1,
p=0

is o-invariant and the following diagrams:
ST (X ) o 28X, i) <5 K (ZCL (X, ) (1))

B B !

SV, ) — 2 28 (Y, ) — 2 K (ZO(Y, ) [-1))

are commutative, the chain homotopy IL. induces a simplicial homotopy between the maps
chyo f. and f,,  oTdy(Tf)e(:)ochy in the following square

SF=2e(X, )

K (@20 D2~ (X, )15, )
fx lfﬂn*ong(N).(')

K (@50 D% (Vi p) 111, )

~ chy

S(Y, Nn)

To see the construction of this simplicial homotopy and general theory on homotopies in the
category of simplical abelian groups, the reader is referred to [22, Sections 2.1, 2.3 and 3.2],
especially [22, p. 160, p. 162, Proposition 2.18, p. 72, Proposition 1.8, Corollary 1.9].

We remark that, according to the construction given in [22], the resulting simplicial
homotopy is unique up to a homotopy in a strong sense: let h1, ho be two simplicial homotopies
arising from II,, then there exists a homotopy

H: S/2(X, pu,) x Al x Al

K (@20 D (Vo p) -1,

such that ﬁ(-,-,()) = hy, ﬁ(-,-,l) = ho, ﬁ(-,0,~) is the constant homotopy on c~hg o f, and
H(-,1,-) is the constant homotopy on fun, 0o Tdg(Tf) e (") ochg (cf. [22, Proposition 3.8]).
Thus, applying the geometric realization construction to the above simplicial square, we get a
continuous map between homotopy fibers

~ X ~Y
| f|: homotopy fiber of |ch, [~ homotopy fiber of |ch, |

which is unique up to a homotopy. So, we may have a well-defined direct image map between
arithmetic K-groups as follows.

DEFINITION 2.18. For m > 1, the direct image map fi : K (X, i) = K (Y, ) is
defined as the homomorphism of abelian groups induced by the map | f | at the level of
homotopy groups.
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REMARK 2.19. The condition ‘flatness’ of the map f is only used to guarantee that the
direct image of a f-acyclic bundle is locally free. By introducing the arithmetic K’-theory and
using the isomorphisms K, (X, u,) = K/ (X, uy,) which hold for regular schemes, the condition
‘flatness’ can certainly be removed.

To study the direct image map up to torsion, we need the following lemma.

LEMMA 2.20. Consider the following diagram of homological complexes

A, : B.
f1< >/f2 11< >12
c, d D..

Assume that j o f1 (respectively, j o f) is homotopic to 1y o i (respectively, I o 4) via the chain
homotopy hy (respectively, hs), and that fi (respectively, l1) is homotopic to fa (respectively,
ly) via the chain homotopy m; (respectively, m;). Suppose that the chain homotopy jomy +
ho — 7 01 is homotopic to the chain homotopy hi, then the morphism on simple complexes

(flallahl) : S*(’L : A* — B*) — 8*(j : C* — D*)

is chain homotopic to ( fa,la, ha).

Proof. Let (a,b) € Ay @ Bj+1, the morphism (f1,01,h1) (respectively, (fa,l2,h2)) sends
(a,b) to (fi(a),l1(b) + h1(a)) (respectively, (f2(a),l2(b) + ha(a))). Let H : A, — D.1o be the
homotopy such that

Hd—dH =hy — (joms + hy —m 01),

and we define H(a,b) = (mf(a), —m(b) + H(a)). Then we compute

dH(a,b) = d(rs(a), —m,(b) + H(a))
= (dms(a),jomys(a) + dm(b) — dH (a))
= (fi(a) = f2(a) — ms(da), 11 (b) — 12(b) — m(db) — Hd(a) + hi(a) — h2(a) + m o i(a))
= (f1(a),1(b) + ha(a)) = (f2(a),l2(b) + h2(a)) — (7rd(a), m(db) — m 0i(a) + Hd(a))
= (fi(@), i (b) + ha(a)) = (f2(a), 1a(b) + hao(a)) — H(da, i(a) — db)
= (f1(a),11(b) + ha(a)) — (fal

So, we are done. O

a

(
(
a), l2(b) + ha(a)) — Hd(a,b).

COROLLARY 2.21. Let notations and assumptions be as above, then the direct image map
e m(X Hn)o — K (Y, pn)o without torsion is independent of the choice of the Kéahler
fibration structure.

Proof. This follows from Remark 2.10(iv), Theorem 2.17 and Lemma 2.20. t

3. Transitivity of the direct image maps

Let f: X =Y, h:Y —=Z and [: X — Z be three equivariant morphisms between regular
ln-projective schemes, which are all smooth over the generic fibers. Assume [ = ho f, in this
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section, we shall compare the direct image map [, with the composition h, o f,.. To this aim,
we shall first discuss the functoriality of the equivariant analytic torsion forms with respect to
a composition of submersions.

3.1. Analytic torsion forms and families of submersions

Let W,V and S be three smooth p,-equivariant algebraic varieties over C with S =9,,.
Suppose that f: W —V and h:V — S are two proper smooth morphisms, then passing
to their analytifications the maps f: W(C) — V(C) and h: V(C) — S(C) are holomorphic
submersions with compact fibers. Set [ = ho f, it is also a proper smooth morphism and
[:W(C) — S(C) is a holomorphic submersion with compact fiber as well.

Let w" and w" be two p,-invariant Kihler forms on W and on V. As before, w" and w"
imply Kahler fibration structures on the morphisms f,h and [ and they induce pu,-invariant
hermitian metrics on relative tangent bundles T'f, Th and TI. Consider the following short
exact sequence of hermitian vector bundles

T(f,h,hof): 0—=Tf =Tl — f*Th—0,

denote by Td,(T(f,h,ho f)) = @‘1(W) (see Section A.2 in the Appendix) the
equivariant secondary Todd form such that

dpTdy(T(f, h,ho f)) = Tdy(TI) — f; Tdy(Th)Tdy(TF).

Now, let E be a hermitian vector bundle on W, we shall assume that E is f-acyclic and
l-acyclic. Then the Leray spectral sequence Ey”? = R'h.(R’ f.E) degenerates at Es, so that
f+E = Rf.(E) is h-acyclic and I, E = h, f.E. Clearly, I, E and h, f. E carry in general different
L?-metrics (see Section A.2 in the Appendix). Consider the following short exact sequence of
hermitian vector bundles

E(f,h,hof): 0— h.fiE —1.E—0-0,

it can be regarded as an emi-1-cube of hermitian bundles on S. Then the equivariant higher
Bott—Chern form ch, (E(f, h, h o f)) satisfies the differential equation

dDChg (E(fv h’a ho f)) = Chg(l*E) - Chg(h*f*E)

The main result in this subsection is the following.

THEOREM 3.1. Let notations and assumptions be as above. Then the following identity
holds in @p>O(D2p_1(S, p)/Imdp):

1 N
Tg(l, WW7 hE) - Tg(h7wvﬂ hf*E) - (27”')7‘17 /V /s ng(Th)Tg(ﬁwW, hE)
Hn

1

= chy (E(f,h,ho f)) — @i

[ T 1)ty (B)
W, /S
where rj, and r; are the relative dimensions of V,, /S and W, /S, respectively.

Proof. This is a translation of Theorem A.3. O

LEMMA 3.2. With the same notations as in Remark 2.7 and Theorem A.4 , we set

A(f? h7wW’wV’E) =

- <A°(f, hw WY, E) + Ao(f,h,w" W', E)

5 >+A(E(f,h,hof)).
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Then dpA(f, h,w" WY, E) measures the difference

1
(2mi)rn

Tg(lvwwth) _Tg(hvwvvh'f*E) - /V /s ng(ﬂ)Tg(fvwwahE)

—chy (E(f,h,ho f))+

iy f o T T e D)y (P

in Theorem 3.1. Assume that we are in the same situation described before Lemma 2.12. Call
l: S8 %X Zy — S x Z the natural inclusion, then similar to Lemma 2.12, we have

Z*A(f27h27ww7wvvﬁ) = A(le,hzl,wfv,w}/,j*F).
Proof. This is a consequence of Theorem A .4. O

3.2. The transitivity property

In this subsection, we present certain transitivity property of direct image maps between
equivariant higher arithmetic K-groups. To do this, we first write down the following diagram
of homological complexes:

jad —ac ch —*
BOU (X 1)~ @ D (Xe ),

if* J/fumong(Tfﬁ(')
~ _ac chy .
ZCI (Yv ,LLn) @pzo D2p (Yun 5 p)Rn (10)
ih* J{hun LoTdy(Th)e(")
~ chg

LONZ, pin) — Gapzo D*=(Zy, D) R,

where [ is ho f and ZCif’l)fac(X, fin) is the subcomplex of ZC, (X, i) made of those bundles
which are f-acyclic and [-acyclic simultaneously.

Let E be a hermitian k-cube in P(X, u,) which is f-acyclic and l-acyclic, the short exact
sequence

Id

0——h.f.E LE 0 0

can be regarded as a hermitian (k + 1)-cube Hjo¢(E) on Z such that the transgression bundle

trp1(A(Hpop(E))) satisfies the relations
1 (A(Hnos (E))) | zx 0y x @ = tri (AL E)),

tr1 (A(Hrof (E))) | 2x oo} x (p1)r = tre (A(hs fu E))

and
6041 (A(Hnos () 1z (1) 0y x 01y = tri (A(Hoy (97 F))),

try41 ()\(Hhof(E))) |Z><(]p1)'i><{oo}><(]p1)k—i: try ()\(Hhof(aflf))) D try, ()\(Hhof((?}F)))

fori=1,...,k.
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ProposiTION 3.3. The following map

(_1)k+1

W7 0 =
() = S D1 /(Pl)m chy (trk1 0 A(Hheos (E)))

ACria(log | 21 %, log | 241 %)

which vanishes on degenerate cubes provides a chain homotopy of homological complexes
between the maps chy o I, and chy o (h, o f,).

Proof. Using the above relations that the transgression bundle try 1 (A(Hpor(E))) satisfies
and the expression of dpCj,1, the proof is straightforward. This can be also seen from the fact

that Hjoy(E) provides a chain homotopy between I, and h, o f.. O

PROPOSITION 3.4. The composition hy,, o Tdy(Th)e (f,,, oTd,(Tf)e(-)) is equal to
Ly, o [ Tdg(Th)Tdy(Tf) e (-). The following maps

_ —1)k
L (E) = 2/5!(22@)}0

1 / _ o o
X - Td,(T(f,h,ho f))ch,(try o A(E
/(Pl)"’ <<(2m)” Xy X(PVK/ Z,, X (PLY* g( (f f)) 9( koA ))>

oCr(log | z1 |2,...,1log | 2z |2)>

and
o (71)k+1
1 (B) = G iz

1 _ _
X / Cri1 77/ Tdy(T(f, h,ho f))chg (tri o A(E)),
(P1)k (27’(’2) l X, X(PV)K/Z,,, x (PL)k

10g|21 ‘2,...,10g|2k 2)

give two chain homotopies of homological complexes between the maps I, oTd,(Tg) e
(chy(-) and L,,, , o f Tdy(Th)Tdy(TF) e (chy(-)). Moreover, I\ (E) and TI\"(E) are homo-
topic to each other.

Proof. The first statement follows from the projection formula, the second statement follows
from a straightforward computation and the third follows from [34, Remark 2.4, Lemma.
2.5]. |

Now, we write H‘,’; = H;Cf + Hg'f for the chain homotopy of the upper square in (10) and HZ =
IT* + )" for the chain homotopy of the lower square in (10). Then H,(Cl) + hy,, o (Tdy(Th) e
/) + 11" o f, — II¥) defines a chain homotopy between maps chyol, and I, . o Td,(Tg) e
(chg(-)). Suppose that the u,-action on Z is trivial, it is the main result of this subsection
that the chain homotopy H,(cl) + hy,,, 0 (Tdy(Th) e Hi) +1} o f. — H,(f') is homotopic to the
chain homotopy I} = IT}! + I} for the whole square in (10). According to Proposition 3.4, it
is equivalent to show that HS) + hy,, 0 (Tdy(Th) e H{) + 1Yo fo — H,(f/) is homotopic to II.
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To see this, we first denote by H} f( ) the following emi-2-cube of hermitian bundles on
Z x (PH*
hs fo (try, 0 A(E)) s oA (hofi(E)) —

sk

I
l. (tr;c o )\(E)) _d tr o A (1. (F ) 4>(£
0

(L
o

0

Then, like before, we construct a hermitian bundle tro(H ,lwf(E)) on (P1)**+2 as the second

transgression bundle of H} 7 (E) such that it satisfies the following relations:
tT2(Hilmf( )) |zxqoyx@ryser= trep1 (A(Hnpop (E))),
try (Hpor(E)) |2 {ooyx @1yir1 = tr1 (Hpop (tre o A(E))),
tIQ(HIlLOf( ) |zxpixoyxpryr= tr1 (H(E, L)),
try (Hpof (E)) | 281 x oo} x (@)= tr1 (H(E, ho f.))

and

try (Hpo; (E)) |2 (p1)+1 x {0y x (01 ye—i = tr2 (Hiyo 1 (0) E)),

tr (Hpop(E)) |2 1)1 x (oo} x (01 )i = tr2 (Hjo (0, 'E)) @ tro(Hjo 4 (0 E))
fori=1,..., k. We set

( 1)k+2
H,  (E) = 2+ 2@ e hg(tI'Q(Hhof( ) A Craa(log | 21 |2, ..., 1og | zita |?).

Then H; ; vanishes on degenerate k-cubes, and we obtain a map
H,y . ZO (X, ) — @ D4 (Z.p)r,
p=0
by linear extension. This map satisfies the following differential equation:
dp o Hy 1 (E)

-1 k+2 o
= S DT s 0 (22 (e () MdoChatlog 2 Pt 22 )

—1)k+2 o 2 '
- MW /(11»1)k+2 by (trz <H;L°f(E)>> A ( (_%) (k+2) ;HV ! (—4mi)

2 o 2
><((SZ]'ZOO - 62_7‘:0) /\Ck+l(10g ‘ 21 | 7"'710g | Z] |27"'710g | Zk+2 ‘ ))

(71)k+1

= Hi 1 0d(B) ~ gy /(P1>k+1 [(chf (b1 (H(E,1.))) = bl (tr1 (H(E, b 1))

2 2
ACky1(log| 21 |7, log | 241 | )}
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(-

P+ Dl@m)FT

/( - [(6 (s (A(Ho g (B)))) — e (11 (Hio (i 0 A(E))))

AChy1(log | 21 [°,... log | 241 |2)]
=H, 0 d(E) — I} (E) + I\ (E)
+L/ chy (tr1 (H(E, hu f+)) ) ACky1(log | 21 %, log | zk41 |°)
2(k + 1)!(2mi)k T Jpryera 7

(-1

0 S nt 2 2
T2k + D) @ri)F /@l)m chy (tr1 (Hyo (i1 © A(E)))) A Cra(log | 21 7, og | 21 ).

Second, we denote by H ,’llof (E) the following emi-2-cube of hermitian bundles on Z x (P')*

hof. (try 0 A(E)) —9> hytry 0 A (fu(E)) ——

b

hefu (tr 0 A(E)) —9> try, 0 A (hu fu(B)) ——

l i

0 0

C<x——0o0o<——0

Again, we construct a hermitian bundle try(Hj,;(E)) on Z x (P')**? as the second
transgression bundle of H}' f(E) such that it satisfies the following relations:

tro (Hylo 1 (E)) |z oy < yenr = tri (H(f. B, b)),

tro (H;Llof( )) |Z><{oo}><(IP>1)"+1— try (h I« (trk o )\(E)) — hy fe (trk; o )\(E))),
tro (Hylo 1 (E)) | 2wt ¢ oy x @)= tr1 (H(E, ha f)),
tro (Hyo f(E)) |70t x fooyx ()= tr1 (R H(E, f.))

and
tro (Hil £ (E)) |z 1yi+1 x {0y x (1 ye—i= tr2 (Hpo s (0VE)),

tro (Hilo f(E)) |25 @1yi+1 x foo} x (w1 yi—i = tra (Hyl (07 E)) @ tra (Hj, (0} F))
fori=1,..., k. We set
(_1)k+2

Ho 1(B) = 2(k + 2)!(2mi)*+2

/(Pl)k“ hg(trQ(Hhof(E))) A Cry2(log | 21 |2, .oy 10g | Zgyo |2)

Then Hj j;, defines a map
Hy . 0 ZOV (X, ) = @) D*572(Z, p),
p=0
which satisfies the following differential equation:
dp o Hy 1 (E)
(—1)F+2

-
= W /(Ipl)lwrz Chg (tr2 (H]/'Lof(E))) A dpClya(log | 21 |27 ooy log | zpgo |2)
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e [t @) (2 0 S

2(k + 2)!(2mi)k+2
X(0z;=00 = 0z;=0) A Cry1(log | 21 1%,... log | zj 12,...,108 | zp42 2))

o )k o .
—Hyy; 0d(E) - W /( . [(e§ (ur1 (F (B, o)) — b (i1 (ho H(E £.))))

2 2
ACxi1(log | z1 |7, ..., log | zk41 | )}

(71)k+1

o+ Dimiyi

/ chig (601 (H(f<E, h=))) A Crpa(log | 21 %, log | 2141 )
(P1)k+1

=Hy 1 0d(E) + I} (f+E)

(—pktt 0 o] 2 2
,W oy chg (tr1 (H(E,h*f*))) ACri1(log| z1 |7,...,log | zpy1 |7)

(—1)F*! / 0 — 2 2
S Sk A 10 (tr1 (ho H(E, £2))) A Cpy1 (1 o og | zies 1),
+2(k+ DI e chy (tr1 (heH(E, f+))) A Cy1(log | 21 | og | zky1 %)

Third, note that the short exact sequence

0 —— h.try (H(E, f.)) sy (heH(E, f,)) —=0—>0
forms an emi-1-cube of hermitian bundles on Z x P! x (P!)¥, we denote it by Hyoz(E). Using
the same construction as before, we construct a transgression bundle try(Hpo #(E)) on Z x
P! x P! x (P')* satisfying
try (Hhof( )) |Z><{0}><([p1)k+1: try (h H(E f*))
try H of( ) |Zx{oo}x(1p1)k+1— h tfl( (E, f*))»

try <ﬁhof( )) |Z><IP’1><{O}><(IP71)"_ try (h try o )\(f* ) — hytry o )\(f*E) — 0),
(ﬁhof( )) |Z><Ip1><{oo}><(]p1)k— try (h f*trk o )\( ) — h*f*trk o )\(E) — 0)

try
and

try (Hhof( )) | 2 (B )i+1 x {0} x (B )5~ 1_tr1<Hhof(a E))

try <Hh0j( )) | 2% (P1)i+1 x {oo} x (P1)k—i = tT1 (Hhoj (0 E)) @ try (-Erhof(ailf))
fori=1,...,k. So, if we set

=\ (—1)F*2 0 ~ = 2 2
H; p(F) := Wt D@ - chy (tr1 (Hhof(E))) A Clrio(log | z1 |7, ..., log | 212 |7),
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it satisfies the differential equation

dD (¢] Hgk(E)

s

= hO (try (Hpor)) A dpCiio(l 2 1 2
30k + 2)!(2mi)F+2 /@»WC 5 (tr1(Fhes) ) A doCia(log | 21 ... log | 242 )

_ —1)k+1 _
=H;3;, 10 d(E) + o0 _5 1)!)(27m’)"~‘+1 /(]P)l)k+1 chg (tr1 (h*H(E, f*)))

ACiyi(log | 21 2., log | ziya %)

(=D / 0 = > 2
- W0 (hotry (H(E, £.)) A Cran (1 o .
2(]{5 + 1)'(27‘(@)k+1 (B1yk+1 c g( I‘1( ( f )) k+1( 0g | 21 ‘ 0g | Rk+1 | )

Finally, we set

- (-1t

Hy (B) = ot Cro (T, (b, 1 (D)) 2 2
4,]€( ) (k+2)'(27’(”1,)k+1 /([Pl)k+1 k:+2( g( 5 )7 og | sl | ) ,10g | Zk+1 | )7

then it satisfies

dD o] H4k(E)
B (=1)F*2 oy (H(B. 1)) 2 2
T (k+2)!(2mi)k+? Bk Cr+2 (Tg (h,h )alOg | 21 [ ...,log | 241 | )
CHy i od(B)+ D [ b (1. 1))
ket 20k + DT Jprypn 90 I
ACiyr(log | 21 7. 1og | 21 [°)
- HWl(/ o [ AT (i (H(F 1))
2(k + 1)!2m0)" T Jopryenn \ @mi) Sy, T g\t o
/\Ck+1(log | 21 |2, ...,log | Zk+1 |2)
(_1)k+1

T DGR Juy, Ot (T (1o h 0 log 20 P log | 2 )
(-1t

T DIR)E S

Ck+1(Tg (h, hf*tr’“"’\@)>,log |21 2., log | 2 |2)

= Hyy1 0d(E) — hy,,., o (Tdy(Th) « I (E))

(~)H+!
(k + 1)!(2mi) 1

+2 / Chg(h*trl(H(Ea f*))) /\Ck-‘rl(log | 21 |27"'a10g | Rk+1 ‘2)
(P1)k+1
(-1

~II{"(f.E) + et DI@mi)F

/ Crai1 (Tg (h,hf*“’“‘o’\(i)),log | 21 \2, ..., log |z \2)
(H:Dl)k

PRroOPOSITION 3.5. Let notations and assumptions be as above, then the chain homotopy
Il =TI/ + 11/ is homotopic to T\ + h,, o (Td,(Th) e II{) + Il o f, — TI\*).



AN ARITHMETIC LEFSCHETZ-RIEMANN-ROCH THEOREM 409

Proof. Let E be a hermitian k-cube in 73(X , in) which is f-acyclic and l-acyclic. Using the
above differential equations concerning H; ., we obtain that

(Higp—1+Hop1 —Hz 1 —Hyp1)od(E) —dpo (Hyp+Hyp —Hsz i — Hyp)(E)

= I/(E) — I (E) = 0 (£.E) = 1" (£.B) = hy,,, (T, (Th) « I (E)

—1)k+1 0 .
+2(k _ﬁ 1)!)(27m')k+1 /(Pl)k+1 chg (tl"1 (Hhof (trk o )\(E))))

ACria(log | 21 %, log | zp41 %)

(_1)k+1

o
(k‘ + 1)'(27T’L)k (P1)k

Ck+1(Tg (ha hf*trwA(E))JOg |21 %, log | 2 |2> :

On the other hand, according to Theorem 3.1, we have

(_1)k+l

N 7 C. (T, ( ’htrko)\(E)>’1 2’“.’1 ‘ 2)
(k+ DI@mi)F Jprye I og | 21 | og | z |
(-

IR o Gt (B (17D ) g 2 o2 )

e pe | (—D)EH _
e (PR D) = i [, s (s o3

NCiii(log | 21 %, log | zrsr [2) — 11 (B)

(71)k+1

T Dm0

/ . Ok-‘,—l (dDA(fv h7anwY7trk’ © A(E))7log | <1 |27 s 710g | 2k |2)
(P)

We then formally define a product
Clri1 (A(f, h,w™ WY try o )\(E)),log | 21 \2, ..., log |z \2)

in the same way as (9), and we set

( 1)k X Y 2 2
k:( ) (k 1)'(2 Z)k . Ck-i—l( (faha y W 7trko)‘( ))7 0og | 21 | ’ , 10g | k ‘ )

It is readily checked by Lemma 3.2 that
Ap_1(dE) — dpAL(E)

-1 k+1 —
:(k(—l—l))'(271'7,)k - Chri1 (dDA(f,h,wX,wY,trk ) )\(E))Jog | 21 |2, ..., log | zg |2)

Combing all the above computations, we finally get
Hyp1+Hop 1 —Hsp1 —Hyp 1 +Ap1)(dE)
—dp(Hy . +Hay —Hs . — Hy o + Ag)(E)



410 SHUN TANG

= (B) - 1" (B) - (. B) - " (L.E) + 1" (B) + 1} ()
i, (Tdy(TR) o T/ () ) = by, . o (Tdy(Th) o 11 (E))
= T4,(B) — (1" (B) + h.,., o (Td,(Th) e T (E)) + (£, B) — 11" (B))
So, we are done. O

COROLLARY 3.6. Let f: X =Y ,h:Y — Z andl: X — Z be three equivariant morphisms
between regular p,-projective schemes, which are all smooth over the generic fibers. Assume
I =ho f and that the pu,-action on Z is trivial. Then the direct image map l. is equal to the
composition h, o f. from K, (X, pin)g to K (Z, pn)g for any m > 1.

4. The Lefschetz—Riemann—Roch theorem

4.1. The statement

In order to formulate the Lefschetz—Riemann—Roch theorem for higher equivariant arithmetic
K-groups, we need to introduce the equivariant R-genus due to Bismut. Let X be a
ln-equivariant smooth algebraic variety over C, and let E be a p,,-equivariant hermitian vector
bundle on X. For ¢ € u,,(C) and s > 1, we consider the following Lerch zeta function

%) Ck
k=1

and its meromorphic continuation to the whole complex plane. Define a formal power series in
the variable x as

n

~ = [ 0L "1
n= j=

DEFINITION 4.1. The Bismut’s equivariant R-genus of an equivariant hermitian vector
bundle £ with E' |x, =3 ¢, ) E¢ is defined as

Ry(B) = Y (TR, -0F) - TrR(1/¢,0F)),
CEun(C)

where QF¢ is the curvature form associated to EC-

Now, let X be a regular p,-projective arithmetic scheme over an arithmetic ring (D, X, Fi)
and we construct a naive commutative diagram of homological complexes

ch
ZCW(X, pn) — @pzo D2p_*(Xun iD)Rn

lO lo (11)

~ ch
ZC* (X7 Nn) H‘q @on DQpi*(XMn 7p)Rn

where 0 stands for the zero map. Let N be a pp-equivariant hermitian vector bundle on X,
we shall formally regard the R-genus R,(N) as an element in @, D*~(X,p). It is a d-
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closed form. Denote by py the projection from X x (P!) to X. For any hermitian k-cube F in

~

P(X, i), we set

e o
Mg(FE) = m - Cr+1 (Rg(pON)chg (trk o )\(E)),log | 21 |%,...,1og | 2 |2)

It is clear that Iz(E) extends to be a map g : ZCk(X, pin) — D,-0 D?=k=Y(X, " p)g,
which provides a chain homotopy of the square (11). Therefore, we get an endomorphism of
Ko (X, i) for any m > 1. This endomorphism will be denoted by @R, (N).

Again, by [34, Remark 2.4, Lemma 2.5], the chain homotopy Iz is homotopic to the chain
homotopy II’; defined by

(_1)k+1

s T 0 = 2 2
II(F) = 72k!(27ri)k /(Pl)k R,(pyN) ochg(trk o )\(E)) o Cr(log | z1 |,...,log | zk |),

and hence is homotopic to —R,(N) e ch,(E) by the projection formula. Let (z, ) be an element
in K,,(X, pn)g, then dr =0 and chy(x) is a dp-closed form. Let (0,«) and (0,a’) be two

elements in K, (X, tn)o, then (0,a) = (0,a/) if @ and o have the same cohomology class in
®D,>0 Hp(Xy,,R(p))r, - Note that the product e on the Deligne-Beilinson complex induces the
product on the real Deligne-Beilinson cohomology. Then, modulo torsion, the endomorphism
®@R,(N) is independent of the choice of the metric on N and it can be written as @R, (N).

Assume that p is any prime ideal in R(u,) := Ko(SpecZ, u,) = Z[T]/(1 — T™) which does
not contain the elements 1 — 7% for k =1,...,n — 1. For instance, p can be chosen to be
the kernel of the natural morphism Z[T|/(1 — T™) — Z[T]/(®,), where ®,, stands for the nth
cyclotomic polynomial. Let X,,, be the fixed-point subscheme of X, and let WX/ x,, be the
normal bundle of X, in X with some p,-invariant hermitian metric. We set

Ag = (Id — ®R,(Nx/x,,)) © ®>‘:%(N§(/X“")’

it is a well-defined endomorphism of IA(m(XMn,,un)p ® Q. Then the arithmetic Lefschetz—
Riemann—Roch theorem for higher equivariant arithmetic K-groups can be formulated as
follows.

THEOREM 4.2 (arithmetic Lefschetz—Riemann-Roch). Let f: X — Y be an equivariant
morphism between two regular u,-projective arithmetic schemes, which is smooth over the
generic fiber. Suppose that the u,-action on the base Y is trivial. Then, for any m > 1, the
following diagram

Aot

I?W(Xﬁj/n) I?m(Xunﬁfzn)p@Q

f*l ifun*

Em (Y, pin) ————— K (Y, 1n), ® Q

where T is the restriction map, is commutative.
The proof of Theorem 4.2 will be given in next two subsections.

4.2. Arithmetic K-theoretic form of Bismut—Ma immersion formula

Let Y < X be a py,-equivariant closed immersion of regular p,,-projective arithmetic schemes
over (D, 3, Fy.). In [34, Section 4], we have proved an arithmetic purity theorem

I?m(yv llfn) = ]?Y,m(X7 ,Ufn)
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for any integer m > 1. As a byproduct, we get an embedding morphism IA(,,,I,(Y, ) —

~

K., (X, tt). This embedding morphism is realized by constructing an explicit chain homotopy
of the square
~ chg ) N2p—*
LZCAY, pn) —— 691,20 D (Yin, PRy,
li* Jlm,omgl(NX/y)-w (12)
~ ch L
ZC (P, pin) — @pzongp (PunsP)Rn >

where 'D*" (-, p) stands for the Deligne complex of currents computing the Deligne homology

groups, (i,,,T)(n) = T(ij, 1) for a current 7" and a test form 7, i : Y — P := P(Nx,y @ Oy)
is the associated zero section embedding with projection 7 : P — Y and

i s ZOL(Y, i) = ZCW(P, i)

is the complex morphism defined by sending a hermitian cube E to Z;LZO(—l)j@v Qm*E
provided the Koszul resolution

K(E,Nx;y): 0— ANQ @ E =5 ANQ @n'E = m°FE — i.E — 0.
For any hermitian k-cube E, one chain homotopy Hj,(E) of (12) is given by the formula
Hk (E) = Tq (K(@y,ﬁx/y)) L] Chg(ﬂ'*E),

where Ty (K (6y,Nx/y)) is the equivariant Bott—Chern singular current associated to the
Koszul resolution which satisfies

n

dpTy(K(Oy,Nx)y)) = Z(*l)jChg(AnQv) =l (Chg(bY)ng_l(NX/Y))'

J=1

For more details the reader is referred to [34, Section 4.2].
It is clear that if we choose another resolution

0—=F,——F —Fy—i.0y =0
with respect to the zero section embedding i : Y < P(Nx/y © Oy) such that the metrics on
F'. satisfy the Bismut’s assumption (A), we may construct a different homotopy of (12) and
we shall get a different embedding morphism i, : K, (Y, ptn) = K (P, piy,). Our first result in

this subsection is the following.

ProproSITION 4.3. The embedding morphism over rational arithmetic K-groups
Ty Km(Ya Mn)@ — Km(P> Nn)@

is independent of the choice of the resolution of i.Oy on P(Ny/y ® Oy) which satisfies the
Bismut’s assumption (A).
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Proof. Since any two resolutions of i,Oy on P(Ny /v @ Oy) are dominated by a third one,

we may assume that F. and /\'@v fit into the following diagram:

0 0 0
0 Ay Fy /\@v —0
0 Ay Fo Op 0
0 2*63/ Z*5y

where A. is an exact sequence of hermitian vector bundles on P. We endow A. with the metrics
coming form F'. via the natural inclusion. We split A. into a family of short exact sequence of
hermitian bundles from j =1ton —1

4
Xj: 0——=Kerd; ——= A, —J>Kerdj,1 —0.
Moreover, we denote by ¢; the short exact sequence

0 A; F NQ' 0

from j =0 to n. Write i. (respectively, 4,) for the morphism ZC, (Y, pn) — ZC*(P, y) With

respect to the Koszul resolution K(Oy, N x /v) (respectively, the resolution F.). Then, for any
hermitian k-cube E on Y, the assignment

n n—1
Hy(E):=) (-1Ye;@m"E+ Y (-1)x; @ 7' E € ZCyy1 (P, ftn)
j=0 j=1

provides a chain homotopy between i’ and i,. Consequently, the formula

n

n—1
H(E) = Z(_l)fchg(gj)+Z(—1)J‘chg(xj) chy(m°E)

=0

defines a chain homotopy between ch, o ¢/, and chy o 7,. We claim that there exists a homotopy
of chain homotopies between H} (E) and H,(cl) (E) + Hy(E).
In fact, according to [24, Theorem 3.14, Corollary 3.10], we have

n—1 n

- Z(_DjChg(Xj) +T,(F.) ~1T, (K(6Y7WX/Y)> = Z(‘l)jChg(gj)

j=1 =0
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up to Imdp. We fix an element A such that

dpA =" (=1)chy(e;) + Y _ (=1 chy(x;) — T,(F.) + T,(K(Oy, Nx)v))
7=0

j=1
and set
H,(E) := A e ch,(7°E).
Then
dp o H,(E) = Hy" (B) + Hy(E) — Hy(E) + H;_; 0 d(E).
So, we are done. O

Note that the product P x (P!)" can be identified with the projective space bundle over
Y x (P') with respect to the vector bundle p§ Ny y, and

x xnAY * —=V — . =
0—>p0/\ Q —>~--—>p0/\Q —)Opx(pl)-—)Z*OyX(]pl)~—>0

is the Koszul resolution, so that the corresponding Bott—Chern singular current is the pullback
Py Ty(K(Oy, Nx/y)). We shall still write it as T, (K (Oy,Nx/y) for the sake of simplicity.

Then, like before, by the projection formula and [34, Remark 2.4, Lemma 2.5], Hy(F) is
homotopic to the following chain homotopy

-1 k+1 77 .
(k:(—i-l))!(Qﬂ'i)’f /(Pl)k Cry1(Ty(K(Oy,Nx/y)) ® Chg (tri o M(E)),log | 21 [%,...,log | 2k |?),
which will be still denoted by Hy(E).

Now, let us recall the Bismut—-Ma immersion formula which relates analytic torsion forms
and the Bott—Chern singular current. Let X be a smooth p,,-equivariant algebraic variety over
C and let i : Y < X be an equivariant closed smooth subvariety. Let S be a smooth algebraic
variety with trivial p,-action, and let f : Y — S, 1 : X — S be two equivariant proper smooth
morphisms such that f =1 oi. Assume that 7 is an equivariant hermitian bundle on Y and €. is
a complex of equivariant hermitian bundles on X which provides a resolution of 7.7 such that
the metrics on ¢. satisfy the Bismut’s assumption (A). Let w', w™ be two Kihler fibrations
on f and on [, respectively. We shall assume that w” is the pullback of w¥, so that the Kéhler
metric on Y is induced by the Kéhler metric on X. Consider the following exact sequence

N: O%Tif—)ﬁhf%ﬁx/y—)(),

where Ny,y is endowed with the quotient metric. Denote by Tdgy(N) = <I>’1(Td9T(N7)) (see

Section A.3 in the Appendix) the equivariant secondary Todd form of N which satisfies the
identity

dpTdy(N) = Tdy(T1 |y, h"") — Tdy(Tf, k") Tdy(N x/v).

We suppose that in the resolution &., &; are all [—acyclic and moreover 7 is f—acyclic. Denote
by h(&) the hermitian metric on f,7 corresponding to the L?-metric on the hypercohomology
of &. over the fiber of I : X — S (see Section A.3 in the Appendix). By an easy argument of
long exact sequence, we have the following exact sequence of hermitian vector bundles on .S

E : 0— l*(gm) - l*(gm—l) 7 l*(gO) - <f*77, hH(E)) — 0.
We may split =. into a family of short exact sequence of hermitian bundles from j =1 to m

— d;
X5+ OHKerdeEj%—KerdquO
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such that the kernel of every map d;_; for j =2,...,m carries the metric induced by Z; and
Kerdy = Zg = (fun, W), Kerd,, = E,,41 = 1.(€,,). We regard y; as a hermitian 1-cube on
S and we set chy(Z.) = 327", (=1)7chy(x;). Then it satisfies the differential equation

dpehy () = chy (o, A7) = 3 b
j=0
Set ch, (2., £.77) := chy(E.) 4 chy(fun, BTE) | fLA7) it satisfies the differential equation

Zch

dpchy(E., £.7) = chy
With some abuse of notations, we still use Z to denote the long exact sequence
coo = L&) = =0

0—1 (E'm) - l*(gm—l) -

and identify ch,(E.) with ch,(E., f.7)
THEOREM 4.4 (Immersion formula). Let notations and assumptions be as above. Then the

following identity holds in @, (D**~'(S,p)/Imdp)
hE) = Ty (WY, ) + chy (E.)
1 o
/ Tdy(N)Td, " (N x,y )chy (1)
)"y, /s

D ()T (WX
i=0
— g [ TLIVL,E) -
2mi) Jx, /s (
1 _ _
/ /s dg(Tf>Rg(NX/Y)Chg(ﬁ)7
/S and of X,,, /S, respectively. Note that the

T amy
equivariant Bott—Chern singular current we use here differs from the one used in the appendix

where ry and r; are the relative dimensions of

by a minus sign

Proof. This is a translation of [14, Theorem 0.1 and 0.2] (see also Theorem A.5)
With the same notations as in Remark 2.7 and Theorem A.6, we set
AO(.f)lai*ﬁag')+A0(f7la7'*77 f) =
) —A(E).

)

N !
Then dpA(f,1,4.7,.) measures the difference
m . 1 J— —
w” , k") + chy(=. 7/ Td, (T))T,(&.
Ty(w”, n") (E)+ e Jx s G(TDOT,(&
D=y TRV x ey ()
n @mi)s Jy, s XY

D ()T, h%)
i=0
[ a0 Wy e, ()
Y,
in Theorem 4.4. Let us go back to the same situation described before Lemma 2.12 and assume
X x Zl

1
un /S
and Y x Z;

oy
S X Z1

F

that the following diagrams
X xZ

N
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are obtained by smooth base changes. Then Y x Z and X X Z; intersect transversely along
Y x Z; and the singular currents can be pulled back.

LeEMMA 4.5.  The restriction of A(fz,1z,i7.,7, &) over S x Z; is equal to the differential
form A(fZUlZUiZl*ﬁ |Y><Z17§' |X><Z1)-

Proof. This is a consequence of Theorem A.6. (]

PROPOSITION 4.6. Let Y be a regular ji,-projective arithmetic scheme over (D,%, Fy) and
let N be a uy-equivariant hermitian vector bundle on Y. Suppose that the u.,-action on Y is
trivial and consider the zero section embedding

i:Y — P:=P(N&Oy)

with hermitian normal bundle N and the natural projection 7 : P — Y. Then for any element
x € K, (Y, pin)g with integer m > 1, the following identity

z— Ry(N) -z = mis(x)
holds in K, (Y, itn)o.

Proof. By the definition of the action of R,(NN) on Ko (Y, ftn)g, the map  — x — Ry(N) -z
is defined via the chain homotopy

0) = (_1)k+1

Hé (E) = m . Ck+1 (RQ(N) o chg(trk o )\(E)),log | 21 |2, .. .,log | 2k ‘2)

of the square

ch
ZC(Y, pn) — @pzo D2p_*(Yﬂn’p)Rn

N

chy Cx
7.C, (K ,un) — GBpZO D2 (Y;Ln ’ p)Rn .

According to Proposition 4.3, to define the morphism i, : IA(m(Y, Hn)g — IA(m(P, Ln)Q, We
may choose a resolution F'. of i,Oy on P such that every Fj is m-acyclic. We shall endow F'.
with the metrics satisfying the Bismut’s assumption (A). Then we have an exact sequence of
hermitian bundles on Y

Z: 0= m(Fn) = m(Fpo1) = ... = m(Fo) = Oy — 0.

Like before, splitting = into a family of short exact sequence of hermitian bundles from j = 1
tom

— d;
Xj - 0 *>Kerdj — Ej %Kerdj,l *>07

we may construct a chain homotopy

m

Hoi(E) := Z(_l)ij QFE € chr+1(Y> fin)
j=1

between the maps Id and 7, o7, : ZC*(Y, ) — 20*()/, tn)- Consequently, the formula

H(Y(B) = ; o™

0 T 2 2
W /(]Pl)k+1 Chg(trk+1 [e] )\(Hﬂ—ol(E))) A Ck+1(10g | z1 ‘ go . .,log | Zk+1 ‘ )
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defines a chain homotopy between chy oId and chg o m, o¢,. Then Hg) +1F oty +my,, ©
(Td,(T'T) @ Hy) also defines a chain homotopy between ch, o Id and Id o ch,. We compare it
with T1).

First, denote by Prp (respectively, Pry) the projection from P x (P')¥ (respectively, ¥ x
(PH)*) to P (respectively, Y). Then, according to the functoriality of projective space bundle

construction we have used before, PrpF. provides a resolution of 7.0y, p1)r on P x (PHYF.
Hence, we have an exact sequence

~

E: 0= m(PrpFn) = m(PrpFm_1) = ... & m(PrpFo) = Oy pryr — 0
which can be split into a family of short exact sequence of hermitian bundles from j = 1 to m

Xj: 0——=Kerd; - F

d.
j *J>Kerdj,1 —0.

Furthermore, the short exact sequence of hermitian 1-cube
HOU)(E) : 0 —— X ®trg o AE) i>P1"§/Xj ®trg o A(E) —= 0 ——=0

forms a hermitian 2-cube on Y x (P')*. We set

H,(E) := (-t / ch? Em (—=1)try o )\(H<j)(F)>
2(]{3 + 2)!(27Ti)k+2 PL)k+2 g\ <
(P1) =1
A C’;H_g(log | z1 ‘2, . ,10g | Zk+2 |2),

it satisfies the differential equation
m
dp o Hy(E) =Hy_y 0dE + > (—1)/1](F; ® 7°E)
§=0

(=pkH / 0 9 2 2
ho (¢ MHoi(B))) A Crss (1 ol
AT D@ gy, o (10 MHrnei(B))) A Cuallog | 21 - log | 210 )

U (S e -~
- b Y K B
20k + DI2mi) T Jpryen 9 > _(=1)try 0 A(x)) Bty 0 A(E)

j=1
ACri1(log | z1 [%,.. . log | zre1 )
—H, 1 0dE+H(E)+ 1] 0i.(E)

(*1)k+1 = T 2 2
DI o ckﬂ(chg(u ®trko/\(E)),log |20 2., log | 2 | )

On the other hand, we apply the immersion formula to the resolution PriF. @ trj, o A(E). We
then have
" 0. (E)
(_1)k+1

_ =/ gl 2 2
TSIk - Cri1 (chg (_ ® try o )\(E)),log | z1 1%, ..., log | 2 | )

(—1)k+t / 1 / _ L — _
- ) D Td, (Tm)T,(PrpF. E
e+ DI iy O\ @i S,y T T (PIRF- @ tric0 ME)).
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log | z1 |?,...,log | zx |2>

—1)k+1 - .
*Ug(m)!(zwf /(Pl)k Cri1(Ry(N) @ chy (try 0 A(E)), log | 21 °,..., log | 2 |)
(=D

+7.1
(k‘ + 1)'(27T1)k (P1)k

Cry1 (dpA(try o M(E)),log | 21 %, log | 2 [?)

(_l)k’+1 _ o , ,
e I G eo) R
(b + DI@mi)F Jipry FH S ® tr o M(E) ), log | 21 | og | 2 |

~T,, © (Tdg(T) « Hy(E))

(_1)k+1

) Il 2 2
+Hk (E) + m . Ck-+1(d’DA(trk @) )\(E))710g | zZ1 | P ,log | Zk | )

We then formally define a product Cy 1 (A(tr, o A(E)),log | 21 |%,...,log | z; |?) in the same
way as (9), and we set
o (71)k+1

Ap(F)= ——2 1 (A(trs o M(F)), 1 2000 2).
(%) (k+1)!(2mi)* /(Pl)kaH( (b1 0 A(E))  log | 21 ;... Jog | 21 [*)

Again, it is readily checked by Lemma 4.5 that

= — (-1)F / = 2 2
Ap_1(dE) —dpAR(F) = —————— C dpA(t ANE)),1 ol .
k—1(dE) — dpAy(E) TSI k+1( pA(trg o ME)),log | z1 |7, ...,log | z | )
Getting together all the above discussions, we see that PNIk + Ay provides a homotopy
between H,(CO) and H,(cl) + 107 0y 4+, , o (Tdy(T)  Hy) which implies that z — R,(N) -z =
m«is(x) for any element x € K, (Y, pin)g with integer m > 1. O

COROLLARY 4.7. Let S be another regular u,-projective arithmetic scheme with the trivial
tn-action. Let f:Y — S and | = fonw: P — S be two equivariant morphisms which are
smooth over the generic fibers. Then the identity

fo(@) = [(Rg(N) - ) =l 0in()
holds in I?m(S, tn)o for any element x € I?m(Y, ).

Proof. This is an immediate consequence of Proposition 4.6 and Corollary 3.6. (I

Now, we consider general situation. Let X, S be two regular p,,-projective arithmetic schemes
over (D, X, F), and let Y be a regular pu,-equivariant arithmetic closed subscheme of X with
immersioni : Y — X.Letl: X — Sand f =104 :Y — S be two equivariant morphisms which
are smooth over the generic fibers. We shall suppose that the u,-actions on Y and on S are
trivial (for example, ¥ = X, ,S = SpecD). Then the main result in this subsection is the
following.

THEOREM 4.8. For any element x € I?m(Y, ) with integer m > 1, the identity
fo(@) = f(Rg(Nx)y) - x) = Lu 0 i (2)
holds in IA{m(S, Hn)Q-



AN ARITHMETIC LEFSCHETZ-RIEMANN-ROCH THEOREM 419

To prove Theorem 4.8, we use the deformation to the normal cone construction. Denote by W
the blowing up of X x P! along Y x {0}, and denote by gy : W — P! the composition of the
blow-down map W — X x P! with the projection X x P' — P!. For any point t € A’ C P!, ¢
is called a Z-point if it corresponds to a prime ideal (z — @) in D[z] with a € Z. Then for any
Z-point t € P! we have

1
t) = ~
W=\ pU% -0,

{X x {t}, ift#0,

where X is isomorphic to the blowing up of X along Y and P is the projective space bundle
P(Nx/y @ Oy). Let j:Y x P! — W be the closed immersion induced by i x Id, then the
component X does not meet j(Y x P!) and the intersection of j(Y x P') with P is exactly
the image of Y under the zero section embedding. Moreover, denote by s; the obvious section
Y 2Y x {t} = Y x P! for every Z-point ¢ and denote by u; the natural inclusion g;;' (£) < W.
We have two Tor-independent squares

Y x P oW

SLT Ut

y — > X

with ¢ # 0 and

yxpl— 7 o

y —2 P(Nx/y @ Oy).

Note that the complement X \ Y is contained in W \ Y x P!, we have pullback morphism
U: : KYXIP’l,’m(W p’n,) — KY,m(Xa ,un)~

LEMMA 4.9. For any Z-point t # 0, the diagram

I?m(y X Plvun) ]; [?Yx]pl,m(W, Mn)
J{s: \Lu?

is commutative.

Proof. The commutativity of the algebraic prototype of this diagram follows from the
Tor-independence of the deformation diagrams, but for arithmetic K-theory it is more
complicated because the morphisms j. and ¢, are defined via another deformation to the
normal cone construction according to the A'-homotopy invariance of the K-theory and the
Deligne-Beilinson cohomology.

Write ¢} : K, (Y x P ) — K (Y, ) for the composition iy ! o uj o j.. We need to show
that ¢; = s;. The morphism s} is induced by the commutativity between s; and CAl:lg, while the
morphism ¢} is induced by the homotopy defining j. and the homotopy defining i.. Again, using
the A'-homotopy invariance of the K-theory and the Deligne-Beilinson cohomology, we may
consider the pullbacks of s} and ¢} to K,,(Y x P* x A', u,,) = K,,(Y x A', u,,) and restrict
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them to {0} < A', then the statement in this lemma will follows from the commutativity of
the diagram

I?m(Y X Plvﬂn) J;> ]?YX]P’l,m(P,?/“Ln)

*

N

I?m()ﬂ Hn) % I?Y,m(Pv Nn)

where P’ = P((Nx/y X O(—1)) ® Oy p1) is the projective completion of Ny y p1 over Y x
P!. It is equivalent to show that the following diagram

Jox =

I?m(Y X Plvﬂn) ——— K (P, pin)

ls: lu: (14)

04 ~
Kn (Y, Nn) —_— Km(P, pn)

is commutative because the morphism ig, : [A(m(Y, ) — IA(m(P, tn) is injective. We endow
Nx/y ®WO(~1) with the product metric coming from the metric on Nx,y and the Fubini-
Study metric on O(—1), then the pullback of NW/YXPI along s; is isometric to Nx/y, so that
the pullback along s; of the Koszul resolution and of the corresponding Bott—Chern singular
current with respect to jj is exactly the Koszul resolution and the corresponding Bott—Chern
singular current with respect to ig. According to the construction of the homotopies defining
Jo. and ig,, we get the commutativity of the diagram (14) and hence of (13). So, we are
done. O

COROLLARY 4.10. For any Z-point t # 0, the diagram
Bon(Y X P, i) —2 o B (W, i)
is; l
Rn (Y. pin) —— Rn(X. j1n)
is commutative.
REMARK 4.11. Using the same argument as in Lemma 4.9, we know that the diagram

IA(m(Y X Pl,un) ]H* l?m(m N/n)

* *
So Uo

20 %

K (Y, pn) ——— K (P, pin)
is also commutative.

Next, we consider the commutative diagram
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with Z-point ¢ # 0 and we compare the map f, ou; with the map [, from IA(,,,,,(VV, Hn)g tO

Km(S7 ,LLn)Q~

First, for any j,-invariant Kéhler metric w”™ on X which induces an invariant Kéhler metric
wY on Y, there exists a pi,,-invariant Kihler metric w" on W such that the restrictions of w"’
over X = X x {t} with ¢t # 0 and to Y 2 Y x {0} are exactly w® and wY. This fact follows
from [32, Lemma 3.5]. Actually, such a metric is constructed via the Grassmannian graph

construction. In this construction, we have an embedding W — X x P" x P! and the metric

w" is the p,-average of the restriction of a product metric on X x P" x P'. We fix such an

invariant Kéhler metric w"' on W and endow all submanifolds of W with the induced metrics.
Moreover, all normal bundles appearing in the construction of the deformation to the normal
cone will be endowed with the quotient metrics. _

Second, to the three divisors u:(X), uo(P) and uo(X) in W, we have the following result.

LEMMA 4.12. Over W, there are ,-invariant hermitian metrics on O(X), O(P) and O(X)
such that the isometry O(X) = O(P) ® O(X) holds and such that the restriction of O(X) over
X yields the metric of Ny, x, the restriction of O(X) over X yields the metric of NW/;( and

the restriction of O(P) over P yields the metric of Ny p.

Proof. choose metric on O(P) in a small neighborhood of P such that the restriction of
O(P) over P yields the metric of the normal bundle. Do the same for O(X). Since X is closed

and disjoint from X and P, we can extend these metrics via a partition of unity to metrics
defined on W, so that the restriction of the metric that O(X) inherits from the isomorphism

O(X) = O(P) ® O(X) yields the metric of the normal bundle Ny x. We then take the fi,-
averages of these metrics to make them p,-invariant. Since the metrics on Ny, x, Ny, p and

Ny, 5 are already ju,-invariant, the ji,-invariant metrics on O(X), O(P) and O(X) obtained
as above have the properties that we require. O

Now, consider the Koszul resolution
0— O(—X) = Ow — u;,Ox — 0.
The associated equivariant singular Bott—Chern current T, (W/X) satisfies the identity
dpTy(W/X) = chy)(Ow) — chy (O(—X)) — us.[chy(Ox)Td, (N x)].

We claim the following result.

LEMMA 4.13. For any element x € I?m(VV, Un)q with integer m > 1, the identity

froui(z) = fo(Ry(Nwx) - ujz) = L.(z) = ,(O(-X) @ 7)

hold in [?m(S, Hn)Q-

Proof. Let E be a l-acyclic hermitian k-cube in 73(W, tn). Since W admits a very ample
invertible p,,-sheaf which is relative to the morphism [ : W — S (cf. [32, Lemma 3.9]), we may
assume that O(—X) ® E is also l-acyclic and ujE is f-acyclic. Then we have a short exact

sequence of hermitian k-cubes in P(S, i)

XE): 0 LOX)®E) = L(E) - f.(u’E) -0,
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which will be regarded as a hermitian (k 4+ 1)-cube and as a chain homotopy between the maps
I, —L.(O(=X)®) and f. ou;. Consequently, the formula

(1) (=D / 0 g 2 2
H"(E h E 1 . log |z
)= 20k + DIET)FT Sy o(tre1 0 AX(E))) A Crpa(log | 21 7, Jog | 2rs1 )

defines a chain homotopy between chy o [, — ch, o[, (O(—X)®) and ch, o f. o uj.
On the other hand, for any element o € P, D?**=*(W,, ,p)r,, the formula

n )

1 — 1 — 157
(zm-)n/Wun/sTg(W/X%ng(Tg)‘a‘FW/XM/Sng(N%ng (Nw/x) e«

gives a chain homotopy between the maps 1, o (Tdy(Tg)e) — I, o (Td, (Tg)chg (O(=X))e)
and f,,, o (Tdy(Tf)eu;). Hence, it defines a chain homotopy between [, o (Tdy(Tg) e
chy) — 1y, 0(Td, (Tg)chg(@(—X)) echy) and f,,, o (Td,(Tf) e uj och,). Like before, using
the projection formula and the fact that the deformation to the normal cone construction is
base-change invariant along smooth morphisms, we write the induced homotopy as

(2) (_1)k 1 —_— 0 —
H,”(F) = R(2ri)* /(Pl)k (((2711’)”1 /W#nX(Pl)k/SX(Pl)kTg(W/X)ong(Tg)chg(trkoA(E)))

ACx(log | z1 [%,... ,log | 2 |2))

(—1)* / 1 / _ L . _
TRl 2k o Tdy(N) e Td; '(N 1 (try, o A E
@ Jee \\ @7 Jx, ey ey o) T (e g (br 0 A(ui E))

AC(log | 21 |2,...,log | 2 |2)>

Now, we denote by H, (E) the following 2-cube of hermitian bundles on S x (P')*

L (try, o M(O(— X)®E))*>trko/\ X)®E)) —=0
| l
Iy (trk o )\(E)) try o A ( «( ) 0
fe (tri 0 Auf E)) — M o Afi(uiE)) ——=0
and we set
f,(F) = - U / eh? (tr2 0 A(Hy (B))) A Cryallog | 21 2. log | zsa )
k (k T 2) (27T’L.)k+2 (B1)r+2 g 2 k42 1 ) k—+2 )
it satisfies the differential equation
dp o Hy,(E)
o odﬁ+$/ e (trps1 0 A(x(E)))
= k—1 2(k + 1)!(27ri)k+1 (]P’l)k‘Jrl g k+1 X

2 2
NCry1(og | z1 |7, ..., log | zk+1 |7)
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(—pFt! / 0 = 2 2
- hy (t Al x(t AME ! ol
20k + DIEE)HT gy chy (try o A(x(trg 0 A(E)))) A Cy1(log | z1 |7, ..., log | 241 |7)

~I{(E) + I (O(-X) ® E) + 1) (uf E)
—H)_, 0dE +H(E) - I/(E) + T} (O(-X) ® E) + I} (W[ E)

(—pFtt / 0 = 2 2
- h, (t Al x(t AME ! ol .
20k + D) @ri)F T (Pl)kHC g(tri o A(x(trg 0 A(E)))) A Crya(log | 21 |7, log | zji1 |7)

Similar to the tricks that we used frequently before, we set

Hffl)(E) — (_1)k+1k/ Chi1 #/ Tg(W/X)
(k + 1)!(27‘(2) (P1)k (27‘(’7,)” W, x (PL)k /S x (P1)k

oTd,(Tg)chy(tr 0 A(E)),log | 21 |*,... log | z; | )

_~_(_1)k+1/ C #/ Td,(N)
(k—|—1)'(2m)k (P1)k kot (271'2')77 X, % (PL)F /S x (PL)k g

ongl(NW/X)Chg(trk o )\(u:E)),log | z1 \2, .o log | 2k \2 )

then our lemma follows fyoni the Bimutfk/[a immersion formula and the fact that there exists
a homotopy between H,(f )(E) and H,@(E). So, we are done. O

REMARK 4.14. Similar to Lemma 4.13, we consider other three divisors W «— P 23 S,

uo

WX %S and We—PNX 2% and corresponding Koszul resolutions
uo

Uo

0— O(—P) —)6[/[/ —>u0*@p — 0,

0 O0(-X) = Ow — 1,05 — 0,

and

0—=0(-X)®O(-P) - O(—X)® O(—P) = Ow — up.O5,p — 0.
Then, for any element x € IA(m(VV, tn ), we have
P 0wy (2) — o (Ry(Niwyp) - i) = L(z) — 1 (D(~P) © ),

hi. o ug(x) = hi(Ry(Nyy 5) - upe) = L(z) — L (6(-5{) ®

N—

)

and

ha 0 uh(x) = hou(Ry(Nyy prg) - ) = L(x) = L.(O(=P) @ z) — L.(O(-X) ® x)
+1.(0O(-P)® O(-X) @ x)
which hold in K., (S, ptn)g.

Now, we are ready to give the proof of Theorem 4.8.
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Proof. Let x be an element in IA(,,,L(Y, tn)o, we consider the following two diagrams

Y x Pl Lo

SN

with Z-point ¢ # 0 and

)

Y — = P(Nx)y ®Oy) ——= 5.

By Corollary 4.10 and the fact that s; is a section of the obvious projection Pr from Y x P!
to Y, we have i.(z) = uj o j. o Pr*(z) and hence I, oi,(z) = [, ou] o j, o Pr*(z). According
to Lemma 4.13,

Lo ouf(juPreaz) = hy(j« Priz) — h(O(=X) @ j.Priz) + L. (Ry(Nw/x) - ivx).
Similarly, we have
L ouy(j Pria) = hy(ju Priz) — ho(O(=P) ® j.Preaz) + p.(Ry(Nwyp) - isz).

Note that the image j(Y x P') does not meet X, the localization sequence of the higher
equivariant arithmetic K-groups implies that wuf(j.Pr*z) vanishes in K,,(X,u,)o and in
K, (PN X, pn)g, so that

ho(O(—X) ® j. Pr*z) = h.(O(=P) ® j. Pr*z).
This can be seen from the several identities mentioned in Remark 4.14. On the other hand,
=i, (i"Ry(Nw)x)Td, ' (Nx,y)chy(x)) = 0.
The same reasoning gives that Ry(Nyy,p)-i.x =0 also. So, [, oi.(x) is actually equal to
Dx 019, (x). Therefore, the statement in Theorem 4.8 follows from Corollary 4.7. O
4.3. Proof of the statement

In this subsection, we give a complete proof of Theorem 4.2. Denote by ¢ the closed immersion
X,.,, = X, then the arithmetic concentration theorem (cf. [34, Theorem 5.2]) tells us that

(P Km(X/_Ln7I~L7L)p = Km(Xv MH)P

with inverse map ®)\:%(WX/XM) oT.

Then let « be any element in K, (X, i), we apply Theorem 4.8 to the morphisms ¢, f and
fu, = foiand we compute

fe@) =f. (i 0o @A} (Nx/x,, ) o 7(2))
=f.0i. (®A_1(Nx/x, )or(x))
=fun, (®ATI(Nx/x, )o1(®)) = fu,,(®Ry(Nx/x, ) o ®A_[(Nx/x, )oT(z))

=fun (AR o 7T(2))
which holds in K, (Y, ttn), ® Q. This completes the proof of Theorem 4.2.
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Appendix. Remarks on the equivariant analytic torsion forms and the immersion formula

by Xiaonan Ma

A.1. Anomaly formula for the equivariant analytic torsion forms

Let W,V be two p,-projective complex manifolds, and let f: W — V be an equivariant,
holomorphic submersion with fiber X. Fix a p,-invariant Kéhler metric on W and choose
corresponding Kéahler form w as a Kahler fibration structure on f. We fix a primitive nth root
of unity g as a generator of p,(C). In the following, ch, and Td, should stand for the usual
Chern—Weil forms with the factor 27i in their definitions. Note that they are denoted by ch;7
and Td; in the text.

Let (E,h”) be a p,-equivariant hermitian vector bundle on W such that F is f-acyclic.
Let T,(f,w,h”) € @D,-0 A"?(V,.,) be the equivariant analytic torsion form [27, (2.27)] which
satisfies the differential equation

oo T (o) = by (B FP) = [ T, (T ey (5,05),
2mi Wi,/ Vien,

where h”7 is the hermitian metric induced by w on the holomorphic tangent bundle T'f. We
shall write T, (w, h¥) for T,(f,w, h¥), if there is no ambiguity about the underlying map. The
following result is [27, Theorem 2.13] which extends [7, Theorem 2.5; 11, Theorem 1.23; 12,
Theorem 3.10].

THEOREM A.1 (Anomaly formula). Letw’ be the form associated to another Kéhler fibration
structure on f: W — V. Let W'T/ be the metric on Tf induced by w'. Then the following
identity holds in €P,,~, AP (V,,)/(Imd + Im 9):

Ty(w, h?) — Ty(w', 1) = — chy (f. B, W/ F p1-F)
+ / Tdy(Tf,h"F b/ Ychy(E, b)),
Wi /Vien

where (f.E, h/E h'"~E) and (T f, hTS h'TT) stand for the exact sequences of hermitian vector
bundles

0 ——> (f. B, hF) — (f. B BT F) —= 0 —0

and

0 —— (Tf, K7 s (T, 1)) — >0 —>0.

We shall see that there is a natural way to write down explicitly some differential forms

A°(f, E,w,w"), Ao(f, E,w,w’) such that they are functorial in certain sense and they measure
the difference of the anomaly formula.

A=A (f,E,w,w) + 0o (f, B, w,w)

= Ty(w, h") — Ty(w', BT + chg(fu B, hIF 0/ T-F) - / Tdy(Tf, k77 0" Yehg (E, hF).
Wi /Vien
To do so, we need to fix the construction of cNhg(f*E,hf*E,h’f*E), ﬁg(Tf, RTT WTEY at
the differential form level, that is., without modulo Imd + Im 0. Let us fix the definition of
&g(f*E, h<E h'f<F) as the left side of [7, (2.42)], and the definition Td,(Tf,hT/, h'Tf) as the
integral for 0 to 1 for the parameter ¢ of the differential form as the part % -+ via the last
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term of [12, (3.67)], note that we can also fix the path of the metric as the segment direct
connecting two metrics. Thus, we can write them under the notation in [27, (2.34), (2.56)] (cf.
also the convention before Theorem 2.5 of this paper),

1
chy (fo B, WP n TPy = / T, [gQH XF1x) exp(—(VHEEIx))2) de,
0

1 TX9 TX9
— 0 -R a1 0h
Tdy(Tf,n" 077 :/ = Td( ¢ —p(h"¥ —1>
o(Tf ) o Ob 247 ( ) dc (A.1)
Copa (<R e o
o =< _ x9/x\- 12 i0.
X jlzll » 2im b(h ) 5 + 16, de.

b=0

Let V; be an equivariant closed submanifold of V, and let Wy = f~1(V;) C W be the
closed submanifold of W with restricted Kéahler metric. Then f;:W; — V; is also an
equivariant holomorphic submersion with compact fiber. Denote by j (respectively, i) the
natural embedding W7 — W (respectively, V; — V) and by wy,w] the induced Kéhler forms
j*w,j*w'. Let E be an f-acyclic hermitian bundle on W.

THEOREM A.2. There is a natural way to write down explicitly differential forms
AYf, E,w,w’), Ao(f, E,w,w’) such that A = A’ (f, E,w,w') + 0Ao(f, E,w,w’) and they are
functorial in the following sense.

it A, Eow,o) = AO(f1, 5 B, w0 (A.2)
and

i, AO(f7E7w7w/) = AO(flaj*Ea wlvwi)' (AS)

Hn

Proof. By the equivariant extension of [12, Definition 3.14, Theorems 3.16 and 3.17] (cf.
[27, (2.34)]), there exist differential forms 6!, 62 and 6% such that

A +do = 90" + 96* + 006° (A.4)

and dp is from the last term of [12, (3.38)], in particular, g is a local term from the small time
heat kernel asymptotics of Bismut superconnection, 8% (k = 1,2,3) have universal expression
in terms of g,w,w’ and h¥ via the Bismut superconnection. Thus, from [12, Definition 3.14,
Theorem 3.16]] and [27, (2.34)], we know that if i : V; — V is a complex submanifold of V', when
we consider the corresponding objects for the submersion f;, each above term is the restriction
of the corresponding term for the global submersion f. Thus, let Ay, 67 be the corresponding
terms associated to the fibration f; : W; — Vi, then we have A, = iZnA and 9’f = i;nek (k=
1,2,3), 01 = i}, 0. So, write Af,E,w,w') = 0% — pand Ay(f, B, w,w’) = 0! + 06% — o, we are
done. |

A.2. Functoriality of the equivariant analytic torsion forms

Let W,V and S be three u,-equivariant projective complex manifolds with S = S,,,. Suppose
that f: W — V and h: V — S are two holomorphic submersions with compact fibers X,Y.
Then h o f is also a holomorphic submersion with compact fiber Z.

Let w" and w" be two p,-invariant Kihler forms on W and on V. As usual, w" and w"
decide Kéhler fibration structures on the morphisms f, h and g and they induce p,-invariant

hermitian metrics associated with the Kahler forms w¥,wY and w? on relative tangent
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bundles T'f, Th and T'(h o f). Consider the following short exact sequence of hermitian vector
bundles

T(f,h,hof): 0—=Tf—=T(hof)— f*Th— 0.

Denote by Td,(T(f,h,ho f)) the equivariant secondary Todd form, it satisfies the differential
equation

90 e

5= Tdy(T(f.h o f)) = Tdy(T(h e 1)) = £, Tdy (TR)Td, (TF).

Now, let FE be a hermitian vector bundle on W, we shall assume that I is f-acyclic and
ho f-acyclic. Then the Leray spectral sequence E;’ = R'h.(R’f.E) degenerates at Es, so
that f.E = RCf.(E) is h-acyclic and (ho f).E = h, f.E. Clearly, (ho f).E and h,f.E carry
in general different L? metrics (Note that for o € ((ho f).E)y, b€ S,

—dim Z |U|2(Wz)dimz

) (.UX dim X wY dimY
lols. .6 = (27r)d”“z/yb </X ”'2(((11131)()! >((dir3nY)! ’

thus they are different in general). Consider the following short exact sequence of hermitian
vector bundles

ol Fror). 2 = (27)
(A.5)

E(f,h,hof): 0— hfiE — (ho f).E —0—0.

The equivariant secondary Bott—Chern form &g(E( fih,ho f)) satisfies the differential
equation

90 ~ — — _
%chg(E(f, h,ho f)) =chy((ho f)«E) — chy(h. f. E).

THEOREM A.3. Let notations and assumptions be as above. Then the following identity
holds in @~ A??(S)/(Im 0 + Im 0):

T!](h © fa wwv hE) - Ts](h7wva hf*E) - / ng(Th)Tg(f7 wWa hE)
Vi /S
(A.6)

— Ay (B(f.hho ) - / Td, (T (f.h, h o f))chy(E).

Wi /S

Proof (a sketch). This is a natural extension of [26, Theorem 3.5] to the equivariant case, or
the family extension of [27, Theorem 3.1] which is an equivariant extension of [4, Theorem 3.1].
To prove this extension, one may follow the same approach as in [26, Sections 4-9]. In fact, as
a purely functional analysis argument, the [26, Theorems 4.5-4.7] can be extended formally to
the equivariant case by introducing in the right place the operator g. The reason one can do
this formal extension has been given in [27, Section 5]. For the equivariant extensions of [26,
Theorems 4.8-4.11], one can show that their proofs are local on f~!(V,, ) and certain rescaling
on Clifford variables which does not effect the action of g can be made (cf. [26, Section 7 b]).
Replacing the equivariant local index technique in [27, Sections 7-9] by its equivariant relative
local index, one gets the desired identity.

To help the readers, we will use directly the notation in [26, Section 4]. By the anomaly
formula Theorem 2.11, we only need to establish Theorem A.3 for a special coupe of Kéahler
forms, thus we will assume that w" =&V + f*w" with @ a Kahler form on W.
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Let A be the rectangular domain in R? with coordinates (u,T), defined by the four vertices
(1,¢), (Ty,e), (To, A), (1, A), following [26, (4.7)], set

9? _ (27”;)—1/2/ zg{gpﬂq [g[ é,uQ,T’ NS,uz,T] eXp(—B;uz,T — bMS,'u?,T)jI }b= dudT,
AU 8b 0

o 20
09 = (2mi)~Y/? / ;a’b{“’m [9(BY w21 N3z 7] exp(—B;uQ,T—bM&uz,T)]}bzodudT, (A.7)
A

L [20
80 — (2i) ! / 2 {oTr[gNs w2 7 exp(—B2 o p — bMs 2 )]}, dudT.
AU ob b=0

The only difference comparing with [26, (4.7)] is that in (A.7), we add the operator g as the

first term in Tr,[---] in [26, (4.7)], that is, replace Try[---] by Trg[g---]. Note that B .2 1 is
the Bismut superconnection assocaited with the submersion h o f and the form w)’ = %&W +
f*wY, and Bé\uz’T7 Bél,uz,T are holomorphic and anti-holomorphic part of Bj 2 7. Moreover,
N3 2 7 is a generalized number operator associated with wi¥.

The boundary of A composes as four oriented segments I'1, ..., I'y. Let I be the integral of
the one form on R? with values in A®(T3;S) defined by replacing Trs[---] by Trs[g---] in [26,
Definition 4.2], then we have the g-analogue of [26, (4.8)]:

4
> 1) =067 — 963 — 9063, (A.8)
k=1

We study the terms I,g and 0? in succession as A — 400, Ty — 400, € — 0 : roughly, we get

e the term —7T,(h,w", h/*F) from IY;

o a differential form version of —C~hg (E(f,h,ho f)) (via[9, (1.58)] or [26, (4.17)] by replacing
Trg[---] by Trg[g---]) from IS;

o Ty(ho f,w" h¥) from IY;

° — fVun/S Td, (Th)T,(f,w", h¥) + fW“”/S rfag(T(f, h,ho f))chy(E) (here we should use
the differential form version of ﬁlg (T(f,h,ho f)) from the term [ --- in [4, (4.72)] by
replacing Td therein by Td,) from I3.

Let 6(j = 1,2,3) be the differential forms on S obtained from 6 by the above procedure,
then the difference of two sides in (A.6) (by using the differential form versions of cNhg (E(f,h,ho
f)) and Tdy(T(f,h,ho f)) as above) is

A+ d°0 = 963 — 063 — D06: (A.9)

and 67 (k=1,2,3) have universal expressions via the Bismut superconnection B3 21, ©
is a combination of local terms from the small time heat kernel asymptotics of the Bismut
superconnection for the fibration A and ho f (cf. [26, (4.27) and (4.29); 27, (2.24) and
(2.27)]). O

Let 07 (k =1,2,3) be the form in (A.9) associated with the couple w™ =&" + f*w", wV.
Set

A(f h,wV WY E)=—05 -0 and Ao(f,h,w", WY, E) =63 — 965 — O©. (A.10)
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Then when we fix the differential form versions of c~hg (E(f,h,ho f)) and ﬁg (T(f,h,hof))
as above, (A.10) measure the difference of the formula (A.6) at the differential form level from
(A.9):

A=A (f, h, ™, WY E)+ 0Ao(f, h, ", WY, E)

= TQ(h © f7WW7hE) - Tg(h7wv, hf*E) - / ng(ﬁ)Tg(f7WW7hE>
‘/Hn/s

~eh, (B(f.hho f) + [ TR ), (B), (A11)

Let S; be a closed submanifold of S, and let V4 =h71(S;) CV (respectively,
Wi = (ho f)~'(S1) C W) be the closed submanifold of V (respectively, W) with restricted
Kahler metric. Then f, : W7 — Vi, hy : V4 — S7 and hy o f; : W; — 57 also form a triple of
equivariant holomorphic submersions with compact fibers. Denote by j (respectively, i) the
natural embedding W; — W (respectively, V; — V) and by w""*,w"" the induced Kihler forms
7w, i*w". Denote by I the embedding S; — S. Let E be an f-acyclic and ho f-acyclic
hermitian bundle on W.

THEOREM A.4. The forms A°(f, h,w" ,w" E) and Ao(f,h,w",wY, E) are functorial in
the following sense that

Z*Ao(f7h7wwawvvﬁ) = Ao(fla hlaleawVIaj*E)
and

Z*AO(fvhawwawvaE) = AO(flahlawW17wV17j*E)'

Proof. Note that the square of the Bismut superconnection is a second-order fiberwise
elliptic operator with differential form coefficients [5, Theorem 3.6] (cf. also [3, Theorem
10.17]), in particular, its heat kernel along the fibers is well defined, and in (A.7), the terms
[Bé’UQVT,N&uz’T], [B:,gl,UZ,T7N3,u27T] are first-order differential operators along the fiber, the
terms N3 .2 7, Ms 2 7 are tensors, thus we see clearly that when we consider the corresponding
objects for the submersion hy o f1, each above term is the restriction of the corresponding term
for the global submersion h o f.

We obtain that if [:S; < S is a complex submanifold of S, and 6),, ©; are the
corresponding terms associated to the relevant fibrations, then we have 7

©1=10"0, 6,=10"0 (k=1,2,3). (A.12)
Now, we make the procedure as A — +o0, Ty — +00, € = 0, to get 9%71, then from (A.12), we
get 9%71 =1*03 (k= 1,2,3). Combining it with (A.10), we get Theorem A.4. O

Now, for a general w", as we can use the anomaly formula for the trip (ho f,w", w" +
f*w"), in particular, its differential form version as in Section A.l, we can still define
A°(f,h,w" WY E) and Ao(f, h,w",w", E) such that Theorem A.4 and (A.11) still hold,
again we need to fix a differential form version of ”I“vdg (T(f,h,hof)).

A.3. Immersion formula

Let V,W be two u,-equivariant projective complex manifolds and let ¢: W < V be an
equivariant closed immersion. Let S be a compact complex manifold with trivial u,-action,
and let f: W — S, 1:V — S be two equivariant holomorphic submersions with fibers Y, X

such that f =1[o4. Assume that 77 is an equivariant hermitian bundle on W and (£.,v) is a
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complex of equivariant hermitian bundles on V' which provides a resolution of .7 such that
the metrics on &. satisfy the Bismut’s assumption (A). Let w"', w" be two Kihler fibrations
on f and on [, respectively. We shall assume that w' is the pullback of w", so that the Kihler
metric on W is induced by the Kéhler metric on V. Consider the following exact sequence

N: 0-Tf—=Tl|lw— Nx/y —0,

where Nx/y is endowed with the quotient metric. Then the equivariant secondary Todd form
of N satisfies the identity

a—aﬁigw) =Tdy(T1 |w,h"") = Tdy(Tf, k") Tdy (N x/v).

211

We suppose that in the resolution &., &; are all [—acyclic and moreover 7 is f—acyclic.

Let T, (w", k%) be the equivariant analytic torsion forms associated with the family of relative
Dolbeault double complexes (Q(X, £|x), " + ). Let h(X:€1x) be the corresponding Lo metric
on the hypercohomology H (X, ¢&|x) of &|x.

Note that under our assumption, H (X, ¢|x) =~ f«n. And we have the following exact sequence
of hermitian vector bundles on S

[1]|

We can split Z. into a family of short exact sequence of hermitian bundles from j = 1 to m

_ 4
xj: 0——=Kerd; —Z; %Kerdj,l —0
such that the kernel of every map d;_; for j =2,...,m carries the metric induced by Ej and

Kerdy = Zg = H(X, €[x), Kerdy, = Ep1 = 1(E,,). We set chy(E.) = 37 (~1)7chy (xy)-
Then it satisfies the differential equation

90~ _ S .

S—chy(E.) = chy (H(X, €[x)) = > (=1)chy(L(E;)).

§=0

The following result is the combination of [14, Theorems 0.1 and 0.2] which is an equivariant
extension of [8, Theorems 0.1 and 0.2], and a families extension of [7, Theorem 0.1; 13, Theorem
0.1].

Let R, be the equivariant R-genus of Bismut [6].

THEOREM A.5 (Immersion formula). The following identity holds in €,.,A"?(S)/
(Im 8 + Im 9).

Ty(w" h) = Ty (@™ 1) + chy (fum, BT EOE) o) = /V s Tdy(T1)T,(&.)

Hn

- / Tdy(N)Td, ' (N x/y )ehy (7) + / Tdy(Tf)Re(Nxy)chy(7),  (A.13)
Wiy /S Wi /S

Ty, h®) = > (=1)'T,(w", h*) — chy(E.) = 0. (A.14)

i=0
Again to understand (A.13) at the differential form level, that is, without modulo
Imd +Im 3, then we need to fix first chy(f.n, h1Ex) pfm) and Td,(N) as differential
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forms, and Ty (&.) as a current. The natural and nice way is that we use [7, (7.33)] to replace
~Tdy(N)Td, ' (Nx/y) + Tdy(Tf)Ry(Nx,y) by the differential form B,(N) in [7, (7.24)].
Then we use the current T, (€.) defined in [7, (6.30)] and (ilg(fm7 RH(XEx) B F+1) as the integral
7 in [14, (3.24)].

Let A°(f,1,4.7,€.) and Ao(f,1,i.7,€.) be the differential forms such that

A= aAO(fv l, l*ﬁ, g) + gAO(fa la Z*ﬁa g)
measures the difference

Tg(wv7 hE) - Tg(wwv hn) + (;lllg(f*rrh hH(X’E‘X% hf*"?)

o
We claim that A°(f,1,4,7,€.) and Ao(f,[,i.7,£.) can be written down explicitly and they
admit certain functoriality.

Let S; be a closed submanifold of S, and let Wy = f~1(S;) C W (respectively, V; =
17(S;1) C V) be the closed submanifold of W (respectively, V') with restricted Kéhler metric.
Then i, : Wy — Vi, 01 : V3 — S1 and f1 : Wi — S7 also form a triple of equivariant morphisms
such that f; =1 o¢;. Denote by j the embedding S; — S.

Td, (TT, ) - / B, (V)ch, (7).

Win /S

THEOREM A.6. There is a natural way to write down explicitly differential forms
A°(f, 1,47, €.) and Ao(f,1,i.7, €.) such that A := OA°(f,1,i.7,€.) + 0Ao(f,1,i.7,€.) and they
are functorial in the following sense.

]*Ao(fvlvl*ﬁ7g) = Ao(fhllail*ﬁ |Wug' |V1)

and
j*AO(falvz*ﬁ7g) = AO(fhllaZ’l*ﬁ |W1ag' |V1)'

Proof. By the equivariant extension of [8, (6.109), (6.110), (6.158) and (6.170)] in [14,
Definition 3.4], there exist universal smooth forms 4*,§% on S such that

A+d°B =0+ 05°.

Again f is a combination of local terms from the small time heat kernel asymptotics of the
Bismut superconnection for the fibrations h and ho f (cf. [8, Theorem 6.4, (6.36), (6.55); 27,
(2.24), (2.27)]). More precisely, before we make the procedure as A — 400, Ty — +00, € — 0,
the forms ~, ¢ defined in [14, (3.13)] are double integrals of certain supertrace of the heat kernel
of the square of the Bismut superconnection as in (A.7). Note that the square of the Bismut
superconnection is a second-order fiberwise elliptic operator with differential form coefficients
and when we consider the corresponding objects for the submersion /i, each above term is
the restriction of the corresponding term for the global submersion [, thus if Aq,~3, 67, 81 are
corresponding terms associated to the relevant fibrations 41,7, and f;, we have

Ay =j A =561 = 576%, B = "B,
So, write A°(f,1,i.7,€.) = v — B and Ao(f,1,i.7,€.) = §° — 3, we are done. O
We can do the same analysis for (A.14).
Note that we can relax our condition on f: V — S as follows: S is a (possible noncompact)

complex manifold and f : V' — S is a Kéhler fibration in the sense of Bismut—Gillet—Soulé [10,
Definition 1.4].
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