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An arithmetic Lefschetz–Riemann–Roch theorem

Shun Tang

with an appendix by Xiaonan Ma

Abstract

In this article, we consider regular projective arithmetic schemes in the context of Arakelov
geometry, any of which is endowed with an action of the diagonalizable group scheme associated
to a finite cyclic group and with an equivariant very ample invertible sheaf. For any equivariant
morphism between such arithmetic schemes, which is smooth over the generic fiber, we define a
direct image map between corresponding higher equivariant arithmetic K-groups and we discuss
its transitivity property. Then we use the localization sequence of higher arithmetic K-groups
and the higher arithmetic concentration theorem developed in Tang (Math. Z. 290 (2018) 307–
346) to prove an arithmetic Lefschetz-Riemann-Roch theorem. This theorem can be viewed as
a generalization, to the higher equivariant arithmetic K-theory, of the fixed-point formula of
Lefschetz type proved by Köhler and Roessler (Invent. Math. 145 (2001) 333–396).
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1. Introduction

The aim of this article is to prove an arithmetic Riemann–Roch theorem of Lefschetz type
for the higher equivariant arithmetic K-theory of regular arithmetic schemes in the context
of Arakelov geometry. This theorem is an arithmetic analogue of a special case of Köck’s
Lefschetz theorem in higher equivariant K-theory (cf. [23]), and it also generalizes Köhler–
Roessler’s Lefschetz fixed point formula [24, Theorem 4.4] to the case where higher arithmetic
K-groups are concerned. To make things more explicit, let us first recall the study of such
Lefschetz–Riemann–Roch problems.

Let X be a smooth projective variety over an algebraically closed field k, and suppose that
X is endowed with an action of a cyclic group 〈g〉 of finite order n such that n is prime to the
characteristic of k. A 〈g〉-equivariant coherent sheaf on X is a coherent OX -module F on X
together with an automorphism ϕ : g∗F → F such that ϕn is equal to the identity map. Then
the classical Lefschetz trace formula gives an expression of the alternating sum of the trace of
Hi(ϕ) on the cohomology space Hi(X,F ), as a sum of the contributions from the components
of the fixed-point subvariety Xg. For k = C, the field of complex numbers, such a Lefschetz
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trace formula was presented via index theory and topological K-theory in [1, III]. While for
general k, a Grothendieck-type generalization to the scheme theoretic algebraic geometry is
very natural to expect. Precisely, denote by K0(X, g) the Grothendieck group of the category of
equivariant locally free coherent sheaves on X, then K0(Pt, g) is isomorphic to the group ring
Z[g] ∼= Z[T ]/(1 − Tn) and K0(X, g) has a natural K0(Pt, g)-algebra structure (Pt stands for
the point Spec(k)). Let Y be another 〈g〉-equivariant smooth projective variety, let f : X → Y
be a projective morphism compatible with both 〈g〉-actions on X and on Y , then we have a
direct image map f∗ : K0(X, g) → K0(Y, g) given by

E �→
∑
i�0

(−1)iRif∗(E).

Unsurprisingly, the direct image map f∗ does not commute with the restriction map
τ : K0(·, g) → K0((·)g, g) from the equivariant K0-group of an equivariant variety to the
equivariant K0-group of its fixed-point subvariety. Namely, the restriction map τ is not a
natural transformation between the covariant functors K0(·, g) and K0((·)g, g). Like the other
Riemann–Roch problems, the Lefschetz–Riemann–Roch theorem makes a correction of τ such
that it becomes a natural transformation. In fact, for any 〈g〉-equivariant smooth projective
variety X, let NX/Xg

stand for the normal bundle associated to the regular immersion
Xg ↪→ X and let λ−1(N∨

X/Xg
) be the alternating sum

∑
(−1)j ∧j N∨

X/Xg
, then λ−1(N∨

X/Xg
)

is an invertible element in K0(Xg, g) ⊗Z[g] R, where R is any Z[g]-algebra in which 1 − T k

is invertible for k = 1, . . . , n− 1. We formally define LX : K0(X, g) → K0(Xg, g) ⊗Z[g] R as
λ−1
−1(N

∨
X/Xg

) · τ , the Lefschetz–Riemann–Roch theorem reads: the following diagram

(1)

is commutative.
This commutative diagram (1) was presented by Donovan in [19], and later it was generalized

to singular varieties by Baum, Fulton and Quart in [2]. Note that the settings in [2, 19] are
more general than that in this introduction. The reasoning in the first paper runs similarly to
the technique used in Borel–Serre’s paper [15], while the reasoning in the second paper relies
on the deformation to the normal cone construction. These two processes are both traditional
for producing the Grothendieck-type Riemann–Roch theorem.

After Quillen and other mathematicians’ work, algebraic K-groups are extended to higher
degrees and the higher (equivariant) algebraic K-groups of X are defined as the higher
homotopy groups of the K-theory space associated to the category of (equivariant) locally
free coherent sheaves on X. There are many methods to construct this ‘K-theory space’, but
no matter which construction we choose, the tensor product of locally free coherent sheaves
always induces a graded ring structure on K•(X, g). In particular, each Km(X, g) is a K0(X, g)-
module. Moreover, the functor K•(·, g) is again covariant with respect to equivariant proper
morphisms. Then, for any m � 1, the following diagram for higher algebraic K-groups which
is similar to (1) does make sense:

(2)
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The commutativity of diagram (2), which is named the Lefschetz–Riemann–Roch theorem
for higher equivariant algebraic K-theory, was proved by Köck in [23]. The main ingredient is
an excess intersection formula whose proof also relies on the deformation to the normal cone
construction. Moreover, it is worth indicating that the commutative diagram (2), combined
with the Gillet’s Riemann–Roch theorem for higher algebraic K-theory (cf. [20]), implies a
higher Lefschetz trace formula.

In the field of arithmetic geometry, one considers those Noetherian and separated schemes
f : X → Spec(Z) over the ring of integers (actually over any excellent regular Noetherian
domain). In this context, it is possible to produce an analogue of the commutative diagram
(1), by endowing X with an action of the diagonalizable group scheme μn = Spec(Z[Z/nZ])
of nth roots of unity rather than with the action of an automorphism of order n. Here, a μn-
action on X is a morphism of schemes mX : μn ×X → X which satisfies the usual associativity
property. The reason for this choice is that the fixed-point subscheme Xμn

of a regular scheme
X equipped with an action of μn is still regular and the natural inclusion iX : Xμn

↪→ X is a
regular immersion, while the fixed-point subscheme of a regular scheme under an automorphism
of order n can be very singular over the fibers lying above the primes dividing n. By a μn-
equivariant coherent sheaf F on X, we understand a coherent OX -module F together with an
isomorphism

mF : m∗
XF → pr∗XF

of Oμn×X -modules which satisfies the following associativity property:

(pr∗2,3mF ) ◦ ((1 ×mX)∗mF ) = (mμn
× 1)∗mF .

Here, mμn
denotes the multiplication μn × μn → μn, prX : μn ×X → X and pr2,3 : μn ×

μn ×X → μn ×X denote the obvious projections. Under this situation, Baum–Fulton–Quart
method still works, so that the commutative diagram (1) holds for regular μn-equivariant
schemes over Z.

In [35], Thomason used another way to do the same thing and he even got a generalization
of the commutative diagram (2) for regular μn-equivariant schemes. Thomason’s strategy
was to use Quillen’s localization sequence for higher equivariant algebraic K-groups to
show a concentration theorem. This theorem states that, after a suitable localization, the
equivariant algebraic K-group Km(Xμn

, μn)ρ is isomorphic to Km(X,μn)ρ for any m � 0,
and the inverse map is exactly given by λ−1

−1(N
∨
X/Xμn

) · i∗X . Here, ρ is any prime ideal in
R(μn) := K0(SpecZ, μn) ∼= Z[T ]/(1 − Tn) which does not contain the elements 1 − T k for
k = 1, . . . , n− 1. For instance, ρ can be chosen to be the kernel of the natural morphism
Z[T ]/(1 − Tn) → Z[T ]/(Φn), where Φn stands for the nth cyclotomic polynomial. Then the
Lefschetz-Riemann–Roch theorem for regular μn-equivariant schemes

(3)

follows from the covariant functoriality of K•(·, μn) with respect to proper morphisms.
Now, let us turn to Arakelov geometry. Let X be an arithmetic scheme over an arithmetic

ring (D,Σ, F∞) in the sense of Gillet–Soulé (cf. [21]), then X is quasi-projective over D with
smooth generic fiber. We denote μn := Spec(D[Z/nZ]) the diagonalizable group scheme over
D associated to a cyclic group Z/nZ. By saying X is μn-projective, we understand that X
is endowed with a projective μn-action. That means X is projective and there exists a very
ample invertible μn-sheaf on X.
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For each regular μn-projective arithmetic scheme X, K. Köhler and D. Roessler have defined
an equivariant arithmetic K0-group K̂0(X,μn) in [24]. This arithmetic K0-group is a modified
Grothendieck group of the category of equivariant hermitian vector bundles on X, it contains
some smooth form class on Xμn

(C) as analytic datum. The same as the algebraic K0-group
K0(X,μn), K̂0(X,μn) has a ring structure and it is an R(μn)-algebra. Moreover, direct image
maps between equivariant arithmetic K0-groups can be defined for an equivariant morphism
which is smooth over the generic fiber, by using Bismut–Köhler–Ma analytic torsion forms.
Choose a Kähler metric for X(C), and let NX/Xμn

be the normal bundle endowed with the
quotient metric, then the main theorem in [24] reads: the element λ−1(N

∨
X/Xμn

) is a unit in

K̂0(Xμn
, μn)ρ and the following diagram

(4)

is commutative, where ρ is any prime ideal in R(μn) which does not contain the elements
1 − T k for k = 1, . . . , n− 1, ΛR is defined as (1 −Rg(NX/Xμn

)) · λ−1
−1(N

∨
X/Xμn

), and Rg(·) is
the equivariant R-genus due to Bismut (see below).

Later, two refinements of (4) were presented by the author in [33] and in [32], respectively.
In [33], D was replaced by a general regular μn-projective scheme Y . In [32], X was allowed to
have singularities on its finite fibers. The aim of this article is to show an Arakelovian analogue
of a special case of (3), in which the higher equivariant algebraic K-groups are replaced by
the higher equivariant arithmetic K-groups. Hence, our work is a generalization of Köhler–
Roessler’s Lefschetz fixed-point formula to the higher equivariant arithmetic K-theory.

Let us describe the main result more precisely. First, note that we have constructed a
group endomorphism ⊗λ−1(N

∨
X/Xμn

) : K̂m(Xμn
, μn) → K̂m(Xμn

, μn) and its formal inverse

⊗λ−1
−1(N

∨
X/Xμn

) : K̂m(Xμn
, μn)ρ → K̂m(Xμn

, μn)ρ in [34, Section 5]. As what we stated before,
ρ is any prime ideal in R(μn) := K0(SpecZ, μn) ∼= Z[T ]/(1 − Tn) which does not contain
the elements 1 − T k for k = 1, . . . , n− 1. For instance, ρ can be chosen to be the kernel of
the natural morphism Z[T ]/(1 − Tn) → Z[T ]/(Φn), where Φn stands for the nth cyclotomic
polynomial. In this article, we shall further construct a group endomorphism Rg(NX/Xμn

) :
K̂m(Xμn

, μn) → K̂m(Xμn
, μn) and we shall prove that this endomorphism Rg(NX/Xμn

)
is independent of the choice of the metric over NX/Xμn

after tensoring by Q. So, the
expression ΛR = (1 −Rg(NX/Xμn

)) · λ−1
−1(N

∨
X/Xμn

) still makes sense as an endomorphism of
K̂m(Xμn

, μn)ρ ⊗ Q. Moreover, for any equivariant morphism f : X → Y between regular μn-
projective arithmetic schemes, which is smooth over the generic fiber, we shall prove that there
exists a reasonable direct image map f∗ : K̂m(X,μn) → K̂m(Y, μn) with m � 1 and we discuss
the transitivity property of the direct image maps up to torsion. Assume that the μn-action
on Y is trivial and still use the notation τ to denote the morphism

K̂m((·), μn) → K̂m((·)μn
, μn)ρ ⊗ Q

x �→ τ(x) ⊗ 1,
Our main theorem reads: the following diagram

(5)
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is commutative. In such a formulation, the equivariant R-genus again plays a crucial role.
To this aim, the definition of higher equivariant arithmetic K-groups and some reasonable

technique that can be carried out for higher equivariant arithmetic K-theory should be
clarified. We have settled these in [34]. In fact, we have defined the higher equivariant
arithmetic K-groups via the simplicial description of the Beilinson’s regulators (cf. [17]) and
we have developed a localization sequence as well as an arithmetic concentration theorem. So,
principally, we shall follow Thomason’s approach to prove the commutativity of (5), but the
fact that the direct image maps are only defined for the morphisms which are smooth over
the generic fibers will lead to a big gap comparing with the purely algebraic case. Some highly
non-trivial analytic machinery should be involved, such as the transitivity property of analytic
torsion forms and the Bismut–Ma immersion formula.

The Köhler–Roessler arithmetic Lefschetz fixed-point formula has fruitful applications in
number theory and in arithmetic geometry. One important reason is that the equivariant R-
genus is closely related to the logarithmic derivative of certain L-functions. Köhler–Roessler
and Maillot–Roessler have shown in [25] and in [29] that the Faltings heights and the periods
of C.M. abelian varieties can be expressed as a formula in terms of the special value of
logarithmic derivative of L-functions at 0. Further, in [28], Maillot–Roessler presented a series
of conjectures about the relation between several invariants of arithmetic varieties and the
special values of logarithmic derivative of Artin L-functions at negative integers. We hope that
our Lefschetz–Riemann–Roch theorem for higher equivariant arithmetic K-groups would be
helpful to understand these conjectures.

The structure of this article is as follows. In Section 2, we define the direct image maps
between higher equivariant arithmetic K-groups. As an opportunity, we recall the analytic
torsion for cubes of hermitian vector bundles introduced by Roessler in [30], actually our
construction is slightly different to Roessler’s construction. In Section 3, we discuss certain
transitivity property of the direct image maps, the relation of equivariant analytic torsion
forms with respect to families of submersions will be presented. In Section 4, we formulate and
prove the commutativity of the diagram (5), an accurate computation via the deformation to
the normal cone construction is given. In the last section, we attach an Appendix on some
properties of equivariant analytic torsion forms and immersion formula. These purely analytic
properties are crucial for the main arguments in this article, the author is very grateful to Prof.
Ma Xiaonan for writing this Appendix.

2. Higher equivariant arithmetic K-theory

2.1. Bott–Chern forms and arithmetic K-groups

Suggested by Soulé (cf. [31]), and also by Deligne (cf. [18]), the higher arithmetic K-groups
of an arithmetic scheme X can be defined as the homotopy groups of the homotopy fiber of
Beilinson’s regulator map, so that one obtains a long exact sequence

where H∗
D(X,R(p)) is the real Deligne–Beilinson cohomology and ch is the Beilinson’s regulator

map. In order to do this, a simplicial description of Beilinson’s regulator map is necessary.
In [17], such a simplicial description was given by Burgos and Wang by using the higher
Bott–Chern forms. Recently, in [34], we followed Burgos–Wang approach to define the higher
equivariant Bott–Chern forms and further the higher equivariant arithmetic K-theory. In this
subsection, we shall recall some relevant constructions and definitions, for more details the
reader is referred to [17, 34].
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At first, let X be a smooth algebraic variety over C. In this subsection, we shall work
with the analytic topology of X. Denote by E∗

log(X) the complex of differential forms on
X with logarithmic singularities along infinity (cf. [34, Definition 2.1]), then E∗

log(X) has
a natural bigrading En

log(X) =
⊕

p+q=n E
p,q
log (X) and this grading induces a Hodge filtration

F pEn
log(X) =

⊕
p′�p

p′+q′=n
Ep′,q′

log (X). Write E∗
log,R(X, p) := (2πi)pE∗

log,R(X) with E∗
log,R(X) the

subcomplex of E∗
log(X) consisting of real forms, then we have a decomposition E∗

log(X) =
E∗

log,R(X, p) ⊕ E∗
log,R(X, p− 1) and the projection πp : E∗

log(X) → E∗
log,R(X, p) is given by

πp(x) = 1
2 (x + (−1)px). Moreover, for any x ∈ En

log(X), we define two filtered functions

F k,kx =
∑

l�k,l′�k

xl,l′ and F kx =
∑
l�k

xl,l′ .

Then we set π(x) := πp−1(Fn−p+1,n−p+1x).
The main result in [16, Section 2] states that the following Deligne complex

Dn(Elog(X), p) =

⎧⎪⎪⎨⎪⎪⎩
En−1

log,R(X, p− 1)
⋂⊕

p′+q′=n−1
p′<p,q′<p

Ep′,q′
log (X), n < 2p;

En
log,R(X, p)

⋂⊕
p′+q′=n

p′�p,q′�p
Ep′,q′

log (X), n � 2p,

with differential

dDx =

⎧⎨⎩
−π(dx), n < 2p− 1;
−2∂∂x, n = 2p− 1;
dx, n > 2p− 1.

computes the real Deligne–Beilinson cohomology of X. Namely, one has

Hn
D(X,R(p)) = Hn(D∗(Elog(X), p)).

We shall write D∗(X, p) := D∗(Elog(X), p) for short.

Remark 2.1. (i) According to the definition, the real Deligne–Beilinson cohomology of X
at degrees 2p and 2p− 1 are given by

H2p(D∗(Elog(X), p)) = {x ∈ Ep,p
log (X) ∩ E2p

log,R(X, p) | dx = 0}/Im(∂∂)

and

H2p−1(D∗(Elog(X), p)) = {x ∈ Ep−1,p−1
log (X) ∩ E2p−2

log,R (X, p− 1) | ∂∂x = 0}/(Im ∂ + Im ∂).

(ii) Let x ∈ Dn(X, p) and y ∈ Dm(X, q), we write l = n + m and r = p + q. Then

x • y =

⎧⎪⎪⎨⎪⎪⎩
(−1)nrp(x) ∧ y + x ∧ rq(y), n < 2p,m < 2q
π(x ∧ y), n < 2p,m � 2q, l < 2r
F r,r(rp(x) ∧ y) + 2πr∂

(
(x ∧ y)r−1,l−r

)
, n < 2p,m � 2q, l � 2r

x ∧ y, n � 2p,m � 2q

induces a product on
⊕

p D
∗(X, p) which is graded commutative and is associative up to

chain homotopy. Here, rpx = 2πp(F pdx) if n � 2p− 1 and rpx = x otherwise. At the level of
cohomology groups, this product coincides with the product defined by Beilinson. Note that if
x ∈ D2p(X, p) is a cocycle, then for all y, z we have x • y = y • x and y • (x • z) = (y • x) • z =
x • (y • z).

In order to introduce the higher Bott–Chern form, let us construct a new complex D̃∗(X, p)
using the cocubical structure of the cartesian product of projective lines (P1)·. This complex
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D̃∗(X, p) has the same cohomology groups as D∗(X, p). First, one note that D∗(X × (P1)·, p)
form a cubical complex with face and degeneracy maps

dji = (Id × dij)
∗ and si = (Id × si)∗,

where

dij : (P1)k → (P1)k+1, i = 1, . . . , k, j = 0, 1,

si : (P1)k → (P1)k−1, i = 1, . . . , k,

which are given by

di0(x1, . . . , xk) = (x1, . . . , xi−1, (0 : 1), xi, . . . , xk),

di1(x1, . . . , xk) = (x1, . . . , xi−1, (1 : 0), xi, . . . , xk),

si(x1, . . . , xk) = (x1, . . . , xi−1, xi+1, . . . , xk)

are the coface and the codegeneracy maps of (P1)·. Then we write Dr,k
P (X, p) = Dr(X ×

(P1)−k, p) and denote by D∗,∗
P (X, p) the associated double complex with differentials

d′ = dD and d′′ =
∑

(−1)i+j−1dji .

Next, let (x : y) be the homogeneous coordinates of P1, and let ω = ∂∂ log xx+yy
xx ∈ (2πi)E2

P1,R

be a Kähler form over P1. We shall write ωi = p∗iω ∈ E∗
log(X × (P1)k), where pi : X × (P1)k →

P1, i = 1, . . . , k is the projection over the ith projective line. The complex D̃∗(X, p) is
constructed by killing the degenerate classes and the classes coming from the projective spaces.

Definition 2.2. We define D̃∗(X, p) as the associated simple complex of the double complex
D̃∗,∗(X, p) which is given by

D̃r,k(X, p) = Dr,k
P (X, p)/

−k∑
i=1

si

(
Dr,k+1

P (X, p)
)
⊕ ωi ∧ si

(
Dr−2,k+1

P (X, p− 1)
)
.

The differential of this complex will be denoted by d.

A repetition of the proofs of [17, Proposition 1.2, Lemma 1.3] gives that the natural morphism
of complexes

ι : D∗(X, p) = D̃∗,0(X, p) → D̃∗(X, p)

is a quasi-isomorphism.
Now, let X be a smooth μn-projective variety over C and denote by U := P̂(X,μn) the exact

category of μn-equivariant vector bundles on X equipped with μn-invariant smooth hermitian
metrics. We consider the exact cubes in the category U . By definition, an exact k-cube in U
is a functor F from 〈−1, 0, 1〉k, the kth power of the ordered set 〈−1, 0, 1〉, to U such that for
any α ∈ 〈−1, 0, 1〉k−1 and 1 � i � k, the 1-cube ∂α

i defined by

Fα1,...,αi−1,−1,αi,...,αk−1 → Fα1,...,αi−1,0,αi,...,αk−1 → Fα1,...,αi−1,1,αi,...,αk−1

which is called an edge of F is a short exact sequence. From now on, we shall write cubes
instead of exact cubes for short. Let F be a k-cube in U , for 1 � i � k and j ∈ 〈−1, 0, 1〉, the
(k − 1)-cube ∂j

iF defined by (∂j
iF)α1,...,αk−1 = Fα1,...,αi−1,j,αi,...,αk−1 is called a face of F . On

the other hand, for any 1 � i � k + 1, we denote by S1
i F the (k + 1)-cube

(S1
i F)α1,...,αk+1 =

{
0, αi = 1;
Fα1,...,αi−1,αi+1,...,αk+1 , αi 
= 1,
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such that the morphisms (S1
i F)α1,...,αi−1,−1,αi+1,...,αk+1 → (S1

i F)α1,...,αi−1,0,αi+1,...,αk+1 are the
identities of (S1

i F)α1,...,αi−1,αi+1,...,αk+1 . Similarly, we have (k + 1)-cube S−1
i F .

Denote by CkU the set of all k-cubes in U , then we have the face maps ∂j
i : CkU → Ck−1U

and the degeneracy maps Sj
i : CkU → Ck+1U . The cubes in the image of Sj

i are said to be
degenerate. Let ZCkU be the free abelian group generated by CkU and Dk be the subgroup of
ZCkU generated by all degenerate k-cubes. Set Z̃CkU = ZCkU/Dk and

d =
k∑

i=1

1∑
j=−1

(−1)i+j−1∂j
i : Z̃CkU → Z̃Ck−1U .

Then Z̃C∗U = (Z̃CkU , d) is a homological complex.
Assume that E is a hermitian k-cube in the category U = P̂(X,μn). If E is an emi-cube,

namely the metrics on the quotient terms in all edges of E are induced by the metrics on the
middle terms (cf. [17, Definition 3.5]), one can follow [17, (3.7)] to associate a hermitian locally
free sheaf trk(E) on X × (P1)k. This trk(E) is called the k-transgression bundle of E. If k = 1,
as an emi-1-cube, E is a short exact sequence

where the metric of E1 is induced by the metric of E0. Then tr1(E) is the cokernel with quotient
metric of the map E−1 → E−1 ⊗O(1) ⊕ E0 ⊗O(1) by the rule e−1 �→ e−1 ⊗ σ∞ ⊕ i(e−1) ⊗ σ0.
Here, σ0 (respectively, σ∞) is the section of the tautological bundle O(1) on P1 which vanishes
only at 0 (respectively, ∞), and O(1) is endowed with the Fubini-Study metric. If k > 1,
suppose that the transgression bundle is defined for k − 1. Let tr1(E) be the emi-(k − 1)-cube
over X × P1 given by tr1(E)α = tr1(∂α

1 (E)), then trk(E) is defined as trk−1(tr1(E)).
Moreover, according to [17, Proposition 3.6], for any hermitian cube E in the category U ,

there is a unique way to change the metrics on Eα for α � 0 such that the obtained new
hermitian cube is emi. In fact, for i = 1, . . . , k, define λ1

iE to be

(λ1
iE)α =

{
(Eα, hα), if αi = −1, 0;
(Eα, h

′
α), if αi = 1,

where h′
α is the metric induced by hα1,...,αi−1,0,αi+1,...,αk

. Thus, λ1
iE has the same locally free

sheaves as E, but the metrics on the face ∂1
i E are induced by the metrics of the face ∂0

i E. To
measure the difference between E and λ1

iE, let λ2
i (E) be the hermitian k-cube determined by

∂−1
i λ2

i (E) = ∂1
i E, ∂0

i λ
2
i (E) = ∂1

i λ
1
i (E), and ∂1

i λ
2
i (E) = 0. Set λi = λ1

i + λ2
i , λ = λk ◦ · · · ◦ λ1 if

k � 1 and λ = Id otherwise. Then the map λ induces a morphism of complexes

Z̃C∗U → Z̃Cemi
∗ U

which is the quasi-inverse of the inclusion Z̃Cemi
∗ U ↪→ Z̃C∗U . To specify the μn-equivariant

variety X, we shall write Z̃C∗(X,μn) := Z̃C∗U .

Definition 2.3. Fix a primitive nth root of unity ζn, the restriction of an equivariant
hermitian vector bundle F |Xμn

over the fixed-point subvariety splits into a direct sum ⊕n
l=1F l,

where Fl is the eigenbundle of F |Xμn
corresponding to the eigenvalue ζn

l. Let Kl be the
curvature form with respect to the unique connection on F l compatible with both the hermitian
and the complex structure, the equivariant Chern–Weil form associated to F is defined as

ch0
g(F ) :=

n∑
l=1

ζn
lTr(exp(−Kl)).
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Define Rn = R if n = 1 and Rn = C otherwise, denote V ⊗R Rn by VRn
for any real vector

space V , the equivariant higher Bott–Chern form associated to hermitian k-cube E is defined
as

chk
g(E) := ch0

g

(
trk
(
λ(E)

)) ∈⊕
p�0

D̃∗(Xμn
, p)[2p]Rn

.

Definition 2.4. Let F |Xμn
= ⊕n

l=1F l be the restriction of an equivariant hermitian vector
bundle over the fixed-point subvariety, where Fl is the eigenbundle of F |Xμn

corresponding to
the eigenvalue ζn

l and Kl is the curvature form of F l. The equivariant Todd form is defined
as

Tdg(F ) = det
( −Kn

1 − eKn

)∏
l �=n

det
(

1
1 − ζ−l

n eKl

)
.

When X is proper, Burgos and Wang gave in [17, Section 6] a quasi-inverse ϕ :
D̃∗(X, p) → D∗(X, p) of the quasi-isomorphism ι : D∗(X, p) → D̃∗(X, p). By means of this
quasi-inverse, the equivariant higher Bott–Chern form has another expression with value in⊕

p�0 D
∗(Xμn

, p)[2p]Rn
. To see this expression, let us set z = x/y which defines the coordinate

map C → P1
C by sending z → [z, 1]. Then log | z | defines an L1 function on P1

C, which can be
considered as a current. We shall denote by log | z1 |, . . . , log | zk | the corresponding currents
on (P1

C)k. These currents can be formally considered as elements in D1((P1
C)k, 1), and they

satisfy the following differential equation

dD log | zj |= −2∂∂ log | zj |= −2iπ(δP1
C
×P1

C
×···×{∞}×···×P1

C

− δP1
C
×P1

C
×···×{0}×···×P1

C

),

where ∞ and 0 stand at the jth place. Let u1, . . . , uk be k elements in
⊕

p�0 D
2p−1(·, p), we

define an element in
⊕

p�0 D
2p−k(·, p) by the formula

Ck(u1, . . . , uk) := −
(
−1

2

)k−1 ∑
σ∈Sk

(−1)σuσ(1) • (uσ(2) • (· · ·uσ(k)) · · · ),

where Sk stands for the kth symmetric group. Then we have

dDCk(u1, . . . , uk) =
(
−1

2

)
k

k∑
j=1

(−1)j−1dD(uj) • Ck−1(u1, . . . , ûj , . . . , uk)

=
(
−1

2

)
k

k∑
j=1

(−1)j−1dD(uj) ∧ Ck−1(u1, . . . , ûj , . . . , uk). (6)

We refer to [30, Lemma 2.9] for a proof of these identities. With the above notations, the
equivariant higher Bott–Chern form associated to a hermitian k-cube E with k � 0 is given by
the expression

ϕ
(
chk

g(E)
)

=
(−1)k

2k!(2πi)k

∫
(P1)k

chk
g(E) ∧ Ck(log | z1 |2, . . . , log | zk |2).

Theorem 2.5. The equivariant higher Bott–Chern forms induce a morphism of complexes

which is denoted by chg. Here, Z̃C∗(X,μn) and Z̃C∗
emi(X,μn) are the (cohomological)

complexes associated to the homological complexes Z̃C∗(X,μn) and Z̃Cemi
∗ (X,μn).
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Specify to the case k = 1, let ε̄ : 0 → Ē−1 → Ē0 → Ē1 → 0 be a hermitian 1-cube, then

dDchg(ε̄) = dD

(
1

4πi

∫
P1

ch0
g(tr1(λ(ε̄))) log | z |2

)
= chg(Ē0) − chg(Ē−1) − chg(Ē1).

If ε̄ is split, by replacing z by 1/z, we know that

chg(ε̄) =
1

4πi

∫
P1

ch0
g(tr1(λ(ε̄))) log | z |2

=
1

4πi

∫
P1

ch0
g

(
Ē1(1)

)
log | z |2 +

1
4πi

∫
P1

ch0
g

(
Ē−1(1) ⊕ Ē−1(1)

Ē−1

)
log | z |2

= 0.

Let ch′
g denote the usual equivariant Chern–Weil forms with the factor 2πi inside

ch′
g(Ē) =

n∑
l=1

ζn
lTr
(

exp(
−Kl

2πi
)
)
,

and let Φ be an operator acting on 2n-forms by Φ(α) = (2πi)−nα. Then

Φ
(
chg(Ē)

)
= ch′

g(Ē)
and

∂̄∂

2πi
(2Φ(chg(ε̄))) = ch′

g(Ē0) − ch′
g(Ē−1) − ch′

g(Ē1).

This means, after a rescaling, chg(ε̄) satisfies the axiomatic conditions for a theory of
unique equivariant secondary Bott–Chern classes [24, Theorem 3.4] (see [9, §1, (f)] for
the non-equivariant case). Note that in [9], the authors used the supertraces of Quillen’s
superconnections to define the non-equivariant secondary Bott–Chern form c̃h. Split ε̄ |Xμn

into a direct sum of short exact sequences of its eigenbundles ⊕n
l=1ε̄l and define

c̃hg(ε̄) :=
n∑

l=1

ζn
lc̃h(ε̄l).

Then we get another way, using the supertraces of Quillen’s superconnections, to define the
equivariant secondary Bott–Chern form c̃hg(ε̄) which satisfies the equation

∂̄∂

2πi
c̃hg(ε̄) = ch′

g(Ē0) − ch′
g(Ē−1) − ch′

g(Ē1).

So, 2Φ(chg(ε̄)) must be equal to c̃hg(ε̄) modulo Im ∂ + Im ∂̄. Let us write 2Φ(chg(ε̄)) − c̃hg(ε̄) =
∂Δ∂(ε̄) + ∂̄Δ∂̄(ε̄), the following theorem states that Δ∂(ε̄) and Δ∂̄(ε̄) can be chosen to admit
some functorial property.

Theorem 2.6. Let notations and assumptions be as above. There is a functorial choice of
the differential forms Δ∂(ε̄) and Δ∂̄(ε̄) such that

2Φ(chg(ε̄)) − c̃hg(ε̄) = ∂Δ∂(ε̄) + ∂̄Δ∂̄(ε̄)

and that Δ∂(j∗ε̄) = j∗Δ∂(ε̄),Δ∂̄(j∗ε̄) = j∗Δ∂̄(ε̄) for any equivariant morphism j : X ′ → X.

Proof. For hermitian 1-cube ε̄ : 0 → Ē−1 → Ē0 → Ē1 → 0, we divide it into two emi-1-
cubes

ε̄1 : 0 → Ē−1 → Ē0 → Ē′
1 → 0
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and

ε̄2 : 0 → Ē1 → Ē′
1 → 0 → 0,

where Ē′
1 is E1 endowed with the quotient metric. According to the definition of the morphism

λ, the higher Bott–Chern form is additive chg(ε̄) = chg(ε̄1) + chg(ε̄2). To study the secondary
Bott–Chern form constructed by the supertraces of Quillen’s superconnections, we write down
a double complex

(7)

Restrict every bundle over Xμn
and split it into the direct sum of eigenbundles, then one

can immediately repeat the argument given in [9, Theorem 1.20] (where the non-equivariant
bundles were dealt with) to write down a proof of the fact that c̃hg(ε̄) = c̃hg(ε̄1) + c̃hg(ε̄2)
modulo Im ∂ + Im ∂̄. In the proof of [9, Theorem 1.20], the error terms were explicitly written
down and were functorial (see [9, (1.71), (1.72), (1.78), (1.81) and (1.82)]). That means one
can fix a functorial choice of differential forms Δ′

∂(ε̄) and Δ′̄
∂
(ε̄) such that

c̃hg(ε̄) −
(
c̃hg(ε̄1) + c̃hg(ε̄2)

)
= ∂Δ′

∂(ε̄) + ∂̄Δ′̄
∂(ε̄).

So, we may reduce our proof to the case, where ε̄ is an emi-1-cube.
Now, we consider the following exact sequence on X × P1

we compute, using the fact that
∫
P1 chg(Ē−1) log | z |= 0,

∫
P1 chg(Ē−1(1) ⊕ Ē0(1)) log | z |= 0

and the Stokes formula,

2Φ(chg(ε̄)) =
∫
P1

Φ(chg(tr1(ε̄))) log | z |2

= −
∫
P1

∂̄∂

2πi
c̃hg(Ψ) log | z |2

=
1

2πi

∫
P1

(∂X + ∂z)(∂̄X + ∂̄z)c̃hg(Ψ) log | z |2

= ∂X ∂̄X

(
1

2πi

∫
P1

c̃hg(Ψ) log | z |2
)

+ ∂X

(
1

2πi

∫
P1

∂̄z c̃hg(Ψ) log | z |2
)

− ∂̄X

(
1

2πi

∫
P1

∂z c̃hg(Ψ) log | z |2
)

+
1

2πi

∫
P1

∂z∂̄z c̃hg(Ψ) log | z |2
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=
1

2πi

∫
P1

c̃hg(Ψ)∂z∂̄z log | z |2 +∂X ∂̄X

(
1

2πi

∫
P1

c̃hg(Ψ) log | z |2
)

+ ∂X

(
1

2πi

∫
P1

∂̄z c̃hg(Ψ) log | z |2
)
− ∂̄X

(
1

2πi

∫
P1

∂z c̃hg(Ψ) log | z |2
)
.

Set

Δ∂(ε̄) = ∂̄X

(
1

2πi

∫
P1

c̃hg(Ψ) log | z |2
)

+
1

2πi

∫
P1

∂̄z c̃hg(Ψ) log | z |2

and

Δ∂̄(ε̄) = − 1
2πi

∫
P1

∂z c̃hg(Ψ) log | z |2 .

We get

2Φ(chg(ε̄)) = c̃hg(Ψ |X×{∞}) − c̃hg(Ψ |X×{0}) + ∂Δ∂(ε̄) + ∂̄Δ∂̄(ε̄).

By the construction, Ψ |X×{0} is split and Ψ |X×{∞} is isometric to the direct sum of ε̄ and
a split exact sequence 0 → 0 → Ē−1 → Ē−1 → 0, we finally have

2Φ(chg(ε̄)) − c̃hg(ε̄) = ∂Δ∂(ε̄) + ∂̄Δ∂̄(ε̄).

Since the 1-transgression bundle construction Ψ is functorial, the differential forms Δ∂(ε̄) and
Δ∂̄(ε̄) associated to c̃hg(Ψ) are also functorial, thus we complete the whole proof. �

Remark 2.7. (i) According to Theorem 2.6, we can make a functorial choice of differential
forms Δ∂(ε̄) and Δ∂̄(ε̄) for any hermitian 1-cube ε̄ such that

2Φ(chg(ε̄)) − c̃hg(ε̄) = ∂Δ∂(ε̄) + ∂̄Δ∂̄(ε̄).

Set Δ(ε̄) = −Φ−1(Δ∂(ε̄)+Δ∂̄(ε̄)
2 ), then Δ(ε̄) is functorial and by the definition of the Deligne

complex D∗(Elog(X), p) we have

chg(ε̄) − Φ−1

(
c̃hg(ε̄)

2

)
= −π

(
(∂ + ∂̄)Δ(ε̄)

)
= dDΔ(ε̄).

(ii) It is easily seen from the proof of Theorem 2.6 that if one uses another way to define the
equivariant Bott–Chern form c̃hg which satisfies the axiomatic conditions in [9, Theorem 1.29]
(at the level of differential forms) and which is additive for direct sum of short exact sequences,
then one can also make a functorial choice of element Δ(ε̄) for any hermitian emi-1-cube ε̄
such that

chg(ε̄) − Φ−1

(
c̃hg(ε̄)

2

)
= dDΔ(ε̄).

If X is a regular μn-projective arithmetic scheme over an arithmetic ring (D,Σ, F∞), we shall
denote XR := (X(C), F∞) the real variety associated to X, where F∞ is the antiholomorphic
involution of X(C) induced by the conjugate-linear involution F∞ over (D,Σ, F∞). For any
sheaf of complex vector spaces V with a real structure over XR, we denote by σ the involution
given by

ω �→ F ∗∞(ω).

Write D∗(XR, p) := D∗(X(C), p)σ for the subcomplex of D∗(X(C), p) consisting of the fixed
elements under σ, we define the real Deligne–Beilinson cohomology of X as

H∗
D(X,R(p)) := H∗(D∗(XR, p)).
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Let us denote by P̂(X,μn) the exact category of μn-equivariant hermitian vector bundles on
X, and by Ŝ(X,μn) the simplicial set associated to the Waldhausen S-construction of P̂(X,μn)
(cf. [34, Section 2.3]). The forgetful functor (forget about the metrics) π : P̂(X,μn) → P(X,μn)
induces an equivalence of categories, so we have homotopy equivalence

| Ŝ(X,μn) |�| S(X,μn) |
and isomorphisms of abelian groups

Km(X,μn) ∼= πm+1(| Ŝ(X,μn) |, 0)

for any m � 0. To give the simplicial description of the equivariant regulator maps, we associate
to each element in SkP̂(X,μn) a hermitian (k − 1)-cube. First, note that an element A in
SkP̂(X,μn) is a family of injections

A0,1 � A0,2 � · · · � A0,k

of μn-equivariant hermitian vector bundles on X with quotients Ai,j � A0,j/A0,i for each i < j.
For k = 1, we write

Cub(A0,1) = A0,1.

Suppose that the map Cub is defined for all l < k, then CubA is the (k − 1)-cube with

∂−1
1 CubA = s1

k−2 · · · s1
1(A0,1),

∂1
1CubA = Cub(∂0A).

Let ZŜ∗(X,μn) be the simplicial abelian group generated by the simplicial set Ŝ(X,μn),
and let N (ZŜ∗(X,μn)) be the Moore complex associated to ZŜ∗(X,μn) with differential d =∑k

i=0(−1)i∂i, where ∂i is the face map of Ŝ(X,μn). Then, according to [17, Corollary 4.8], the
map Cub defined above extends by linearity to a morphism of homological complexes

Cub : N
(
ZŜ∗(X,μn)

)
→ Z̃C∗(X,μn)[−1],

and hence one gets a simplicial map

Cub : ZŜ∗(X,μn) → K
(
Z̃C∗(X,μn)[−1]

)
,

where K is the Dold–Puppe functor.

Definition 2.8. Let notations and assumptions be as above. We denote by D2p−∗(Xμn
, p)

the homological complex associated to the complex τ�0(D∗(Xμn
, p)[2p]) which is the canonical

truncation of D∗(Xμn
, p)[2p] at degree 0. We define a simplicial map

where Hu is the Hurewicz map.

Definition 2.9. Let X be a regular μn-projective scheme over an arithmetic ring
(D,Σ, F∞), and let Xμn

be the fixed-point subscheme. The higher equivariant arithmetic
K-groups of X are defined as

K̂m(X,μn) := πm+1

(
homotopy fiber of | c̃hg |

)
for m � 1,
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and the equivariant regulator maps

chg : Km(X,μn) →
⊕
p�0

H2p−m
D (Xμn

,R(p))Rn

are defined as the homomorphisms induced by c̃hg at the level of homotopy groups.

Remark 2.10. (i). We have the long exact sequence

· · · → K̂m(X,μn) → Km(X,μn) →
⊕
p�0

H2p−m
D (Xμn

,R(p))Rn
→ K̂m−1(X,μn) → · · ·

ending with

(ii) When n = 1, the equivariant higher Bott–Chern forms given in Definition 2.3 coincide
with the higher Bott–Chern forms defined in [17] for non-equivariant proper varieties. So, in
this case,

chg : Km(X,μ1) →
⊕
p�0

H2p−m
D (X,R(p))

is the Beilinson’s regulator map.
(iii) The higher equivariant arithmetic K-groups K̂m(X,μn) can be defined for non-proper

X, for details, see [34, Section 2].
(iv) Let s(chg) denote the simple complex associated to the chain morphism

Then, for any m � 1, there is an isomorphism

K̂m(X,μn)Q ∼= Hm(s(chg),Q).

(v) A μn-equivariant hermitian sheaf on X is a μn-equivariant coherent sheaf on X which is
locally free on X(C) and is equipped with a μn-invariant hermitian metric. To a μn-equivariant
hermitian sheaf, the higher equivariant Bott–Chern form can still be defined in the same way.
Denote by P̂ ′(X,μn) the category of μn-equivariant hermitian sheaves on X, then instead of
P̂(X,μn) one may define a new arithmetic K-theory K̂ ′

∗(X,μn) which is called the equivariant
arithmetic K′-theory. Since P̂ ′(X,μn) and P̂(X,μn) define the same algebraic K-theory when X

is regular, it is easily seen from the Five-lemma that the natural inclusion P̂(X,μn) ⊂ P̂ ′(X,μn)
induces isomorphisms K̂m(X,μn) ∼= K̂ ′

m(X,μn) for any m � 1.

2.2. Equivariant analytic torsion for hermitian cubes

In [12], Bismut and Köhler developed a theory of higher analytic torsion forms for holomorphic
submersions of complex manifolds. The higher analytic torsion form solves a differential
equation which gives a refinement of the Grothendieck–Riemann–Roch theorem at the level
of characteristic forms. Later, in [27], Ma generalized Bismut and Köhler’s results to the
equivariant case. Considering the higher K-theory and the Deligne-Beilinson cohomology,
to make a refinement of the Riemann–Roch theorem at the level of higher Bott–Chern
forms representing the regulator maps, one needs an extension of higher analytic torsion
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for hermitian cubes, this has been done in [30]. In this subsection, we do the equivariant
case by using Ma’s equivariant analytic torsion forms. Our construction is slightly different to
Roessler’s construction.

Let X,Y be two smooth μn-projective varieties over C, and let f : X → Y be an equivariant
and smooth morphism. A Kähler fibration structure on f is a real closed (1,1)-form ω on X
which induces Kähler metrics on the fibers of f (cf. [12, Definition 1.1, Theorem 1.2]). For
instance, we may fix a μn-invariant Kähler metric on X and choose corresponding Kähler form
ω as a Kähler fibration structure on f . Let (E, hE) be a μn-equivariant hermitian vector bundle
on X such that E is f -acyclic, that is, the higher direct image Rqf∗E vanishes for q > 0. The
equivariant analytic torsion form Tg(f, ω, hE) is an element of

⊕
p�0 D

2p−1(Yμn
, p)Rn

, which
depends on f, ω and (E, hE) and satisfies the differential equation

dDTg(f, ω, hE) = chg(f∗E, f∗hE) − 1
(2πi)r

∫
Xμn/Yμn

Tdg(Tf, hTf )chg(E, hE),

where hTf is the hermitian metric induced by ω on the holomorphic tangent bundle Tf , r is
the rank of the bundle Tfμn

, and f∗hE is the L2-metric on f∗E (see the end of [30, Section
2.2] for a definition). By definition, for elements u, v ∈ (f∗E)y of the fiber of f∗E over a point
y ∈ Y , the L2-hermitian product is given by

〈u, v〉L2 =
1

(2π)b

∫
f−1y

〈u, v〉E ωb

b!
,

where b is the relative dimension of X over Y .
We would like to caution the reader that the equivariant analytic torsion form we use

here coincides with Ma’s definition only up to a rescaling. If we denote by T ′
g(f, ω, h

E) Ma’s
equivariant torsion form, then the equality 2Φ(Tg(f, ω, hE)) = T ′

g(f, ω, h
E) holds. From now

on, we shall write Tg(ω, hE) or Tg(hE) for Tg(f, ω, hE), if there is no ambiguity about the
underlying map or Kähler form. Now, let ω′ be the form associated to another Kähler fibration
structure on f : X → Y and let h′Tf be the metric on Tf induced by this new fibration. Let
T̃dg(Tf, h′Tf , hTf ) be the equivariant secondary Todd form used in the Appendix (Section A.1

(A.1)), and set Tdg(Tf, h′Tf , hTf ) = Φ−1(
˜Tdg(Tf,h′Tf ,hTf )

2 ). So,

dDTdg(Tf, h′Tf , hTf ) = Tdg(Tf, hTf ) − Tdg(Tf, h′Tf ).

The following anomaly formula is useful for our later discussion.

Theorem 2.11. Let notations and assumptions be as above. The following identity holds
in
⊕

p�0(D
2p−1(Yμn

, p)/Im dD):

Tg(ω, h
E) − Tg(ω

′, hE) = chg(f∗E, h′f∗E , hf∗E) − 1

(2πi)r

∫
Xμn/Yμn

Tdg(Tf, h
′Tf , hTf )chg(E, hE),

where (f∗E, h′f∗E , hf∗E) stands for the emi-1-cubes of hermitian vector bundles

Proof. This is a translation of [27, Theorem 2.13], see also Theorem A.1. Considering the
relation between the equivariant analytic torsion forms Tg(ω, hE), Tg(ω′, hE) and the ones used
in Ma’s paper, we only need to show

chg(f∗E, h′f∗E , hf∗E) = Φ−1

(
c̃hg(f∗E, h′f∗E , hf∗E)

2

)
∈
⊕
p�0

(
D2p−1(Yμn

, p)/Im dD
)
.

But this is the content of Remark 2.7. �
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According to Remark 2.7 and Theorem A.2, there exists a functorial choice of the differential
form which measures the difference

Tg(ω, h
E) − Tg(ω

′, hE) − chg(f∗E, h′f∗E , hf∗E) +
1

(2πi)r

∫
Xμn/Yμn

Tdg(Tf, h
′Tf , hTf )chg(E, hE)

in Theorem 2.11. With the same notations as in Remark 2.7 and Theorem A.2, we set

Δ(f,E, ω, ω′) := −Φ−1

(
Δ0(f,E, ω, ω′) + Δ0(f,E, ω, ω′)

2

)
+ Δ(f∗E, h′f∗E , hf∗E),

it satisfies the differential equation

dDΔ(f,E, ω, ω′) = Tg(ω, hE) − Tg(ω′, hE) − chg(f∗E, h′f∗E , hf∗E)

+
1

(2πi)r

∫
Xμn/Yμn

Tdg(Tf, h′Tf , hTf )chg(E, hE).

We consider the following setting. Let Z be a compact Kähler manifold and let Z1 be a
closed submanifold of Z. Choose a Kähler metric on Z and endow Z1 with the restricted
metric. Let fZ : X × Z → Y × Z be the induced map and let ω, ω′ be the Kähler forms of
the product metrics on X × Z with respect to two Kähler fibrations on f : X → Y . Similarly,
let fZ1 : X × Z1 → Y × Z1 be the induced map and let ω1, ω

′
1 be the Kähler forms of the

product metrics on X × Z1 with respect to the same two Kähler fibrations on f : X → Y .
We shall denote by j (respectively, i) the natural embedding X × Z1 → X × Z (respectively,
Y × Z1 → Y × Z). Then j∗ω = ω1 and j∗ω′ = ω′

1. Let E be an fZ-acyclic hermitian bundle on
X × Z, we have the following result.

Lemma 2.12. The identity i∗μn
Δ(fZ , E, ω, ω′) = Δ(fZ1 , j

∗E,ω1, ω
′
1) holds.

Proof. This is a consequence of Theorem A.2. �

Definition 2.13. By a chain homotopy of a diagram of homological complexes

we understand a chain homotopy between the complex morphisms j ◦ f and l ◦ i.

Roughly speaking, the equivariant analytic torsion for hermitian cubes is a chain homotopy
of the following diagram:

(8)

where Z̃Cf−ac
∗ (X,μn) is the subcomplex of Z̃C∗(X,μn) made of f -acyclic bundles. Since the

Waldhausen K-theory space of P̂(X,μn) is homotopy equivalent to the Waldhausen K-theory
space of the full subcategory of P̂(X,μn) consisting of f -acyclic bundles, we shall always work
with acyclic bundles.

Like the non-equivariant case treated in [30], the equivariant analytic torsion for hermitian
cubes induces a commutative diagram at the level of homology groups and hence one gets
an analytic proof of the equivariant version of Gillet’s Riemann–Roch theorem for higher
algebraic K-theory.
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To construct a chain homotopy of (8), let us move in two steps. Note that the equivariant
higher Bott–Chern form factors as

we first clarify the difference between f∗(tr ◦ λ(·)) and tr ◦ λ(f∗(·)). Let E be a f -acyclic
hermitian k-cube in P̂(X,μn). The hermitian bundles f∗(trk ◦ λ(E)) and trk ◦ λ(f∗(E)) are
canonically isomorphic as bundles, but carry in general different metrics. For instance, assume
that E is a hermitian emi-1-cube, then f∗(tr1(E)) and tr1(f∗(E)) fit into the following two
exact sequences:

and

Here, pX (respectively, pY ) stands for the obvious projection X × P1 → X (respectively, Y ×
P1 → Y ). By the definition of the L2-metric, over the point (y, t) in Y × P1, the hermitian
product on f∗(tr1(E))(y,t) relies on the integral of certain power of the Kähler form ωX×P1

over the fiber ft and hence relies on t. But the pullback hermitian products on p∗Y (f∗(Ē0)(y,t)
and on p∗Y (f∗(Ē−1)(y,t) equal the hermitian products on f∗(Ē0)y and on f∗(Ē−1)y which do not
rely on t, therefore the induced hermitian product on tr1(f∗(E)(y,t) does not rely on t neither.
So, in general, f∗(tr1(E)) and tr1(f∗(E)) carry different metrics.

In the following, we shall write H(E) for the short exact sequence

which is an emi-1-cube of hermitian bundles on Y × (P1)k. The transgression bundle of H(E)
is a hermitian bundle on Y × (P1)k+1 = Y × (P1)k × P1. But here we change the order of the
P1, let p1 be the first projection from Y × P1 × (P1)k to Y × (P1)k, we apply the transgression
bundle construction to the short exact sequence H(E) with respect to the projection p1 to get a
hermitian bundle on Y × (P1)k+1. With some abuse of notation, we still denote this hermitian
bundle by tr1(H(E)) and it satisfies the following relations:

tr1
(
H(E)

) |Y×{0}×(P1)k= trk ◦ λ(f∗(E)
)
, tr1

(
H(E)

) |Y×{∞}×(P1)k= f∗
(
trk ◦ λ(E)

)
and

tr1
(
H(E)

) |Y×(P1)i×{0}×(P1)k−i= tr1
(
H(∂0

i E)
)
,

tr1
(
H(E)

) |Y×(P1)i×{∞}×(P1)k−i= tr1
(
H(∂−1

i E)
)⊕ tr1

(
H(∂1

i E)
)

for i = 1, . . . , k. Now, we define

Π′
k(E) :=

(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1
(
H(E)

)) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2).

The same reasoning as in [30, Lemma 3.3] proves that Π′
k vanishes on degenerate k-cubes, and

hence we obtain a map Π′
k : Z̃Cf−ac

k (X,μn) →⊕
p�0 D

2p−k−1(Yμn
, p)Rn

by linear extension.

Proposition 2.14. The equality

dD ◦ Π′
k(E) + Π′

k−1 ◦ d(E)

= chg(f∗E) − (−1)k

2k!(2πi)k

∫
(P1)k

ch0
g

(
f∗
(
trk ◦ λ(E)

)) ∧ Ck(log | z1 |2, . . . , log | zk |2)

holds.
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Proof. We compute

dD ◦ Π′
k(E)

=
(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1
(
H(E)

)) ∧ dDCk+1(log | z1 |2, . . . , log | zk+1 |2)

=
(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1
(
H(E)

)) ∧
⎛⎝(−1

2

)
(k + 1)

k+1∑
j=1

(−1)j−1(−4πi)

×(δzj=∞ − δzj=0) ∧ Ck(log | z1 |2, . . . , ̂log | zj |2, . . . , log | zk+1 |2)
)

=
(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1
(
H(E)

)) ∧
⎛⎝(−1

2

)
(k + 1)

k+1∑
j=2

(−1)j−1(−4πi)

×(δzj=∞ − δzj=0) ∧ Ck(log | z1 |2, . . . , ̂log | zj |2, . . . , log | zk+1 |2)
)

+
(−1)k

2k!(2πi)k

∫
(P1)k

ch0
g

(
trk ◦ λ(f∗(E)

)) ∧ Ck(log | z1 |2, . . . , log | zk |2)

− (−1)k

2k!(2πi)k

∫
(P1)k

ch0
g

(
f∗
(
trk ◦ λ(E)

)) ∧ Ck(log | z1 |2, . . . , log | zk |2)

=
(−1)k+1

2k!(2πi)k

∫
(P1)k

(( k+1∑
j=2

(−1)j−1ch0
g

(
tr1
(
H(∂−1

j E ⊕ ∂1
jE)
))− ch0

g

(
tr1
(
H(∂0

i E)
)))

∧Ck(log | z1 |2, . . . , log | zk |2)
)

+ chg(f∗E)

− (−1)k

2k!(2πi)k

∫
(P1)k

ch0
g

(
f∗
(
trk ◦ λ(E)

)) ∧ Ck(log | z1 |2, . . . , log | zk |2)

=
(−1)k

2k!(2πi)k

∫
(P1)k

ch0
g

(
tr1
(
H(−dE)

)) ∧ Ck(log | z1 |2, . . . , log | zk |2) + chg(f∗E)

− (−1)k

2k!(2πi)k

∫
(P1)k

ch0
g

(
f∗
(
trk ◦ λ(E)

)) ∧ Ck(log | z1 |2, . . . , log | zk |2)

= −Π′
k−1 ◦ d(E) + chg(f∗E) − (−1)k

2k!(2πi)k

∫
(P1)k

ch0
g

(
f∗
(
trk ◦ λ(E)

))
∧Ck(log | z1 |2, . . . , log | zk |2).

So, we are done. �

On the other hand, we equip X × (P1)k with the product metric and we define

Π′′
k(E) =

(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
Tg

(
trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2),
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where Tg(trk ◦ λ(E)) is the equivariant higher analytic torsion of the hermitian bundle
trk ◦ λ(E) with respect to the fibration f : X × (P1)k → Y × (P1)k. By [30, Lemma 3.5], the
map Π′′

k vanishes on degenerate k-cubes and hence we obtain a map Π′′
k : Z̃Cf−ac

k (X,μn) →⊕
p�0 D

2p−k−1(Yμn
, p)Rn

by linear extension.

Theorem 2.15. Set Πk = Π′
k + Π′′

k , then Πk defines a chain homotopy of the diagram

(8). This map Πk : Z̃Cf−ac
k (X,μn) →⊕

p�0 D
2p−k−1(Yμn

, p)Rn
is called the equivariant higher

analytic torsion for hermitian cubes.

Proof. Let E be a hermitian k-cube in Z̃Cf−ac
k (X,μn), we compute

dD ◦ Πk(E) + Πk−1 ◦ d(E)

= dD ◦ Π′
k(E) + Π′

k−1 ◦ d(E) + dD ◦ Π′′
k(E) + Π′′

k−1 ◦ d(E)

= chg(f∗E) − (−1)k

2k!(2πi)k

∫
(P1)k

ch0
g

(
f∗
(
trk ◦ λ(E)

)) ∧ Ck(log | z1 |2, . . . , log | zk |2)

+dD ◦ Π′′
k(E) + Π′′

k−1 ◦ d(E).

and

dD ◦ Π′′
k(E)

=
(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

dDCk+1

(
Tg

(
trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2)

=
(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

(
−1

2

)
(k + 1)

(
dDTg

(
trk ◦ λ(E)

) • Ck(log | z1 |2, . . . , log | zk |2)

+
k∑

j=1

(−1)j(−4πi)(δzj=∞ − δzj=0)

∧Ck

(
Tg

(
trk ◦ λ(E)

)
, log | z1 |2, . . . , ̂log | zj |2, . . . , log | zk |2

))

=
(−1)k

k!(2πi)k−1

∫
(P1)k−1

k∑
j=1

(−1)j
(
Ck

(
Tg

(
trk−1 ◦ λ(∂0

jE)
)
, log | z1 |2, . . . , log | zk−1 |2)

−Ck

(
Tg

(
trk−1 ◦ λ(∂−1

j E) ⊕ trk−1 ◦ λ(∂1
jE)
)
, log | z1 |2, . . . , log | zk−1 |2))

+
(−1)k

2k!(2πi)k

∫
(P1)k

((
ch0

g(f∗(trk ◦ λ(E)))

− 1
(2πi)r

∫
Xμn×(P1)k/Yμn×(P1)k

Tdg(Tf)ch0
g

(
trk ◦ λ(E)

))

•Ck(log | z1 |2, . . . , log | zk |2)
)
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= −Π′′
k−1 ◦ d(E) +

(−1)k

2k!(2πi)k

∫
(P1)k

ch0
g

(
f∗
(
trk ◦ λ(E)

)) ∧ Ck(log | z1 |2, . . . , log | zk |2)

− 1
(2πi)r

∫
Xμn/Yμn

Tdg(Tf) • chg(E).

Combining these two computations, we finally get

dD ◦ Πk(E) + Πk−1 ◦ d(E) = chg(f∗E) − 1
(2πi)r

∫
Xμn/Yμn

Tdg(Tf) • chg(E).

So, we are done. �

If we are given another fibration structure ω′, then for any f -acyclic hermitian k-cube E in
P̂(X,μn), the short exact sequence

forms a hermitian (k + 1)-cube Hf (E) on Y such that the transgression bundle
trk+1(λ(Hf (E))) satisfies the relations

trk+1

(
λ
(
Hf (E)

)) |Y×{0}×(P1)k= trk
(
λ(f∗E, hf∗E)

)
,

trk+1

(
λ
(
Hf (E)

)) |Y×{∞}×(P1)k= trk
(
λ(f∗E, h′f∗E)

)
and

trk+1

(
λ
(
Hf (E)

)) |Y×(P1)i×{0}×(P1)k−i= trk
(
λ
(
Hf (∂0

i E)
))
,

trk+1

(
λ
(
Hf (E)

)) |Y×(P1)i×{∞}×(P1)k−i= trk
(
λ
(
Hf (∂−1

i E)
))⊕ trk

(
λ
(
Hf (∂1

i E)
))

for i = 1, . . . , k. Therefore, the following map

Π
(1)
k (E) =

(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
trk+1 ◦ λ

(
Hf (E)

)) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2)

which vanishes on degenerate cubes provides a chain homotopy of homological complexes
between the maps chg ◦ f∗ and chg ◦ f ′

∗, where f ′
∗(E) := (f∗E, h′f∗E) is the pushforward with

respect to the new fibration ω′. Similarly, by projection formula, the map

Π
(3)
k (E) :=

(−1)k

2k!(2πi)k

∫
(P1)k

((
1

(2πi)r

∫
Xμn×(P1)k/Yμn×(P1)k

Tdg(Tf, h
′Tf , hTf )ch0

g

(
trk ◦ λ(E)

))

•Ck(log | z1 |2, . . . , log | zk |2)
)

gives a chain homotopy of homological complexes between the maps fμn∗ ◦ (Tdg(Tf, hTf ) •
chg) and fμn∗ ◦ (Tdg(Tf, h′Tf ) • chg). Finally we write Π(2)

k = Π′(2)
k + Π′′(2)

k for the chain
homotopy defined in Theorem 2.15 between the maps chg ◦ f ′

∗ and fμn∗ ◦ (Tdg(Tf, h′Tf ) • chg)
with respect to the new fibration ω′. Then Π(1)

k + Π(2)
k − Π(3)

k defines a chain homotopy between
chg ◦ f∗ and fμn∗ ◦ (Tdg(Tf, hTf ) • chg). At the end of this subsection, we compare this
homotopy Π(1)

k + Π(2)
k − Π(3)

k with Πk constructed in Theorem 2.15.

Definition 2.16. Let f, l be two morphisms of homological complexes A∗ → B∗, and let
h1, h2 be two chain homotopies between f and l. We say that h1 is homotopic to h2 if there
exists a map H : A∗ → B∗+2 satisfying the condition that Hd− dH = h1 − h2.
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Now, we denote by Hf ′
f (E) the following emi-2-cube of hermitian bundles on Y × (P1)k

Changing the order of the P1 × P1 in (P1)k+2 = (P1)k × P1 × P1, so that (P1)k+2 = P1 × P1 ×
(P1)k, we construct a hermitian bundle tr2(H

f ′
f (E)) on Y × (P1)k+2 as the second transgression

bundle of Hf ′
f (E) such that it satisfies the following relations:

tr2
(
Hf ′

f (E)
)
|Y×{0}×(P1)k+1= trk+1

(
λ
(
Hf (E)

))
,

tr2
(
Hf ′

f (E)
)
|Y×{∞}×(P1)k+1= tr1

(
Hf

(
trk ◦ λ(E)

))
,

tr2
(
Hf ′

f (E)
)
|Y×P1×{0}×(P1)k= tr1

(
H(E)

)
, tr2

(
Hf ′

f (E)
)
|Y×P1×{∞}×(P1)k= tr1

(
H ′(E)

)
and

tr2
(
Hf ′

f (E)
)
|Y×(P1)i+1×{0}×(P1)k−i= tr2

(
Hf ′

f (∂0
i E)
)
,

tr2
(
Hf ′

f (E)
)
|Y×(P1)i+1×{∞}×(P1)k−i= tr2

(
Hf ′

f (∂−1
i E)

)
⊕ tr2

(
Hf ′

f (∂1
i E)
)

for i = 1, . . . , k. We set

Πf ′
f,k(E) :=

(−1)k+2

2(k + 2)!(2πi)k+2

∫
(P1)k+2

ch0
g

(
tr2
(
Hf ′

f (E)
))

∧ Ck+2(log | z1 |2, . . . , log | zk+2 |2).

Then Πf ′
f,k vanishes on degenerate k-cubes, and we obtain a map

Πf ′
f,k : Z̃Cf−ac

k (X,μn) →
⊕
p�0

D2p−k−2(Yμn
, p)Rn

by linear extension.

Proposition 2.17. Let notations and assumptions be as above. Then the chain homotopy

Πk is homotopic to the chain homotopy Π(1)
k + Π(2)

k − Π(3)
k .

Proof. First, we set

Π(3′)
k (E) :=

(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
1

(2πi)r

∫
Xμn×(P1)k/Yμn×(P1)k

Tdg(Tf, h′Tf , hTf )ch0
g

(
trk ◦ λ(E)

)
,

log | z1 |2, . . . , log | zk |2
)
.
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It also defines a chain homotopy between the maps fμn∗ ◦ (Tdg(Tf, hTf ) • chg) and
fμn∗ ◦ (Tdg(Tf, h′Tf ) • chg). Since the product • on Deligne complex is graded commutative

and is associative up to homotopy, we claim that Π(3′)
k (E) is homotopic to Π(3)

k (E), so that
we are left to show that Πk is homotopic to Π(1)

k + Π(2)
k − Π(3′)

k . Actually, our claim follows
from the fact that dDΠ(3)

k (E) − dDΠ(3′)
k (E) = Π(3)

k−1(−dE) − Π(3′)
k−1(−dE) and [34, Remark 2.4,

Lemma 2.5].
Now, let E be a hermitian k-cube in P̂(X,μn) which is f -acyclic. We compute

dD ◦ Πf ′
f,k(E)

=
(−1)k+2

2(k + 2)!(2πi)k+2

∫
(P1)k+2

ch0
g

(
tr2
(
Hf ′

f (E)
))

∧ dDCk+2(log | z1 |2, . . . , log | zk+2 |2)

=
(−1)k+2

2(k + 2)!(2πi)k+2

∫
(P1)k+2

ch0
g

(
tr2
(
Hf ′

f (E)
)) ∧((− 1

2

)
(k + 2)

k+2∑
j=1

(−1)j−1(−4πi)

×(δzj=∞ − δzj=0) ∧ Ck+1(log | z1 |2, . . . , ̂log | zj |2, . . . , log | zk+2 |2)
)

= Πf ′
f,k−1 ◦ d(E) − (−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

[(
ch0

g

(
tr1
(
H(E)

))− ch0
g

(
tr1
(
H ′(E)

)))
∧Ck+1(log | z1 |2, . . . , log | zk+1 |2)]
+

(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

[(
ch0

g

(
trk+1

(
λ
(
Hf (E)

)))− ch0
g

(
tr1
(
Hf

(
trk ◦ λ(E)

))))
∧Ck+1(log | z1 |2, . . . , log | zk+1 |2)]

= Πf ′
f,k−1 ◦ d(E) − Π′

k(E) + Π′(2)
k (E) + Π(1)

k (E) − (−1)k+1

2(k + 1)!(2πi)k+1

×
∫

(P1)k+1
ch0

g

(
tr1
(
Hf

(
trk ◦ λ(E)

))) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2).

On the other hand, according to the anomaly formula Theorem 2.11, we have

Π′′
k(E) − Π

′′(2)
k (E) =

(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
Tg

(
trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2)

− (−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
T ′
g

(
trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2)

=
(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
1

4πi

∫
Yμn×(P1)k+1/Yμn×(P1)k

ch0
g

(
tr1
(
Hf

(
trk ◦ λ(E)

)))
log | z0 |2,

log | z1 |2, . . . , log | zk |2
)

− (−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
1

(2πi)r

∫
Xμn×(P1)k/Yμn×(P1)k

Tdg(Tf, h
′Tf , hTf )ch0

g

(
trk ◦ λ(E)

)
,
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log | z1 |2, . . . , log | zk |2
)

+
(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
dDΔ

(
f, trk ◦ λ(E), ω, ω′), log | z1 |2, . . . , log | zk |2)

=
(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1
(
Hf

(
trk ◦ λ(E)

))) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2)

+
(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
dDΔ

(
f, trk ◦ λ(E), ω, ω′), log | z1 |2, . . . , log | zk |2)− Π

(3′)
k (E).

We formally define a product Ck+1(Δ(f, trk ◦ λ(E), ω, ω′), log | z1 |2, . . . , log | zk |2) in a
similar way to Ck+1(·, . . . , ·) like follows.

Ck+1

(
Δ
(
f, trk ◦ λ(E), ω, ω′), log | z1 |2, . . . , log | zk |2)

= −
(
−1

2

)k ∑
σ∈Sk

(−1)σΔ • (log | zσ(1) |2 •(log | zσ(2) |2 •(· · · log | zσ(k) |2) · · · )

−
(
−1

2

)k ∑
σ∈Sk

(−1)σ log | zσ(1) |2 •(Δ • (log | zσ(2) |2 •(· · · log | zσ(k) |2) · · · )

· · ·

−
(
−1

2

)k ∑
σ∈Sk

(−1)σ log | zσ(1) |2 •(log | zσ(2) |2 •(· · · log | zσ(k) |2 •Δ) · · · ) (9)

Then we set

Δk(E) =
(−1)k

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
Δ
(
f, trk ◦ λ(E), ω, ω′), log | z1 |2, . . . , log | zk |2),

and it is readily checked by Lemma 2.12 that

Δk−1(dE) − dDΔk(E) =
(−1)k+1

(k + 1)!(2πi)k

×
∫

(P1)k
Ck+1

(
dDΔ

(
f, trk ◦ λ(E), ω, ω′), log | z1 |2, . . . , log | zk |2).

Combing all the above computations, we finally get

(Πf ′
f,k−1 + Δk−1) ◦ d(E) − dD ◦ (Πf ′

f,k + Δk)(E)

= −Π
′(2)
k (E) + Π′

k(E) − Π
(1)
k (E) + Δk−1(dE) − dDΔk(E)

+
(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1
(
Hf

(
trk ◦ λ(E)

))) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2)

= −Π
′(2)
k (E) + Π′

k(E) − Π
(1)
k (E) − Π

′′(2)
k (E) + Π′′

k(E) + Π
(3′)
k (E)

= Πk(E) −
(
Π

(1)
k (E) + Π

(2)
k (E) − Π

(3′)
k (E)

)
.

So, we are done. �
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2.3. Direct image map between arithmetic K-groups

In this subsection, we define the direct image map between arithmetic K-groups of regular μn-
projective arithmetic schemes by means of the equivariant higher analytic torsion for hermitian
cubes constructed in last subsection.

Let now X and Y be two regular μn-projective schemes over an arithmetic ring (D,Σ, F∞).
Assume that f : X → Y is an equivariant and flat morphism from X to Y such that f is smooth
over the generic fiber. Note that the chain homotopy

Π∗ : Z̃Cf−ac
∗ (X(C), μn) →

⊕
p�0

D2p−∗−1(Y (C)μn
, p)Rn

is σ-invariant and the following diagrams:

are commutative, the chain homotopy Π∗ induces a simplicial homotopy between the maps
c̃hg ◦ f∗ and fμn∗ ◦ Tdg(Tf) • (·) ◦ c̃hg in the following square

To see the construction of this simplicial homotopy and general theory on homotopies in the
category of simplical abelian groups, the reader is referred to [22, Sections 2.1, 2.3 and 3.2],
especially [22, p. 160, p. 162, Proposition 2.18, p. 72, Proposition 1.8, Corollary 1.9].

We remark that, according to the construction given in [22], the resulting simplicial
homotopy is unique up to a homotopy in a strong sense: let h1, h2 be two simplicial homotopies
arising from Π∗, then there exists a homotopy

such that H̃(·, ·, 0) = h1, H̃(·, ·, 1) = h2, H̃(·, 0, ·) is the constant homotopy on c̃hg ◦ f∗ and
H̃(·, 1, ·) is the constant homotopy on fμn∗ ◦ Tdg(Tf) • (·) ◦ c̃hg (cf. [22, Proposition 3.8]).
Thus, applying the geometric realization construction to the above simplicial square, we get a
continuous map between homotopy fibers

| f |: homotopy fiber of | c̃h
X

g |−→ homotopy fiber of | c̃h
Y

g |
which is unique up to a homotopy. So, we may have a well-defined direct image map between
arithmetic K-groups as follows.

Definition 2.18. For m � 1, the direct image map f∗ : K̂m(X,μn) → K̂m(Y, μn) is
defined as the homomorphism of abelian groups induced by the map | f | at the level of
homotopy groups.
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Remark 2.19. The condition ‘flatness’ of the map f is only used to guarantee that the
direct image of a f -acyclic bundle is locally free. By introducing the arithmetic K′-theory and
using the isomorphisms K̂m(X,μn) ∼= K̂ ′

m(X,μn) which hold for regular schemes, the condition
‘flatness’ can certainly be removed.

To study the direct image map up to torsion, we need the following lemma.

Lemma 2.20. Consider the following diagram of homological complexes

Assume that j ◦ f1 (respectively, j ◦ f2) is homotopic to l1 ◦ i (respectively, l2 ◦ i) via the chain
homotopy h1 (respectively, h2), and that f1 (respectively, l1) is homotopic to f2 (respectively,
l2) via the chain homotopy πf (respectively, πl). Suppose that the chain homotopy j ◦ πf +
h2 − πl ◦ i is homotopic to the chain homotopy h1, then the morphism on simple complexes

(f1, l1, h1) : s∗(i : A∗ → B∗) → s∗(j : C∗ → D∗)

is chain homotopic to (f2, l2, h2).

Proof. Let (a, b) ∈ Ak

⊕
Bk+1, the morphism (f1, l1, h1) (respectively, (f2, l2, h2)) sends

(a, b) to (f1(a), l1(b) + h1(a)) (respectively, (f2(a), l2(b) + h2(a))). Let H : A∗ → D∗+2 be the
homotopy such that

Hd− dH = h1 − (j ◦ πf + h2 − πl ◦ i),
and we define H̃(a, b) = (πf (a),−πl(b) + H(a)). Then we compute

dH̃(a, b) = d(πf (a),−πl(b) + H(a))

= (dπf (a), j ◦ πf (a) + dπl(b) − dH(a))

= (f1(a) − f2(a) − πf (da), l1(b) − l2(b) − πl(db) −Hd(a) + h1(a) − h2(a) + πl ◦ i(a))
= (f1(a), l1(b) + h1(a)) − (f2(a), l2(b) + h2(a)) − (πfd(a), πl(db) − πl ◦ i(a) + Hd(a))

= (f1(a), l1(b) + h1(a)) − (f2(a), l2(b) + h2(a)) − H̃(da, i(a) − db)

= (f1(a), l1(b) + h1(a)) − (f2(a), l2(b) + h2(a)) − H̃d(a, b).

So, we are done. �

Corollary 2.21. Let notations and assumptions be as above, then the direct image map
f∗ : K̂m(X,μn)Q → K̂m(Y, μn)Q without torsion is independent of the choice of the Kähler
fibration structure.

Proof. This follows from Remark 2.10(iv), Theorem 2.17 and Lemma 2.20. �

3. Transitivity of the direct image maps

Let f : X → Y , h : Y → Z and l : X → Z be three equivariant morphisms between regular
μn-projective schemes, which are all smooth over the generic fibers. Assume l = h ◦ f , in this
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section, we shall compare the direct image map l∗ with the composition h∗ ◦ f∗. To this aim,
we shall first discuss the functoriality of the equivariant analytic torsion forms with respect to
a composition of submersions.

3.1. Analytic torsion forms and families of submersions

Let W,V and S be three smooth μn-equivariant algebraic varieties over C with S = Sμn
.

Suppose that f : W → V and h : V → S are two proper smooth morphisms, then passing
to their analytifications the maps f : W (C) → V (C) and h : V (C) → S(C) are holomorphic
submersions with compact fibers. Set l = h ◦ f , it is also a proper smooth morphism and
l : W (C) → S(C) is a holomorphic submersion with compact fiber as well.

Let ωW and ωV be two μn-invariant Kähler forms on W and on V . As before, ωW and ωV

imply Kähler fibration structures on the morphisms f, h and l and they induce μn-invariant
hermitian metrics on relative tangent bundles Tf, Th and T l. Consider the following short
exact sequence of hermitian vector bundles

T (f, h, h ◦ f) : 0 → Tf → T l → f∗Th → 0,

denote by Tdg(T (f, h, h ◦ f)) = Φ−1(
˜Tdg(T (f,h,h◦f))

2 ) (see Section A.2 in the Appendix) the
equivariant secondary Todd form such that

dDTdg

(
T (f, h, h ◦ f)

)
= Tdg(T l) − f∗

μn
Tdg(Th)Tdg(Tf).

Now, let E be a hermitian vector bundle on W , we shall assume that E is f -acyclic and
l-acyclic. Then the Leray spectral sequence Ei,j

2 = Rih∗(Rjf∗E) degenerates at E2, so that
f∗E = R0f∗(E) is h-acyclic and l∗E ∼= h∗f∗E. Clearly, l∗E and h∗f∗E carry in general different
L2-metrics (see Section A.2 in the Appendix). Consider the following short exact sequence of
hermitian vector bundles

E(f, h, h ◦ f) : 0 → h∗f∗E → l∗E → 0 → 0,

it can be regarded as an emi-1-cube of hermitian bundles on S. Then the equivariant higher
Bott–Chern form chg(E(f, h, h ◦ f)) satisfies the differential equation

dDchg

(
E(f, h, h ◦ f)

)
= chg(l∗E) − chg(h∗f∗E).

The main result in this subsection is the following.

Theorem 3.1. Let notations and assumptions be as above. Then the following identity
holds in

⊕
p�0(D

2p−1(S, p)/Im dD):

Tg(l, ωW , hE) − Tg(h, ωV , hf∗E) − 1
(2πi)rh

∫
Vμn/S

Tdg(Th)Tg(f, ωW , hE)

= chg

(
E(f, h, h ◦ f)

)− 1
(2πi)rl

∫
Wμn/S

Tdg

(
T (f, h, h ◦ f)

)
chg(E),

where rh and rl are the relative dimensions of Vμn
/S and Wμn

/S, respectively.

Proof. This is a translation of Theorem A.3. �

Lemma 3.2. With the same notations as in Remark 2.7 and Theorem A.4 , we set

Δ(f, h, ωW , ωV , E) := −Φ−1

(
Δ0(f, h, ωW , ωV , E) + Δ0(f, h, ω

W , ωV , E)

2

)
+ Δ

(
E(f, h, h ◦ f)

)
.
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Then dDΔ(f, h, ωW , ωV , E) measures the difference

Tg(l, ωW , hE) − Tg(h, ωV , hf∗E) − 1
(2πi)rh

∫
Vμn/S

Tdg(Th)Tg(f, ωW , hE)

−chg

(
E(f, h, h ◦ f)

)
+

1
(2πi)rl

∫
Wμn/S

Tdg

(
T (f, h, h ◦ f)

)
chg(E)

in Theorem 3.1. Assume that we are in the same situation described before Lemma 2.12. Call
l : S × Z1 → S × Z the natural inclusion, then similar to Lemma 2.12, we have

l∗Δ(fZ , hZ , ω
W , ωV , E) = Δ(fZ1 , hZ1 , ω

W
1 , ωV

1 , j∗E).

Proof. This is a consequence of Theorem A.4. �

3.2. The transitivity property

In this subsection, we present certain transitivity property of direct image maps between
equivariant higher arithmetic K-groups. To do this, we first write down the following diagram
of homological complexes:

(10)

where l is h ◦ f and Z̃C(f,l)−ac
∗ (X,μn) is the subcomplex of Z̃C∗(X,μn) made of those bundles

which are f -acyclic and l-acyclic simultaneously.
Let E be a hermitian k-cube in P̂(X,μn) which is f -acyclic and l-acyclic, the short exact

sequence

can be regarded as a hermitian (k + 1)-cube Hh◦f (E) on Z such that the transgression bundle
trk+1(λ(Hh◦f (E))) satisfies the relations

trk+1

(
λ
(
Hh◦f (E)

)) |Z×{0}×(P1)k= trk
(
λ(l∗E)

)
,

trk+1

(
λ
(
Hh◦f (E)

)) |Z×{∞}×(P1)k= trk
(
λ(h∗f∗E)

)
and

trk+1

(
λ
(
Hh◦f (E)

)) |Z×(P1)i×{0}×(P1)k−i= trk
(
λ
(
Hh◦f (∂0

i E)
))
,

trk+1

(
λ
(
Hh◦f (E)

)) |Z×(P1)i×{∞}×(P1)k−i= trk
(
λ
(
Hh◦f (∂−1

i E)
))⊕ trk

(
λ
(
Hh◦f (∂1

i E)
))

for i = 1, . . . , k.
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Proposition 3.3. The following map

Π(1)
k (E) =

(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
trk+1 ◦ λ

(
Hh◦f (E)

))
∧Ck+1(log | z1 |2, . . . , log | zk+1 |2)

which vanishes on degenerate cubes provides a chain homotopy of homological complexes
between the maps chg ◦ l∗ and chg ◦ (h∗ ◦ f∗).

Proof. Using the above relations that the transgression bundle trk+1(λ(Hh◦f (E))) satisfies
and the expression of dDCk+1, the proof is straightforward. This can be also seen from the fact
that Hh◦f (E) provides a chain homotopy between l∗ and h∗ ◦ f∗. �

Proposition 3.4. The composition hμn∗ ◦ Tdg(Th) • (fμn∗ ◦ Tdg(Tf) • (·)) is equal to

lμn∗ ◦ f∗
μn

Tdg(Th)Tdg(Tf) • (·). The following maps

Π(3)
k (E) :=

(−1)k

2k!(2πi)k

×
∫

(P1)k

((
1

(2πi)rl

∫
Xμn×(P1)k/Zμn×(P1)k

Tdg

(
T (f, h, h ◦ f)

)
ch0

g

(
trk ◦ λ(E)

))

•Ck(log | z1 |2, . . . , log | zk |2)
)

and

Π(3′)
k (E) :=

(−1)k+1

(k + 1)!(2πi)k

×
∫

(P1)k
Ck+1

(
1

(2πi)rl

∫
Xμn×(P1)k/Zμn×(P1)k

Tdg

(
T (f, h, h ◦ f)

)
ch0

g

(
trk ◦ λ(E)

)
,

log | z1 |2, . . . , log | zk |2
)

give two chain homotopies of homological complexes between the maps lμn∗ ◦ Tdg(Tg) •
(chg(·)) and lμn∗ ◦ f∗

μn
Tdg(Th)Tdg(Tf) • (chg(·)). Moreover, Π(3)

k (E) and Π(3′)
k (E) are homo-

topic to each other.

Proof. The first statement follows from the projection formula, the second statement follows
from a straightforward computation and the third follows from [34, Remark 2.4, Lemma.
2.5]. �

Now, we write Πf
k = Π′f

k + Π′′f
k for the chain homotopy of the upper square in (10) and Πh

k =
Π′h

k + Π′′h
k for the chain homotopy of the lower square in (10). Then Π(1)

k + hμn∗ ◦ (Tdg(Th) •
Πf

k) + Πh
k ◦ f∗ − Π(3)

k defines a chain homotopy between maps chg ◦ l∗ and lμn∗ ◦ Tdg(Tg) •
(chg(·)). Suppose that the μn-action on Z is trivial, it is the main result of this subsection
that the chain homotopy Π(1)

k + hμn∗ ◦ (Tdg(Th) • Πf
k) + Πh

k ◦ f∗ − Π(3)
k is homotopic to the

chain homotopy Πl
k = Π′l

k + Π′′l
k for the whole square in (10). According to Proposition 3.4, it

is equivalent to show that Π(1)
k + hμn∗ ◦ (Tdg(Th) • Πf

k) + Πh
k ◦ f∗ − Π(3′)

k is homotopic to Πl
k.



AN ARITHMETIC LEFSCHETZ-RIEMANN-ROCH THEOREM 405

To see this, we first denote by H l
h◦f (E) the following emi-2-cube of hermitian bundles on

Z × (P1)k

Then, like before, we construct a hermitian bundle tr2(H l
h◦f (E)) on (P1)k+2 as the second

transgression bundle of H l
h◦f (E) such that it satisfies the following relations:

tr2
(
H l

h◦f (E)
) |Z×{0}×(P1)k+1= trk+1

(
λ
(
Hh◦f (E)

))
,

tr2
(
H l

h◦f (E)
) |Z×{∞}×(P1)k+1= tr1

(
Hh◦f

(
trk ◦ λ(E)

))
,

tr2
(
H l

h◦f (E)
) |Z×P1×{0}×(P1)k= tr1

(
H(E, l∗)

)
,

tr2
(
H l

h◦f (E)
) |Z×P1×{∞}×(P1)k= tr1

(
H(E, h∗f∗)

)
and

tr2
(
H l

h◦f (E)
) |Z×(P1)i+1×{0}×(P1)k−i= tr2

(
H l

h◦f (∂0
i E)
)
,

tr2
(
H l

h◦f (E)
) |Z×(P1)i+1×{∞}×(P1)k−i= tr2

(
H l

h◦f (∂−1
i E)

)⊕ tr2
(
H l

h◦f (∂1
i E)
)

for i = 1, . . . , k. We set

H1,k(E) :=
(−1)k+2

2(k + 2)!(2πi)k+2

∫
(P1)k+2

ch0
g

(
tr2
(
H l

h◦f (E)
)) ∧ Ck+2(log | z1 |2, . . . , log | zk+2 |2).

Then H1,k vanishes on degenerate k-cubes, and we obtain a map

H1,k : Z̃C(f,l)−ac
k (X,μn) →

⊕
p�0

D2p−k−2(Z, p)Rn

by linear extension. This map satisfies the following differential equation:

dD ◦ H1,k(E)

=
(−1)k+2

2(k + 2)!(2πi)k+2

∫
(P1)k+2

ch0
g

(
tr2

(
Hl

h◦f (E)
))

∧ dDCk+2(log | z1 |2, . . . , log | zk+2 |2)

=
(−1)k+2

2(k + 2)!(2πi)k+2

∫
(P1)k+2

ch0
g

(
tr2

(
Hl

h◦f (E)
))

∧
((

−1

2

)
(k + 2)

k+2∑
j=1

(−1)j−1(−4πi)

×(δzj=∞ − δzj=0) ∧ Ck+1(log | z1 |2, . . . , ̂log | zj |2, . . . , log | zk+2 |2)
)

= H1,k−1 ◦ d(E) − (−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

[(
ch0

g

(
tr1
(
H(E, l∗)

))− ch0
g

(
tr1
(
H(E, h∗f∗)

)))
∧Ck+1(log | z1 |2, . . . , log | zk+1 |2)

]
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+
(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

[(
ch0

g

(
trk+1

(
λ
(
Hh◦f (E)

)))− ch0
g

(
tr1
(
Hh◦f

(
trk ◦ λ(E)

))))
∧Ck+1(log | z1 |2, . . . , log | zk+1 |2)

]
= H1,k−1 ◦ d(E) − Π′l

k (E) + Π
(1)
k (E)

+
(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1
(
H(E, h∗f∗)

))∧Ck+1(log | z1 |2, . . . , log | zk+1 |2)

− (−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1
(
Hh◦f

(
trk ◦ λ(E)

))) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2).

Second, we denote by H ′l
h◦f (E) the following emi-2-cube of hermitian bundles on Z × (P1)k

Again, we construct a hermitian bundle tr2(H ′l
h◦f (E)) on Z × (P1)k+2 as the second

transgression bundle of H ′l
h◦f (E) such that it satisfies the following relations:

tr2
(
H ′l

h◦f (E)
) |Z×{0}×(P1)k+1= tr1

(
H(f∗E, h∗)

)
,

tr2
(
H ′l

h◦f (E)
) |Z×{∞}×(P1)k+1= tr1

(
h∗f∗

(
trk ◦ λ(E)

)→ h∗f∗
(
trk ◦ λ(E)

))
,

tr2
(
H ′l

h◦f (E)
) |Z×P1×{0}×(P1)k= tr1

(
H(E, h∗f∗)

)
,

tr2
(
H ′l

h◦f (E)
) |Z×P1×{∞}×(P1)k= tr1

(
h∗H(E, f∗)

)
and

tr2
(
H ′l

h◦f (E)
) |Z×(P1)i+1×{0}×(P1)k−i= tr2

(
H ′l

h◦f (∂0
i E)
)
,

tr2
(
H ′l

h◦f (E)
) |Z×(P1)i+1×{∞}×(P1)k−i= tr2

(
H ′l

h◦f (∂−1
i E)

)⊕ tr2
(
H ′l

h◦f (∂1
i E)
)

for i = 1, . . . , k. We set

H2,k(E) :=
(−1)k+2

2(k + 2)!(2πi)k+2

∫
(P1)k+2

ch0
g

(
tr2
(
H ′l

h◦f (E)
)) ∧ Ck+2(log | z1 |2, . . . , log | zk+2 |2).

Then H2,k defines a map

H2,k : Z̃C(f,l)−ac
k (X,μn) →

⊕
p�0

D2p−k−2(Z, p)Rn

which satisfies the following differential equation:

dD ◦ H2,k(E)

=
(−1)k+2

2(k + 2)!(2πi)k+2

∫
(P1)k+2

ch0
g

(
tr2

(
H ′l

h◦f (E)
))

∧ dDCk+2(log | z1 |2, . . . , log | zk+2 |2)
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=
(−1)k+2

2(k + 2)!(2πi)k+2

∫
(P1)k+2

ch0
g

(
tr2

(
H ′l

h◦f (E)
))

∧
((

−1

2

)
(k + 2)

k+2∑
j=1

(−1)j−1(−4πi)

×(δzj=∞ − δzj=0) ∧ Ck+1(log | z1 |2, . . . , ̂log | zj |2, . . . , log | zk+2 |2)
)

= H2,k−1 ◦ d(E) − (−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

[(
ch0

g

(
tr1
(
H(E, h∗f∗)

))− ch0
g

(
tr1
(
h∗H(E, f∗)

)))
∧Ck+1(log | z1 |2, . . . , log | zk+1 |2)

]
+

(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1
(
H(f∗E, h∗)

)) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2)

= H2,k−1 ◦ d(E) + Π′h
k (f∗E)

− (−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1
(
H(E, h∗f∗)

)) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2)

+
(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1
(
h∗H(E, f∗)

)) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2).

Third, note that the short exact sequence

forms an emi-1-cube of hermitian bundles on Z × P1 × (P1)k, we denote it by H̃h◦f (E). Using
the same construction as before, we construct a transgression bundle tr1(H̃h◦f (E)) on Z ×
P1 × P1 × (P1)k satisfying

tr1
(
H̃h◦f (E)

)
|Z×{0}×(P1)k+1= tr1

(
h∗H(E, f∗)

)
,

tr1
(
H̃h◦f (E)

)
|Z×{∞}×(P1)k+1= h∗tr1

(
H(E, f∗)

)
,

tr1
(
H̃h◦f (E)

)
|Z×P1×{0}×(P1)k= tr1

(
h∗trk ◦ λ(f∗E) → h∗trk ◦ λ(f∗E) → 0

)
,

tr1
(
H̃h◦f (E)

)
|Z×P1×{∞}×(P1)k= tr1

(
h∗f∗trk ◦ λ(E) → h∗f∗trk ◦ λ(E) → 0

)
and

tr1
(
H̃h◦f (E)

)
|Z×(P1)i+1×{0}×(P1)k−i= tr1

(
H̃h◦f (∂0

i E)
)
,

tr1
(
H̃h◦f (E)

)
|Z×(P1)i+1×{∞}×(P1)k−i= tr1

(
H̃h◦f (∂−1

i E)
)
⊕ tr1

(
H̃h◦f (∂1

i E)
)

for i = 1, . . . , k. So, if we set

H3,k(E) :=
(−1)k+2

2(k + 2)!(2πi)k+2

∫
(P1)k+2

ch0
g

(
tr1

(
H̃h◦f (E)

))
∧ Ck+2(log | z1 |2, . . . , log | zk+2 |2),
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it satisfies the differential equation

dD ◦ H3,k(E)

=
(−1)k+2

2(k + 2)!(2πi)k+2

∫
(P1)k+2

ch0
g

(
tr1(H̃h◦f )

)
∧ dDCk+2(log | z1 |2, . . . , log | zk+2 |2)

= H3,k−1 ◦ d(E) +
(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1
(
h∗H(E, f∗)

))
∧Ck+1(log | z1 |2, . . . , log | zk+1 |2)

− (−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g(h∗tr1

(
H(E, f∗)

) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2).

Finally, we set

H4,k(E) :=
(−1)k+2

(k + 2)!(2πi)k+1

∫
(P1)k+1

Ck+2

(
Tg

(
h, htr1(H(E,f∗))

)
, log | z1 |2, . . . , log | zk+1 |2

)
,

then it satisfies

dD ◦ H4,k(E)

=
(−1)k+2

(k + 2)!(2πi)k+1

∫
(P1)k+1

Ck+2

(
Tg

(
h, htr1(H(E,f∗))

)
, log | z1 |2, . . . , log | zk+1 |2

)
= H4,k−1 ◦ d(E) +

(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
h∗tr1

(
H(E, f∗)

))
∧Ck+1(log | z1 |2, . . . , log | zk+1 |2)

− (−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

(
1

(2πi)rh

∫
Yμn

Tdg(Th)ch0
g

(
tr1
(
H(E, f∗)

)))

∧Ck+1(log | z1 |2, . . . , log | zk+1 |2)

− (−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
Tg

(
h, htrk◦λ(f∗E)

)
, log | z1 |2, . . . , log | zk |2

)
+

(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
Tg

(
h, hf∗trk◦λ(E)

)
, log | z1 |2, . . . , log | zk |2

)
= H4,k−1 ◦ d(E) − hμn∗ ◦

(
Tdg(Th) • Π′f

k (E)
)

+
(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
h∗tr1

(
H(E, f∗)

)) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2)

−Π′′h
k (f∗E) +

(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
Tg

(
h, hf∗trk◦λ(E)

)
, log | z1 |2, . . . , log | zk |2

)
.

Proposition 3.5. Let notations and assumptions be as above, then the chain homotopy

Πl
k = Π′l

k + Π′′l
k is homotopic to Π(1)

k + hμn∗ ◦ (Tdg(Th) • Πf
k) + Πh

k ◦ f∗ − Π(3′)
k .
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Proof. Let E be a hermitian k-cube in P̂(X,μn) which is f -acyclic and l-acyclic. Using the
above differential equations concerning Hi,k, we obtain that

(H1,k−1 + H2,k−1 − H3,k−1 − H4,k−1) ◦ d(E) − dD ◦ (H1,k + H2,k − H3,k − H4,k)(E)

= Π′l
k(E) − Π(1)

k (E) − Π′h
k (f∗E) − Π′′h

k (f∗E) − hμn∗ ◦
(
Tdg(Th) • Π′f

k (E)
)

+
(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1
(
Hh◦f

(
trk ◦ λ(E)

)))
∧Ck+1(log | z1 |2, . . . , log | zk+1 |2)

+
(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
Tg

(
h, hf∗trk◦λ(E)

)
, log | z1 |2, . . . , log | zk |2

)
.

On the other hand, according to Theorem 3.1, we have

(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
Tg

(
g, htrk◦λ(E)

)
, log | z1 |2, . . . , log | zk |2

)
− (−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
Tg

(
h, hf∗trk◦λ(E)

)
, log | z1 |2, . . . , log | zk |2

)
−hμn∗ ◦

(
Tdg(Th) • Π′′f

k (E)
)

=
(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1
(
Hh◦f

(
trk ◦ λ(E)

)))
∧Ck+1(log | z1 |2, . . . , log | zk+1 |2) − Π(3′)

k (E)

+
(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
dDΔ

(
f, h, ωX , ωY , trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2).

We then formally define a product

Ck+1

(
Δ
(
f, h, ωX , ωY , trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2)

in the same way as (9), and we set

Δk(E) =
(−1)k

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
Δ
(
f, h, ωX , ωY , trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2).

It is readily checked by Lemma 3.2 that

Δk−1(dE) − dDΔk(E)

=
(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
dDΔ

(
f, h, ωX , ωY , trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2).

Combing all the above computations, we finally get

(H1,k−1 + H2,k−1 − H3,k−1 − H4,k−1 + Δk−1)(dE)

−dD(H1,k + H2,k − H3,k − H4,k + Δk)(E)



410 SHUN TANG

= Π′l
k(E) − Π(1)

k (E) − Π′h
k (f∗E) − Π′′h

k (f∗E) + Π(3′)
k (E) + Π′′l

k (E)

−hμn∗ ◦
(
Tdg(Th) • Π′f

k (E)
)
− hμn∗ ◦

(
Tdg(Th) • Π′′f

k (E)
)

= Πl
k(E) −

(
Π(1)

k (E) + hμn∗ ◦
(
Tdg(Th) • Πf

k(E)
)

+ Πh
k(f∗E) − Π(3′)

k (E)
)
.

So, we are done. �

Corollary 3.6. Let f : X → Y , h : Y → Z and l : X → Z be three equivariant morphisms
between regular μn-projective schemes, which are all smooth over the generic fibers. Assume
l = h ◦ f and that the μn-action on Z is trivial. Then the direct image map l∗ is equal to the
composition h∗ ◦ f∗ from K̂m(X,μn)Q to K̂m(Z, μn)Q for any m � 1.

4. The Lefschetz–Riemann–Roch theorem

4.1. The statement

In order to formulate the Lefschetz–Riemann–Roch theorem for higher equivariant arithmetic
K-groups, we need to introduce the equivariant R-genus due to Bismut. Let X be a
μn-equivariant smooth algebraic variety over C, and let E be a μn-equivariant hermitian vector
bundle on X. For ζ ∈ μn(C) and s > 1, we consider the following Lerch zeta function

L(ζ, s) =
∞∑
k=1

ζk

ks

and its meromorphic continuation to the whole complex plane. Define a formal power series in
the variable x as

R̃(ζ, x) :=
∞∑

n=0

⎛⎝∂L

∂s
(ζ,−n) + L(ζ,−n)

n∑
j=1

1
2j

⎞⎠xn

n!
.

Definition 4.1. The Bismut’s equivariant R-genus of an equivariant hermitian vector
bundle E with E |Xμn

=
∑

ζ∈μn(C) Eζ is defined as

Rg(E) :=
∑

ζ∈μn(C)

(
TrR̃(ζ,−ΩEζ ) − TrR̃(1/ζ,ΩEζ )

)
,

where ΩEζ is the curvature form associated to Eζ .

Now, let X be a regular μn-projective arithmetic scheme over an arithmetic ring (D,Σ, F∞)
and we construct a naive commutative diagram of homological complexes

(11)

where 0 stands for the zero map. Let N be a μn-equivariant hermitian vector bundle on X,
we shall formally regard the R-genus Rg(N) as an element in

⊕
p�0 D

2p−1(X, p). It is a d-
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closed form. Denote by p0 the projection from X × (P1)· to X. For any hermitian k-cube E in
P̂(X,μn), we set

ΠR(E) =
(−1)k

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
Rg(p∗0N)ch0

g

(
trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2).

It is clear that ΠR(E) extends to be a map ΠR : Z̃Ck(X,μn) →⊕
p�0 D

2p−k−1(Xμn
, p)Rn

which provides a chain homotopy of the square (11). Therefore, we get an endomorphism of
K̂m(X,μn) for any m � 1. This endomorphism will be denoted by ⊗Rg(N).

Again, by [34, Remark 2.4, Lemma 2.5], the chain homotopy ΠR is homotopic to the chain
homotopy Π′

R defined by

Π′
R(E) =

(−1)k+1

2k!(2πi)k

∫
(P1)k

Rg(p∗0N) • ch0
g

(
trk ◦ λ(E)

) • Ck(log | z1 |2, . . . , log | zk |2),

and hence is homotopic to −Rg(N) • chg(E) by the projection formula. Let (x, α) be an element
in K̂m(X,μn)Q, then dx = 0 and chg(x) is a dD-closed form. Let (0, α) and (0, α′) be two
elements in K̂m(X,μn)Q, then (0, α) = (0, α′) if α and α′ have the same cohomology class in⊕

p�0 H
∗
D(Xμn

,R(p))Rn
. Note that the product • on the Deligne-Beilinson complex induces the

product on the real Deligne-Beilinson cohomology. Then, modulo torsion, the endomorphism
⊗Rg(N) is independent of the choice of the metric on N and it can be written as ⊗Rg(N).

Assume that ρ is any prime ideal in R(μn) := K0(SpecZ, μn) ∼= Z[T ]/(1 − Tn) which does
not contain the elements 1 − T k for k = 1, . . . , n− 1. For instance, ρ can be chosen to be
the kernel of the natural morphism Z[T ]/(1 − Tn) → Z[T ]/(Φn), where Φn stands for the nth
cyclotomic polynomial. Let Xμn

be the fixed-point subscheme of X, and let NX/Xμn
be the

normal bundle of Xμn
in X with some μn-invariant hermitian metric. We set

ΛR :=
(
Id −⊗Rg(NX/Xμn

)
) ◦ ⊗λ−1

−1(N
∨
X/Xμn

),

it is a well-defined endomorphism of K̂m(Xμn
, μn)ρ ⊗ Q. Then the arithmetic Lefschetz–

Riemann–Roch theorem for higher equivariant arithmetic K-groups can be formulated as
follows.

Theorem 4.2 (arithmetic Lefschetz–Riemann–Roch). Let f : X → Y be an equivariant
morphism between two regular μn-projective arithmetic schemes, which is smooth over the
generic fiber. Suppose that the μn-action on the base Y is trivial. Then, for any m � 1, the
following diagram

where τ is the restriction map, is commutative.

The proof of Theorem 4.2 will be given in next two subsections.

4.2. Arithmetic K-theoretic form of Bismut–Ma immersion formula

Let Y ↪→ X be a μn-equivariant closed immersion of regular μn-projective arithmetic schemes
over (D,Σ, F∞). In [34, Section 4], we have proved an arithmetic purity theorem

K̂m(Y, μn) ∼= K̂Y,m(X,μn)
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for any integer m � 1. As a byproduct, we get an embedding morphism K̂m(Y, μn) →
K̂m(X,μn). This embedding morphism is realized by constructing an explicit chain homotopy
of the square

(12)

where ′D2p−∗(·, p) stands for the Deligne complex of currents computing the Deligne homology
groups, (iμn !T )(η) = T (i∗μn

η) for a current T and a test form η, i : Y ↪→ P := P(NX/Y ⊕OY )
is the associated zero section embedding with projection π : P → Y and

i∗ : Z̃C∗(Y, μn) → Z̃C∗(P, μn)

is the complex morphism defined by sending a hermitian cube E to
∑n

j=0(−1)jQ
∨ ⊗ π∗E

provided the Koszul resolution

K(E,NX/Y ) : 0 → ∧nQ
∨ ⊗ π∗E → · · · → ∧Q∨ ⊗ π∗E → π∗E → i∗E → 0.

For any hermitian k-cube E, one chain homotopy Hk(E) of (12) is given by the formula

Hk(E) = Tg

(
K(OY , NX/Y )

) • chg(π∗E),

where Tg(K(OY , NX/Y )) is the equivariant Bott–Chern singular current associated to the
Koszul resolution which satisfies

dDTg

(
K(OY , NX/Y )

)
=

n∑
j=1

(−1)jchg(∧nQ
∨
) − iμn !

(
chg(OY )Td−1

g (NX/Y )
)
.

For more details the reader is referred to [34, Section 4.2].
It is clear that if we choose another resolution

0 → Fn → · · · → F 1 → F 0 → i∗OY → 0

with respect to the zero section embedding i : Y ↪→ P(NX/Y ⊕OY ) such that the metrics on
F . satisfy the Bismut’s assumption (A), we may construct a different homotopy of (12) and
we shall get a different embedding morphism i∗ : K̂m(Y, μn) → K̂m(P, μn). Our first result in
this subsection is the following.

Proposition 4.3. The embedding morphism over rational arithmetic K-groups

i∗ : K̂m(Y, μn)Q → K̂m(P, μn)Q

is independent of the choice of the resolution of i∗OY on P(NX/Y ⊕OY ) which satisfies the
Bismut’s assumption (A).
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Proof. Since any two resolutions of i∗OY on P(NX/Y ⊕OY ) are dominated by a third one,
we may assume that F . and ∧.Q

∨
fit into the following diagram:

where A. is an exact sequence of hermitian vector bundles on P . We endow A. with the metrics
coming form F . via the natural inclusion. We split A. into a family of short exact sequence of
hermitian bundles from j = 1 to n− 1

Moreover, we denote by εj the short exact sequence

from j = 0 to n. Write i∗ (respectively, i′∗) for the morphism Z̃C∗(Y, μn) → Z̃C∗(P, μn) with
respect to the Koszul resolution K(OY , NX/Y ) (respectively, the resolution F .). Then, for any
hermitian k-cube E on Y , the assignment

Hi(E) :=
n∑

j=0

(−1)jεj ⊗ π∗E +
n−1∑
j=1

(−1)jχj ⊗ π∗E ∈ Z̃Ck+1(P, μn)

provides a chain homotopy between i′∗ and i∗. Consequently, the formula

H(1)
k (E) =

⎛⎝ n∑
j=0

(−1)jchg(εj) +
n−1∑
j=1

(−1)jchg(χj)

⎞⎠chg(π∗E)

defines a chain homotopy between chg ◦ i′∗ and chg ◦ i∗. We claim that there exists a homotopy
of chain homotopies between H′

k(E) and H(1)
k (E) + Hk(E).

In fact, according to [24, Theorem 3.14, Corollary 3.10], we have

−
n−1∑
j=1

(−1)jchg(χj) + Tg(F .) − Tg

(
K(OY , NX/Y )

)
=

n∑
j=0

(−1)jchg(εj)
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up to Im dD. We fix an element Δ such that

dDΔ =
n∑

j=0

(−1)jchg(εj) +
n−1∑
j=1

(−1)jchg(χj) − Tg(F .) + Tg

(
K(OY , NX/Y )

)
and set

H̃k(E) := Δ • chg(π∗E).
Then

dD ◦ H̃k(E) = H(1)
k (E) + Hk(E) − H′

k(E) + H̃k−1 ◦ d(E).

So, we are done. �

Note that the product P × (P1)· can be identified with the projective space bundle over
Y × (P1)· with respect to the vector bundle p∗0NX/Y , and

0 → p∗0 ∧n Q
∨ → · · · → p∗0 ∧Q

∨ → OP×(P1)· → i∗OY×(P1)· → 0

is the Koszul resolution, so that the corresponding Bott–Chern singular current is the pullback
p∗0Tg(K(OY , NX/Y )). We shall still write it as Tg(K(OY , NX/Y ) for the sake of simplicity.
Then, like before, by the projection formula and [34, Remark 2.4, Lemma 2.5], Hk(E) is
homotopic to the following chain homotopy

(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
Tg

(
K(OY , NX/Y )

) • ch0
g

(
trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2),

which will be still denoted by Hk(E).
Now, let us recall the Bismut–Ma immersion formula which relates analytic torsion forms

and the Bott–Chern singular current. Let X be a smooth μn-equivariant algebraic variety over
C and let i : Y ↪→ X be an equivariant closed smooth subvariety. Let S be a smooth algebraic
variety with trivial μn-action, and let f : Y → S, l : X → S be two equivariant proper smooth
morphisms such that f = l ◦ i. Assume that η is an equivariant hermitian bundle on Y and ξ. is
a complex of equivariant hermitian bundles on X which provides a resolution of i∗η such that
the metrics on ξ. satisfy the Bismut’s assumption (A). Let ωY , ωX be two Kähler fibrations
on f and on l, respectively. We shall assume that ωY is the pullback of ωX , so that the Kähler
metric on Y is induced by the Kähler metric on X. Consider the following exact sequence

N : 0 → Tf → T l |Y → NX/Y → 0,

where NX/Y is endowed with the quotient metric. Denote by Tdg(N ) = Φ−1(
˜Tdg(N )

2 ) (see
Section A.3 in the Appendix) the equivariant secondary Todd form of N which satisfies the
identity

dDTdg(N ) = Tdg(T l |Y , hTl) − Tdg(Tf, hTf )Tdg(NX/Y ).

We suppose that in the resolution ξ., ξj are all l−acyclic and moreover η is f−acyclic. Denote
by hH(ξ.) the hermitian metric on f∗η corresponding to the L2-metric on the hypercohomology
of ξ. over the fiber of l : X → S (see Section A.3 in the Appendix). By an easy argument of
long exact sequence, we have the following exact sequence of hermitian vector bundles on S

Ξ : 0 → l∗(ξm) → l∗(ξm−1) → . . . → l∗(ξ0) →
(
f∗η, hH(ξ.)

)
→ 0.

We may split Ξ. into a family of short exact sequence of hermitian bundles from j = 1 to m
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such that the kernel of every map dj−1 for j = 2, . . . ,m carries the metric induced by Ξj and
Ker d0 = Ξ0 = (f∗η, hH(ξ.)),Ker dm = Ξm+1 = l∗(ξm). We regard χj as a hermitian 1-cube on
S and we set chg(Ξ.) =

∑m
j=1(−1)jchg(χj). Then it satisfies the differential equation

dDchg(Ξ.) = chg

(
f∗η, hH(ξ.)

)
−

m∑
j=0

chg

(
l∗(ξj)

)
.

Set chg(Ξ., f∗η) := chg(Ξ.) + chg(f∗η, hH(ξ.), f∗hη), it satisfies the differential equation

dDchg(Ξ., f∗η) = chg(f∗η) −
m∑
j=0

chg

(
l∗(ξj)

)
.

With some abuse of notations, we still use Ξ to denote the long exact sequence

0 → l∗(ξm) → l∗(ξm−1) → . . . → l∗(ξ0) → f∗η → 0

and identify chg(Ξ.) with chg(Ξ., f∗η).

Theorem 4.4 (Immersion formula). Let notations and assumptions be as above. Then the
following identity holds in

⊕
p�0(D

2p−1(S, p)/Im dD).
m∑
i=0

(−1)iTg(ωX , hξi) − Tg(ωY , hη) + chg(Ξ.)

= − 1
(2πi)rl

∫
Xμn/S

Tdg(T l)Tg(ξ.) − 1
(2πi)rf

∫
Yμn/S

Tdg(N )Td−1
g (NX/Y )chg(η)

+
1

(2πi)rf

∫
Yμn/S

Tdg(Tf)Rg(NX/Y )chg(η),

where rf and rl are the relative dimensions of Yμn
/S and of Xμn

/S, respectively. Note that the
equivariant Bott–Chern singular current we use here differs from the one used in the appendix
by a minus sign.

Proof. This is a translation of [14, Theorem 0.1 and 0.2] (see also Theorem A.5). �

With the same notations as in Remark 2.7 and Theorem A.6, we set

Δ(f, l, i∗η, ξ.) := −Φ−1

(
Δ0(f, l, i∗η, ξ.) + Δ0(f, l, i∗η, ξ.)

2

)
− Δ(Ξ.).

Then dDΔ(f, l, i∗η, ξ.) measures the difference
m∑
i=0

(−1)iTg(ωX , hξi) − Tg(ωY , hη) + chg(Ξ.) +
1

(2πi)rl

∫
Xμn/S

Tdg(T l)Tg(ξ.)

+
1

(2πi)rf

∫
Yμn/S

Tdg(N )Td−1
g (NX/Y )chg(η) − 1

(2πi)rf

∫
Yμn/S

Tdg(Tf)Rg(NX/Y )chg(η)

in Theorem 4.4. Let us go back to the same situation described before Lemma 2.12 and assume
that the following diagrams
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are obtained by smooth base changes. Then Y × Z and X × Z1 intersect transversely along
Y × Z1 and the singular currents can be pulled back.

Lemma 4.5. The restriction of Δ(fZ , lZ , iZ∗η, ξ.) over S × Z1 is equal to the differential
form Δ(fZ1 , lZ1 , iZ1∗η |Y×Z1 , ξ. |X×Z1).

Proof. This is a consequence of Theorem A.6. �

Proposition 4.6. Let Y be a regular μn-projective arithmetic scheme over (D,Σ, F∞) and
let N be a μn-equivariant hermitian vector bundle on Y . Suppose that the μn-action on Y is
trivial and consider the zero section embedding

i : Y ↪→ P := P(N ⊕OY )

with hermitian normal bundle N and the natural projection π : P → Y . Then for any element
x ∈ K̂m(Y, μn)Q with integer m � 1, the following identity

x−Rg(N) · x = π∗i∗(x)

holds in K̂m(Y, μn)Q.

Proof. By the definition of the action of Rg(N) on K̂m(Y, μn)Q, the map x �→ x−Rg(N) · x
is defined via the chain homotopy

Π(0)
k (E) =

(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
Rg(N) • ch0

g

(
trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2)

of the square

According to Proposition 4.3, to define the morphism i∗ : K̂m(Y, μn)Q → K̂m(P, μn)Q, we
may choose a resolution F . of i∗OY on P such that every Fj is π-acyclic. We shall endow F .
with the metrics satisfying the Bismut’s assumption (A). Then we have an exact sequence of
hermitian bundles on Y

Ξ : 0 → π∗(Fm) → π∗(Fm−1) → . . . → π∗(F 0) → OY → 0.

Like before, splitting Ξ into a family of short exact sequence of hermitian bundles from j = 1
to m

we may construct a chain homotopy

Hπ◦i(E) :=
m∑
j=1

(−1)jχj ⊗ E ∈ Z̃Ck+1(Y, μn)

between the maps Id and π∗ ◦ i∗ : Z̃C∗(Y, μn) → Z̃C∗(Y, μn). Consequently, the formula

H
(1)
k (E) =

(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
trk+1 ◦ λ

(
Hπ◦i(E)

)) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2)
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defines a chain homotopy between chg ◦ Id and chg ◦ π∗ ◦ i∗. Then H(1)
k + Ππ

k ◦ i∗ + πμn∗ ◦
(Tdg(Tπ) • Hk) also defines a chain homotopy between chg ◦ Id and Id ◦ chg. We compare it
with Π(0)

k .
First, denote by PrP (respectively, PrY ) the projection from P × (P1)k (respectively, Y ×

(P1)k) to P (respectively, Y ). Then, according to the functoriality of projective space bundle
construction we have used before, Pr∗PF . provides a resolution of i∗OY×(P1)k on P × (P1)k.
Hence, we have an exact sequence

Ξ
′
: 0 → π∗(Pr∗PFm) → π∗(Pr∗PFm−1) → . . . → π∗(Pr∗PF 0) → OY×(P1)k → 0

which can be split into a family of short exact sequence of hermitian bundles from j = 1 to m

Furthermore, the short exact sequence of hermitian 1-cube

forms a hermitian 2-cube on Y × (P1)k. We set

H̃k(E) :=
(−1)k+2

2(k + 2)!(2πi)k+2

∫
(P1)k+2

ch0
g

⎛⎝ m∑
j=1

(−1)jtr2 ◦ λ
(
H(j)(E)

)⎞⎠
∧ Ck+2(log | z1 |2, . . . , log | zk+2 |2),

it satisfies the differential equation

dD ◦ H̃k(E) = H̃k−1 ◦ dE +
m∑
j=0

(−1)jΠ′π
k (F j ⊗ π∗E)

+
(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
trk+1 ◦ λ

(
Hπ◦i(E)

)) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2)

− (−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

⎛⎝ m∑
j=1

(−1)jtr1 ◦ λ(χ′
j) � trk ◦ λ(E)

⎞⎠
∧Ck+1(log | z1 |2, . . . , log | zk+1 |2)

= H̃k−1 ◦ dE + H(1)
k (E) + Π′π

k ◦ i∗(E)

− (−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
chg

(
Ξ
′ ⊗ trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2

)
.

On the other hand, we apply the immersion formula to the resolution Pr∗PF .⊗ trk ◦ λ(E). We
then have

Π′′π
k ◦ i∗(E)

= − (−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
chg

(
Ξ
′ ⊗ trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2

)

− (−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
1

(2πi)rπ

∫
Pμn/Y

Tdg(Tπ)Tg

(
Pr∗PF .⊗ trk ◦ λ(E)

)
,
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log | z1 |2, . . . , log | zk |2
)

+
(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
Rg(N) • ch0

g

(
trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2)

+
(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
dDΔ

(
trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2)

= − (−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
chg

(
Ξ
′ ⊗ trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2

)
−πμn∗ ◦

(
Tdg(Tπ) • Hk(E)

)
+Π(0)

k (E) +
(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
dDΔ

(
trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2).

We then formally define a product Ck+1(Δ(trk ◦ λ(E)), log | z1 |2, . . . , log | zk |2) in the same
way as (9), and we set

Δk(E) =
(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
Δ
(
trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2).

Again, it is readily checked by Lemma 4.5 that

Δk−1(dE) − dDΔk(E) =
(−1)k

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
dDΔ

(
trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2

)
.

Getting together all the above discussions, we see that H̃k + Δk provides a homotopy
between Π(0)

k and H(1)
k + Ππ

k ◦ i∗ + πμn∗ ◦ (Tdg(Tπ) • Hk) which implies that x−Rg(N) · x =
π∗i∗(x) for any element x ∈ K̂m(Y, μn)Q with integer m � 1. �

Corollary 4.7. Let S be another regular μn-projective arithmetic scheme with the trivial
μn-action. Let f : Y → S and l = f ◦ π : P → S be two equivariant morphisms which are
smooth over the generic fibers. Then the identity

f∗(x) − f∗(Rg(N) · x) = l∗ ◦ i∗(x)

holds in K̂m(S, μn)Q for any element x ∈ K̂m(Y, μn).

Proof. This is an immediate consequence of Proposition 4.6 and Corollary 3.6. �

Now, we consider general situation. Let X,S be two regular μn-projective arithmetic schemes
over (D,Σ, F∞), and let Y be a regular μn-equivariant arithmetic closed subscheme of X with
immersion i : Y → X. Let l : X → S and f = l ◦ i : Y → S be two equivariant morphisms which
are smooth over the generic fibers. We shall suppose that the μn-actions on Y and on S are
trivial (for example, Y = Xμn

, S = SpecD). Then the main result in this subsection is the
following.

Theorem 4.8. For any element x ∈ K̂m(Y, μn) with integer m � 1, the identity

f∗(x) − f∗(Rg(NX/Y ) · x) = l∗ ◦ i∗(x)

holds in K̂m(S, μn)Q.
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To prove Theorem 4.8, we use the deformation to the normal cone construction. Denote by W
the blowing up of X × P1 along Y × {0}, and denote by qW : W → P1 the composition of the
blow-down map W → X × P1 with the projection X × P1 → P1. For any point t ∈ A1 ⊂ P1, t
is called a Z-point if it corresponds to a prime ideal (x− a) in D[x] with a ∈ Z. Then for any
Z-point t ∈ P1 we have

q−1
W (t) ∼=

{
X × {t}, if t 
= 0,

P ∪ X̃, if t = 0,

where X̃ is isomorphic to the blowing up of X along Y and P is the projective space bundle
P(NX/Y ⊕OY ). Let j : Y × P1 → W be the closed immersion induced by i× Id, then the
component X̃ does not meet j(Y × P1) and the intersection of j(Y × P1) with P is exactly
the image of Y under the zero section embedding. Moreover, denote by st the obvious section
Y ∼= Y × {t} ↪→ Y × P1 for every Z-point t and denote by ut the natural inclusion q−1

W (t) ↪→ W .
We have two Tor-independent squares

with t 
= 0 and

Note that the complement X \ Y is contained in W \ Y × P1, we have pullback morphism
u∗
t : K̂Y×P1,m(W,μn) → K̂Y,m(X,μn).

Lemma 4.9. For any Z-point t 
= 0, the diagram

is commutative.

Proof. The commutativity of the algebraic prototype of this diagram follows from the
Tor-independence of the deformation diagrams, but for arithmetic K-theory it is more
complicated because the morphisms j∗ and i∗ are defined via another deformation to the
normal cone construction according to the A1-homotopy invariance of the K-theory and the
Deligne–Beilinson cohomology.

Write c∗t : K̂m(Y × P1, μn) → K̂m(Y, μn) for the composition i−1
∗ ◦ u∗

t ◦ j∗. We need to show
that c∗t = s∗t . The morphism s∗t is induced by the commutativity between s∗t and c̃hg, while the
morphism c∗t is induced by the homotopy defining j∗ and the homotopy defining i∗. Again, using
the A1-homotopy invariance of the K-theory and the Deligne–Beilinson cohomology, we may
consider the pullbacks of s∗t and c∗t to K̂m(Y × P1 × A1, μn) → K̂m(Y × A1, μn) and restrict



420 SHUN TANG

them to {0} ↪→ A1, then the statement in this lemma will follows from the commutativity of
the diagram

(13)

where P ′ = P((NX/Y �O(−1)) ⊕OY×P1) is the projective completion of NW/Y×P1 over Y ×
P1. It is equivalent to show that the following diagram

(14)

is commutative because the morphism i0∗ : K̂m(Y, μn) → K̂m(P, μn) is injective. We endow
NX/Y �O(−1) with the product metric coming from the metric on NX/Y and the Fubini–
Study metric on O(−1), then the pullback of NW/Y×P1 along st is isometric to NX/Y , so that
the pullback along st of the Koszul resolution and of the corresponding Bott–Chern singular
current with respect to j0 is exactly the Koszul resolution and the corresponding Bott–Chern
singular current with respect to i0. According to the construction of the homotopies defining
j0∗ and i0∗, we get the commutativity of the diagram (14) and hence of (13). So, we are
done. �

Corollary 4.10. For any Z-point t 
= 0, the diagram

is commutative.

Remark 4.11. Using the same argument as in Lemma 4.9, we know that the diagram

is also commutative.

Next, we consider the commutative diagram
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with Z-point t 
= 0 and we compare the map f∗ ◦ u∗
t with the map l∗ from K̂m(W,μn)Q to

K̂m(S, μn)Q.
First, for any μn-invariant Kähler metric ωX on X which induces an invariant Kähler metric

ωY on Y , there exists a μn-invariant Kähler metric ωW on W such that the restrictions of ωW

over X ∼= X × {t} with t 
= 0 and to Y ∼= Y × {0} are exactly ωX and ωY . This fact follows
from [32, Lemma 3.5]. Actually, such a metric is constructed via the Grassmannian graph
construction. In this construction, we have an embedding W → X × Pr × P1 and the metric
ωW is the μn-average of the restriction of a product metric on X × Pr × P1. We fix such an
invariant Kähler metric ωW on W and endow all submanifolds of W with the induced metrics.
Moreover, all normal bundles appearing in the construction of the deformation to the normal
cone will be endowed with the quotient metrics.

Second, to the three divisors ut(X), u0(P ) and u0(X̃) in W , we have the following result.

Lemma 4.12. Over W , there are μn-invariant hermitian metrics on O(X), O(P ) and O(X̃)
such that the isometry O(X) ∼= O(P ) ⊗O(X̃) holds and such that the restriction of O(X) over

X yields the metric of NW/X , the restriction of O(X̃) over X̃ yields the metric of NW/ ˜X and

the restriction of O(P ) over P yields the metric of NW/P .

Proof. choose metric on O(P ) in a small neighborhood of P such that the restriction of
O(P ) over P yields the metric of the normal bundle. Do the same for O(X̃). Since X is closed
and disjoint from X̃ and P , we can extend these metrics via a partition of unity to metrics
defined on W , so that the restriction of the metric that O(X) inherits from the isomorphism
O(X) ∼= O(P ) ⊗O(X̃) yields the metric of the normal bundle NW/X . We then take the μn-
averages of these metrics to make them μn-invariant. Since the metrics on NW/X , NW/P and
NW/ ˜X are already μn-invariant, the μn-invariant metrics on O(X), O(P ) and O(X̃) obtained
as above have the properties that we require. �

Now, consider the Koszul resolution

0 → O(−X) → OW → ut∗OX → 0.

The associated equivariant singular Bott–Chern current Tg(W/X) satisfies the identity

dDTg(W/X) = ch0
g(OW ) − ch0

g

(O(−X)
)− ut∗[ch

0
g(OX)Td−1

g (NW/X)].

We claim the following result.

Lemma 4.13. For any element x ∈ K̂m(W,μn)Q with integer m � 1, the identity

f∗ ◦ u∗
t (x) − f∗(Rg(NW/X) · u∗

tx) = l∗(x) − l∗(O(−X) ⊗ x)

hold in K̂m(S, μn)Q.

Proof. Let E be a l-acyclic hermitian k-cube in P̂(W,μn). Since W admits a very ample
invertible μn-sheaf which is relative to the morphism l : W → S (cf. [32, Lemma 3.9]), we may
assume that O(−X) ⊗ E is also l-acyclic and u∗

tE is f -acyclic. Then we have a short exact
sequence of hermitian k-cubes in P̂(S, μn)

χ(E) : 0 → l∗(O(−X) ⊗ E) → l∗(E) → f∗(ut
∗E) → 0,
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which will be regarded as a hermitian (k + 1)-cube and as a chain homotopy between the maps
l∗ − l∗(O(−X)⊗) and f∗ ◦ u∗

t . Consequently, the formula

H(1)
k (E) =

(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
trk+1 ◦ λ

(
χ(E)

)) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2)

defines a chain homotopy between chg ◦ l∗ − chg ◦ l∗(O(−X)⊗) and chg ◦ f∗ ◦ u∗
t .

On the other hand, for any element α ∈⊕p�0 D
2p−∗(Wμn

, p)Rn
, the formula

1
(2πi)rl

∫
Wμn/S

Tg(W/X) • Tdg(Tg) • α +
1

(2πi)rf

∫
Xμn/S

Tdg(N ) • Td−1
g (NW/X) • α

gives a chain homotopy between the maps lμn ! ◦ (Tdg(Tg)•) − lμn ! ◦ (Tdg(Tg)ch0
g(O(−X))•)

and fμn ! ◦ (Tdg(Tf) • u∗
t ). Hence, it defines a chain homotopy between lμn ! ◦ (Tdg(Tg) •

chg) − lμn ! ◦ (Tdg(Tg)ch0
g(O(−X)) • chg) and fμn ! ◦ (Tdg(Tf) • u∗

t ◦ chg). Like before, using
the projection formula and the fact that the deformation to the normal cone construction is
base-change invariant along smooth morphisms, we write the induced homotopy as

H
(2)
k (E) =

(−1)k

2k!(2πi)k

∫
(P1)k

((
1

(2πi)rl

∫
Wμn×(P1)k/S×(P1)k

Tg(W/X) • Tdg(Tg)ch
0
g

(
trk ◦ λ(E)

))

∧Ck(log | z1 |2, . . . , log | zk |2)
)

+
(−1)k

2k!(2πi)k

∫
(P1)k

((
1

(2πi)rf

∫
Xμn×(P1)k/S×(P1)k

Tdg(N ) • Td−1
g (NW/X)ch0

g

(
trk ◦ λ(u∗tE)

))

∧Ck(log | z1 |2, . . . , log | zk |2)
)
.

Now, we denote by Hχ(E) the following 2-cube of hermitian bundles on S × (P1)k

and we set

H̃k(E) :=
(−1)k+2

2(k + 2)!(2πi)k+2

∫
(P1)k+2

ch0
g

(
tr2 ◦ λ

(
Hχ(E)

)) ∧ Ck+2(log | z1 |2, . . . , log | zk+2 |2),

it satisfies the differential equation

dD ◦ H̃k(E)

= H̃k−1 ◦ dE +
(−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
trk+1 ◦ λ(χ(E)

))
∧Ck+1(log | z1 |2, . . . , log | zk+1 |2)
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− (−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1 ◦ λ(χ(trk ◦ λ(E)

))) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2)

−Π′l
k (E) + Π′l

k (O(−X) ⊗ E) + Π′f
k (u∗tE)

= H̃k−1 ◦ dE + H
(1)
k (E) − Π′l

k (E) + Π′l
k (O(−X) ⊗ E) + Π′f

k (u∗tE)

− (−1)k+1

2(k + 1)!(2πi)k+1

∫
(P1)k+1

ch0
g

(
tr1 ◦ λ(χ(trk ◦ λ(E)

))) ∧ Ck+1(log | z1 |2, . . . , log | zk+1 |2).

Similar to the tricks that we used frequently before, we set

H(2′)
k (E) =

(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
1

(2πi)rl

∫
Wμn×(P1)k/S×(P1)k

Tg(W/X)

•Tdg(Tg)ch0
g

(
trk ◦ λ(E)

)
, log | z1 |2, . . . , log | zk |2

)

+
(−1)k+1

(k + 1)!(2πi)k

∫
(P1)k

Ck+1

(
1

(2πi)rf

∫
Xμn×(P1)k/S×(P1)k

Tdg(N )

•Td−1
g (NW/X)ch0

g

(
trk ◦ λ(u∗

tE)
)
, log | z1 |2, . . . , log | zk |2

)
.

then our lemma follows from the Bimut–Ma immersion formula and the fact that there exists
a homotopy between H(2′)

k (E) and H(2)
k (E). So, we are done. �

Remark 4.14. Similar to Lemma 4.13, we consider other three divisors W ←−
u0

P
p−→S,

W ←−
u0

X̃
h1−→S and W ←−

u0
P ∩ X̃

h2−→S and corresponding Koszul resolutions

0 → O(−P ) → OW → u0∗OP → 0,

0 → O(−X̃) → OW → u0∗O ˜X → 0,

and

0 → O(−X̃) ⊗O(−P ) → O(−X̃) ⊕O(−P ) → OW → u0∗O ˜X∩P → 0.

Then, for any element x ∈ K̂m(W,μn)Q, we have

p∗ ◦ u∗
0(x) − p∗(Rg(NW/P ) · u∗

0x) = l∗(x) − l∗
(
O(−P ) ⊗ x

)
,

h1∗ ◦ u∗
0(x) − h1∗(Rg(NW/ ˜X) · u∗

0x) = l∗(x) − l∗
(
O(−X̃) ⊗ x

)
,

and

h2∗ ◦ u∗
0(x) − h2∗(Rg(NW/P∩ ˜X) · u∗

0x) = l∗(x) − l∗(O(−P ) ⊗ x) − l∗(O(−X̃) ⊗ x)

+ l∗(O(−P ) ⊗O(−X̃) ⊗ x)

which hold in K̂m(S, μn)Q.

Now, we are ready to give the proof of Theorem 4.8.



424 SHUN TANG

Proof. Let x be an element in K̂m(Y, μn)Q, we consider the following two diagrams

with Z-point t 
= 0 and

By Corollary 4.10 and the fact that st is a section of the obvious projection Pr from Y × P1

to Y , we have i∗(x) = u∗
t ◦ j∗ ◦ Pr∗(x) and hence l∗ ◦ i∗(x) = l∗ ◦ u∗

t ◦ j∗ ◦ Pr∗(x). According
to Lemma 4.13,

l∗ ◦ u∗
t (j∗Pr∗x) = h∗(j∗Pr∗x) − h∗(O(−X) ⊗ j∗Pr∗x) + l∗(Rg(NW/X) · i∗x).

Similarly, we have

l∗ ◦ u∗
0(j∗Pr∗x) = h∗(j∗Pr∗x) − h∗(O(−P ) ⊗ j∗Pr∗x) + p∗(Rg(NW/P ) · i∗x).

Note that the image j(Y × P1) does not meet X̃, the localization sequence of the higher
equivariant arithmetic K-groups implies that u∗

0(j∗Pr∗x) vanishes in K̂m(X̃, μn)Q and in
K̂m(P ∩ X̃, μn)Q, so that

h∗(O(−X) ⊗ j∗Pr∗x) = h∗(O(−P ) ⊗ j∗Pr∗x).

This can be seen from the several identities mentioned in Remark 4.14. On the other hand,

Rg(NW/X) · i∗x =Rg(NW/X)chg(i∗x) = Rg(NW/X)i∗
(
Td−1

g (NX/Y )chg(x)
)

= i∗
(
i∗Rg(NW/X)Td−1

g (NX/Y )chg(x)
)

= 0.

The same reasoning gives that Rg(NW/P ) · i∗x = 0 also. So, l∗ ◦ i∗(x) is actually equal to
p∗ ◦ i0∗(x). Therefore, the statement in Theorem 4.8 follows from Corollary 4.7. �

4.3. Proof of the statement

In this subsection, we give a complete proof of Theorem 4.2. Denote by i the closed immersion
Xμn

→ X, then the arithmetic concentration theorem (cf. [34, Theorem 5.2]) tells us that

i∗ : K̂m(Xμn
, μn)ρ ∼= K̂m(X,μn)ρ

with inverse map ⊗λ−1
−1(NX/Xμn

) ◦ τ .
Then let x be any element in K̂m(X,μn), we apply Theorem 4.8 to the morphisms i, f and

fμn
= f ◦ i and we compute

f∗(x) =f∗
(
i∗ ◦ ⊗λ−1

−1(NX/Xμn
) ◦ τ(x)

)
=f∗ ◦ i∗

(⊗λ−1
−1(NX/Xμn

) ◦ τ(x)
)

=fμn∗
(⊗λ−1

−1(NX/Xμn
) ◦ τ(x)

)− fμn∗
(⊗Rg(NX/Xμn

) ◦ ⊗λ−1
−1(NX/Xμn

) ◦ τ(x)
)

=fμn∗(ΛR ◦ τ(x))

which holds in K̂m(Y, μn)ρ ⊗ Q. This completes the proof of Theorem 4.2.
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Appendix. Remarks on the equivariant analytic torsion forms and the immersion formula

by Xiaonan Ma

A.1. Anomaly formula for the equivariant analytic torsion forms

Let W,V be two μn-projective complex manifolds, and let f : W → V be an equivariant,
holomorphic submersion with fiber X. Fix a μn-invariant Kähler metric on W and choose
corresponding Kähler form ω as a Kähler fibration structure on f . We fix a primitive nth root
of unity g as a generator of μn(C). In the following, chg and Tdg should stand for the usual
Chern–Weil forms with the factor 2πi in their definitions. Note that they are denoted by ch′

g

and Td′
g in the text.

Let (E, hE) be a μn-equivariant hermitian vector bundle on W such that E is f -acyclic.
Let Tg(f, ω, hE) ∈⊕p�0 A

p,p(Vμn
) be the equivariant analytic torsion form [27, (2.27)] which

satisfies the differential equation

∂̄∂

2πi
Tg(f, ω, hE) = chg(f∗E, f∗hE) −

∫
Wμn/Vμn

Tdg(Tf, hTf )chg(E, hE),

where hTf is the hermitian metric induced by ω on the holomorphic tangent bundle Tf . We
shall write Tg(ω, hE) for Tg(f, ω, hE), if there is no ambiguity about the underlying map. The
following result is [27, Theorem 2.13] which extends [7, Theorem 2.5; 11, Theorem 1.23; 12,
Theorem 3.10].

Theorem A.1 (Anomaly formula). Let ω′ be the form associated to another Kähler fibration
structure on f : W → V . Let h′Tf be the metric on Tf induced by ω′. Then the following
identity holds in

⊕
p�0 A

p,p(Vμn
)/(Im ∂ + Im ∂̄):

Tg(ω, hE) − Tg(ω′, hE) = − c̃hg(f∗E, hf∗E , h′f∗E)

+
∫
Wμn/Vμn

T̃dg(Tf, hTf , h′Tf )chg(E, hE),

where (f∗E, hf∗E , h′f∗E) and (Tf, hTf , h′Tf ) stand for the exact sequences of hermitian vector
bundles

and

We shall see that there is a natural way to write down explicitly some differential forms
Δ0(f,E, ω, ω′), Δ0(f,E, ω, ω′) such that they are functorial in certain sense and they measure
the difference of the anomaly formula.

Δ = ∂Δ0(f,E, ω, ω′) + ∂̄Δ0(f,E, ω, ω′)

= Tg(ω, h
E) − Tg(ω

′, hE) + c̃hg(f∗E, hf∗E , h′f∗E) −
∫
Wμn/Vμn

T̃dg(Tf, h
Tf , h′Tf )chg(E, hE).

To do so, we need to fix the construction of c̃hg(f∗E, hf∗E , h′f∗E), T̃dg(Tf, hTf , h′Tf ) at
the differential form level, that is., without modulo Im ∂ + Im ∂̄. Let us fix the definition of
c̃hg(f∗E, hf∗E , h′f∗E) as the left side of [7, (2.42)], and the definition T̃dg(Tf, hTf , h′Tf ) as the
integral for 0 to 1 for the parameter c of the differential form as the part ∂

∂b · · · via the last
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term of [12, (3.67)], note that we can also fix the path of the metric as the segment direct
connecting two metrics. Thus, we can write them under the notation in [27, (2.34), (2.56)] (cf.
also the convention before Theorem 2.5 of this paper),

c̃hg(f∗E, hf∗E , h′f∗E) =
∫ 1

0

ΦTrs[gQH(X,E|X)
c exp(−(∇H(X,E|X)

c )2)]dc,

T̃dg(Tf, hTf , h′Tf ) =
∫ 1

0

∂

∂b

⎡⎢⎣Td
(−RTXg

c

2iπ
− b(hTXg

)−1 ∂h
TXg

∂c

)

×
q∏

j=1

Td
e

⎛⎜⎝−R
N

θj
Xg/X

c

2iπ
− b(hN

θj
Xg/X )−1 ∂h

N
θj
Xg/X

∂c
+ iθj

⎞⎟⎠
⎤⎥⎦
b=0

dc.

(A.1)

Let V1 be an equivariant closed submanifold of V , and let W1 = f−1(V1) ⊂ W be the
closed submanifold of W with restricted Kähler metric. Then f1 : W1 → V1 is also an
equivariant holomorphic submersion with compact fiber. Denote by j (respectively, i) the
natural embedding W1 → W (respectively, V1 → V ) and by ω1, ω

′
1 the induced Kähler forms

j∗ω, j∗ω′. Let E be an f -acyclic hermitian bundle on W .

Theorem A.2. There is a natural way to write down explicitly differential forms
Δ0(f,E, ω, ω′), Δ0(f,E, ω, ω′) such that Δ = ∂Δ0(f,E, ω, ω′) + ∂̄Δ0(f,E, ω, ω′) and they are
functorial in the following sense.

i∗μn
Δ0(f,E, ω, ω′) = Δ0(f1, j

∗E,ω1, ω
′
1) (A.2)

and

i∗μn
Δ0(f,E, ω, ω′) = Δ0(f1, j

∗E,ω1, ω
′
1). (A.3)

Proof. By the equivariant extension of [12, Definition 3.14, Theorems 3.16 and 3.17] (cf.
[27, (2.34)]), there exist differential forms θ1, θ2 and θ3 such that

Δ + d� = ∂̄θ1 + ∂θ2 + ∂̄∂θ3 (A.4)

and d� is from the last term of [12, (3.38)], in particular, � is a local term from the small time
heat kernel asymptotics of Bismut superconnection, θk (k = 1, 2, 3) have universal expression
in terms of g, ω, ω′ and hE via the Bismut superconnection. Thus, from [12, Definition 3.14,
Theorem 3.16]] and [27, (2.34)], we know that if i : V1 → V is a complex submanifold of V , when
we consider the corresponding objects for the submersion f1, each above term is the restriction
of the corresponding term for the global submersion f . Thus, let Δ1, θ

k
1 be the corresponding

terms associated to the fibration f1 : W1 → V1, then we have Δ1 = i∗μn
Δ and θk1 = i∗μn

θk (k =
1, 2, 3), �1 = i∗μn

�. So, write Δ0(f,E, ω, ω′) = θ2 − � and Δ0(f,E, ω, ω′) = θ1 + ∂θ3 − �, we are
done. �

A.2. Functoriality of the equivariant analytic torsion forms

Let W,V and S be three μn-equivariant projective complex manifolds with S = Sμn
. Suppose

that f : W → V and h : V → S are two holomorphic submersions with compact fibers X,Y .
Then h ◦ f is also a holomorphic submersion with compact fiber Z.

Let ωW and ωV be two μn-invariant Kähler forms on W and on V . As usual, ωW and ωV

decide Kähler fibration structures on the morphisms f, h and g and they induce μn-invariant
hermitian metrics associated with the Kähler forms ωX , ωY and ωZ on relative tangent
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bundles Tf, Th and T (h ◦ f). Consider the following short exact sequence of hermitian vector
bundles

T (f, h, h ◦ f) : 0 → Tf → T (h ◦ f) → f∗Th → 0.

Denote by Tdg(T (f, h, h ◦ f)) the equivariant secondary Todd form, it satisfies the differential
equation

∂̄∂

2πi
Tdg(T (f, h, h ◦ f)) = Tdg(T (h ◦ f)) − f∗

μn
Tdg(Th)Tdg(Tf).

Now, let E be a hermitian vector bundle on W , we shall assume that E is f -acyclic and
h ◦ f -acyclic. Then the Leray spectral sequence Ei,j

2 = Rih∗(Rjf∗E) degenerates at E2, so
that f∗E = R0f∗(E) is h-acyclic and (h ◦ f)∗E ∼= h∗f∗E. Clearly, (h ◦ f)∗E and h∗f∗E carry
in general different L2 metrics (Note that for σ ∈ ((h ◦ f)∗E)b, b ∈ S,

‖σ‖2
(h◦f)∗E = (2π)− dimZ

∫
Zb

|σ|2 (ωZ)dimZ

(dimZ)!
,

‖σ‖2
h∗f∗E = (2π)− dimZ

∫
Yb

(∫
X

|σ|2 (ωX)dimX

(dimX)!

)
(ωY )dimY

(dimY )!
,

(A.5)

thus they are different in general). Consider the following short exact sequence of hermitian
vector bundles

E(f, h, h ◦ f) : 0 → h∗f∗E → (h ◦ f)∗E → 0 → 0.

The equivariant secondary Bott–Chern form c̃hg(E(f, h, h ◦ f)) satisfies the differential
equation

∂̄∂

2πi
c̃hg(E(f, h, h ◦ f)) = chg((h ◦ f)∗E) − chg(h∗f∗E).

Theorem A.3. Let notations and assumptions be as above. Then the following identity
holds in

⊕
p�0 A

p,p(S)/(Im ∂ + Im ∂̄):

Tg(h ◦ f, ωW , hE) − Tg(h, ωV , hf∗E) −
∫
Vμn/S

Tdg(Th)Tg(f, ωW , hE)

= c̃hg(E(f, h, h ◦ f)) −
∫
Wμn/S

T̃dg(T (f, h, h ◦ f))chg(E).

(A.6)

Proof (a sketch). This is a natural extension of [26, Theorem 3.5] to the equivariant case, or
the family extension of [27, Theorem 3.1] which is an equivariant extension of [4, Theorem 3.1].
To prove this extension, one may follow the same approach as in [26, Sections 4–9]. In fact, as
a purely functional analysis argument, the [26, Theorems 4.5–4.7] can be extended formally to
the equivariant case by introducing in the right place the operator g. The reason one can do
this formal extension has been given in [27, Section 5]. For the equivariant extensions of [26,
Theorems 4.8–4.11], one can show that their proofs are local on f−1(Vμn

) and certain rescaling
on Clifford variables which does not effect the action of g can be made (cf. [26, Section 7 b]).
Replacing the equivariant local index technique in [27, Sections 7–9] by its equivariant relative
local index, one gets the desired identity.

To help the readers, we will use directly the notation in [26, Section 4]. By the anomaly
formula Theorem 2.11, we only need to establish Theorem A.3 for a special coupe of Kähler
forms, thus we will assume that ωW = ω̃W + f∗ωV with ω̃W a Kähler form on W .
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Let Δ be the rectangular domain in R2 with coordinates (u, T ), defined by the four vertices
(1, ε), (T0, ε), (T0, A), (1, A), following [26, (4.7)], set

θ0
1 = (2πi)−1/2

∫
Δ

2
u

∂

∂b

{
ϕTrs

[
g
[
B′

3,u2,T , N3,u2,T

]
exp(−B2

3,u2,T − bM3,u2,T )
]}

b=0
dudT,

θ0
2 = (2πi)−1/2

∫
Δ

2
u

∂

∂b

{
ϕTrs

[
g
[
B′′

3,u2,T , N3,u2,T

]
exp(−B2

3,u2,T − bM3,u2,T )
]}

b=0
dudT,

θ0
3 = (2πi)−1

∫
Δ

2
u

∂

∂b

{
ϕTrs

[
gN3,u2,T exp(−B2

3,u2,T − bM3,u2,T )
]}

b=0
dudT.

(A.7)

The only difference comparing with [26, (4.7)] is that in (A.7), we add the operator g as the
first term in Trs[· · · ] in [26, (4.7)], that is, replace Trs[· · · ] by Trs[g · · · ]. Note that B3,u2,T is
the Bismut superconnection assocaited with the submersion h ◦ f and the form ωW

T = 1
T 2 ω̃

W +
f∗ωV , and B′

3,u2,T , B
′′
3,u2,T are holomorphic and anti-holomorphic part of B3,u2,T . Moreover,

N3,u2,T is a generalized number operator associated with ωW
T .

The boundary of Δ composes as four oriented segments Γ1, . . . ,Γ4. Let I0
k be the integral of

the one form on R2 with values in Λ•(T ∗
RS) defined by replacing Trs[· · · ] by Trs[g · · · ] in [26,

Definition 4.2], then we have the g-analogue of [26, (4.8)]:

4∑
k=1

I0
k = ∂θ0

1 − ∂θ0
2 − ∂∂θ0

3. (A.8)

We study the terms I0
k and θ0

j in succession as A → +∞, T0 → +∞, ε → 0 : roughly, we get

• the term −Tg(h, ωV , hf∗E) from I0
1 ;

• a differential form version of −c̃hg(E(f, h, h ◦ f)) (via [9, (1.58)] or [26, (4.17)] by replacing
Trs[· · · ] by Trs[g · · · ]) from I0

2 ;
• Tg(h ◦ f, ωW , hE) from I0

3 ;
• − ∫

Vμn/S
Tdg(Th)Tg(f, ωW , hE) +

∫
Wμn/S

T̃dg(T (f, h, h ◦ f))chg(E) (here we should use

the differential form version of T̃dg(T (f, h, h ◦ f)) from the term
∫∞
1

· · · in [4, (4.72)] by
replacing Td therein by Tdg) from I0

4 .

Let θ3
j (j = 1, 2, 3) be the differential forms on S obtained from θ0

j by the above procedure,
then the difference of two sides in (A.6) (by using the differential form versions of c̃hg(E(f, h, h ◦
f)) and T̃dg(T (f, h, h ◦ f)) as above) is

Δ + dSΘ = ∂̄θ3
1 − ∂θ3

2 − ∂̄∂θ3
3 (A.9)

and θ3
k (k = 1, 2, 3) have universal expressions via the Bismut superconnection B3,u2,T , Θ

is a combination of local terms from the small time heat kernel asymptotics of the Bismut
superconnection for the fibration h and h ◦ f (cf. [26, (4.27) and (4.29); 27, (2.24) and
(2.27)]). �

Let θ3
k (k = 1, 2, 3) be the form in (A.9) associated with the couple ωM = ω̃W + f∗ωV , ωV .

Set

Δ0(f, h, ωW , ωV , E) = −θ3
2 − Θ and Δ0(f, h, ωW , ωV , E) = θ3

1 − ∂θ3
3 − Θ. (A.10)
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Then when we fix the differential form versions of c̃hg(E(f, h, h ◦ f)) and T̃dg(T (f, h, h ◦ f))
as above, (A.10) measure the difference of the formula (A.6) at the differential form level from
(A.9):

Δ = ∂Δ0(f, h, ωW , ωV , E) + ∂̄Δ0(f, h, ωW , ωV , E)

= Tg(h ◦ f, ωW , hE) − Tg(h, ωV , hf∗E) −
∫
Vμn/S

Tdg(Th)Tg(f, ωW , hE)

−c̃hg(E(f, h, h ◦ f)) +
∫
Wμn/S

T̃dg(T (f, h, h ◦ f))chg(E). (A.11)

Let S1 be a closed submanifold of S, and let V1 = h−1(S1) ⊂ V (respectively,
W1 = (h ◦ f)−1(S1) ⊂ W ) be the closed submanifold of V (respectively, W ) with restricted
Kähler metric. Then f1 : W1 → V1, h1 : V1 → S1 and h1 ◦ f1 : W1 → S1 also form a triple of
equivariant holomorphic submersions with compact fibers. Denote by j (respectively, i) the
natural embedding W1 → W (respectively, V1 → V ) and by ωW1 , ωV1 the induced Kähler forms
j∗ωW , i∗ωV . Denote by l the embedding S1 → S. Let E be an f -acyclic and h ◦ f -acyclic
hermitian bundle on W .

Theorem A.4. The forms Δ0(f, h, ωW , ωV , E) and Δ0(f, h, ωW , ωV , E) are functorial in
the following sense that

l∗Δ0(f, h, ωW , ωV , E) = Δ0(f1, h1, ω
W1 , ωV1 , j∗E)

and

l∗Δ0(f, h, ωW , ωV , E) = Δ0(f1, h1, ω
W1 , ωV1 , j∗E).

Proof. Note that the square of the Bismut superconnection is a second-order fiberwise
elliptic operator with differential form coefficients [5, Theorem 3.6] (cf. also [3, Theorem
10.17]), in particular, its heat kernel along the fibers is well defined, and in (A.7), the terms
[B′

3,u2,T , N3,u2,T ], [B′′
3,u2,T , N3,u2,T ] are first-order differential operators along the fiber, the

terms N3,u2,T , M3,u2,T are tensors, thus we see clearly that when we consider the corresponding
objects for the submersion h1 ◦ f1, each above term is the restriction of the corresponding term
for the global submersion h ◦ f .

We obtain that if l : S1 ↪→ S is a complex submanifold of S, and θ0
k,1, Θ1 are the

corresponding terms associated to the relevant fibrations, then we have

Θ1 = l∗Θ, θ0
k,1 = l∗θ0

k (k = 1, 2, 3). (A.12)

Now, we make the procedure as A → +∞, T0 → +∞, ε → 0, to get θ3
k,1, then from (A.12), we

get θ3
k,1 = l∗θ3

k (k = 1, 2, 3). Combining it with (A.10), we get Theorem A.4. �

Now, for a general ωW , as we can use the anomaly formula for the trip (h ◦ f, ωW , ωW +
f∗ωV ), in particular, its differential form version as in Section A.1, we can still define
Δ0(f, h, ωW , ωV , E) and Δ0(f, h, ωW , ωV , E) such that Theorem A.4 and (A.11) still hold,
again we need to fix a differential form version of T̃dg(T (f, h, h ◦ f)).

A.3. Immersion formula

Let V,W be two μn-equivariant projective complex manifolds and let i : W ↪→ V be an
equivariant closed immersion. Let S be a compact complex manifold with trivial μn-action,
and let f : W → S, l : V → S be two equivariant holomorphic submersions with fibers Y,X
such that f = l ◦ i. Assume that η is an equivariant hermitian bundle on W and (ξ., v) is a
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complex of equivariant hermitian bundles on V which provides a resolution of i∗η such that
the metrics on ξ. satisfy the Bismut’s assumption (A). Let ωW , ωV be two Kähler fibrations
on f and on l, respectively. We shall assume that ωW is the pullback of ωV , so that the Kähler
metric on W is induced by the Kähler metric on V . Consider the following exact sequence

N : 0 → Tf → T l |W→ NX/Y → 0,

where NX/Y is endowed with the quotient metric. Then the equivariant secondary Todd form
of N satisfies the identity

∂̄∂

2πi
T̃dg(N ) = Tdg(T l |W , hTl) − Tdg(Tf, hTf )Tdg(NX/Y ).

We suppose that in the resolution ξ., ξj are all l−acyclic and moreover η is f−acyclic.
Let Tg(ωV , hξ) be the equivariant analytic torsion forms associated with the family of relative

Dolbeault double complexes (Ω(X, ξ|X), ∂
X

+ v). Let hH(X,ξ|X) be the corresponding L2 metric
on the hypercohomology H(X, ξ|X) of ξ|X .

Note that under our assumption, H(X, ξ|X) � f∗η. And we have the following exact sequence
of hermitian vector bundles on S

Ξ : 0 → l∗(ξm) → l∗(ξm−1) → . . . → l∗(ξ0) → H(X, ξ|X) → 0.

We can split Ξ. into a family of short exact sequence of hermitian bundles from j = 1 to m

such that the kernel of every map dj−1 for j = 2, . . . ,m carries the metric induced by Ξj and
Ker d0 = Ξ0 = H(X, ξ|X),Ker dm = Ξm+1 = l∗(ξm). We set c̃hg(Ξ.) =

∑m+1
j=0 (−1)j c̃hg(χj).

Then it satisfies the differential equation

∂̄∂

2πi
c̃hg(Ξ.) = chg(H(X, ξ|X)) −

m∑
j=0

(−1)jchg(l∗(ξj)).

The following result is the combination of [14, Theorems 0.1 and 0.2] which is an equivariant
extension of [8, Theorems 0.1 and 0.2], and a families extension of [7, Theorem 0.1; 13, Theorem
0.1].

Let Rg be the equivariant R-genus of Bismut [6].

Theorem A.5 (Immersion formula). The following identity holds in
⊕

p�0 A
p,p(S)/

(Im ∂ + Im ∂̄).

Tg(ωV , hξ) − Tg(ωW , hη) + c̃hg(f∗η, hH(X,ξ|X), hf∗η) =
∫
Vμn/S

Tdg(T l)Tg(ξ.)

−
∫
Wμn/S

T̃dg(N )Td−1
g (NX/Y )chg(η) +

∫
Wμn/S

Tdg(Tf)Rg(NX/Y )chg(η), (A.13)

Tg(ωV , hξ) −
m∑
i=0

(−1)iTg(ωV , hξi) − c̃hg(Ξ.) = 0. (A.14)

Again to understand (A.13) at the differential form level, that is, without modulo
Im ∂ + Im ∂̄, then we need to fix first c̃hg(f∗η, hH(X,ξ|X), hf∗η) and T̃dg(N ) as differential
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forms, and Tg(ξ.) as a current. The natural and nice way is that we use [7, (7.33)] to replace
−T̃dg(N )Td−1

g (NX/Y ) + Tdg(Tf)Rg(NX/Y ) by the differential form Bg(N ) in [7, (7.24)].
Then we use the current Tg(ξ.) defined in [7, (6.30)] and c̃hg(f∗η, hH(X,ξ|X), hf∗η) as the integral∫ +∞
1

in [14, (3.24)].
Let Δ0(f, l, i∗η, ξ.) and Δ0(f, l, i∗η, ξ.) be the differential forms such that

Δ := ∂Δ0(f, l, i∗η, ξ.) + ∂̄Δ0(f, l, i∗η, ξ.)

measures the difference

Tg(ωV , hξ) − Tg(ωW , hη) + c̃hg(f∗η, hH(X,ξ|X), hf∗η)

−
∫
Vμn/S

Tdg(T l)Tg(ξ.) −
∫
Wμn/S

Bg(N )chg(η).

We claim that Δ0(f, l, i∗η, ξ.) and Δ0(f, l, i∗η, ξ.) can be written down explicitly and they
admit certain functoriality.

Let S1 be a closed submanifold of S, and let W1 = f−1(S1) ⊂ W (respectively, V1 =
l−1(S1) ⊂ V ) be the closed submanifold of W (respectively, V ) with restricted Kähler metric.
Then i1 : W1 → V1, l1 : V1 → S1 and f1 : W1 → S1 also form a triple of equivariant morphisms
such that f1 = l1 ◦ i1. Denote by j the embedding S1 → S.

Theorem A.6. There is a natural way to write down explicitly differential forms
Δ0(f, l, i∗η, ξ.) and Δ0(f, l, i∗η, ξ.) such that Δ := ∂Δ0(f, l, i∗η, ξ.) + ∂̄Δ0(f, l, i∗η, ξ.) and they
are functorial in the following sense.

j∗Δ0(f, l, i∗η, ξ.) = Δ0(f1, l1, i1∗η |W1 , ξ. |V1)

and

j∗Δ0(f, l, i∗η, ξ.) = Δ0(f1, l1, i1∗η |W1 , ξ. |V1).

Proof. By the equivariant extension of [8, (6.109), (6.110), (6.158) and (6.170)] in [14,
Definition 3.4], there exist universal smooth forms γ3, δ3 on S such that

Δ + dSβ = ∂̄γ3 + ∂δ3.

Again β is a combination of local terms from the small time heat kernel asymptotics of the
Bismut superconnection for the fibrations h and h ◦ f (cf. [8, Theorem 6.4, (6.36), (6.55); 27,
(2.24), (2.27)]). More precisely, before we make the procedure as A → +∞, T0 → +∞, ε → 0,
the forms γ, δ defined in [14, (3.13)] are double integrals of certain supertrace of the heat kernel
of the square of the Bismut superconnection as in (A.7). Note that the square of the Bismut
superconnection is a second-order fiberwise elliptic operator with differential form coefficients
and when we consider the corresponding objects for the submersion l1, each above term is
the restriction of the corresponding term for the global submersion l, thus if Δ1, γ

3
1 , δ

3
1 , β1 are

corresponding terms associated to the relevant fibrations i1, l1 and f1, we have

Δ1 = j∗Δ, γ3
1 = j∗γ3, δ3

1 = j∗δ3, β1 = j∗β,

So, write Δ0(f, l, i∗η, ξ.) = γ3 − β and Δ0(f, l, i∗η, ξ.) = δ3 − β, we are done. �

We can do the same analysis for (A.14).
Note that we can relax our condition on f : V → S as follows: S is a (possible noncompact)

complex manifold and f : V → S is a Kähler fibration in the sense of Bismut–Gillet–Soulé [10,
Definition 1.4].
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Université de Paris
CNRS
Paris 75013
France

xiaonan.ma@imj-prg.fr

The Proceedings of the London Mathematical Society is wholly owned and managed by the London Mathematical
Society, a not-for-profitCharity registeredwith theUKCharityCommission.All surplus income from its publishing
programme is used to support mathematicians and mathematics research in the form of research grants, conference
grants, prizes, initiatives for early career researchers and the promotion of mathematics.

mailto:shun.tang@outlook.com
mailto:xiaonan.ma@imj-prg.fr

	1. Introduction
	2. Higher equivariant arithmetic K-theory
	3. Transitivity of the direct image maps
	4. The Lefschetz-Riemann-Roch theorem
	Appendix. Remarks on the equivariant analytic torsion forms and the immersion formula
	References

