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Abstract
We establish an asymptotic version of Bismut’s local family index theorem for the
Bergman kernel. The key idea is to use the superconnection as in the local family
index theorem.

0 Introduction

The recent study of the Bergman kernel in complex geometry mainly started with
the paper of Tian [44], which was in turn inspired by a question of Yau. Since [44],
the Bergman kernel has been studied extensively in [20, 27, 40, 46], establishing the
diagonal asymptotic expansion for high powers of an ample line bundle. Moreover,
the coefficients in the asymptotic expansion encode geometric information of the
underlying complex projective manifolds. This asymptotic expansion plays a crucial
role in thework ofDonaldson [24],where the existence ofKählermetricswith constant
scalar curvature is shown to be closely related to the Chow–Mumford stability.

In [22, 31, 32], Dai, Liu, Ma and Marinescu studied the asymptotic expansion of
the (generalized) Bergman kernel of the spinc Dirac operator and the renormalized
Bochner–Laplacian associated to a positive line bundle on a compact symplectic man-
ifold. As a by product, they gave a new proof of the results mentioned in the previous
paragraph. They found also various applications therein, especially, as established in
[32], the full off-diagonal asymptotic expansion implies Toeplitz operator type proper-
ties. Also Ma and Zhang [33, 35] generalized some of the above results to the context
of geometric quantization.
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We refer the readers to the book [30] for a comprehensive study of the Bergman
kernel, the Berezin–Toeplitz quantization and their applications. The point of view of
the approach is from the local index theory, especially from the analytic localization
techniques developed byBismut–Lebeau [12, §11].A simple principle of this approach
is that the existence of the spectral gap of the operators implies the existence of
the asymptotic expansion of the corresponding Bergman kernel if the manifold X is
compact or not, or singular, or with boundary. Moreover, a general and algorithmic
way to compute the coefficients in the expansion is presented.

The purpose of this paper is to establish an asymptotic version of Bismut’s local
family index theorem for the Bergman kernel. In the introduction, we only formulate
the results in the fiberwise positive holomorphic line bundle case, while the main
results hold also in the fiberwise symplectic case.

Let W , S be smooth compact complex manifolds with S being connected. Let
π : W → S be a holomorphic submersion with compact fiber X and dimC X = n.

Let J TRX be the complex structure on TRX , the relative real tangent bundle of π .
Let L, E be holomorphic vector bundles on W and the rank rk(L) of L is 1. Let

hL , hE be Hermitian metrics on L, E . Let ∇L ,∇E be the Chern (i.e., holomorphic
Hermitian) connections on (L, hL), (E, hE ) with curvatures RL , RE . Set

ω :=
√−1

2π
RL . (0.1)

Then ω is a smooth real 2-form of complex type (1, 1) on W .
We suppose that ω defines a fiberwise Kähler form along the fiber X , i.e.,

gTRX (u, v) = ω(u, J TRXv) (0.2)

defines a Riemannian metric on TRX . This simply means that (L, hL) is a fiberwise
positive line bundle on W . We denote by hT

(1,0)X the corresponding Hermitian metric
on T (1,0)X , the holomorphic relative tangent bundle of π .

For a differential form ϑ on S, we will denote by ϑ(i) its component in �i (T ∗
R
S).

By the Kodaira vanishing theorem and (0.2), there exists p0 ∈ N such that for any
p > p0, s ∈ S, for the Dolbeault cohomology groups of L p ⊗ E along the fiber X ,
we have

Hq(Xs, L
p ⊗ E) = 0 for any q > 0. (0.3)

Then H0(X , L p ⊗ E) forms a holomorphic vector bundle on S for p > p0. From now
on, we always assume p > p0.

By the Riemann–Roch–Grothendieck theorem, for p > p0, we have (cf. (1.26))

ch(H0(X , L p ⊗ E)) =
∫
X
Td(T (1,0)X) ch(E) ch(L p) in H•(S, R). (0.4)
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Superconnection and family… 2209

The component in H0(S, R) of (0.4) is the Riemann-Roch-Hirzebruch theorem,

dim H0(X , L p ⊗ E) =
[∫

X
Td(T (1,0)X) ch(E) ch(L p)

](0)

= rk(E)

∫
X

c1(L)n

n! pn +
∫
X

(
c1(E) + rk(E)

2
c1(T

(1,0)X)
) c1(L)n−1

(n − 1)! pn−1

+O(pn−2). (0.5)

For s ∈ S, let Pp,s be the orthogonal projection from C∞(Xs, L p ⊗ E) onto
H0(Xs, L p ⊗ E). Let Pp,s(x, x ′) (x, x ′ ∈ Xs, s ∈ S) be the smooth kernel of Pp,s

with respect to the Riemannian volume form dvX (x ′) (Note that dvX = (ωn)(0)/n!).
Then Pp,s(x, x ′) is smooth on s ∈ S, and we denote it simply by Pp(x, x ′), especially,
Pp(x, x) ∈ End(Ex ).

The results of [20, 22, 27, 30, 31, 40, 44–46] tell us that there exist br ∈
C∞(Xs,End(E)), (r ∈ N) such that for any k, l ∈ N, there exists C > 0 such
that for any p ∈ N

∗, we have

∣∣∣ 1
pn

Pp,s(x, x) −
k∑

r=0

br (x)p
−r
∣∣∣
C l (Xs )

≤ C p−k−1, (0.6)

and the first two coefficients b0, b1 coincide with the local Riemann–Roch–
Hirzebruch theorem, i.e., the leading term of the Chern–Weil representative of
Td(T (1,0)X) ch(E) ch(L p) with respect to the metrics hT

(1,0)X , hL , hE .
By (0.4), in H2(S, R), we have

c1(H
0(X , L p ⊗ E)) =

[∫
X
Td(T (1,0)X) ch(E) ch(L p)

](2)

= rk(E)

∫
X

c1(L)n+1

(n + 1)! pn+1 +
∫
X

(
c1(E) + rk(E)

2
c1(T

(1,0)X)
) c1(L)n

n! pn

+O(pn−1). (0.7)

Now, from the local index theory point of view [6], it is nature to ask whether the
analogue of (0.6) still holds on the higher degree, so that one can refine (0.7) to
an equality of differential forms via Chern–Weil representatives. We will prove the
existence of the expansion of the curvature operator of the vector bundles H0(X , L p⊗
E), and compute the first two coefficients in the expansion in this paper.

To define a canonical connection on H0(X , L p ⊗ E) via the connections ∇L ,∇E ,
we need to introduce a horizontal sub-bundle T H

R
W of TRW .

Let T H
R
W be a sub-bundle of TRW such that T H

R
W is invariant by the complex

structure on TRW and

TRW = T H
R
W ⊕ TRX . (0.8)
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2210 X. Ma, W. Zhang

For U ∈ TRS, let UH ∈ T H
R
W be the lift of U . Let ∇L p⊗E be the connection on

L p ⊗ E induced by ∇L ,∇E . For U ∈ TRS, σ ∈ C∞(S, H0(X , L p ⊗ E)), we define

∇H0(X ,L p⊗E)
U σ = Pp∇L p⊗E

UH Ppσ. (0.9)

Then ∇H0(X ,L p⊗E) is a holomorphic connection on H0(X , L p ⊗ E) with curvature
RH0(X ,L p⊗E), but it need not to be a Hermitian connection with respect to the usual
L2 metric hH0(X ,L p⊗E) on H0(X , L p ⊗ E) (cf. (1.10)).

Let Dp be the Dirac operator associated with L p⊗E (see (2.6) for details). Then by
the Hodge theory and (0.3), H0(X , L p ⊗ E) = Ker(Dp) for p > p0. We now define
another connection ∇Ker(Dp) which has a natural symplectic version. Let k ∈ T ∗

R
W

be such that for U ∈ TRS, X ∈ TRX ,

k(UH ) = 1

2
(LUH dvX )/dvX , k(X) = 0, (0.10)

whereLUH is the Lie derivative ofUH . The canonical Hermitian connection∇Ker(Dp)

on (H0(X , L p ⊗ E), hH0(X ,L p⊗E)) is defined by

∇Ker(Dp)

U = Pp(∇L p⊗E
UH + k(UH ))Pp (0.11)

with curvature RKer(Dp), but ∇Ker(Dp) needs not to be holomorphic. Let

RH0(X ,L p⊗E)(x, x ′), RKer(Dp)(x, x ′) ∈ �2(T ∗
R
S) ⊗ (L p ⊗ E)x ⊗ (L p ⊗ E)∗x ′

(0.12)

(x, x ′ ∈ Xs, s ∈ S)be the smoothkernels of the operators RH0(X ,L p⊗E), RKer(Dp) with
respect to dvX (x ′). Then RH0(X ,L p⊗E)(x, x), RKer(Dp)(x, x) ∈ �2(T ∗

R
S)⊗End(Ex ).

Remark 0.1 If

T H
R
W = {u ∈ TRW : ω(u, X) = 0 for any X ∈ TRX}, (0.13)

then the triple (π, gTRX , T H
R
W )defines aKähler fibration in the sense of [10,Definition

1.4]. In this case, the connection ∇Ker(Dp) is the Chern connection on (H0(X , L p ⊗
E), hH0(X ,L p⊗E)), and

k = 0, ∇Ker(Dp) = ∇H0(X ,L p⊗E). (0.14)

The following result is a special case of Theorem 1.8 where one finds also its
symplectic version. Let T ∈ �2(T ∗

R
W )⊗ TRX be the torsion tensor defined by (1.5).

Theorem 0.2 There exist smooth sections b2,r (x) ∈ C∞(W , π∗(�2(T ∗
R
S)) ⊗

End(Ex )), (r ∈ N) which are polynomials in RTRX , RT (1,0)X (cf. Sect. 1.1), RE
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Superconnection and family… 2211

(resp. T , RL ), their derivatives of order ≤ 2r − 2 (resp. 2r − 1, 2r ) along the fiber
X, with

b2,0 = −2π
√−1

(ωn+1)(2)

(n + 1)(ωn)(0)
IdE , (0.15)

such that for any k, l ∈ N, there exists Ck, l > 0 such that for any p ∈ N, p > p0,

∣∣∣ 1

pn+1 R
H0(X ,L p⊗E)(x, x) −

k∑
r=0

b2,r (x)p
−r
∣∣∣
C l (W )

≤ Ck, l p
−k−1. (0.16)

For RKer(Dp)(x, x), we have the similar expansion as (0.16), with the same leading
term b2,0 in (0.15), and the corresponding b2,r (x) depends also on the derivatives of
dk of order ≤ 2r − 2 along the fiber X.

Let {wi } be an orthonormal frame of (T (1,0)X , hT
(1,0)X ). Let {gα} be a frame of

T (1,0)S with its dual frame {gα}. From (0.15), we get

b2,0 = 2πgα ∧ gβ
[
−√−1ω(gHα , gHβ ) − ω(gHα ,w j )ω(gHβ ,w j )

]
IdE . (0.17)

Remark 0.3 From(0.16) and (0.17), the curvatures RH0(X ,L p⊗E)(x, x), RKer(Dp)(x, x)
give us a natural approximation of the curvature on the space of Kähler metrics. Thus
it should be naturally related to the existence problem of geodesics on the space of
Kähler metrics (cf. [23, 36–38, 41]). Let (X , ω0) be a compact Kähler manifold of
dimension n, we suppose that there exists a holomorphicHermitian line bundle (L, hL )
such that its first Chern form c1(L, hL) is ω0. Then the space of Kähler metrics in the
cohomology class [ω0] is

M = {ϕ : X → R; c1(L, e−2πϕhL ) = ω0 + √−1 ∂∂ϕ defines a Kähler form}/ ∼, (0.18)

where ϕ1 ∼ ϕ2 if and only if ϕ1 = ϕ2 + c for some constant c. For any complex
manifold S of dimension 1 with maps φ : S → M. Let p1, p2 be the natural projec-
tions from W = X × S onto X , S. We have the holomorphic Hermitian line bundle
(p∗

1L, e−2πϕs hL) on W . In this case, if we take T H
R
W = p∗

2TRS, ϕ(x, s) = φs(x),
then (0.17) reads as

b2,0 = 2πg1 ∧ g1
[
−√−1ω(g1, g1) − |ω(g1, ·)|2

hT (1,0)X
s

]

= 2πg1 ∧ g1
[
(∂ S∂

S
ϕ)(g1, g1) − |(∂X

∂ Sϕ)(g1, ·)|2
hT (1,0)X
s

]
. (0.19)

Thus b2,0 = 0 is the geodesic equation in [37, (1.2)].

The second main result of this paper is as follows.
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2212 X. Ma, W. Zhang

Theorem 0.4 The curvature operators

1

p
RH0(X ,L p⊗E),

1

p
RKer(Dp) ∈ �2(S,End(H0(X , L p ⊗ E)))

are Toeplitz operators in the sense of Definition 1.16 for any s ∈ S, and their leading
symbols coinside and equal to b2,0, i.e., there exists Rr ∈ C∞(W , π∗(�2(T ∗

R
S)) ⊗

End(E)), (r ∈ N) such that for any k ∈ N, when p → +∞, under the operator norm
of the morphisms of vector bundles: H0(X , L p ⊗ E) → �2(T ∗

R
S)⊗ H0(X , L p ⊗ E)

over S, we have

1

p
RH0(X ,L p⊗E) =

k∑
r=0

TRr ,p p−r + O(p−k−1), with TRr ,p = PpRr Pp, R0 = b2,0.

(0.20)

Equation (0.20) for k = 0 implies that there exists C > 0 such that for any s ∈ S,
σ1, σ2 ∈ H0(Xs, L p ⊗ E), we have

∣∣∣∣∣
〈√−1

2π p
RH0(X ,L p⊗E)
s σ1, σ2

〉
−
∫
Xs

〈σ1, σ2〉L p⊗E
ωn+1

(n + 1)!

∣∣∣∣∣ ≤ C

p
‖σ1‖L2‖σ2‖L2 .

(0.21)

From (0.14), Eq. (0.21) gives an asymptotic exact local formula of the curvature
estimate given in [1, §6]. Cf. also [2, 3] for further related works.

A simple corollary of Theorem 0.4 is as follows:

Corollary 0.5 If (L, hL) is positive on W, then for p large enough, (H0(X , L p ⊗
E), hH0(X ,L p⊗E)) is Nakano positive on S.

In particular, if (F, hF ) is a Griffiths positive vector bundle on S (cf. [30, Def.
1.1.6]), then the projectivization P(F) of F with the hyperplane line bundleO(1) over
P(F) is a positive line bundle on P(F) and for any s ∈ S,

(
H0(P(Fs),O(p)), hH0(P(Fs ),O(p))

)
= (S pF, hS

pF ), (0.22)

the p-th symmetric product of (F, hF ). Thus from Corollary 0.5, for any holomorphic
Hermitian vector bundle (F ′, hF ′

) on S, (S pF ⊗ F ′, hSpF ⊗ hF ′
) is Nakano positive

for p large enough.
Assume now (0.13) holds. For a differential form ϑ on W , we write ϑH , ϑ X its

components in π∗(�(T ∗
R
S))⊗C, C⊗�(T ∗

R
X) under the decomposition �(T ∗

R
W ) =

π∗(�(T ∗
R
S))⊗̂�(T ∗

R
X) via (0.8). Then by (0.13), we have

ω = ωX + ωH with ωH = gα ∧ gβω(gHα , gHβ ). (0.23)
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Superconnection and family… 2213

Moreover RTRX coinsides with RT (1,0)X and is the curvature of the Chern connection
∇T (1,0)X on (T (1,0)X , hT

(1,0)X ). Let X be the (positive) Laplacian along the fiber
(X , gTRX ).

Theorem 0.6 If (0.13) holds, then for b2,0, b2,1 in (0.16), R1 in (0.20), we have

b2,0 = −2π
√−1ωH ,

b2,1 =
((1

2
Tr[RT (1,0)X ] + RE +

√−1

4
XωH

)
ωn

)(2)

/(ωn)(0),

R1 =
(
RE + 1

2
Tr[RT (1,0)X ]

)H −
√−1

4
XωH .

(0.24)

Remark 0.7 i) If we take the trace on E and the integral along X for (0.16), from
(0.15) and (0.24), we refine (0.7) on the level of differential form in the spirit of
local index theory. Note that for p > p0, on the determinant line bundle λp =
det H0(X , L p⊗E) over S, the Quillenmetric ‖ ‖Q [11, Definition 1.5] is the product
of the L2-metric‖ ‖L2 and the associated analytic torsion τp . The curvature formula of
Bismut–Gillet–Soulé [11, Theorem 1.27] expresses its first Chern form c1(λp, ‖ ‖Q)

as the Chern–Weil representatives of the right hand side of the first line of (0.7).
Comparing with these two results, we know that

∂∂ log τp = O(pn−1) on S. (0.25)

Recently, by extending Bismut–Vasserot’s result [15], Finski [25] obtained a full
asymptotics of log τp as p → +∞ which refines (0.25).

ii) As explained in Remark 1.9, from Theorems 1.7 and 1.8, we get imme-
diately the existence of the same type asymptotic expansion as (0.16) for
1

pn+k (R
Ker(Dp))k(x, x) for k > 1 with leading term bk2,0. Also by [30, Theorem

7.4.1] and Theorem 0.4, we know that 1
pk

(RKer(Dp))k is a Toeplitz operator with

leading symbol bk2,0.

The last result of our paper is

Theorem 0.8 For any f ∈ C∞(W ,End(E)), U ∈ C∞(S, TRS), ∇End(Dp)

U T f ,p,

∇H0(X ,L p⊗E)
U T f ,p are Toeplitz operators with leading symbol ∇End(E)

UH f .

Wewill combine the superconnection framework [6] with the local index technique
developed for Bergman kernels [22, 30] to prove our results. One of the important fea-
tures of the superconnection formalism is that the superconnection itself has derivatives
along the horizontal direction, but its curvature is a second order elliptic differential
operator along the fiber X . This allows us to work directly on each fiber without taking
derivatives along the horizontal direction. This is also one of the key points in the local
family index theory [6]. By combining with the formal power series trick in [31], we
get in fact a general and algorithmic way to compute the coefficients in the expansion.
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This paper is organized as follows. In Sect. 1, we establish a general asymptotic
expansion for the curvature of the kernel bundle of a family of spinc Dirac operators,
Theorem 1.8. Then as a consequence, we show that the curvature operator is a Toeplitz
operator, thus establishing Theorems 0.2 and 0.4. We establish also Theorem 1.19, as
a symplectic version of Theorem 0.8. In Sect. 2, in the holomorphic situation, we
explain our result in detail, and establish Corollary 0.5 and Theorem 0.6.

Some results of this paper have been announced in [34]. We will not try to update
the complete references. We simply point out our results have been used in the study
of the asymptotics of the analytic torsion in the recent works [14, 39].

Notation:Whenwework in the holomorphic situation, wewill add a subscriptR for
the corresponding real objects. Thus T X is the holomorphic relative tangent bundle
of π , and TRX is the corresponding real bundle.

For an operator A, we denote Spec(A) its spectrum,Ker(A) its kernel andCoker(A)

its cokernel. As in [5, §1.3], for two operators A, B with Z2-grading, [A, B] means
their supercommutator [A, B] = AB − (−1)deg A·deg B BA. For Z2-graded algebras
A,B with identity, we denote byA⊗̂B the Z2-graded tensor product ofA and B with
product

(a1 ⊗ b1) · (a2 ⊗ b2) := (−1)deg a2·deg b1a1a2 ⊗ b1b2. (0.26)

When an index variable appears twice in a single term, it means that we are summing
over all its possible values.

1 Asymptotic expansion of family Bergman kernels

In this Section, we establish a general off-diagonal asymptotic expansion for the cur-
vature of the kernel bundle of a family of spinc Dirac operators in Theorem 1.8. We
work in the fiberwise symplectic case in Sects. 1.1–1.7.

This Section is organized as follows. In Sect. 1.1, as a motivation of our work, we
explain Bismut’s superconnection and his local family index theorem. This part gives
us the inspiration how to get a family version of Bergman kernels, especially, how to
use the superconnection. In Sect. 1.2,we review the results in [22] and explain how they
depend on the parameters. In Sect. 1.3, we explain a general off-diagonal asymptotic
expansion for the curvature of the kernel bundle of a family of spinc Dirac operators
in Theorem 1.8. In Sect. 1.4, we explain how to introduce the superconnection here
to solve our problem. In Sect. 1.5, we explain the Taylor expansion of the rescaled
curvature of the superconnection, and the spectrum of the limit operator. In Sect. 1.6,
we give a way to compute the coefficients in the expansion by combining with the
formal power series trick in [31, §1.5] (cf. [30, §4.1.7]). Especially, we compute
the leading coefficient. In Sect. 1.7, we explain the curvature operator as a Toeplitz
operator. In Sect. 1.8, we establish Theorems 0.2, 0.4 and 0.8.
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Superconnection and family… 2215

1.1 Local family index theorem

Let W , S be two smooth manifolds. Let π : W → S be a smooth submersion with
compact fiber X and dimR X = 2n. Let T X be the relative tangent bundle of the
fibration π . Let gT X be a metric on T X .

Let E be a complex vector bundle on W with a Hermitian metric hE . Let ∇E be a
Hermitian connection on (E, hE ).

Let T HW be a sub-bundle of TW such that

TW = T HW ⊕ T X . (1.1)

Let PT X be the projection from TW onto T X . For U ∈ T S, let UH ∈ T HW be the
lift of U , i.e., dπ(UH ) = U . We denote by LUH the Lie derivative of UH .

Definition 1.1 [6, Definition 1.6] The canonical metric connection ∇T X on (T X →
W , gT X ) is defined by the following properties.

a) On each fiber X , ∇T X restricts to the Levi–Civita connection of (T X , gT X ).
b) If U ∈ T S, then

∇T X
UH = LUH + 1

2
(gT X )−1(LUH gT X ). (1.2)

Let RT X be the curvature of ∇T X .
Let gT S be a Riemannian metric on T S. Let gTW = π∗gT S ⊕ gT X be the induced

metric on TW via (1.1). Let∇TW ,∇T S be theLevi-Civita connections on (TW , gTW ),
(T S, gT S). Then by [10, Theorem 1.2] (cf. [8, Theorems 1.1 and 1.2]), we get

∇T X = PT X∇TW . (1.3)

Set

0∇TW = π∗∇T S ⊕ ∇T X , S = ∇TW − 0∇TW
. (1.4)

Then 0∇TW
is a Euclidean connection on TW and S ∈ T ∗W ⊗ End(TW ). Let T

be the torsion of the connection 0∇TW
. Then by [8, Theorem 1.1], for U , V ∈ T S,

X ,Y ∈ T X , we have

T (UH , V H ) = −PT X [UH , V H ], T (X ,Y ) = 0,

T (UH , X) = 1

2
(gT X )−1(LUH gT X )X .

(1.5)

Moreover, from [6, (1.28)], for U , V ∈ T S, X ,Y ∈ T X , we have
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2216 X. Ma, W. Zhang

〈T (UH , X),Y 〉 = 〈T (UH ,Y ), X〉 = 〈S(X)UH ,Y 〉,
〈S(X)UH , V H 〉 = 1

2
〈T (UH , V H ), X〉. (1.6)

From now on, we suppose that there exists an almost complex structure J T X on
T X and

gT X (J T Xu, J T Xv) = gT X (u, v). (1.7)

The almost complex structure J T X induces a splitting

T X ⊗R C = T (1,0)X ⊕ T (0,1)X ,

where T (1,0)X and T (0,1)X are the eigenbundles of J T X corresponding to the eigen-
values

√−1 and −√−1 respectively. We denote by PT (1,0)X the projection from
T X ⊗R C to T (1,0)X . Let T ∗(1,0)X and T ∗(0,1)X be the corresponding dual bundles.

For any v ∈ T X ⊗R C with decomposition v = v1,0 + v0,1 ∈ T (1,0)X ⊕ T (0,1)X ,
let v∗

1,0 ∈ T ∗(0,1)X be the metric dual of v1,0. Then

c(v) := √
2(v∗

1,0 ∧ −iv0,1) (1.8)

defines the Clifford action of v on�(T ∗(0,1)X), where∧ and i denote the exterior and
interior multiplications respectively.

Let ∇T (1,0)X = PT (1,0)X ∇T X PT (1,0)X be the Hermitian connection on T (1,0)X
induced by∇T X with curvature RT (1,0)X . Let∇det be the connection on the determinant
line det(T (1,0)X) := �n(T (1,0)X) induced by ∇T (1,0)X .

By [26, pp.397–398],∇T X and∇det induce canonically a Clifford connection∇Cliff

on �(T ∗(0,1)X) with curvature RCliff (cf. also [28, §2], [30, §1.3]).
Let {e j } be an orthonormal basis of T X . Then

RCliff = 1

4

∑
i, j

〈RT Xei , e j 〉c(ei )c(e j ) + 1

2
Tr

[
RT (1,0)X

]
. (1.9)

Let ∇�(T ∗(0,1)X)⊗E be the connection on �(T ∗(0,1)X) ⊗ E induced by ∇Cliff and
∇E .

Let 〈 ·, · 〉�(T ∗(0,1)X)⊗E be the metric on �(T ∗(0,1)X) ⊗ E induced by gT X and
hE . Let dvX be the Riemannian volume form of (T X , gT X ). The L2-scalar product
on �0,•(X , E) = ⊕n

q=0�
0,q(X , E), the space of smooth sections of �(T ∗(0,1)X)⊗

E = ⊕n
q=0�

q(T ∗(0,1)X) ⊗ E on X , is given by

〈s1, s2〉 =
∫
X
〈s1(x), s2(x)〉�(T ∗(0,1)X)⊗E dvX (x). (1.10)

We denote the corresponding norm by ‖·‖L2 .
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Definition 1.2 The spinc Dirac operator D is defined by

D :=
2n∑
j=1

c(e j )∇�(T ∗(0,1)X)⊗E
e j : �0,•(X , E) −→ �0,•(X , E) . (1.11)

Clearly, D is a formally self–adjoint, first order elliptic differential operator on
�0,•(X , E), which interchanges �0,even(X , E) and �0,odd(X , E). Let D+ be the
restriction of D on �0,even(X , E).

Assumption The rank of Ker(Ds) is locally constant on s ∈ S.

Then Ker(D) forms a smooth vector bundle on S. Let hKer(D) be the metric on
Ker(D) induced by the scalar product 〈 〉 in (1.10) on �0,•(X , E).

For s ∈ S, let Ps be the orthogonal projection from (�0,•(Xs, E), 〈 〉) onto
Ker(Ds), then Ps is smooth on s ∈ S. Set

P⊥ = 1 − P. (1.12)

Let k ∈ T ∗W be defined by for U ∈ T S, X ∈ T X ,

k(UH ) = 1

2
(LUH dvX )/dvX , k(X) = 0. (1.13)

For U ∈ T S, if s is a smooth section of �0,•(X , E) over S, set

∇�
U s = ∇�(T ∗(0,1)X)⊗E

UH s + k(UH )s. (1.14)

Then ∇� is a Hermitian connection on the infinite dimensional vector bundle
�0,•(X , E) over S. Let R� be the curvature of the connection ∇�, then by (1.5)
and (1.14), for U , V ∈ T S,

R�(U , V ) = (RCliff + RE )(UH , V H ) + dk(UH , V H ) − ∇�(T ∗(0,1)X)⊗E
T (UH ,V H )

. (1.15)

Then ∇� induces a Hermitian connection ∇Ker(D) on (Ker D, hKer(D)) by

∇Ker(D) = P∇�P. (1.16)

The curvature RKer(D) of ∇Ker(D) is

RKer(D) := (∇Ker(D))2 ∈ �2(T ∗S) ⊗ End(Ker(D)). (1.17)

Let RKer(D)(x, x ′), exp(−RKer(D))(x, x ′) (x, x ′ ∈ Xs, s ∈ S) be the smooth kernel of
RKer(D), exp(−RKer(D)) with respect to dvX (x ′).
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Let { fα} be a basis of T S, and { f α} its dual basis. For u > 0, let ψu : �(T ∗S) →
�(T ∗S) defined by

ψuϑ = u− degϑ/2ϑ. (1.18)

For Q an operator along the fiber with values in �(T ∗S), we will denote by

Q =
dimR S∑
i=0

Q(i), with Q(i) ∈ �i (T ∗S)⊗̂End(�0,•(X , E)). (1.19)

We express now the curvature operator RKer(D) by using superconnections. Let

B(2) ∈ C∞(W , π∗(�2(T ∗S))⊗̂End(�(T ∗(0,1)X) ⊗ E))

such that it changes the parity of �(T ∗(0,1)X). For u > 0, set B, Bu the superconnec-
tions on C∞(S,�(T ∗S)⊗̂�0,•(X , E)) defined by

B = D + ∇� + B(2), Bu = ψu
√
u Bψ−1

u = √
uD + ∇� + 1√

u
B(2). (1.20)

Then B2
u is a second order elliptic operator along the fiber X , and from (1.20),

(B2)(0) = D2, B2 = D2 + (B2)(>0), (B2)(2) = R� + [D, B(2)], (1.21)

and by [6, Theorem 2.5] and (1.5), we get

(B2)(1) = [D,∇�]
= f α ∧ c(ei )

[
(RCliff + RE )( f Hα , ei ) − eik( f Hα ) − ∇�(T ∗(0,1)X)⊗E

T ( f Hα ,ei )

]
. (1.22)

By (1.21) and (1.22), for λ /∈ Spec(D2
s ), we have

(λ − B2)−1 = (λ − D2)−1 + (λ − D2)−1
dimR S∑
j=1

(
(B2)(>0)(λ − D2)−1

) j
,

P(B2)(1)P = 0.

(1.23)

From (1.16), (1.21), (1.22), (1.23) and the residue formula, if μ < infs∈S{λ >

0, λ ∈ Spec(D2
s )}, we get the following important formula for the curvature operator

via the resolvent of the superconnection B,

RKer(D) = PR�P − P∇�P⊥∇�P

= PR�P − P(B2)(1)((B2)(0))−1P⊥(B2)(1)P

= 1

2π
√−1

[∫
|λ|=μ

(λ − B2)−1λdλ

](2)

.

(1.24)
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In the rest of this paper, all estimates and convergences are uniformly with respect
to any compact subset of S. For simplicity, we will assume S is compact from now on.

We explain now that the connection ∇Ker(D) is natural in the family index theory.
Let exp(−B2

u )(x, x
′) (x, x ′ ∈ Xs, s ∈ S) be the smooth kernel of exp(−B2

u ) with
respect to dvX (x ′). By [5, Theorem 9.19], for any l ∈ N there exists Cl > 0 such that
for any u > 1, we have

∣∣∣e−B2
u (x, x ′) − exp(−RKer(D))(x, x ′)

∣∣∣
C l (W×SW )

≤ Clu
−1/2, (1.25)

where W ×S W is the fiberwise product of W over S. We recall finally Bismut’s
local family index theorem. For any Hermitian (complex) vector bundle (F, hF ) with
Hermitian connection ∇F and curvature RF on W , set

ch(F,∇F ) := Tr

[
exp

( −RF

2π
√−1

)]
, c1(F,∇F ) := Tr

[ −RF

2π
√−1

]
,

Td(F,∇F ) := det

(
RF/(2π

√−1)

exp(RF/(2π
√−1)) − 1

)
,

Â(T X ,∇T X ) :=
(
det

(
RT X/(2π

√−1)

sinh(RT X/(2π
√−1))

))1/2

.

(1.26)

They are closed differential forms on W and their cohomology classes do not depend
on the choice of the metric hF and the connections ∇F , ∇T X . The corresponding
cohomology classes are called the Chern character of F , the first Chern class of F , the
Todd class of F , the Hirzebruch Â-class of T X and we denote them by ch(F), c1(F),
Td(F), Â(T X).

Let NX be the number operator on �(T ∗(0,1)X), i.e., NX acts on �k(T ∗(0,1)X)

by multiplication by k. For ϑ ∈ �(T ∗S), Q ∈ End(�0,•(Xs, E)), we define the
supertrace Trs by

Trs[ϑ ∧ Q] = ϑ Tr[(−1)NX Q]. (1.27)

To get Bismut’s local family index theorem, we need to introduce the Bismut
superconnection Bu as following

Bu = √
uD + ∇� + 1√

u
B(2), with B(2) = −1

8
〈T ( f Hα , f Hβ ), ei 〉 f α ∧ f β ∧ c(ei ).

(1.28)

Theorem 1.3 (Bismut [6]). For u > 0, the differential form Trs[exp(−B2
u)] is closed

on S and its cohomology class does not depend on u > 0 and is equal to the Chern
character of the index bundle Ind(D+) = Ker(D+) − Coker(D+). Moreover, uni-
formly on W,
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lim
u→0

Trs[exp(−B2
u)(x, x)]dvX (x)

=
{
Â(T X ,∇T X )ec1(det(T

(1,0)X),∇det) ch(E,∇E )
}Max

x
, (1.29)

here { }Max means the maximal degree part of the fiber X.

After integrating (1.29) along the fiber X , we get the Atiyah-Singer family index
theorem

ch(Ind(D+)) =
∫
X
Â(T X)ec1(det(T

(1,0)X)) ch(E) in H•(S, R). (1.30)

1.2 Asymptotic expansion of Bergman kernels

As explained in Sect. 1.1, we will suppose that W , S are compact.
Let L be a complex line bundle on W with Hermitian metric hL . Let ∇L be a

Hermitian connection on (L, hL) with curvature RL . We suppose that

ω :=
√−1

2π
RL , (1.31)

defines a fiberwise symplectic form along the fiber X , and ω(·, J T X ·) defines a J T X -
invariant metric on T X .

Set

μ0 = inf
u∈T (1,0)

x X , x∈W
RL
x (u, u)/|u|2gT X > 0. (1.32)

Let {wi } be an orthonormal frame of (T (1,0)X , gT X ). Set

ωd = −
∑
l,m

RL(wl , wm) wm ∧ iwl , τ (x) =
∑
j

RL(w j , w j ) . (1.33)

Let J : T X → T X be the skew–adjoint linear map which satisfies the relation

ω(u, v) = gT X (Ju, v) (1.34)

for u, v ∈ T X . Then J T X commutes with J and J T X = J(−J2)−1/2.
Wewill add a subscript p to denote the corresponding objects in Sect. 1.1 associated

with L p ⊗ E . Especially Dp is the fiberwise Dirac operator in (1.11) associated with
L p ⊗ E , and ∇Ep be the connection on

Ep := �(T ∗(0,1)X) ⊗ L p ⊗ E (1.35)
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induced by ∇Cliff, ∇L and ∇E . Let REp be the curvature of ∇Ep , then

REp = RCliff + p RL + RE . (1.36)

The following result was obtained in [28, Theorems 1.1 and 2.5] by applying the
Lichnerowicz formula (cf. also [15, Theorem 1] in the holomorphic case).

Theorem 1.4 There existsCL > 0 such that for any p ∈ Nandany s ∈ �0,>0(X , L p⊗
E) = ⊕

q≥1 �0,q(X , L p ⊗ E),

‖Dps‖2L2 ≥ (2pμ0 − CL)‖s‖2L2 . (1.37)

Moreover Spec(D2
p) ⊂ {0} ∪ [2pμ0 − CL ,+∞[.

For (1.37), for p large enough, D2
p|�0,odd(X ,L p⊗E) is invertible (cf. also [17, 19]).

Thus there exists p0 > 0 such that for p > p0, Ker(Dp) is a vector bundle on S.
Especially, the assumption in Sect. 1.1 is verified for p > p0.

For s ∈ S, let Pp,s be the orthogonal projection from �0,•(Xs, L p ⊗ E) onto
Ker(Dp,s), and Pp,s(x, x ′) (x, x ′ ∈ Xs) be the smooth kernel of Pp,s with respect to
the Riemannian volume form dvX (x ′).

Let aX be the injectivity radius of (X , gT X ), and ε ∈]0, aX/4[. We denote by
BX (x, ε) and BTx X (0, ε) the open balls in X and Tx X with center x and radius ε,
respectively. Then the fiberwise exponential map Tx X � Z → expXx (Z) ∈ X is a
diffeomorphism from BTx X (0, ε) on BX (x, ε) for ε ≤ aX . From now on, we identify
BTx X (0, ε) with BX (x, ε) for ε ≤ aX .

Let f : R → [0, 1] be a smooth even function such that

f (v) =
{
1 for |v| ≤ ε/2,
0 for |v| ≥ ε.

(1.38)

Set

F(a) =
( ∫ +∞

−∞
f (v)dv

)−1
∫ +∞

−∞
eiva f (v)dv. (1.39)

Then the even function F(a) lies in Schwartz space S(R) and F(0) = 1.
Let F(Dp)(x, x ′), (x, x ′ ∈ X ) be the smooth kernels of F(Dp) with respect to

dvX (x ′).
Let dX (x, x ′) (x, x ′ ∈ Xs, s ∈ S) be the Riemannian distance on (Xs, gT X ).
The following result is an easy extension of [22, Prop. 4.1].

Proposition 1.5 For any l,m ∈ N, ε > 0, there exists Cl,m,ε > 0 such that for p ≥ 1,
x, x ′ ∈ X,

|F(Dp)(x, x
′) − Pp(x, x

′)|C m (W×SW ) ≤ Cl,m,ε p−l ,

|Pp(x, x
′)|C m (W×SW ) ≤ Cl,m,ε p−l if d(x, x ′) ≥ ε.

(1.40)

Here the C m norm is induced by ∇L ,∇E and ∇Cliff .
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Proof For a ∈ R, set

φp(a) = 1[√pμ0,+∞[(|a|)F(a). (1.41)

Then by Theorem 1.4, for p > CL/μ0,

F(Dp) − Pp = φp(Dp). (1.42)

To prove (1.40), we only need to prove the analogue of [22, (4.16)]: forU1, · · · ,Uk

vector fields on S, l,m,m′ ∈ N, there exists C > 0 such that

‖Dm
p (∇Ep

UH
1

· · · ∇Ep

UH
k

φp(Dp))D
m′
p s‖L2 ≤ Cp−l‖s‖L2 . (1.43)

Now

Dm
p (∇Ep

UH
1

φp(Dp))D
m′
p = ∇Ep

UH
1

(Dm
p φp(Dp)D

m′
p ) − [∇Ep

UH
1

, Dm
p ]φp(Dp)D

m′
p

−Dm
p φp(Dp)[∇Ep

UH
1

, Dm′
p ]. (1.44)

Let�p be the union of the contour (which are parallel to the axis) from+∞+√−1
to

√
pμ0 + √−1, then to

√
pμ0 − √−1 then to +∞ − √−1, and the contour from

−∞ − √−1 to −√
pμ0 − √−1, then to −√

pμ0 + √−1 then to −∞ + √−1. Then

∇Ep

UH
1

(Dm
p φp(Dp)D

m′
p ) = 1

2π
√−1

∫
�p

λm+m′
F(λ)∇Ep

UH
1

(λ − Dp)
−1dλ

= 1

2π
√−1

∫
�p

λm+m′
F(λ)(λ − Dp)

−1[∇Ep

UH
1

, Dp](λ − Dp)
−1dλ.

(1.45)

Observe that [∇Ep

UH
1

, Dp] is a first order differential operator along the fiber X (cf.

(1.5), (1.22)), thus from [22, (4.7), (4.14)] and (1.45), we get

‖∇Ep

UH
1

(Dm
p φp(Dp)D

m′
p )s‖L2 ≤ Cp−l‖s‖L2 . (1.46)

Observe that [∇Ep

UH
1

, Dm
p ], [∇Ep

UH
1

, Dm′
p ] are differential operators along the fiber X

(cf. (1.22)), thus from [22, (4.15), (4.16)] and (1.46), we get (1.43) for k = 1. For
k > 1, by the same argument, we get (1.43).

By the finite propagation speed of solutions of hyperbolic equations [21, §7.8], [43,
§4.4], (cf. also [30, Appendix D.2]), F(Dp)(x, x ′) only depends on the restriction of
Dp to BX (x, ε), and

F(Dp)(x, x
′) = 0 if dX (x, x ′) ≥ ε. (1.47)

The proof of Proposition 1.5 is completed. ��
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We denote by IC⊗E the orthogonal projection from E := �(T ∗(0,1)X) ⊗ E onto
C ⊗ E . Let ∇End(E) be the connection on End(�(T ∗(0,1)X) ⊗ E) induced by ∇Cliff

and ∇E .
We will use the normal coordinates along the fiber X now. For x0 ∈ Xs, s ∈ S, we

identify LZ , EZ and (Ep)Z for Z ∈ BTx0 X (0, ε) to Lx0 , Ex0 and (Ep)x0 by parallel
transportwith respect to the connections∇L ,∇E and∇Ep along the curveγZ : [0, 1] �
u → expXx0(uZ). Under this identification and (1.40), we will view Pp(x, x ′) as a

smooth section Pp,x0(Z , Z ′), (Z , Z ′ ∈ BTx0 X (0, ε)), of π∗
1 (End(�(T ∗(0,1)X) ⊗ E))

on T X ×W T X with the projection π1 : T X ×W T X → W from the fiberwise product
of T X on W . And ∇End(E) induces naturally a C m-norm for the parameter x0 ∈ W .

Let dvT X be the Riemannian volume form on (Tx0X , gTx0 X ). Let κ(Z) be the
smooth positive function defined by the equation

dvX (Z) = κ(Z)dvT X (Z), (1.48)

with κ(0) = 1.
We denote by detC for the determinant function on the complex bundle T (1,0)X , and

|Jx0 | = (−J2x0)
1/2. ForU ∈ Tx0X , denote by ∇U the ordinary differentiation operator

on Tx0X in the direction U . Let {ei } be an orthonormal basis of (Tx0X , gTx0 X ).
On Tx0X � R

2n , where the identification is given by

(Z1, · · · , Z2n) ∈ R
2n −→

∑
i

Zi ei ∈ Tx0X , (1.49)

set (with τ in (1.33))

L = −
∑
j

(
∇e j + 1

2
RL
x0(Z , e j )

)2 − τx0 . (1.50)

Let P(Z , Z ′) be the Bergman kernel of L , i.e., the smooth kernel of the orthogonal
projection from L2(R2n, C) onto Ker(L ). Then for Z , Z ′ ∈ Tx0X , (cf. [31, (1.81)])

P(Z , Z ′) = detC(|Jx0 |)
× exp

(
− π

2

〈|Jx0 |(Z − Z ′), (Z − Z ′)
〉 − π

√−1
〈
Jx0 Z , Z ′〉 ).

(1.51)

If α = (α1, · · · , α2n) is a multi-index, set

|α| =
2n∑
j=1

α j , ∂α := ∂ |α|

∂Zα
= ∂α1

∂Zα1
1

· · · ∂α2n

∂Zα2n
2n

, Zα = Zα1
1 · · · Zα2n

2n . (1.52)

Theorem 1.6 There exist Jr (Z , Z ′) ∈ End(�(T ∗(0,1)X) ⊗ E)x0 (x0 ∈ Xs, s ∈ S, r ∈
N), polynomials in Z , Z ′ with the same parity as r and with deg Jr ≤ 3r , whose
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coefficients are polynomials in RT X , RT (1,0)X , RE (and RL ) and their derivatives of
order ≤ r − 2 (and ≤ r ) along the fiber X, and reciprocals of linear combinations of
eigenvalues of J at x0, such that by setting

Fr ,x0(Z , Z ′) = Jr (Z , Z ′)P(Z , Z ′), J0(Z , Z ′) = IC⊗E , (1.53)

the following statement holds: there exists C ′′ > 0, such that for any k,m,m′ ∈ N,
there exist N ∈ N,C > 0 such that for α, α′ ∈ N

2n, |α| + |α′| ≤ m, Z , Z ′ ∈ Tx0X,
|Z |, |Z ′| ≤ ε, x0 ∈ X, p ≥ p0,

∣∣∣∣∣
∂ |α|+|α′|

∂Zα∂Z ′α′

(
1

pn
Pp(Z , Z ′) −

k∑
r=0

Fr (
√
pZ ,

√
pZ ′)κ− 1

2 (Z)κ− 1
2 (Z ′)p− r

2

)∣∣∣∣∣
C m′

(W )

≤ Cp−(k+1−m)/2(1 + |√pZ | + |√pZ ′|)N exp(−√
C ′′μ0

√
p|Z − Z ′|)

+O(p−∞). (1.54)

The term O(p−∞) means that for any l, l1 ∈ N, there exists Cl,l1 > 0 such that its
C l1 -norm is dominated by Cl,l1 p

−l .

Proof Actually, in [22, Theorem 4.18′], they only explain for the family of data (gT X ,
hL , ∇L , hE , ∇E ) run over a set which are bounded in C s and with gT X bounded
below. Here the complex structure J T X can also be changed, still as explained after
[22, (4.122)], the constants in [22, Theorems 4.11 and 4.15]will be uniformly bounded,
especially, in [22, Theorem 4.11], we need to replace C m′

(X) therein by C m′
(W ) as

in (1.54). Finally, if we go through the argument in [22, Theorem 4.11], we can precise
N in (1.54) by 2(n + k + m′ + 1) + m (cf. also [29], [30, (4.2.2)]). ��

1.3 Family Bergman kernels

Recall that RKer(Dp) is the curvature operator in (1.17) associated with Dp acting on
�0,•(X , L p ⊗ E).

Theorem 1.7 For any l,m ∈ N and ε > 0, there exists Cl,m,ε > 0 such that for
p > p0, x, x ′ ∈ X, dX (x, x ′) > ε,

|RKer(Dp)(x, x ′)|C m (W×SW ) ≤ Cl,m,ε p−l . (1.55)

Proof Let R�
p ∈ �2(T ∗S)⊗End(�0,•(X , L p⊗E)) be the curvature of the connection

∇�
p . Then for U , V ∈ T S, by (1.15) and (1.36), we have

R�
p (U , V ) = REp (UH , V H ) + dk(UH , V H ) − ∇Ep

T (UH ,V H )
. (1.56)
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By (1.24), we have

RKer(Dp) = PpR
�
p Pp − Pp∇�

p P
⊥
p ∇�

p Pp. (1.57)

As P2
p = Pp, we get

Pp[∇Ep

UH , Pp] + [∇Ep

UH , Pp]Pp = [∇Ep

UH , Pp]. (1.58)

Thus [∇Ep

UH , Pp] exchanges Ker(Dp) and (Ker(Dp))
⊥, the orthogonal complement of

Ker(Dp), i.e.,

Pp[∇Ep

UH , Pp]Pp = 0. (1.59)

Then from (1.57) and (1.59), we get

RKer(Dp) = PpR
�
p Pp − Pp[∇�

p , Pp]P⊥
p [∇�

p , Pp]Pp. (1.60)

Now, from Proposition 1.5, Theorem 1.6, (1.56), we get Theorem 1.7. ��
From (1.55), to understand the asymptotic expansion of RKer(Dp)(x, x ′)when p →

+∞, we only need to restrict ourselves to dX (x, x ′) < ε for any ε > 0.
We will use the normal coordinates along the fiber X as above. Under this identifi-

cation and (1.55), we will view RKer(Dp)(x, x ′) as a smooth section R
Ker(Dp)
x0 (Z , Z ′),

(Z , Z ′ ∈ BTx0 X (0, ε)), of �2(T ∗S) ⊗ π∗
1 (End(�(T ∗(0,1)X) ⊗ E)) on T X ×W T X .

The following result is the first main result of this paper.

Theorem 1.8 There exist Jr (Z , Z ′) ∈ �2(T ∗S) ⊗ End(�(T ∗(0,1)X) ⊗ E)x0 (x0 ∈
Xs, s ∈ S, r ∈ N), polynomials in Z , Z ′ with the same parity as r and with degJr ≤
3r , whose coefficients are polynomials in RT X , RT (1,0)X , RE (and T , RL ) and their
derivatives of order≤ r−2 (and≤ r−1,≤ r ) and reciprocals of linear combinations
of eigenvalues of J at x0, such that by setting

Qr ,x0(Z , Z ′) = Jr (Z , Z ′)P(Z , Z ′),

J0(Z , Z ′) = −2π
√−1

(ωn+1)(2)

(n + 1)(ωn)(0)
IC⊗E ,

(1.61)

the following statement holds: There exists C ′′ > 0 such that for any k,m,m′ ∈ N,
there exist N ∈ N and C > 0 with

∣∣∣∣∣
∂ |α|+|α′ |

∂Zα∂Z ′α′

(
1

pn+1 R
Ker(Dp)(Z , Z ′) −

k∑
r=0

Qr (
√
pZ ,

√
pZ ′)κ− 1

2 (Z)κ− 1
2 (Z ′)p− r

2

)∣∣∣∣∣
C m′

(W )

≤ Cp−(k+1−m)/2(1 + |√pZ | + |√pZ ′|)N exp(−√
C ′′μ0

√
p|Z − Z ′|) + O(p−∞), (1.62)
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for any α, α′ ∈ N
2n, with |α| + |α′| ≤ m, any Z , Z ′ ∈ Tx0X with |Z |, |Z ′| ≤ ε and

any x0 ∈ W, p ≥ 1.
In particular, set b2,r (x0) = Q2r ,x0(0, 0), then b2,r ∈ C∞(W , π∗(�2(T ∗S)) ⊗

End(�(T ∗(0,1)X) ⊗ E)) and for any k, l ∈ N, there exists Ck, l > 0 such that for any
p ∈ N, p > p0, we have

∣∣∣ 1

pn+1 R
Ker(Dp)(x, x) −

k∑
r=0

b2,r (x)p
−r
∣∣∣
C l (W )

≤ Ck, l p
−k−1. (1.63)

Remark 1.9 From Theorems 1.7 and 1.8, we get immediately (cf. the argument of the
proof of [32, Lemma 4.6]) the same type asymptotic expansion as in (1.55), (1.62) for

1
pn+q (RKer(Dp))q(Z , Z ′) for q > 1.

Proof Let �Cliff, �L , �E be the respective connection forms of ∇Cliff, ∇L ,∇E com-
puted with respect to some frame of �(T ∗(0,1)X), L, E . Observe that

∇Ep = d + �Cliff + p �L + �E . (1.64)

By Proposition 1.5, Theorem 1.6, (1.36), (1.51), (1.60), and a rough computation, we
know that there exist polynomialsJr (Z , Z ′) ∈ �2(T ∗S)⊗End(�(T ∗(0,1)X)⊗E)x0
(x0 ∈ Xs, s ∈ S, r ≥ −2), such that under the notation in (1.62), we have

∣∣∣∣∣
∂ |α|+|α′ |

∂Zα∂Z ′α′

(
1

pn+1 R
Ker(Dp)(Z , Z ′) −

k∑
r=−2

Qr (
√
pZ ,

√
pZ ′)κ− 1

2 (Z)κ− 1
2 (Z ′)p− r

2

)∣∣∣∣∣
C m′

(W )

≤ Cp−(k+1−m)/2(1 + |√pZ | + |√pZ ′|)N exp(−√
C ′′μ0

√
p|Z − Z ′|)

+O(p−∞). (1.65)

But we could not get the precise information onJr as stated in Theorem.
It should also be possible to prove

J−2 = J−1 = 0, J0 = −2π
√−1

(ωn+1)(2)

(n + 1)(ωn)(0)
IC⊗E (1.66)

directly from the expansion (1.54), but it seems that it is quite complicate, and this
does not give us a clear way to compute the coefficients Jr .

In subsections 1.4 and 1.5, we will give a proof of Theorem 1.8 by introducing the
superconnection in local family index theory, and in this way, we get also a general
way to compute the coefficients Jr . ��

1.4 Superconnection and family Bergman kernels

For x0 ∈ Xs0 , s0 ∈ S, let U be an open neighborhood of s0 ∈ S such that π−1(U) �
U × Xs0 . Let U1 ⊂ U be an open neighborhood of s0 ∈ S such that U1 ⊂ U .
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We identify LZ , EZ and (Ep)Z for Z ∈ BT(s,x0)X (0, ε) to L(s,x0), E(s,x0) and
(Ep)(s,x0) by parallel transport with respect to the connections ∇L ,∇E and ∇Ep

along the curve γZ : [0, 1] � u → uZ . Let {ei } be an oriented orthonormal basis
of T(s,x0)X . We also denote by {ei } the dual basis of {ei }. Let ẽi (Z) be the parallel
transport of ei with respect to ∇T X along the above curve.

Now, for ε > 0 small enough, we will extend the geometric objects on
BT(s,x0)X (0, ε)|U to U × R

2n � T(s,x0)X |U (here we identify (Z1, · · · , Z2n) ∈ R
2n to∑

i Zi ei ∈ T(s,x0)X =: X0) such that Dp is the restriction of a spinc Dirac operator
on R

2n associated with a Hermitian line bundle with positive curvature. In this way,
we can replace π−1(U) by U × R

2n .
First of all, we denote L0, E0 the bundles L|U×{x0}, E |U×{x0} lifted on W0 =

U × R
2n . And we still denote by ∇L ,∇E , hL etc. the connections and metrics on

L0, E0 on BT(s,x0)X (0, 4ε)|U induced by the above identification. Then hL , hE are
identified with the metrics hL0 = hL(s,x0) , hE0 = hE(s,x0) . Let R = ∑

i Zi ei = Z be
the radial vector field on U × R

2n .
Let ρ : R → [0, 1] be a smooth even function such that

ρ(v) = 1 if |v| < 2; ρ(v) = 0 if |v| > 4. (1.67)

Let ϕε : U × R
2n → U × R

2n be the map defined by ϕε(s, Z) = (s, ρ(|Z |/ε)Z). Let
gT X0
s (Z) = gT X (ϕε(s, Z)) be the metric on T X0. Set T H

(s,Z)W0 = T H
ϕε(s,Z)W .

Let ∇E0 = ϕ∗
ε ∇E , then ∇E0 is the extension of ∇E on BT(s,x0)X (0, ε)|U . Let ∇L0

be the Hermitian connection on (L0, hL0) defined by

∇L0 |(s,Z) = ϕ∗
ε ∇L + 1

2
(1 − ρ2(|Z |/ε))RL

(s,x0)(R, ·). (1.68)

Then for ε small enough, by [22, (4.24)], the curvature RL0 of ∇L0 is non-degenerate
along R

2n and RL0
(s,Z) = RL

(s,x0)
and T H

(s,Z)W0 = T H
(s,x0)

W for |Z | > 4ε.

Let J0 be the almost complex structure on T X0 compatible with
√−1
2π RL0 and

such that gT X0 is J0-invariant (If we define A ∈ End(T X0) by gT X0(AX ,Y ) =√−1
2π RL0(X ,Y ), then J0 = A(−A2)−1/2). Thus we have J = J0 for |Z | < 2ε and
J0(Z) = Jx0 for |Z | > 4ε.

Then RL0 is positive in the sense of (1.32) for ε small enough, and the corresponding
constant μ0 for RL0 is bigger than 4

5μ0. From now on, we fix ε as above.
Let T ∗(0,1)X0 be the anti-holomorphic cotangent bundle of (X0, J0). Let ∇Cliff0

be the Clifford connection on �(T ∗(0,1)X0) induced by the connection ∇T X0 on
(T X0, gT X0) as in Section 1.1 for the fibration U × X0 → U . Let RE0 , RT X0 , RCliff0

be the corresponding curvatures on E0, T X0 and �(T ∗(0,1)X0).
We identify �(T ∗(0,1)X0)Z with �(T ∗(0,1)

x0 X) by using the parallel transport with
respect to the connection ∇Cliff0 along the curve γZ . Let SL be a unit section of
L|U×{x0} over U × {x0}. Using SL and the above discussion, we get an isometry
E0,p := �(T ∗(0,1)X0) ⊗ E0 ⊗ L p

0 � (�(T ∗(0,1)X) ⊗ E)x0 =: Ex0 .
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Let DX0
p (resp. ∇E0,p ) be the Dirac operator on X0 (resp. the connection on E0,p)

associated with the above data by the construction in Section 1.2. By the argument in
[28, p. 656-657], we know that Theorem 1.5 still holds for DX0

p . In particular, there
exists C > 0 such that

Spec(DX0
p )2 ⊂ {0} ∪

[8
5
pμ0 − C,+∞

[
. (1.69)

Let P0,p be the orthogonal projection from �
0,•
0 (X0, L

p
0 ⊗ E0) � C∞

0 (X0,Ex0)

on Ker(DX0
p ), and let P0,p(x, x ′) be the smooth kernel of P0,p with respect to the

Riemannian volume form dvX0(x
′).

Proposition 1.10 For any l,m ∈ N, there exists Cl,m > 0 such that for x, x ′ ∈
BT(s,x0)X (0, ε),

∣∣∣(P0,p − Pp)(x, x
′)
∣∣∣
C m (U1×R2n×R2n)

≤ Cl,m p−l . (1.70)

Proof Using (1.39) and (1.69), we know that P0,p − F(Dp) verifies (1.40) for x, x ′ ∈
BT(s,x0)X (0, ε)|U1 , thus we get (1.70). ��

Set

RKer(D
X0
p ) = P0,p R

�
0,p P0,p − P0,p∇�

0,p P
⊥
0,p∇�

0,p P0,p, with P⊥
0,p = 1 − P0,p.

(1.71)

Let RKer(D
X0
p )(x, x ′) ∈ �2(T ∗S)⊗End(�(T ∗(0,1)X)⊗E))(s,x0) be the smooth kernel

of the operator RKer(D
X0
p ) with respect to dvX0(x

′). As all geometric data on U ×
BT(s,x0)X (0, 2ε) inherit from the corresponding geometric data on W , thus ∇�

0,p, D0,p

are the same as ∇�
p , Dp on U × BT(s,x0)X (0, 2ε). By replacing P0,p, Pp by F(Dp) as

in (1.40) and (1.70), from (1.24) and (1.71), we get that for any l,m ∈ N, there exists
C > 0 such that for x, x ′ ∈ BT(s,x0)X (0, ε),

∣∣∣(RKer(D
X0
p ) − RKer(Dp))(x, x ′)

∣∣∣
C m (U1×R2n×R2n)

≤ Cl,m p−l . (1.72)

Aswe know from (1.24) that the term B(2) does not play any role in the construction
of RKer(D), thus we will choose the superconnection with B(2) = 0, more precisely,
set

Bp = Dp + ∇�
p , B0,p = D0,p + ∇�

0,p. (1.73)

Then

Bp = B0,p on BT(s,x0)X (0, 2ε)|U , P0,p(B
2
0,p)

(1)P0,p = 0. (1.74)
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From (1.69) and (1.74), as in (1.24), for p > 5C/4μ0, we have

RKer(D
X0
p ) = P0,p R

�
0,p P0,p − P(B2

0,p)
(1)((B2

0,p)
(0))−1P⊥

0,p(B
2
0,p)

(1)P0,p

= 1

2π
√−1

[∫
|λ|=pμ0

(λ − B2
0,p)

−1λdλ

](2)

= p

2π
√−1

[∫
|λ|=μ0

(
λ − 1

p
B2
0,p

)−1
λdλ

](2)

.

(1.75)

From (1.75) and as explained in (1.21) and (1.22), B2
0,p is a second order elliptic

operator alongR
2n , we know that to study the asymptotics of RKer(D

X0
p ), we only need

to work fiberwisely. Now, we will only work on the fiber Xs0 with center x0.
To define an L2-norm, we fix a metric gT S on T S, and let h�⊗E be the metric

on �(T ∗S)⊗̂E induced by gT S , gT X and hE . Let 〈 , 〉0 be the scalar product on
C∞
0 (R2n,�(T ∗S) ⊗̂Ex0) induced by h�⊗E

x0 and dvT X as in (1.10).
We denote by R = ∑

i Zi ei = Z the radial vector field on R
2n . For σ ∈

C∞(R2n,�(T ∗S)⊗̂Ex0), Z ∈ R
2n , and for t = 1√

p , set

(Stσ)(Z) = σ(Z/t), ∇t = S−1
t tκ1/2∇E0,pκ−1/2St ,

∇0,··· = ∇··· + 1

2
RL
x0(R, ···) , Lt = S−1

t κ1/2t2B2
0,pκ

−1/2St .
(1.76)

By (1.19), (1.69), (1.73) and (1.76), we have

Lt = L (0)
t + L (1)

t + L (2)
t ,

Spec(Lt ) = Spec(L (0)
t ) ⊂ {0} ∪

[8
5
μ0 − Ct2,+∞

[
.

(1.77)

From (1.77), set

Pt = 1

2π
√−1

[∫
|λ|=μ0

(λ − Lt )
−1λ dλ

](2)

. (1.78)

Let Pt (Z , Z ′)(Z , Z ′ ∈ R
2n) be the smooth kernel of the operator Pt with respect

to dvT(s,x0)X (Z ′). Then by (1.75), (1.76) and (1.78) as in [30, (1.6.66)], we get with

t = 1√
p ,

RKer(D
X0
p )(Z , Z ′) = t−2n−2κ−1/2(Z)Pt (Z/t, Z ′/t)κ−1/2(Z ′). (1.79)

From (1.72) and (1.79), to study the asymptotic expansion of RKer(Dp)(x, x ′), we
need only to study the asymptotic expansion of Pt (Z , Z ′) which involves supercon-
nections.
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1.5 Taylor expansion ofLt and the spectrum ofL0

Set (with ωd ,L in (1.33), (1.50))

L (0)
0 := L − 2ωd,x0 , L (1)

0 := O(1)
0 := f α ∧ c(ei ) R

L
x0( f

H
α , ei ),

L (2)
0 := O(2)

0 := 1

2
f α ∧ f β RL

x0( f
H
α , f Hβ ), L0 = L (0)

0 + L (1)
0 + L (2)

0 .
(1.80)

Let O(0)
1 := Q1,O(0)

2 := Q2 be given in [29, Theorem 2.2]. Let (∂αRL)x0 be the
tensor (∂αRL)x0(ei , e j ) = ∂α(RL(ei , e j ))x0 . Set also

O(1)
1 = f α ∧ c(el)

[
−∇0,T ( f Hα ,el )x0

+ ∇Z (RL( f Hα , ·))x0(el)
]
,

O(1)
2 = f α ∧ c(el)

{[1
4
〈RT Xei , e j 〉c(ei )c(e j ) + 1

2
Tr

[
RT (1,0)X

]
+ RE

]
x0

( f Hα , el)

+ 1

2
(∇∇(RL( f Hα , ẽl)))x0,(Z ,Z) − elk( f Hα )x0

− 〈(∇T X
Z T ( f Hα , ·))(el), ei 〉x0∇0,ei − 1

3
(∂k R

L)x0 Zk(R, T ( f Hα , el)x0)
}
,

(1.81)

O(2)
1 =1

2
f α ∧ f β

[
− ∇0,T ( f Hα , f Hβ )x0

+ ∇Z (RL( f Hα , f Hβ ))x0

]
,

O(2)
2 =1

2
f α ∧ f β

{[1
4
〈RT Xei , e j 〉c(ei )c(e j ) + 1

2
Tr

[
RT (1,0)X

]
+ RE

]
x0

( f Hα , f Hβ )

+ 1

2
(∇∇(RL( f Hα , f Hβ )))x0,(Z ,Z) + dk( f Hα , f Hβ )x0

− 〈∇T X
Z (T ( f Hα , f Hβ )), ei 〉x0∇0,ei − 1

3
(∂k R

L)x0 Zk(R, T ( f Hα , f Hβ )x0)
}
.

The operatorLt is the rescaled operator in (1.76), which we now develop in Taylor
series.

Theorem 1.11 There exist polynomials Ai, j,r ( resp. Bi,r , Cr ) (r ∈ N, i, j ∈
{1, · · · , 2n}) in Z with the following properties:

– their coefficients are polynomials in RT X (resp. dk, T , RT X , RT (1,0)X , RL , RE )
and their derivatives along the fiber X at x0 up to order r − 2 (resp. r − 2, r − 1,
r − 2, r − 2, r , r − 2) ,

– Ai, j,r is a monomial in Z of degree r , the degree in Z of Bi,r (resp. Cr ) has the
same parity with r − 1 (resp. r ) ,

– if we denote by

Or = Ai, j,r∇ei∇e j + Bi,r∇ei + Cr , (1.82)
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then

Lt = L0 +
m∑

r=1

trOr + O(tm+1), (1.83)

and there exists m′ ∈ N such that for any k ∈ N, |t | ≤ 1 the derivatives of order
≤ k of the coefficients of the operator O(tm+1) are dominated by Ctm+1(1 + |Z |)m′

.
Moreover L0, O1, O2 are given by (1.80) and (1.81).

Proof Now, by using (1.21), (1.22) and (1.36), we have

(B2
p)

(0) = D2
p, (B2

p)
(2) = R�

p ,

(B2
p)

(1) = f α ∧ c(ei )
[
REp ( f Hα , ei ) − eik( f Hα ) − ∇Ep

T ( f Hα ,ei )

]
.

(1.84)

By (1.74), (1.84), we have established (1.83) forL (0)
t in [22, Theorem 4.6], (cf. also

[29, Theorem 2.2]), moreover ’L (0)
0 ,O(0)

1 ,O(0)
2 were also computed in [29, Theorem

2.2].
By (1.9), (1.15), (1.36), (1.56) and (1.84),

L
(1)
t = f α ∧ c(̃ei )

{
t2
[
1

4
〈RT X ẽl , ẽm〉c(̃el )c(̃em) + 1

2
Tr[RT (1,0)X ]

]
( f Hα , ẽi )t Z

+ t2 RE ( f Hα , ẽi )t Z + RL ( f Hα , ẽi )t Z − t2ẽik( f Hα )t Z − t∇t,T ( f Hα ,̃ei )t Z

}
,

L
(2)
t =1

2
f α ∧ f β

{
t2
[
1

4
〈RT X ẽl , ẽm〉c(̃el )c(̃em) + 1

2
Tr[RT (1,0)X ]

]
( f Hα , f Hβ )t Z

+t2 RE ( f Hα , f Hβ )t Z + RL ( f Hα , f Hβ )t Z + t2dk( f Hα , f Hβ )t Z − t∇t,T ( f Hα , f Hβ )t Z

}
.

(1.85)

On BTx0 X (0, 2ε/t), by [22, (4.46), (4.48)] (cf. [30, (1.2.30), (4.1.34)]), we have

∇t,ei |Z = ∇ei +
(1
2
RL
x0 + t

3
(∂k R

L)x0 Zk

)
(R, ei ) + O(t2). (1.86)

Moreover, as we use the normal coordinates, we have (cf. [30, Lemma 1.2.3])

ẽi (Z) = ei − 1

6

∑
j

〈
RT X
x0 (R, ei )R, e j

〉
e j + O(|Z |3). (1.87)

By the definition of ∇Cliff , for X ,Y ∈ C∞(X , T X), we have

[∇Cliff
X , c(Y )] = c(∇T X

X Y ). (1.88)

Note that on BTx0 X (0, 2ε), we trivialize �(T ∗(0,1)X) by using ∇Cliff along the curve
u → uZ and ∇T X

Z ẽ j = 0, we get as in [5, Lemma 4.13], c(̃e j ) is the constant endo-

morphism c(e j ). From (1.85), we get the expansion (1.83) forL (1)
t ,L (2)

t . Especially,
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their leading terms are L (1)
0 , L (2)

0 in (1.80). From (1.85), (1.86) and (1.87), we get

the coefficients of the expansions forL (1)
t ,L (2)

t in (1.81). ��

Nowwe discuss the eigenvalues and eigenfunctions ofL (0)
0 in a more precise way.

We choose {wi }ni=1, an orthonormal basis of T (1,0)
x0 X , such that

−2π
√−1Jx0 = diag(a1, · · · , an) ∈ End(T (1,0)

x0 X), (1.89)

with 0 < a1 ≤ a2 ≤ · · · ≤ an , and let {w j }nj=1 be its dual basis. Then e2 j−1 =
1√
2
(w j +w j ) and e2 j =

√−1√
2

(w j −w j ) , j = 1, . . . , n form an orthonormal basis of

Tx0X . We use the coordinates on Tx0X � R
2n induced by {ei } as in (1.49) and in what

follows we also introduce the complex coordinates z = (z1, · · · , zn) on C
n � R

2n .
Thus Z = z + z, and wi = √

2 ∂
∂zi

, wi = √
2 ∂

∂zi
. We will also identify z to

∑
i zi

∂
∂zi

and z to
∑

i zi
∂

∂zi
when we consider z and z as vector fields. Remark that

∣∣∣ ∂
∂zi

∣∣∣2 =
∣∣∣ ∂
∂zi

∣∣∣2 = 1

2
, so that |z|2 = |z|2 = 1

2
|Z |2 . (1.90)

It is very useful to rewriteL (0)
0 by using the creation and annihilation operators. Set

bi = −2∇
0, ∂

∂zi
, b+

i = 2∇
0, ∂

∂zi
, b = (b1, · · · , bn) . (1.91)

Then by (1.76) and (1.89), we have

bi = −2 ∂
∂zi

+ 1

2
ai zi , b+

i = 2 ∂
∂zi

+ 1

2
ai zi , (1.92)

and for any polynomial g(z, z) on z and z,

[bi , b+
j ] = bib

+
j − b+

j bi = −2aiδi j ,

[bi , b j ] = [b+
i , b+

j ] = 0 ,

[g(z, z), b j ] = 2 ∂
∂z j

g(z, z), [g(z, z), b+
j ] = −2 ∂

∂z j
g(z, z) .

(1.93)

By (1.33) and (1.89), τx0 = ∑
i ai . Thus from (1.50), (1.80), (1.89) and (1.91)-(1.93),

L =
∑
j

b j b
+
j , L (0)

0 =
∑
j

b j b
+
j + 2

∑
j

a jw
j ∧ iw j . (1.94)

The following result was established in [31, Theorem 1.15] (cf. [30, Theorem 4.1.20]).
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Theorem 1.12 The spectrum of the restriction of L on L2(R2n) is given by

Spec(L |L2(R2n)) =
{
2

n∑
i=1

αi ai : α = (α1, · · · , αn) ∈ N
n
}

(1.95)

and an orthogonal basis of the eigenspace of 2
∑n

i=1 αi ai is given by

bα
(
zβ exp

(−1

4

∑
i

ai |zi |2
))

, with bα =
n∏
j=1

b
α j
j ,

zβ =
n∏
j=1

z
β j
j , β ∈ N

n . (1.96)

From Theorem 1.12, we know P(Z , Z ′) in (1.51) is the smooth kernel of the
orthogonal projection from L2(R2n) onto Ker(L |L2(R2n)). Moreover, from (1.94), we
have

Ker(L |L2(R2n)) = ∩ j Ker(b
+
j ),

P(Z , Z ′) = 1

(2π)n

( n∏
i=1

ai
)

exp
(

− 1

4

∑
i

ai
(|zi |2 + |z′i |2 − 2zi z

′
i

))
.
(1.97)

Let PN (Z , Z ′) be the smooth kernel of the orthogonal projection PN from
L2(R2n,�(T ∗S) ⊗̂Ex0) onto Ker(L (0)

0 ). Set PN⊥ = 1 − PN .
Recall that we denote by IC⊗E the orthogonal projection fromE := �(T ∗(0,1)X)⊗

E onto C ⊗ E . Then by (1.94), we have

PN (Z , Z ′) = P(Z , Z ′)IC⊗E . (1.98)

From (1.80), we get

O(1)
0 = f α ∧

(
c(w j )R

L
x0( f

H
α ,w j ) + c(w j )R

L
x0( f

H
α ,w j )

)

= √
2 f α ∧

(
−iw j R

L
x0( f

H
α ,w j ) + w j RL

x0( f
H
α ,w j )

)
. (1.99)

From (1.98) and (1.99), we get

PNO(1)
0 PN = 0. (1.100)
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1.6 Evaluation ofQr: a proof of Theorem 1.8

Let Pt be the orthogonal projection from C∞
0 (X0,�(T ∗S)⊗̂Ex0) onto the kernel of

L (0)
t with respect to 〈 , 〉0. From (1.19), (1.23), (1.73) and (1.76), we have

[
(λ − Lt )

−1
](2) =(λ − L (0)

t )−1L (1)
t (λ − L (0)

t )−1L (1)
t (λ − L (0)

t )−1

+ (λ − L (0)
t )−1L (2)

t (λ − L (0)
t )−1,

PtL
(1)
t Pt =0.

(1.101)

The following equation is an analogue of [31, (1.55)]: by (1.77), (1.78), (1.101) and
the residue formula, we have for any k ≥ 1,

Pt = 1

2πk
√−1

∫
|λ|=μ0

λk
k∑

i=1

(λ − L (0)
t )−i

[
L (2)

t + L (1)
t (λ − L (0)

t )−1L (1)
t

]
(λ − L (0)

t )−k+i−1dλ

= 1

2πk
√−1

[∫
|λ|=μ0

λk(λ − Lt )
−kdλ

](2)

. (1.102)

We define first the Sobolev norm ‖ ‖t,m for m ∈ N on C∞
0 (R2n,�(T ∗S)⊗̂Ex0)

by using ∇t,e j and 〈 , 〉0 as in [30, (4.1.36)]. Note that L (0)
t is Lt

2 in [22, (4.37)], by
(1.77) and (1.85), we know that the analogue of [22, Theorem 4.7] holds forLt : There
exist C1,C2,C3 > 0 such that for t ∈]0, 1] and any s, s′ ∈ C∞

0 (R2n,�(T ∗S)⊗̂Ex0),
we have

Re 〈Lt s, s〉t,0 ≥ C1‖s‖2t,1 − C2‖s‖2t,0,
| 〈Lt s, s

′〉
t,0 | ≤ C3‖s‖t,1‖s′‖t,1. (1.103)

Thus [22, Theorems 4.8-4.10] hold for Lt . From (1.102), we can proceed as in the
proof of [30, Theorems 4.1.13-4.1.18] and get that there exist functions Qr on Z , Z ′
such that for t ∈]0, 1], q > 0, Z , Z ′ ∈ T(s,x0)X , |Z |, |Z ′| ≤ q, we have

∣∣∣∣∣Pt (Z , Z ′) −
k∑

r=0

Qr (Z , Z ′)tr
∣∣∣∣∣
C m′

(W )

≤ Ctk+1. (1.104)

Comparing with (1.65), (1.72), (1.79) and (1.104), we get in (1.65),

Q−2(Z , Z ′) = Q−1(Z , Z ′) = 0. (1.105)

Remark 1.13 A direct alternate way to obtain (1.62) (i.e., (1.65) and (1.105)) is to
follow the strategy of [22, §4] (cf. [30, §4.2]) by using (1.77). We explain more details
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0

δ

Δ

μ0 μ0 /2/4

i

−i

Fig. 1 Contour

now. Let δ be the counterclockwise oriented circle in C of center 0 and radius μ0/4,
and let  be the oriented path in C defined by Fig. 1.

Let e−uLt be the heat operator associated with Lt for u > 0. By (1.77), (1.78),
(1.101) and the residue formula, we have

Pt = 1

2π
√−1

[ ∫
|λ|=μ0/4

e−uλλ(λ − Lt )
−1
](2)

dλ,

[
Lt e

−uLt
](2) = 1

2π
√−1

[ ∫
δ∪

e−uλλ(λ − Lt )
−1
](2)

dλ,

[
L 2

t e
−uLt

](2) = 1

2π
√−1

[ ∫


e−uλλ2(λ − Lt )
−1
](2)

dλ.

(1.106)

Set

Fu(Lt ) = 1

2π
√−1

[ ∫


e−uλλ(λ − Lt )
−1
](2)

dλ. (1.107)

Then from (1.77), (1.106) and (1.107), we get

Pt = lim
u→+∞

[
Lt e

−uLt
](2)

,

Fu(Lt ) =
[
Lt e

−uLt
](2) − Pt =

∫ +∞

u

[
L 2

t e
−u1Lt

](2)
du1.

(1.108)

From (1.106), in particular, the integral of the third equation is taken only along ,

we get the analogue of [30, Theorem 4.2.5] for
[
Lt e−uLt

](2)
and

[
L 2

t e
−uLt

](2)
.

Combining it with (1.108), we get the analogue of [30, Corollary 4.2.6]. Then the
argument of [30, Theorems 4.2.7, 4.2.8] gives a direct proof of (1.62).
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Now we concentrate to compute Qr . Let f (λ, t) be a formal power series with
values in End(L2(R2n,�(T ∗S)⊗̂Ex0))

f (λ, t) =
∞∑
r=0

tr fr (λ), fr (λ) ∈ End(L2(R2n,�(T ∗S)⊗̂Ex0)). (1.109)

By (1.83), consider the equation of formal power series for |λ| = μ0,

(
−L (0)

0 + λ −
∞∑
r=1

trO(0)
r

)
f (λ, t) = IdL2(R2n ,�(T ∗S)⊗̂Ex0 ) . (1.110)

Then for r ∈ N, we have

fr (λ) = (λ − L (0)
0 )−1

r∑
j=1

O(0)
j fr− j (λ). (1.111)

Especially, we have

f0(λ) =(λ − L (0)
0 )−1 = 1

λ
PN + (λ − L (0)

0 )−1PN⊥
,

f1(λ) =(λ − L (0)
0 )−1O(0)

1 (λ − L (0)
0 )−1,

f2(λ) =(λ − L (0)
0 )−1

[
O(0)

1 (λ − L (0)
0 )−1O(0)

1 + O(0)
2

]
(λ − L (0)

0 )−1.

(1.112)

Then by (1.101), as in (1.110), we have the following equation as formal power series

[
(λ − Lt )

−1
](2) =

∞∑
r=0

( ∑
∑

i ri=r

fr1O(1)
r2 fr3O(1)

r4 fr5 +
∑

∑
i ji=r

f j1O(2)
j2

f j3

)
(λ) tr .

(1.113)

By the same argument as in [31, (1.110)] (cf. [30, (4.1.91)]), (1.102) and (1.113), we
get

Qr = 1

2π
√−1

∑
∑

i ri=r

∫
|λ|=μ0

fr1(λ)O(1)
r2 fr3(λ)O(1)

r4 fr5(λ)λ dλ

+ 1

2π
√−1

∑
∑

i ji=r

∫
|λ|=μ0

f j1(λ)O(2)
j2

f j3(λ)λ dλ. (1.114)

From Theorems 1.11, 1.12, (1.94), (1.114) and the residue formula, we can getQr

by using the operators (L (0)
0 )−1, PN , PN⊥

,Ok (k ≤ r). This gives us a direct method
to compute Qr in view of Theorem 1.12.
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From Theorem 1.11 and (1.114), we get the properties of the coefficients
Jr (Z , Z ′). To finish the proof of Theorem 1.8, we need to compute J0(Z , Z ′).

From Theorem 1.12, (1.100), (1.112) and (1.114), we get

Q0 = 1

2π
√−1

∫
|λ|=μ0

(λ − L (0)
0 )−1O(1)

0 (λ − L (0)
0 )−1O(1)

0 (λ − L (0)
0 )−1λ dλ

+ 1

2π
√−1

∫
|λ|=μ0

(λ − L (0)
0 )−1O(2)

0 (λ − L (0)
0 )−1λ dλ

= PNO(2)
0 PN − PNO(1)

0 PN⊥
(L (0)

0 )−1O(1)
0 PN . (1.115)

Thus from Theorem 1.12, (1.80), (1.94), (1.98), (1.99) and (1.115), we get

Q0(Z , Z ′) = 1

2
f α ∧ f β RL

x0 ( f
H
α , f Hβ )PN (Z , Z ′)

+2
(
PN f αiw j R

L
x0 ( f

H
α , w j )(L

(0)
0 )−1 f β ∧ wk RL

x0 ( f
H
β , wk)P

N
)

(Z , Z ′)

= f α ∧ f β

[
1

2
RL
x0 ( f

H
α , f Hβ ) − 1

a j
RL
x0 ( f

H
α ,w j )R

L
x0 ( f

H
β , w j )

]
PN (Z , Z ′)

= −2π
√−1

(ωn+1)(2)

(n + 1)(ωn)(0)
PN (Z , Z ′). (1.116)

The proof of Theorem 1.8 is completed.

Remark 1.14 For A ∈ C∞(W ,�3(T ∗X)), we replace the operator Dp by themodified
Dirac operator Dc,A

p in [7], [30, §1.3.3], certainly, we still have the same Theo-
rems 1.6, 1.8. Especially, if the fiber X is holomorphic and L, E are holomorphic

along the fiber X , let ∂
L p⊗E,∗

be the adjoint of the fiberwise Dolbeault operator

∂
L p⊗E

along the fiber X , then we can take

Dp = √
2(∂

L p⊗E + ∂
L p⊗E,∗

), (1.117)

as Dp is a modified Dirac operator by [7] (cf. [30, Theorem 1.4.5]).

Remark 1.15 As RL is non-degenerate along the fiber X , we have a natural choice of
the horizontal bundle T HW in (1.1). Namely, set

T HW = {u ∈ TW : ω(u, X) = 0 for any X ∈ T X}. (1.118)

Then from Theorem 1.12, (1.80), (1.81) and (1.118), we get

O(1)
0 = 0, PNO(1)

1 PN = 0. (1.119)

In this case, we have a simpler formula for Q2 from (1.112), (1.114) and (1.119),
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Q2 = 1

2π
√−1

∫
|λ|=μ0

(λ − L (0)
0 )−1O(1)

1 (λ − L (0)
0 )−1O(1)

1 (λ − L (0)
0 )−1λ dλ

+ 1

2π
√−1

∫
|λ|=μ0

{
(λ − L (0)

0 )−1O(2)
2 (λ − L (0)

0 )−1

+(λ − L (0)
0 )−1O(0)

1 (λ − L (0)
0 )−1O(2)

1 (λ − L (0)
0 )−1

+(λ − L (0)
0 )−1O(2)

1 (λ − L (0)
0 )−1O(0)

1 (λ − L (0)
0 )−1

+(λ − L (0)
0 )−1O(0)

1 (λ − L (0)
0 )−1O(2)

0 (λ − L (0)
0 )−1O(0)

1 (λ − L (0)
0 )−1

+(λ − L (0)
0 )−1

[
O(0)

1 (λ − L (0)
0 )−1O(0)

1 + O(0)
2

]
(λ − L (0)

0 )−1O(2)
0 (λ − L (0)

0 )−1

+(λ − L (0)
0 )−1O(2)

0 (λ − L (0)
0 )−1

[
O(0)

1 (λ − L (0)
0 )−1O(0)

1 + O(0)
2

]
(λ − L (0)

0 )−1
}
λ dλ. (1.120)

By [29, Theorem 2.3] (or [30, (4.1.94)]), we know that

PNO(0)
1 PN = 0. (1.121)

Observe that from (1.80),

(λ − L (0)
0 )−1O(2)

0 (λ − L (0)
0 )−1 = (λ − L (0)

0 )−2O(2)
0 = O(2)

0 (λ − L (0)
0 )−2.

(1.122)

By Theorem 1.12, (1.119)-(1.122) and the residue formula, we get under the
assumption (1.118)

Q2 = −PNO(1)
1 (L (0)

0 )−1PN⊥O(1)
1 PN + PNO(2)

2 PN

−PNO(0)
1 (L (0)

0 )−1PN⊥O(2)
1 PN − (L (0)

0 )−1O(0)
1 PNO(2)

1 PN

−PNO(2)
1 (L (0)

0 )−1O(0)
1 PN − PNO(2)

1 PNO(0)
1 (L (0)

0 )−1PN⊥

+PNO(0)
1 O(2)

0 (L (0)
0 )−2PN⊥O(0)

1 PN + (L (0)
0 )−1PN⊥O(0)

1 O(2)
0 PNO(0)

1 (L (0)
0 )−1PN⊥

+(L (0)
0 )−1PN⊥[O(0)

1 (L (0)
0 )−1O(0)

1 − O(0)
2

]
PNO(2)

0

+O(2)
0 PN

[
O(0)

1 (L (0)
0 )−1O(0)

1 − O(0)
2

]
(L (0)

0 )−1PN⊥
. (1.123)

1.7 The curvature as a Toeplitz operator

First, we describe the formalism discovered by Berezin [4] and Boutet de Monvel–
Guillemin [18] on the definition of Toeplitz operators, and further pursued by
Bordemann–Meinrenken–Schlichenmaier [16, 42], and Ma–Marinescu [30, 32].

Let (X , J , ω) be a compact symplectic manifold of real dimension 2n, with com-
patible almost complex structure J and gT X a J -invariant metric. Let (L, hL ,∇L) be
a prequantum line bundle over X as in (1.31). We consider a Hermitian vector bundle
(E, hE ,∇E ) on X with Hermitian connection ∇E , and the space

(
L2(X , Ep), 〈·, ·〉

)
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introduced in (1.10). Let Pp be the orthogonal projection from L2(X , Ep) onto
Ker(Dp) as in Section 1.2.

A section g ∈ C∞(X ,End(E))defines avector bundlemorphism Id�(T ∗(0,1)X)⊗L p ⊗g

of Ep := �(T ∗(0,1)X) ⊗ L p ⊗ E , which we still denote by g.
In [32, Definition 4.1] (cf. [30, Definition 8.1.8]), Ma-Marinescu defined a vec-

tor space of Toeplitz operators. The following definition is a natural extension of
[32, Definition 4.1] by twisting a finite dimensional algebra A.

Definition 1.16 A Toeplitz operator with coefficients in a finite dimensional algebra
A over C is a sequence {Tp} = {Tp}p∈N of linear operators

Tp : A ⊗ L2(X , Ep) −→ A ⊗ L2(X , Ep) , (1.124)

with the properties:

(i) For any p ∈ N, we have

Tp = Pp Tp Pp . (1.125)

(ii) There exist a sequence gl ∈ A ⊗ C∞(X ,End(E)) such that for all k ≥ 0 there
exists Ck > 0 with

∥∥∥Tp − Pp

( k∑
l=0

p−l gl
)
Pp

∥∥∥ ≤ Ck p
−k−1, (1.126)

where ‖·‖ denotes the operator norm on the space of bounded operators.

The full symbol of {Tp} is the formal series
∑∞

l=0 �
l gl ∈ A ⊗ C∞(X ,End(E))[[�]]

and the principal symbol of {Tp} is g0.
For any f ∈ A ⊗ C∞(X ,End(E)),

T f , p := Pp f Pp : A ⊗ L2(X , Ep) −→ A ⊗ L2(X , Ep) (1.127)

is a Toeplitz operator and called as Berezin-Toeplitz quantization of f . Then we can
express (1.126) symbolically by

Tp =
k∑

l=0

Tgl ,p p
−l + O(p−k−1). (1.128)

Then we can reformulate [32, Theorem 1.1] (cf. [30, Theorem 8.1.10]) as

Theorem 1.17 The space of Toeplitz operators with coefficients in a finite dimensional
algebraAoverC forms analgebra. Let f , g ∈ A⊗C∞(X ,End(E)). Then the product
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of the Toeplitz operators T f , p and Tg, p is a Toeplitz operator, more precisely, it admits
the asymptotic expansion in the sense of (1.128) for any k ∈ N:

T f , p Tg, p =
k∑

r=0

p−r TCr ( f ,g), p + O(p−k−1), (1.129)

where Cr are bidifferential operators and Cr ( f , g) ∈ A ⊗ C∞(X ,End(E)) and
C0( f , g) = f g.

By the characterization of Toeplitz operators via the expansion of their kernels [32,
Theorem 4.9, (4.30)] (cf. [30, Theorem 8.1.9, (8.1.18)]), Theorems 1.7, 1.8 and (1.116)
imply the following result:

Theorem 1.18 The curvature operators 1
p R

Ker(Dp) ∈ �2(S,End(Ker(Dp))) in Sec-

tion 1.3 is a Toeplitz operator with coefficients in A = �2∗(T ∗
s S) for any s ∈ S, with

its leading symbol R0 being b2,0 in (0.15).

We have also

Theorem 1.19 For any f ∈ C∞(W ,End(E)), U ∈ C∞(S, T S), ∇End(Dp)

U T f ,p is a

Toeplitz operator with leading symbol ∇End(E)

UH f .

Proof From (1.14), (1.16) and (1.127), we get

∇End(Dp)

U T f ,p = Pp[∇�
U , Pp] f Pp + Pp[∇�

U , f ]Pp + Pp f [∇�
U , Pp]Pp,

[∇�
U , f ] = ∇End(E)

UH f . (1.130)

We need to show that Pp[∇�
U , Pp] f Pp and Pp f [∇�

U , Pp]Pp are Toeplitz operators.

We use ∇T (1,0)X to trivialise T (1,0)X |U×{x0} near (s0, x0) in Section 1.4, then the
normal coordinate along X in Section 1.4 and (1.89)-(1.90) is identified as U × R

2n

with canonical almost complex structure andmetric onR
2n . ByTheorem1.6, [∇�

U , Pp]
has the same type expansion as in (1.54) by replacing Fr by F ′

r with

F ′
r (Z , Z ′) = J ′

r (Z , Z ′)P(Z , Z ′), (1.131)

and J ′
r (Z , Z ′) is a polynomial in Z , Z ′ with the same parity as r and

J ′
0(Z , Z ′) =

(
∇UH log detC(|J|) − π

2

〈
(∇UH |J|)(Z − Z ′), Z − Z ′〉

−π
√−1

〈
(∇UH J)Z , Z ′〉 )IC⊗E

=
{
Tr |T (1,0)X [J−1∇T (1,0)X

UH J] + π
√−1

〈
(∇T (1,0)X

UH J)(z − z′), z − z′
〉

−π
√−1

( 〈
(∇T (1,0)X

UH J)z, z′
〉
−
〈
(∇T (1,0)X

UH J)z′, z
〉 )}

IC⊗E . (1.132)
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From the argument in the proof of [30, Lemma 7.2.4] and Theorem 1.6 form′ = 0, we
know that Pp[∇�

U , Pp] f Pp has the same type expansion as in (1.54) and the leading
term is given by

P(J ′
0P) f (x0)P = f (x0)P(J ′

0P)P = 0, (1.133)

here we understand J ′
0P as an operator on C

n with kernel (J ′
0P)(Z , Z ′)with respect

to the volume form dvT X (Z ′). Note that we can get (1.133) by a direct computation

from the kernel calculus in [30, §7.1]: put bi j =
〈
(∇T (1,0)X

UH J) ∂
∂zi

, ∂
∂z j

〉
, then

J ′
0P=π

√−1
{
−4b j j a

−1
j +bi j

[
(zi − z′i )

b j

a j
−zi z

′
j +z′i (

b j

a j
+z′j )

]}
P(Z , Z ′)IC⊗E .

ThusP(J ′
0P) = π

√−1
[

− 2b j j a
−1
j − bi j (zi − z′i )z

′
j

]
P(Z , Z ′)IC⊗E , and we get

(1.133). Here is an argument without computation: Observe that

F ′
0 = ∇UHP, P2 = P. (1.134)

From the second equation of (1.134), we get P(∇UHP) + (∇UHP)P = ∇UHP ,
thus

PF ′
0P = P(∇UHP)P = 0. (1.135)

By the characterization of Toeplitz operators via the expansion of their kernels
[32, Theorem 4.9, (4.30)] (cf. [30, Theorem 8.1.9, (8.1.18)]) as above, we know that
Pp[∇�

U , Pp] f Pp is a Toeplitz operator and its asymptotic expansion starts from p−1.
Same argument shows that Pp f [∇�

U , Pp]Pp is a Toeplitz operator with principal
symbol 0.

The proof of Theorem 1.19 is completed. ��

1.8 A proof of Theorems 0.2, 0.4 and 0.8.

From (0.2), in (1.34), J = J TRX , thus a j = 2π in (1.89), and P(0, 0) = 1 in (1.97).
By Theorems 1.8 and 1.18, we get Theorems 0.2 and 0.4 for 1

p R
Ker(Dp). When we

take Z = Z ′ = 0 in (1.62), we get (0.16) and

b2,r = (J2rP)(0, 0). (1.136)

Note that in the holomorphic Kähler situation (0.2), even we work on the full degree
of �(T ∗(0,1)X), but our connection ∇�(T ∗(0,1)X) along the fiber X becomes the Chern
connection which preserves the Z-grading of �(T ∗(0,1)X) on BTx0 X (0, 2ε). From
(0.12) and our trivialization, we get Jr (Z , Z ′) ∈ �2(T ∗

R
S) ⊗ End(E)x0 and b2,r ∈

C∞(W , π∗(�2(T ∗
R
S)) ⊗ End(E)). Thus we get also (0.15) from (1.61) (cf. (1.116)).
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In the proof, wewrote for theHermitian connection∇�
p , however, we only use it as a

motivation from the local index theory, all arguments here go through for the curvature
RH0(X ,L p⊗E) from (0.9). Thus we get also Theorems 0.2 and 0.4 for 1

p R
H0(X ,L p⊗E).

Finally, from Theorem 1.17, (0.9) and (0.11), Theorem 0.8 is a special case of
Theorem 1.19.

2 An analogue of Bismut’s local family index theorem for Bergman
kernels

This Section is organized as follows. In Section 2.1, we recall some results on the
Kähler fibration. In Section 2.2, we establish Corollary 0.5 and Theorem 0.6.

In this Section, we will use the notation in Introduction. We denote by 〈·, ·〉 the
C-bilinear form on TRX ⊗R C induced by the metric gTRX in (0.2).

2.1 Kähler fibration

Let W , S be compact complex manifolds. Let π : W → S be a holomorphic submer-
sionwith compact fiber X and dimC X = n. In this section,we denote by TW , T S, T X
the corresponding holomorphic tangent bundles, and TRW , TRS, TRX the associated
real tangent bundles. Let J TRX be the almost complex structure on the relative real
tangent bundle TRX .

Let T H
R
W be a sub-bundle of TRW such that (0.8) holds.

Let gTRX be a J TRX -invariant metric on TRX . Let r X be the scalar curvature of
(X , gTRX ).

Definition 2.1 [10, Def. 1.4] The triple (π, gTRX , T H
R
W ) is said to define a Kähler

fibration if there exists a smooth closed real 2-form ωW of complex type (1, 1) on W
such that

• T H
R
W and TRX are orthogonal with respect to ωW .

• If X ,Y ∈ TRX ,

ωW (X ,Y ) = gTRX (J TRX X ,Y ). (2.1)

We suppose now that the triple (π, gTRX , T H
R
W ) defines a Kähler fibration.

We will denote by ωH , ωX the restrictions of ω to T H
R
W , TRX . We extend ωH , ωX

to TRW by taking the convention that if X ∈ TRX and U ∈ TRS, then iXωH = 0 and
iU H ωX = 0. Therefore

ω = ωH + ωX . (2.2)

The Riemannian volume form dvX on (X , gTRX ) is given by

dvX = (ωX )n/n!. (2.3)
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Note that T (1,0)X in Section 1.1 is identified naturally as the holomorphic relative
tangent bundle T X of the fibration π . Let hT

(1,0)X be the Hermitian metric on T (1,0)X
induced by gTRX . We still denote by ∇T X the connection on TRX with curvature
RT X defined in Definition 1.1 associated with (π, gTRX , T H

R
W ). By [10, Theorem

1.7], ∇T X preserves T (1,0)X and T (0,1)X , and it is the Chern connection ∇T (1,0)X on
(T (1,0)X , hT

(1,0)X ), and for U , V ∈ TRS, we have

k(UH ) = 0, LUH ωX = 0,

∇T X· ωX = 0, dX (ωH (UH , V H )) + iT (UH ,V H )ω
X = 0,

(2.4)

where we denote by dX the exterior differential operator along the fiber X .
Let E be a holomorphic vector bundle on W . Let hE be a Hermitian metric on E .

Let ∇E be the Chern connection on (E, hE ) with curvature RE .
Let∇�(T ∗(0,1)X),∇�(T ∗(0,1)X)⊗E be the connections on�(T ∗(0,1)X),�(T ∗(0,1)X)⊗

E induced by ∇T X and ∇E with curvatures R�(T ∗(0,1)X), R�(T ∗(0,1)X)⊗E . Then
∇�(T ∗(0,1)X) is the Clifford connection ∇Cliff on �(T ∗(0,1)X) in Section 1.

Let {wi } be an orthonormal basis of T (1,0)X , by the above discussion and (1.9), we
have

RT X = RT (1,0)X , RCliff = R�(T ∗(0,1)X) = 〈RT Xwi , w j 〉w j ∧ iwi ,

Tr[RT (1,0)X ] = 〈RT Xwk, wk〉, r X = 2〈RT X (w j , w j )wk, wk〉.
(2.5)

Let ∂
E,∗

be the formal adjoint of the Dolbeault operator ∂
E
along the fibers X with

respect to (1.10), then

D = √
2(∂

E + ∂
E,∗

) (2.6)

is the Dirac operator along the fiber X (cf. [30, Theorem 1.4.5]). Moreover,

D2 = 2
(
∂
E
∂
E,∗ + ∂

E,∗
∂
E
)

(2.7)

preserves the Z-grading of �0,•(X , E).
For s ∈ X , let H•(Xs, E) be the Dolbeault cohomology of E along the fiber Xs .
By the Hodge theory, for any q ∈ N, s ∈ S, we have

Ker(Ds |�0,q ) = Hq(Xs, E). (2.8)

Assumption The rank of H•(Xs, E) is locally constant for s ∈ S.

By the Assumption, H•(Xs, E) (s ∈ S) form a smooth vector bundle H•(X , E)

on S, and it is the direct image of the sheaf of the holomorphic sections of E for the
map π . Thus H•(X , E) is canonically a holomorphic vector bundle on S.
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Recall that P is the orthogonal projection from �0,•(X , E) onto Ker(D). The L2-
product on �0,•(X , E) induces naturally a metric hH•(X ,E) on H•(X , E) by (2.8).
We denote also by∇H•(X ,E) the connection on H•(X , E) defined by (1.16) and (2.8).
By (1.13), (2.3) and (2.4), we know that for U ∈ TRS,

∇H•(X ,E)
U = P∇�(T ∗(0,1)X)⊗E

UH P. (2.9)

The following result was established by [13, Theorem 3.2] (cf. [11, Theorem 3.11]).

Theorem 2.2 The connection ∇H•(X ,E) is the Chern connection on (H•(X , E),

hH•(X ,E)).

2.2 Family Bergman kernels: a proof of Corollary 0.5 and Theorem 0.6

Let L be a holomorphic line bundle onW . Let hL be a Hermitian metric on L . Let ∇L

be the Chern connection on (L, hL) with curvature RL .
We suppose that ω :=

√−1
2π RL defines a fiberwise Kähler form along the fiber X .

Let hT
(1,0)X be the associated Kähler metric on T (1,0)X as in (0.2). Let T H

R
W ⊂

TRW be the sub-bundle defined by (0.13). Then the triple (π, hT
(1,0)X , T H

R
W ) defines

a Kähler fibration.
Wewill add a subscript p to denote the corresponding objects in Sect. 2.1 associated

to L p ⊗ E .
By (0.3), for p > p0,

H0(Xs, L
p ⊗ E) = H•(Xs, L

p ⊗ E) (2.10)

forms a smooth vector bundle H•(X , L p ⊗ E) = H0(X , L p ⊗ E) on S. Thus
H•(X , L p ⊗ E) is canonically a holomorphic vector bundle on S. The L2-product
on �0,•(X , L p ⊗ E) induces naturally a metric hH•(X ,L p⊗E) on H•(X , L p ⊗ E) by
(2.8).

In this case, by Theorem 2.2, (0.9), (0.11), (2.4) and (2.10) for any p > p0,

∇Ker(Dp) = ∇H0(X ,L p⊗E) (2.11)

is the Chern connection on (H0(X , L p ⊗ E), hH0(X ,L p⊗E)).
By Theorem 1.8, (1.114), (2.5), (2.6), (2.10) and a j = 2π in (1.89), we get

Theorem 2.3 Under the assumptions of this Section, for the asymptotic expansion
of RH0(X ,L p⊗E)(x, x ′) in Theorem 1.8, the polynomials Jr (Z , Z ′) ∈ �2(T ∗

R
S) ⊗

End(E)x0 (x0 ∈ Xs, s ∈ S), in Z , Z ′ is of the same parity as r and degJr ≤ 3r ,
whose coefficients are polynomials in RT X , RE (and T , RL ) and their derivatives of
order ≤ r − 2 (and ≤ r − 1, ≤ r ).

Now we will compute b2,1 in (0.24) by using (1.123).
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We fix x0 ∈ W and we use the notation in Section 1.5. Especially, {wi } (resp. {ei })
is an orthonormal basis of (T (1,0)

x0 X , gT X ) (resp. (TR,x0X , gT X )), and we will also use
the complex coordinates here.

We will evaluate our tensors at x0, and most of time, we will omit the subscript x0.
Set

Õ2 =1

3

〈
RT X
x0 (R, ei )R, e j

〉
∇0,ei ∇0,e j − RE

x0(w j , w j ) − r Xx0
6

+
(〈

1

3
RT X
x0 (R, ek)ek + π

3
RT X
x0 (z, z)R, e j

〉
− RE

x0(R, e j )

)
∇0,e j .

(2.12)

Lemma 2.4 Under the assumptions of this Section, for O1,O2 in (1.83), we have

O(0)
1 =0,

O(0)
2 =Õ2 − 〈RT X (R, el)wi , w j 〉x0w j ∧ iwi ∇0,el

+ 2
(
RE
x0 + 1

2 Tr
[
RT (1,0)X
x0

] )
(wi , w j )w

j ∧ iwi ,

O(1)
1 = − f α ∧ c(ei )∇0,T ( f Hα ,ei ),

O(2)
1 =1

2
f α ∧ f β

[
− ∇0,T ( f Hα , f Hβ ) + ∇Z (RL( f Hα , f Hβ ))

]
,

O(2)
2 =1

2
f α ∧ f β

{
〈RT X ( f Hα , f Hβ )wi , w j 〉x0w j ∧ iwi + RE

x0( f
H
α , f Hβ )

+ 1

2
(∇∇(RL( f Hα , f Hβ )))x0,(Z ,Z) − 〈∇T X

Z (T ( f Hα , f Hβ )), ei 〉x0∇0,ei

}
.

(2.13)

Proof By (1.33), (1.34), (1.89) and (2.1), we have in our situation

J = J TRX , a j = 2π, τ = 2πn. (2.14)

At first, as J TRX is integrable along the fiber X , we know that J TRX is parallel with
respect to ∇T X along the fiber, thus as in [30, (4.1.103)], in our normal coordinates,

∇T X
e j ei = 0, (∂k R

L)x0(e j , ei ) = 0 at x0. (2.15)

Note that for a (1, 1)-form R, by (1.8) as in [30, (1.3.3)], we have

1

2
R(ei , e j )c(ei )c(e j ) = 2R(wi , w j )w

j ∧ iwi − R(wi , wi ). (2.16)

The first two equations of (2.13) follow from [30, Theorem4.1.25] (or [22, Theorem
5.1]) where the restriction of the operators on C∞(R2n, Ex0) are obtained, and also
from [29, Theorem 2.2], (2.5), (2.14), (2.16) as well as the fact that RT X , RE are
(1, 1)-forms.
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Note that by (0.1) and (0.13),wehave RL ( f Hα , e j ) = 0.Now the last three equations
of (2.13) follow from (1.81), (2.4), (2.5) and (2.15). ��

From (0.13), (1.123) and (2.13), we get

Q2 = −PNO(1)
1 (L (0)

0 )−1PN⊥O(1)
1 PN + PNO(2)

2 PN

−(L (0)
0 )−1PN⊥O(0)

2 PNO(2)
0 − O(2)

0 PNO(0)
2 (L (0)

0 )−1PN⊥
. (2.17)

Note that for the Riemannian curvature RT X , for U , V ,W ,Y ∈ TRX , we have

〈
RT X (U , V )W ,Y

〉
=
〈
RT X (W ,Y )U , V

〉
,

RT X (U , V )W + RT X (V ,W )U + RT X (W ,U )V = 0.
(2.18)

For φ ∈ T ∗
R
X , by (1.91), we have

φ(ei )ei = 2φ( ∂
∂z j

) ∂
∂z j

+ 2φ( ∂
∂z j

) ∂
∂z j

, φ(ei )∇0,ei = φ( ∂
∂z j

)b+
j − φ( ∂

∂z j
)b j .

(2.19)

By (1.92), (1.98) and (2.14), we have

(b+
i PN )(Z , Z ′) = 0 , (bi P

N )(Z , Z ′) = 2π(zi − z′i )PN (Z , Z ′),
PN (0, 0) = IC⊗E .

(2.20)

From (1.93), (2.12), (2.14), (2.19), (2.20) and the fact that RT X , RE are (1, 1)-
forms, we get (cf. [30, (4.1.109)])

(PN⊥Õ2P
N )(·, 0) =

{
PN⊥[1

3

〈
RT X (R, ∂

∂zi
)R, ∂

∂z j

〉
bi b j

− 4π

3

〈
RT X (R, ∂

∂zk
)R, ∂

∂zk

〉
− 2

3

〈
RT X (R, ∂

∂zk
) ∂

∂zk
, ∂

∂z j

〉
b j

− π

3

〈
RT X (z, z)z, ∂

∂z j

〉
b j + RE (R, ∂

∂z j
)b j

]
PN

}
(·, 0)

=
{
PN⊥[1

6

〈
RT X (z, ∂

∂zi
)z, ∂

∂z j

〉
bi b j + RE (z, ∂

∂z j
)b j

]
PN

}
(·, 0).

(2.21)

By Theorem 1.12, (1.93), (2.18) and (2.21), we get (cf. [30, (4.1.109)])

(PN⊥Õ2P
N )(·, 0) =

{
PN⊥[bib j

6

〈
RT X (z, ∂

∂zi
)z, ∂

∂z j

〉

+4bi
3

〈
RT X (z, ∂

∂zi
) ∂
∂z j

, ∂
∂z j

〉
+ b j R

E (z, ∂
∂z j

)
]
PN

}
(·, 0).
(2.22)

From (1.98) and (2.13), we have

PN⊥
(O(0)

2 − Õ2)P
N = 0. (2.23)
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From Theorem 1.12, (2.22) and (2.23), we get

(
(L (0)

0 )−1PN⊥O(0)
2 PN

)
(·, 0) =

{[
bib j

48π

〈
RT X (z, ∂

∂zi
)z, ∂

∂z j

〉

+ bi
3π

〈
RT X (z, ∂

∂zi
) ∂
∂z j

, ∂
∂z j

〉
+ b j

4π
RE (z, ∂

∂z j
)

]
PN

}
(·, 0). (2.24)

Let hi (Z) (resp. F(Z)) be polynomials in Z with degree 1 (resp. 2). By Theo-
rem 1.12, (1.93) and (2.20), we have

(b j h jP)(0, 0) = −2
∂h j

∂z j
, (bib j F(Z)P)(0, 0) = 4

∂2F

∂zi∂z j
,

(Ph jb jP)(0, 0) = 2
∂h j

∂z j
.

(2.25)

Note that L (0)
t is a formally self-adjoint elliptic operator with respect to ‖ ‖0,

thus L (0)
0 ,O(0)

r are also formally self-adjoint with respect to ‖ ‖0. Thus from (2.5),
(2.20), (2.24) and (2.25) (cf. [31, (2.39)] or [30, (4.1.110)]), we get

−(PNO(0)
2 (L (0)

0 )−1PN⊥
)(0, 0) = −((L (0)

0 )−1PN⊥O(0)
2 PN )(0, 0)

= 1

2π

{〈
RT X ( ∂

∂zi
, ∂

∂z j
) ∂
∂z j

, ∂
∂zi

〉
+ RE ( ∂

∂z j
, ∂

∂z j
)
}
IC⊗E

= 1

2π

{
1

8
r Xx0 + RE

x0(
∂

∂z j
, ∂

∂z j
)

}
IC⊗E . (2.26)

By (0.13), (1.80), (1.98) and (2.2), we have

O(2)
0 = −2π

√−1ωH
x0 , O(2)

0 PN = PNO(2)
0 . (2.27)

From (2.27) and (2.26), we get

(
− (L (0)

0 )−1PN⊥O(0)
2 PNO(2)

0 − O(2)
0 PNO(0)

2 (L (0)
0 )−1PN⊥)

(0, 0)

= −2
√−1ωH

x0

{
1

8
r Xx0 + RE

x0(
∂

∂z j
, ∂

∂z j
)

}
IC⊗E . (2.28)

Let {gα} be a basis of the holomorphic tangent bundle T (1,0)S with dual basis {gα}.
From [10, Theorem 1.7] (or [9, Theorem 2.5]) and (1.6),

the tensor T is a real (1, 1) − form with values in TRX and

T (gHα ,wi ) ∈ T (1,0)X , T (gHα ,wi ) ∈ T (0,1)X .
(2.29)
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By (1.90) and (2.29), we get

T (gHα ,wi ) = 2〈T (gHα ,w j ),
∂

∂zk
〉 ∂
∂zk

. (2.30)

By (1.8), (1.91), (2.13) and (2.30), we get

O(1)
1 = √

2
(
gα ∧ iw j ∇0,T (gHα ,w j )

− gα ∧ w j∇0,T (gHα ,w j )

)

= √
2gα ∧ iw j 〈T (gHα ,w j ),

∂
∂zk

〉b+
k

+√
2gα ∧ w j 〈T (gHα ,w j ),

∂
∂zk

〉bk . (2.31)

Thus by (1.98), (2.20) and (2.31), we have

O(1)
1 PN = √

2gα ∧ w j 〈T (gHα ,w j ),
∂

∂zk
〉bk PN . (2.32)

By Theorem 1.12, (1.94), (2.14) and (2.32), we getL (0)
0 O(1)

1 PN = 8πO(1)
1 PN . Now

from (1.90), (1.93), (2.20), (2.31) and (2.32), we get

−PNO(1)
1 PN⊥

(L (0)
0 )−1O(1)

1 PN

= − 1

4π
PN gβ ∧ iwi 〈T (gHβ ,wi ),

∂
∂zl

〉b+
l g

α ∧ w j 〈T (gHα ,w j ),
∂

∂zk
〉bk PN

= 1

2
gβ ∧ gα〈T (gHβ ,w j ), T (gHα ,w j )〉x0 PN . (2.33)

Let F(Z) be a polynomial in Z with degree 2. Then by (2.20), we have

(F(Z)P) (Z , 0) =
(1
2

∂2F

∂zi∂z j
zi z j + ∂2F

∂zi∂z j
zi

b j

2π
+ 1

2

∂2F

∂zi∂z j

bi b j

4π2

)
P(Z , 0).

(2.34)

By Theorem 1.12, (1.93) and (2.34),

(PF(Z)P) (Z , 0) =
(1
2

∂2F

∂zi∂z j
zi z j + 1

π

∂2F

∂z j∂z j

)
P(Z , 0). (2.35)

From (1.98), (2.13), (2.19) and (2.20), we have

PNO(2)
2 PN = 1

2
f α ∧ f β PN

[
RE ( f Hα , f Hβ ) + 1

2
(∇∇(RL( f Hα , f Hβ )))(Z ,Z)

+〈∇T X
Z (T ( f Hα , f Hβ )), ∂

∂z j
〉b j

]
PN . (2.36)

From (0.1), (2.25), (2.35) and (2.36), we get

(PNO(2)
2 PN )(0, 0) = 1

2
f α ∧ f β

[
RE ( f Hα , f Hβ )
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−2
√−1(∇∇(ω( f Hα , f Hβ )))

(
∂

∂z j
,

∂
∂z j

)

+2〈∇T X
∂

∂z j

(T ( f Hα , f Hβ )), ∂
∂z j

〉
]
IC⊗E . (2.37)

From (2.4), for U , V ∈ TRS, we get

∇e j ∇ei (ω(UH , V H )) = −∇e j (ω
X (T (UH , V H ), ei ))

= −ωX (∇T X
e j T (UH , V H ), ei )

−ωX (T (UH , V H ),∇T X
e j ei ). (2.38)

Recall that we are using the normal coordinates, from (0.2), (2.15) and (2.38), at x0,
we have

(∇∇(ωH (UH , V H )))(ei ,e j ) = (∇∇(ωH (UH , V H )))(e j ,ei )

= ∇e j ∇ei (ω
H (UH , V H ))

=
〈
∇T X
e j T (UH , V H ), J TRXei

〉
. (2.39)

From (2.37) and (2.39), we get

(PNO(2)
2 PN )(0, 0) = 1

2
f α ∧ f β RE

x0( f
H
α , f Hβ )IC⊗E . (2.40)

Now by [6, Theorem 4.14] (cf. [5, Proposition 10.9], [8, (11.61)]), for the tensor S
in (1.4), we have for X ,Y ∈ TRX , Z ,W ∈ TRW ,

〈
RT X (X ,Y )PT X Z , PT XW

〉
+
〈
(SPT X S)(X ,Y )Z ,W

〉

+
〈
(∇T X S)(X ,Y )Z ,W

〉
=
〈
RT X (Z ,W )X ,Y

〉
. (2.41)

By (1.6), if U , V ∈ TRS, X ,Y ∈ TRX , we have

〈
(∇T X S)(X ,Y )UH , V H

〉
= 1

2

〈
∇T X
X T (UH , V H ),Y

〉
− 1

2

〈
∇T X
Y T (UH , V H ), X

〉
.

(2.42)

Note that we are using the normal coordinates, thus as in (2.15), for a function h along
the fiber X , the positive Laplacian X acts on h as

Xh = −4
∂2h

∂z j∂z j
at x0. (2.43)
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From (2.39), (2.42) and (2.43), we get

〈
(∇T X S)( ∂

∂z j
, ∂

∂z j
) f Hα , f Hβ

〉
x0

= 1

2
〈∇T X

∂
∂z j

(T ( f Hα , f Hβ )), ∂
∂z j

〉

−1

2

〈
∇T X

∂
∂z j

(T ( f Hα , f Hβ )), ∂
∂z j

〉

= √−1
∂2

∂z j∂z j
ωH ( f Hα , f Hβ )

= −
√−1

4
XωH ( f Hα , f Hβ ). (2.44)

By (1.6) and the fact that S(·) takes values in anti-symmetric elements of
End(TRW ), we find that for U , V ∈ TRS, X ,Y ∈ TRX ,

〈
(SPT X S)(X ,Y )UH , V H

〉

=
〈
S(X)PT X S(Y )UH , V H

〉
−
〈
S(Y )PT X S(X)UH , V H

〉

=
〈
PT X S(X)UH , PT X S(Y )V H

〉
−
〈
PT X S(Y )UH , PT X S(X)V H

〉

=
〈
T (UH , X), T (V H ,Y )

〉
−
〈
T (UH ,Y ), T (V H , X)

〉
. (2.45)

From (2.20), (2.29), (2.33), (2.41), (2.44) and (2.45), we get

−(PNO(1)
1 PN⊥

(L (0)
0 )−1O(1)

1 PN )(0, 0)

= 1

2

〈
(SPT X S)(w j , w j )g

H
β , gHα

〉
gβ ∧ gαPN (0, 0)

= 1

2

〈
(SPT X S)( ∂

∂z j
, ∂

∂z j
) f Hα , f Hβ

〉
f α ∧ f β IC⊗E

= 1

2
f α ∧ f β

[ 〈
RT X ( f Hα , f Hβ ) ∂

∂z j
, ∂

∂z j

〉
+

√−1

4
X (ω( f Hα , f Hβ ))

]
IC⊗E

=
[(1

2
Tr[RT (1,0)X

x0 ]
)H +

√−1

4
X ,x0ω

H
]
IC⊗E . (2.46)

As we work on E , IC⊗E = IdE . From (2.17), (2.28), (2.40) and (2.46), we get

b2,1(x0) = Q2(0, 0) = −2
√−1ωH

x0

{
1

8
r Xx0 + RE

x0(
∂

∂z j
, ∂

∂z j
)

}

+
[
RE
x0 + 1

2
Tr[RT (1,0)X

x0 ]
]H +

√−1

4
X ,x0ω

H . (2.47)

Note that for any 2-form ϑ on W , by (1.19) and (2.2), we have

(ϑ ∧ ωn)(2) = (nϑ ∧ (ωX )n−1)(0) ∧ ωH + ϑH ∧ (ωX )n
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= (−√−1ϑ(w j , w j )ω
H + ϑH ) ∧ (ωX )n . (2.48)

From (2.2), (2.5), (2.47) and (2.48), we get the first two equations of (0.24).
By [30, Lemma 7.2.4, p. 314], for any h ∈ C∞(Xs) and f ∈ C∞(Xs,End(E)),

we have

T f ,p(x, x) = f (x)pn + O(pn−1),

Th,p(x, x) =h(x)pn +
(
b1(x)h(x) − 1

4π
(Xh)(x)

)
pn−1 + O(pn−2),

with b1(x) = 1

8π
r X + 1

2π
RE (w j , w j ).

(2.49)

Theorem 0.4, (2.47) and (2.49) imply that in (0.20), we have

R1 = b2,1 −
(
b1(x)b2,0(x) − 1

4π
(Xb2,0)(x)

)

=
(
RE + 1

2
Tr[RT (1,0)X ]

)H −
√−1

4
XωH . (2.50)

The proof of Theorem 0.6 is completed.

Proof of Corollary 0.5 Let hT
(1,0)S be aHermitianmetric on T (1,0)S, and hT S⊗H0

be the
Hermitian metric on T (1,0)S⊗ H0(X , L p ⊗ E) induced by hT

(1,0)S and hH0(X ,L p⊗E).
We define ṪR0,p ∈ End(T (1,0)S ⊗ H0(X , L p ⊗ E)) such that for u, v ∈

T (1,0)S, σ1, σ2 ∈ H0(X , L p ⊗ E),

hT S⊗H0
(ṪR0,p(u ⊗ σ1), v ⊗ σ2) := 〈TR0(uH ,vH ),pσ1, σ2〉. (2.51)

We define for u, v ∈ T (1,0)S, ξ, η ∈ L p ⊗ E ,

h p(u ⊗ ξ, v ⊗ η) = −2π
√−1ωH (uH , vH )hL

p⊗E (ξ, η). (2.52)

Asω is a Kähler form onW , h p is in fact a Hermitian metric on π∗(T (1,0)S)⊗L p⊗E .
But as R0 = −2π

√−1ωH , we know at s ∈ S,

hT
(1,0)S⊗H0

(ṪR0,p(u ⊗ σ1), v ⊗ σ2) =
∫
Xs

h p(u ⊗ σ1(x), v ⊗ σ2(x))(ω
X (x))n/n!

(2.53)

Thus ṪR0,p is positive definite. Combining with (0.20), we get Corollary 0.5. ��
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