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Abstract

We establish an asymptotic version of Bismut’s local family index theorem for the
Bergman kernel. The key idea is to use the superconnection as in the local family
index theorem.

0 Introduction

The recent study of the Bergman kernel in complex geometry mainly started with
the paper of Tian [44], which was in turn inspired by a question of Yau. Since [44],
the Bergman kernel has been studied extensively in [20, 27, 40, 46], establishing the
diagonal asymptotic expansion for high powers of an ample line bundle. Moreover,
the coefficients in the asymptotic expansion encode geometric information of the
underlying complex projective manifolds. This asymptotic expansion plays a crucial
role in the work of Donaldson [24], where the existence of Kihler metrics with constant
scalar curvature is shown to be closely related to the Chow—Mumford stability.

In [22, 31, 32], Dai, Liu, Ma and Marinescu studied the asymptotic expansion of
the (generalized) Bergman kernel of the spin“ Dirac operator and the renormalized
Bochner—Laplacian associated to a positive line bundle on a compact symplectic man-
ifold. As a by product, they gave a new proof of the results mentioned in the previous
paragraph. They found also various applications therein, especially, as established in
[32], the full off-diagonal asymptotic expansion implies Toeplitz operator type proper-
ties. Also Ma and Zhang [33, 35] generalized some of the above results to the context
of geometric quantization.
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2208 X.Ma, W. Zhang

We refer the readers to the book [30] for a comprehensive study of the Bergman
kernel, the Berezin—Toeplitz quantization and their applications. The point of view of
the approach is from the local index theory, especially from the analytic localization
techniques developed by Bismut-Lebeau [12, §11]. A simple principle of this approach
is that the existence of the spectral gap of the operators implies the existence of
the asymptotic expansion of the corresponding Bergman kernel if the manifold X is
compact or not, or singular, or with boundary. Moreover, a general and algorithmic
way to compute the coefficients in the expansion is presented.

The purpose of this paper is to establish an asymptotic version of Bismut’s local
family index theorem for the Bergman kernel. In the introduction, we only formulate
the results in the fiberwise positive holomorphic line bundle case, while the main
results hold also in the fiberwise symplectic case.

Let W, S be smooth compact complex manifolds with S being connected. Let
m : W — S be a holomorphic submersion with compact fiber X and dim¢ X = n.

Let J®X be the complex structure on Tk X, the relative real tangent bundle of 7.

Let L, E be holomorphic vector bundles on W and the rank rk(L) of L is 1. Let
h™, h® be Hermitian metrics on L, E. Let VX, VE be the Chern (i.e., holomorphic
Hermitian) connections on (L, h%), (E, h®) with curvatures RL, RE. Set

w = ERL. 0.1)
2

Then w is a smooth real 2-form of complex type (1, 1) on W.
We suppose that w defines a fiberwise Kihler form along the fiber X, i.e.,

¢ (u, v) = w(u, JT®Xv) 0.2)

defines a Riemannian metric on T X. This simply means that (L, h’) is a fiberwise
positive line bundle on W. We denote by WX the corresponding Hermitian metric
on T X the holomorphic relative tangent bundle of 7.
For a differential form 9 on S, we will denote by # its component in A (T3%S).
By the Kodaira vanishing theorem and (0.2), there exists pg € N such that for any
p > po,s € S, for the Dolbeault cohomology groups of L? ® E along the fiber X,
we have

HY(X;,LP  E) =0 forany ¢ > 0. (0.3)

Then H(X, L? ® E) forms a holomorphic vector bundle on S for p > pg. From now
on, we always assume p > po.
By the Riemann—Roch—Grothendieck theorem, for p > pg, we have (cf. (1.26))

ch(H*(X, L? ® E)) =/ TATEOX) ch(E)ch(L?) in H*(S,R).  (0.4)
X
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Superconnection and family... 2209

The component in H 0(S, R) of (0.4) is the Riemann-Roch-Hirzebruch theorem,

)
dim HY (X, L? Q E) = U Td(T"9 X) ch(E) ch(LI’)]
X

_ c(L)" tk(E) 10 ) 1"
_rk(E)/x —p +/X(“(E)+T”(T ) o

+0(p" ). (0.5)

For s € S, let P, be the orthogonal projection from €*°(X,, L” ® E) onto
HO(X,,L? ® E). Let P,(x,x") (x,x" € Xs,5 € §) be the smooth kernel of P,
with respect to the Riemannian volume form dvy (x") (Note that dvy = (@O /n).
Then P, s(x, x") is smoothon s € S, and we denote it simply by P, (x, x”), especially,
P,(x, x) € End(E,).

The results of [20, 22, 27, 30, 31, 40, 44-46] tell us that there exist b, €
€*° (X5, End(E)), (r € N) such that for any k,/ € N, there exists C > 0 such
that for any p € N*, we have

<Cp k1, (0.6)

k
1 —r
i ps (X, X) = D br(xX)p o =

r=0

and the first two coefficients bg, b; coincide with the local Riemann—-Roch—
Hirzebruch theorem, i.e., the leading term of the Chern—Weil representative of
Td(T 19 X) ch(E) ch(LP) with respect to the metrics 27" X hL, hE.

By (0.4), in H?(S, R), we have

@
a(HYX,LP @ E)) = U Td(T9 X) ch(E) ch(L”)]
X

_ CI(L)n+1 41 . rk(E)‘ 1,0) c (L) n
= k) [ L [ (e + B 00) 4,

+0(p" . 0.7)

Now, from the local index theory point of view [6], it is nature to ask whether the
analogue of (0.6) still holds on the higher degree, so that one can refine (0.7) to
an equality of differential forms via Chern—Weil representatives. We will prove the
existence of the expansion of the curvature operator of the vector bundles H(X, L? ®
E), and compute the first two coefficients in the expansion in this paper.

To define a canonical connection on H%(X, L? ® E) via the connections VL, VE,
we need to introduce a horizontal sub-bundle Tlé'l W of TpW.

Let Tﬂg W be a sub-bundle of Tr W such that Tﬂg W is invariant by the complex
structure on T W and

TRW = THW @ TrX. (0.8)
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2210 X.Ma, W. Zhang

For U € TgS, let UM € THW be the lift of U. Let VLP®E pe the connection on
L? ® E induced by V&, VE For U € TS, 0 € €°(S, H*(X, L? ® E)), we define

HY(X,LPQE
v X = pVLOE PG, (0.9)

Then VA" (X:L"®E) i5 a holomorphic connection on H'(X, L? ® E) with curvature
RH°(X.LP®E) byt it need not to be a Hermitian connection with respect to the usual
L2 metric A" XLP®E) on HO(X | LP @ E) (cf. (1.10)).

Let D, be the Dirac operator associated with L” ® E (see (2.6) for details). Then by
the Hodge theory and (0.3), HY(X,LP ® E) = Ker(D)) for p > po. We now define
another connection VX'(P») which has a natural symplectic version. Let k € RW
be such that for U € TS, X € Tr X,

1
kU = 5 Lyndvx)/dvox, k(X) =0, (0.10)
where £, is the Lie derivative of U # . The canonical Hermitian connection VXer(P»)

on (H'(X, LP ® E), hH"X.L"®E)) i5 defined by

Ker(Dp)

Vuy

= P, (VL2 +k(U™)P, (0.11)
with curvature RXe'Pp) put VKer(Dp) peeds not to be holomorphic. Let

RHO(X,LP(X)E)(X’ x/)’ RKCI'(DP)(x’x/) c AZ(THzS) ® (Lp ® E)x ® (Lp ® E);/
0.12)

(x,x' € X,, s € S) be the smooth kernels of the operators R (X-LV®E) | RKer(Dp) with
respect to dvx (x'). Then R#'X-L7®E) (x ) RKer(Dp) (x x) € A2(TS)®End(Ey).

Remark 0.1 If
THEW = {u € /W : @(u, X) =0 forany X € TrX}, (0.13)

then the triple (7, gTRX , Tlé{ W) defines a Kéhler fibration in the sense of [ 10, Definition
1.4]. In this case, the connection VXe'(Pp) is the Chern connection on (H 0(X ,LP ®
E), hH'X.LP®E)) anq

k=0, VKerDp) _ yH (X.L'®E), (0.14)

The following result is a special case of Theorem 1.8 where one finds also its
symplectic version. Let T € A2(T]§ W) ® Tr X be the torsion tensor defined by (1.5).

Theorem 0.2 There exist smooth sections by ,(x) € <5""(W,y'r’k(Az(TﬂifS)) ®
End(Ey)), (r € N) which are polynomials in RTX, RT"”X (cf. Sect. 1.1), RE
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Superconnection and family... 2211

(resp. T, RL), their derivatives of order < 2r — 2 (resp. 2r — 1, 2r) along the fiber
X, with

(wn+l)(2)

bro=—-2mv—1————1Idg,
20 = TN T+ D@ F

(0.15)

such that for any k,l € N, there exists Ci,; > 0 such that for any p € N, p > po,

k
1 0 2 —r
n_+1RH (X,L1®E)(x,x) _ sz,r(x)p

< Crip L (0.16)
p r=0

W)

For RKer(DP)(x, x), we have the similar expansion as (0.16), with the same leading
term by o in (0.15), and the corresponding by ,(x) depends also on the derivatives of
dk of order < 2r — 2 along the fiber X.

Let {w;} be an orthonormal frame of (79 X hT(l'O)X). Let {gy} be a frame of
719§ with its dual frame {g®}. From (0.15), we get

bro = 278" AT [~V Tol! Bl - ol o @) ). ©.17)

Remark 0.3 From (0.16)and (0.17), the curvatures R’ X-L7®E) () RKer(Dp) (x )
give us a natural approximation of the curvature on the space of Kihler metrics. Thus
it should be naturally related to the existence problem of geodesics on the space of
Kéhler metrics (cf. [23, 36-38, 41]). Let (X, wp) be a compact Kéhler manifold of
dimension 1, we suppose that there exists aholomorphic Hermitian line bundle (L, h’)
such that its first Chern form ¢y (L, %) is wp. Then the space of Kihler metrics in the
cohomology class [wo] is

M={p: X —> R;ci(L, e_zn“’hl‘) = w(y + v/ —1030¢ defines a Kihler form}/ ~, (0.18)

where ¢ ~ ¢ if and only if ¢; = ¢y + ¢ for some constant ¢. For any complex
manifold S of dimension 1 with maps ¢ : S — M. Let p1, p» be the natural projec-
tions from W = X x S onto X, S. We have the holomorphic Hermitian line bundle
(piL, e~ 2% Ly on W. In this case, if we take Tlé{W = p5TRS, p(x,5) = ¢y(x),
then (0.17) reads as

byo = 27rg1 /\gl |:—\/—10)(81»§1) — lw(g1, ')|iT(1‘O)Xj|
— =S — =X
=28 A [(asa 9)(81.81) = (@ asw)(gl,-)@,a.mx] (0.19)

Thus by o = 0 is the geodesic equation in [37, (1.2)].

The second main result of this paper is as follows.
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2212 X.Ma, W. Zhang

Theorem 0.4 The curvature operators

1 1
—RIPXCLPOE) _ RKer(Dy) ¢ (S, End(HO(X, L” ® E)))
P P

are Toeplitz operators in the sense of Definition 1.16 for any s € S, and their leading
symbols coinside and equal to b o, i.e., there exists R, € €°(W, n*(Az(T]fgS)) ®
End(E)), (r € N) such that for any k € N, when p — +00, under the operator norm
of the morphisms of vector bundles: H*(X, L? ® E) — A2(TH§S) QHYX,LP®E)
over S, we have

k

1
pRHO(XLp®E) > Tr.pp"+ O, with T, , = P,R. P, Ro=bay.
r=0

(0.20)

Equation (0.20) for k = 0 implies that there exists C > 0 such that for any s € S,
01,00 € HO(X, LP ® E), we have

/ HO wn—i—l
X, LP®E)U , O / o1, O —||O O
<2np s 2 X.q< 1 2>LP®E( D p|| tlz2llo2ll 2.

<'3

0.21)

From (0.14), Eq. (0.21) gives an asymptotic exact local formula of the curvature
estimate given in [1, §6]. Cf. also [2, 3] for further related works.
A simple corollary of Theorem 0.4 is as follows:

Corollary 0.5 If (L, h') is positive on W, then for p large enough, (H*(X,L? ®
E), hHO(X’Lp@E)) is Nakano positive on S.

In particular, if (F, Kt ) is a Griffiths positive vector bundle on S (cf. [30, Def.
1.1.6]), then the projectivization P(F') of F with the hyperplane line bundle O(1) over
P(F) is a positive line bundle on P(F) and for any s € S,

(HO(]P’(FS), O(p)), hH"(P(Fv%O(P))) — (SPF, hS"F), 0.22)

the p-th symmetric product of (F, 2. Thus from Corollary 0.5, for any holomorphic
Hermitian vector bundle (F', hf') on S, (SPF ® F', h"F @ h*") is Nakano positive
for p large enough.
Assume now (0.13) holds. For a differential form 9 on W, we write 97, 9% it
components in 7*(A(Ty S)) ® C, C® A (T X) under the decomposition A (T W)
*(A(T*S))®A(T*X) via (0.8). Then by (0.13), we have

w=0X+ofl with o =g%A Eﬁa)(gf, §g). (0.23)
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Superconnection and family... 2213

Mo(rleoover RTRX coinsidesl\glith R T0x and is the curvature of the Chern connection
VI on (70X, h,T"”X) Let Ay be the (positive) Laplacian along the fiber
(X, gT=%),

Theorem 0.6 [f (0.13) holds, then for bs o, ba 1 in (0.16), Ry in (0.20), we have
bao = —27T\/—la)H,
2)
1 710y E —1 H ()
((5 TR™ )+ RE 4+ = axe )" ) @O (04

V=1
4

<>
N
I

Ry = (RE + %Tr[RT““’)X])H — Y Axot.

Remark 0.7 1) If we take the trace on E and the integral along X for (0.16), from
(0.15) and (0.24), we refine (0.7) on the level of differential form in the spirit of
local index theory. Note that for p > pg, on the determinant line bundle A, =
det HO(X, L? ® E) over S, the Quillen metric || || o [11, Definition 1.5] is the product
of the L?-metric| || 12 and the associated analytic torsion 7. The curvature formula of
Bismut-Gillet-Soulé [11, Theorem 1.27] expresses its first Chern form c1 (A p, | [Ig)
as the Chern—Weil representatives of the right hand side of the first line of (0.7).
Comparing with these two results, we know that

ddlogt, = O(p"~') onsS. (0.25)

Recently, by extending Bismut—Vasserot’s result [15], Finski [25] obtained a full
asymptotics of log 7, as p — 400 which refines (0.25).

ii) As explained in Remark 1.9, from Theorems 1.7 and 1.8, we get imme-
diately the existence of the same type asymptotic expansion as (0.16) for
#(RK“(DP))I‘ (x, x) for k > 1 with leading term blzc’o. Also by [30, Theorem

7.4.1] and Theorem 0.4, we know that p—lk (R¥er(Pp)yk s a Toeplitz operator with

leading symbol b’io.

The last result of our paper is

Theorem 0.8 For any f € €(W,End(E)), U € (S, TgS), Vi "' T;

VLI;IO(X’LP@E) Ty, p are Toeplitz operators with leading symbol le}r}f(E)f.

We will combine the superconnection framework [6] with the local index technique
developed for Bergman kernels [22, 30] to prove our results. One of the important fea-
tures of the superconnection formalism is that the superconnection itself has derivatives
along the horizontal direction, but its curvature is a second order elliptic differential
operator along the fiber X. This allows us to work directly on each fiber without taking
derivatives along the horizontal direction. This is also one of the key points in the local
family index theory [6]. By combining with the formal power series trick in [31], we
get in fact a general and algorithmic way to compute the coefficients in the expansion.
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2214 X.Ma, W. Zhang

This paper is organized as follows. In Sect. 1, we establish a general asymptotic
expansion for the curvature of the kernel bundle of a family of spin® Dirac operators,
Theorem 1.8. Then as a consequence, we show that the curvature operator is a Toeplitz
operator, thus establishing Theorems 0.2 and 0.4. We establish also Theorem 1.19, as
a symplectic version of Theorem 0.8. In Sect. 2, in the holomorphic situation, we
explain our result in detail, and establish Corollary 0.5 and Theorem 0.6.

Some results of this paper have been announced in [34]. We will not try to update
the complete references. We simply point out our results have been used in the study
of the asymptotics of the analytic torsion in the recent works [14, 39].

Notation: When we work in the holomorphic situation, we will add a subscript R for
the corresponding real objects. Thus 7' X is the holomorphic relative tangent bundle
of m, and Tr X is the corresponding real bundle.

For an operator A, we denote Spec(A) its spectrum, Ker(A) its kernel and Coker(A)
its cokernel. As in [5, §1.3], for two operators A, B with Z;-grading, [A, B] means
their supercommutator [A, B] = AB — (—1)degAdegBp A For Z,-graded algebras
A, B with identity, we denote by A®B the Z,-graded tensor product of A and B with
product

(a1 ® by) - (a2 ® by) = (—1)4€2%El1 4,00 @ by by. (0.26)

When an index variable appears twice in a single term, it means that we are summing
over all its possible values.

1 Asymptotic expansion of family Bergman kernels

In this Section, we establish a general off-diagonal asymptotic expansion for the cur-
vature of the kernel bundle of a family of spin® Dirac operators in Theorem 1.8. We
work in the fiberwise symplectic case in Sects. 1.1-1.7.

This Section is organized as follows. In Sect. 1.1, as a motivation of our work, we
explain Bismut’s superconnection and his local family index theorem. This part gives
us the inspiration how to get a family version of Bergman kernels, especially, how to
use the superconnection. In Sect. 1.2, we review the results in [22] and explain how they
depend on the parameters. In Sect. 1.3, we explain a general off-diagonal asymptotic
expansion for the curvature of the kernel bundle of a family of spin® Dirac operators
in Theorem 1.8. In Sect. 1.4, we explain how to introduce the superconnection here
to solve our problem. In Sect. 1.5, we explain the Taylor expansion of the rescaled
curvature of the superconnection, and the spectrum of the limit operator. In Sect. 1.6,
we give a way to compute the coefficients in the expansion by combining with the
formal power series trick in [31, §1.5] (cf. [30, §4.1.7]). Especially, we compute
the leading coefficient. In Sect. 1.7, we explain the curvature operator as a Toeplitz
operator. In Sect. 1.8, we establish Theorems 0.2, 0.4 and 0.8.
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Superconnection and family... 2215

1.1 Local family index theorem

Let W, S be two smooth manifolds. Let 7 : W — S be a smooth submersion with
compact fiber X and dimgp X = 2n. Let T X be the relative tangent bundle of the
fibration 7. Let g7 ¥ be a metric on T X.

Let E be a complex vector bundle on W with a Hermitian metric 2. Let VE be a
Hermitian connection on (E, hE).

Let T W be a sub-bundle of T W such that

TW=TweorX. (1.1)

Let PTX be the projection from TW onto TX. For U € TS, let U¥ € TH W be the
lift of U, i.e., dm (U™) = U. We denote by Ly the Lie derivative of Ut

Definition 1.1 [6, Definition 1.6] The canonical metric connection V7' X on (TX —
W, g7%) is defined by the following properties.

a) On each fiber X, VT X restricts to the Levi—Civita connection of (T X, g7%).
b) If U € TS, then

1
VIX =Lyn+ 5(g”)—l(ﬁuyg”). (1.2)

Let RTX be the curvature of VI X,

Let g”S be a Riemannian metric on 7'S. Let g7% = 7%g”5 @ g7 be the induced
metricon T W via(1.1). Let VI'W | V7S be the Levi-Civita connections on (T W, gTW),
(TS, gT5). Then by [10, Theorem 1.2] (cf. [8, Theorems 1.1 and 1.2]), we get

viX — pTXgyTW, (1.3)

Set

TW TW

0w " =prvISgvlX, s=vIW_0y'", (1.4)

Then °V” " is a Euclidean connection on TWand S € T*W Q End(TW). Let T
be the torsion of the connection OVTW. Then by [8, Theorem 1.1], for U,V € TS,

X,Y e TX, we have

Twh, viy=—_pT Xyt vH, T(X,Y)=0,

1.5
T, x) = %(g”)‘l(ﬁwg”)x (-

Moreover, from [6, (1.28)],for U,V € TS, X,Y € TX, we have
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2216 X.Ma, W. Zhang

(T, x),v)=(rWw?,v), x)=(s(x)u”,v),

(SxHUH, vy = %(T(UH, vHy x). (1.6)

From now on, we suppose that there exists an almost complex structure J7X on
TX and

g XX u, T = g™ (u, v). (1.7)
The almost complex structure J7X induces a splitting
TX®rC=T1T"9x@10VX,

where 79 X and 7D X are the eigenbundles of J7X corresponding to the eigen-
values v/—1 and —+/—1 respectively. We denote by PT"X the projection from
TX @g Cto THOX. Let 719X and T*-D X be the corresponding dual bundles.

For any v € TX ®g C with decomposition v = vj g + vo,1 € 700X @ T7ODX,
letv, € 70D X be the metric dual of vy o. Then

c(v) 1= V2] o A —iyg,) (1.8)

defines the Clifford action of v on A (T*©-D X), where A and i denote the exterior and
interior multiplications respectively.

Let VI""X — pTU"OX gTX pT"9X pe the Hermitian connection on T(h0 X
induced by VT X with curvature RT""”X . Let V! be the connection on the determinant
line det(T "0 X) := A*(T1-9 X) induced by vT""X,

By [26, pp.397-398], VX and V9 induce canonically a Clifford connection VCiff
on A(T*-D X)) with curvature R (cf. also [28, §21, [30, §1.3]).

Let {e;} be an orthonormal basis of 7 X. Then

. 1 1 .
RChff _ Z Z(RTXEia €.j)C(€i)C(ej) + 5 Tr I:RT(1 o)X] ) (1.9)
i,J

Let VAT *VX)®E pe the connection on A(T*®DX) ® E induced by VEIff and
VE,

Let (-, +) =00 x)gg be the metric on A(T*ODX) ® E induced by g"* and
hE. Let dvy be the Riemannian volume form of (7 X, g7 X). The L?-scalar product
on Q%*(X, E) = EBZZOQO’q(X, E), the space of smooth sections of A(T*DX)®

E = @ZzoAq(T*(O’l)X) ® E on X, is given by

(s1,82) = / (s1(x), $2(X)) 5 (7*0.0 x) E dVX (X). (1.10)
X
We denote the corresponding norm by ||-||;2.
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Superconnection and family... 2217

Definition 1.2 The spin® Dirac operator D is defined by
2n o
. *(©, . 0,- O,u
D= Zc(e,-)vj‘j” 0BE . QX E) — Q" (X, E). (1.11)
j=1
Clearly, D is a formally self-adjoint, first order elliptic differential operator on

Q%*(X, E), which interchanges Q%¢"(X, E) and Q%°4(X, E). Let D, be the
restriction of D on Q0¢¥" (X, E).

Assumption The rank of Ker(Dy) is locally constanton s € S.

Then Ker(D) forms a smooth vector bundle on S. Let AX¢"(?) be the metric on
Ker(D) induced by the scalar product ( ) in (1.10) on QY (X, E).
For s € S, let Py be the orthogonal projection from (SZO"(XX, E), { )) onto
Ker(Dy), then Ps is smooth on s € S. Set
Pt=1-pP. (1.12)

Letk € T*W be defined by forU € TS, X € TX,
1
k(UH) = E(EUHde)/de, k(X) =0. (1.13)
For U e TS, if s is a smooth section of QO"(X, E) over S, set

*(0,
Vs = VAT TOBE Lt (1.14)

Then V¥ is a Hermitian connection on the infinite dimensional vector bundle
QO"(X ,E) over S. Let R be the curvature of the connection V*, then by (1.5)
and (1.14), for U,V € TS,

. *(0,1)
R, V) = (RS 4 REYwH vHy 1 akUH, vH) - v;‘((gﬂ’vfi‘)m. (1.15)

Then V¥ induces a Hermitian connection VK (?) on (Ker D, hKer(P)) by
yKer(D) — py&p, (1.16)
The curvature RXe'(P) of vKer(D) jg
REer(D) . — (yKer(D))2 ¢ A2(T*§) @ End(Ker(D)). (1.17)

Let RKr D) (x| x"), exp(—R¥" D)) (x, x') (x, x’ € Xy, s € S) be the smooth kernel of
R¥er(D) " exp(— RKer(D)y with respect to dvy (x”).
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2218 X.Ma, W. Zhang

Let { f,} be a basis of T'S, and { f*} its dual basis. For u > 0, let ¢, : A(T*S) —
A(T*S) defined by

Y = u~ 48?2y, (1.18)

For Q an operator along the fiber with values in A(7T*S), we will denote by

dimp S

0= Z 09, with 0 e AN T*S)REnd(Q"*(X, E)). (1.19)
=0

We express now the curvature operator R¥"(?) by using superconnections. Let
B® e €W, n*(AX(T*S))® End(A(T* "V X) ® E))

such that it changes the parity of A(T*©DX). Foru > 0, set B, B, the superconnec-
tions on €°°(S, A(T*S)®Q%*(X, E)) defined by

1
B=D+ V% 4+ B®?, Bu=¢uﬁ3w;1=ﬁl)+v9+73<2>. (1.20)
u

Then Bg is a second order elliptic operator along the fiber X, and from (1.20),
(B8H)" =0 B =D+ BH", BHP =r*+[D,B¥), (121
and by [6, Theorem 2.5] and (1.5), we get

(85" =D, v¥]

. %(0,1)
= 1% nelen [ (RO 4+ REYSH, o) — k(£ = VT 09K (1.22)

By (1.21) and (1.22), for A ¢ Spec(Df), we have

dimp S
= BY = G- D) G- Y (B0 - DY
j=1

)j
T (1.23)
P(B>Hp =0.

From (1.16), (1.21), (1.22), (1.23) and the residue formula, if © < infcg{A >
0,1 € Spec(Df)}, we get the following important formula for the curvature operator
via the resolvent of the superconnection B,

RErD) — pRp _ pyiplyep
= PRP — P(BHV((BH )P VP

(1.24)
! [/ - B%‘MATZ)
2w/~ A= '
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In the rest of this paper, all estimates and convergences are uniformly with respect
to any compact subset of S. For simplicity, we will assume S is compact from now on.

We explain now that the connection VX'(?) is natural in the family index theory.
Let exp(—B,f)(x, x') (x,x’ € X5,s € S) be the smooth kernel of exp(—Blf) with
respect to dvy (x'). By [5, Theorem 9.19], for any [ € N there exists C; > 0 such that
for any u > 1, we have

e_Bl%(x, x') — exp(—RXP)) (x, x") < cu~'?, (1.25)
LW xsW)

where W x ¢ W is the fiberwise product of W over S. We recall finally Bismut’s
local family index theorem. For any Hermitian (complex) vector bundle (F', hF) with
Hermitian connection V¥ and curvature RF on W, set

—RF _pF
ch(F, VF) =Tr [exp <L)i| , ci1(F, VF) =Tr [L} ,
2/ —1 24/ —1

RF /(2m /1)
exp(RF /Q2n/—=1) — 1]

12
) R™X/@r/=1)

TXN .
ATX, VT¥) = (d“<smh<RTX/<2W—1>>>> '

Td(F, VF) := det ( (1.26)

They are closed differential forms on W and their cohomology classes do not depend
on the choice of the metric 47 and the connections V¥, VX The corresponding
cohomology classes are called the Chern character of F, the first Chern class of F, the
Todd class of F, the Hirzebruch A-class of T X and we denote them by ch(F), c1(F),
Td(F), A(TX).

Let Ny be the number operator on A(T*ODX), ie., Ny acts on AK(T*O-DXx)
by multiplication by k. For & € A(T*S), Q € End(Q0*(X,, E)), we define the
supertrace Trg by

Trs[9 A Q] = 9 Tr[(—1)VX Q]. (1.27)

To get Bismut’s local family index theorem, we need to introduce the Bismut
superconnection B, as following

1 1
By, = JubD + V9 + TB@), with B® = —g(T(faH, I, e) £ A P A clen).
u
(1.28)
Theorem 1.3 (Bismut [6]). For u > 0, the differential form Tr, [exp(—Bg)] is closed
on S and its cohomology class does not depend on u > 0 and is equal to the Chern

character of the index bundle Ind(Dy) = Ker(Dy) — Coker(D4). Moreover, uni-
formly on W,
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lim Tr [exp(—B2)(x, x)ldvx (x)

- [A(TX, VT X) g1 @m0, 9% g VE)}MM, (1.29)
X

here { M means the maximal degree part of the fiber X.

After integrating (1.29) along the fiber X, we get the Atiyah-Singer family index
theorem

ch(Ind(D4)) = / AT X)e1 @I oy By in HY(S, R). (1.30)
X

1.2 Asymptotic expansion of Bergman kernels
As explained in Sect. 1.1, we will suppose that W, § are compact.

Let L be a complex line bundle on W with Hermitian metric #~. Let VX be a
Hermitian connection on (L, h%) with curvature R%. We suppose that

V=1
w = —RF, (1.31)
27

defines a fiberwise symplectic form along the fiber X, and w(-, JTX.) defines a J7X-

invariant metric on 7 X.
Set

o = inf RE@u, @) /|ul?r¢ > 0. (1.32)
ueTMO X xew §

Let {w;} be an orthonormal frame of (79 X, g7X). Set

wd=—ZRL(w1,Em)W"/\ iw s r(x):ZRL(wj,wj). (1.33)
J

I,m
LetJ: TX — T X be the skew—adjoint linear map which satisfies the relation
@, v) =g"*Ju,v) (1.34)
foru, v € TX. Then JTX commutes with J and J7X = J(—J?)~1/2.
We will add a subscript p to denote the corresponding objects in Sect. 1.1 associated
with L? ® E. Especially D), is the fiberwise Dirac operator in (1.11) associated with

LP ® E, and VEr be the connection on

Ep = A(T*(Oﬁl)x) QRLPQE (1.35)
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induced by VCIT, VL and VE. Let RE» be the curvature of VE», then
REr = R 4 p RE 4 RE. (1.36)

The following result was obtained in [28, Theorems 1.1 and 2.5] by applying the
Lichnerowicz formula (cf. also [15, Theorem 1] in the holomorphic case).

Theorem 1.4 There exists C; > Osuchthatforany p € Nandanys € Q%>0(X, LP®
E) =@, Q" (X, L’ Q E),

IDpsl72 = @puo — Cp)lIsl3, . (1.37)

Moreover Spec(Df,) Cc{0}U[2pup — Cr, +o0l.

For (1.37), for p large enough, D12,|Qo,odd(X’Lp®E) is invertible (cf. also [17, 19]).
Thus there exists po > 0 such that for p > po, Ker(D)) is a vector bundle on S.
Especially, the assumption in Sect. 1.1 is verified for p > py.

For s € §, let Py be the orthogonal projection from Q% (X,, L? ® E) onto
Ker(D, ), and P, ;(x, x") (x,x" € X;) be the smooth kernel of P, ; with respect to
the Riemannian volume form dvy (x').

Let a¥X be the injectivity radius of (X, gTX), and ¢ €]0, aX/4[. We denote by
BX(x, €) and BTxX(0, €) the open balls in X and T\ X with center x and radius e,
respectively. Then the fiberwise exponential map 7,X > Z — expX(Z) € X is a
diffeomorphism from BL:X (0, €) on BX (x,€)fore < a*. From now on, we identify
BTxX(0, €) with BX (x, €) for € < a*.

Let f : R — [0, 1] be a smooth even function such that

|1 for Jv] <¢/2,
f)= {0 for |v| > e. (1.38)
Set
+o00 -1 +oo
F(a) = (/ f(v)dv) / ¢V f (v)dv. (1.39)

Then the even function F(a) lies in Schwartz space S(R) and F(0) = 1.
Let F(Dp)(x,x"), (x,x" € X) be the smooth kernels of F(D,) with respect to
dvy (x).
Let dX(x, x") (x,x’ € X, s € S) be the Riemannian distance on (Xy, g7
The following result is an easy extension of [22, Prop. 4.1].

X).
Proposition 1.5 Foranyl,m € N, ¢ > 0, there exists Cj . > 0 such that for p > 1,
x,x' eX,

F(D,)(x,x") — Py(x, x")|ogm < -1
| ) »( lgm (W x s W) e P (1.40)

|Pp(x, X gmwxswy < Come p~! if d(x,x)) > &

Here the €™ norm is induced by VL, VE and VCHE,
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Proof Fora € R, set
¢p(a) = 1 spug.+ool (la]) F(a). (1.41)

Then by Theorem 1.4, for p > Cr /o,

F(Dp) — Py, = ¢p(Dp). (1.42)
To prove (1.40), we only need to prove the analogue of [22, (4.16)]: for Uy, - - - , Ui
vector fields on S, [, m, m’ € N, there exists C > 0 such that
1DV V(D) DY sl 2 < Cp sl 2 (1.43)
prTUH yprPAEp/Ep 2lILS = L= ’
Now
E ’ E ’ E, ’
D (Vi bp(Dp) D =V (D} p(Dp) DY) = (9,55 Dy 1y (Dy) Dy
E /

=Dy ép(DpIVyh, Dyl (1.44)

Let I', be the union of the contour (which are parallel to the axis) from +00++/—1
to /pro + +/—1, then to ./pro — /—1 then to +00 — 4/—1, and the contour from
—00 —+/—1to—/puo —+/—1,thento — . /puo++/—1 then to —oo + +/—1. Then

1

2w/ —1 r,

1 ,

= KT E ) (= D) [V DI — Dy) .
1

2w/ —1 r,

E,
uf!

E,

V. (D", (D)D) Am+’"’F(x)vU]H (L —D,) " 'dr

(1.45)

Observe that [Vg’,’,, D,] is a first order differential operator along the fiber X (cf.

(1.5), (1.22)), thus from [22, (4.7), (4.14)] and (1.45), we get
E / _
IV i (D5 &p(Dp) DY )sll 2 < Cp~'lsll 2. (1.46)

Observe that [Vg’,’,, DY, [Vgﬁ,, DZ’/] are differential operators along the fiber X
1 1

(cf. (1.22)), thus from [22, (4.15), (4.16)] and (1.46), we get (1.43) for k = 1. For
k > 1, by the same argument, we get (1.43).

By the finite propagation speed of solutions of hyperbolic equations [21, §7.8], [43,
§4.4], (cf. also [30, Appendix D.2]), F(D)(x, x") only depends on the restriction of
D, to BX(x, ¢), and

F(Dp)(x,x")=0 if dX(x,x') > e. (1.47)
The proof of Proposition 1.5 is completed. O
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We denote by Icgr the orthogonal projection from E := A(T*®VX) ® E onto
C ® E. Let VEM®E) be the connection on End(A(T*©V X) ® E) induced by VT
and VE,

We will use the normal coordinates along the fiber X now. For xg € X, s € S, we
identify Lz, Ez and (E))z for Z € B™X(0, ¢) to Ly, Exy and (E )y, by parallel
transport with respect to the connections VX, VE and VE» along the curve y7 : [0, 1] 3
u — expffo(uZ). Under this identification and (1.40), we will view P, (x, x') as a
smooth section P, (Z, Z'), (Z, Z' € B™0%(0, ¢)), of 7} (End(A(T**VX) ® E))
on T X xw T X with the projection 7y : TX xw T X — W from the fiberwise product
of TX on W. And VEM® jnduces naturally a € -norm for the parameter xq € W.

Let dvrx be the Riemannian volume form on (7y, X, gTXOX ). Let k(Z) be the
smooth positive function defined by the equation

dvx(Z) = k(Z)dvrx(Z), (1.48)

with k (0) = 1.
We denote by detc for the determinant function on the complex bundle 79 X, and
[Jxol = (—J%O)l/ 2 ForU € Ty, X, denote by Vy the ordinary differentiation operator

on Ty, X in the direction U. Let {e;} be an orthonormal basis of (7, X, gl X).
On Ty X ~ R?", where the identification is given by

(Z1,+++ Zon) €R™ — )" Ziej € Ty, X, (1.49)

L

set (with 7 in (1.33))

L==3 (vej + %RfO(Z, ej))2 — Ty (1.50)

J

Let #(Z, Z') be the Bergman kernel of .%, i.e., the smooth kernel of the orthogonal
projection from L?(R>*, C) onto Ker(.%). Then for Z, Z' € Ty X, (cf. [31, (1.81)])

P(Z,Z') =detc(|Jx, )

xexp (= 2 (10l(Z = 2. (2 = 2) = aV=1 (1,2, Z)).
(1.51)

If o = (ay, -+, apy) is a multi-index, set

0%2n

z* =2z Z3".  (1.52)

2 L 9a1
al = aj, 0% := = )
o ; ! SV VALV A

Theorem 1.6 There exist J,(Z, Z') € End(A(T*OVX) ® E),, (x0 € X5, 5 € S, 7 €
N), polynomials in Z, Z' with the same parity as r and with deg J, < 3r, whose
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coefficients are polynomials in RTX, RTU'O)X, RE (and RY) and their derivatives of
order < r — 2 (and < r) along the fiber X, and reciprocals of linear combinations of
eigenvalues of J at xg, such that by setting

yi’,xo(zv Z/) - Jr(Za Z/)@(Zv Z/)v J()(Zv Z/) - I(C@E ) (153)
the following statement holds: there exists C” > 0, such that for any k, m,m’ € N,

there exist N € N, C > 0 such that for a, &' € N> |a| + |&/| <m, Z,Z' € Ty, X,
|Z],1Z'| <& x0 € X, p = po,

glal+al (] L I
——— | P (2.2 = Y T IPZ P22 (Z)p
32437 \ p e

em’ (W)

< Cp~* MR 41 /pZI + |VPZ' DN exp(—/C"o/PIZ — Z'))
+ﬁ(p_°°). (1.54)

The term O(p~%°) means that for any 1,1} € N, there exists Cj, > 0 such that its
€ -norm is dominated by CLi pl.

Proof Actually, in [22, Theorem 4.18'], they only explain for the family of data (g7 %,
hl, vL hE VE ) run over a set which are bounded in 4° and with gTX bounded
below. Here the complex structure J7X can also be changed, still as explained after
[22,(4.122)], the constants in [22, Theorems 4.11 and 4.15] will be uniformly bounded,
especially, in [22, Theorem 4.11], we need to replace %m,(X ) therein by ‘@”’”/(W) as
in (1.54). Finally, if we go through the argument in [22, Theorem 4.11], we can precise
N in (1.54) by 2(n + k +m’ + 1) + m (cf. also [29], [30, (4.2.2)]). O

1.3 Family Bergman kernels

Recall that RKe"(P») is the curvature operator in (1.17) associated with D p acting on
QY (X,LP ® E).

Theorem 1.7 For any I,m € N and ¢ > 0, there exists C; . > 0 such that for
p>po x,x' €X,d¥(x,x)>¢

|RR D) (., x| gomw e gwy < Clome P (1.55)

Proof Let R;Z € AX(T*S)QEnd(Q"*(X, LP? ® E)) be the curvature of the connection
VI?. Then for U, V € TS, by (1.15) and (1.36), we have

Ep

RSW, V)= R, v +ak@w", v — Vot vy (1.56)
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By (1.24), we have
Ker(D, Q QplyQ
RXP) = p RSP, — P,V P VP, (1.57)
As P,% = Py, we get

P [VUH, ]+[VUH, PplP —[VUH’PP]- (1.58)

Thus [V Pp] exchanges Ker (D) and (Ker(D p))L, the orthogonal complement of

vt
Ker(Dp), ie.,
P [VUH, P,1P, =0. (1.59)
Then from (1.57) and (1.59), we get
R¥'P0) = P RSP, — P,[V3}, Py1P, [V, PylP,y. (1.60)
Now, from Proposition 1.5, Theorem 1.6, (1.56), we get Theorem 1.7. O

From (1.55), to understand the asymptotic expansion of RXer(Pp) (x| x") when p —
~+o00, we only need to restrict ourselves to dx (x,x’) < e forany ¢ > 0.

We will use the normal coordinates along the fiber X as above. Under this identifi-
cation and (1.55), we will view RX'(Pp) (% x’) as a smooth section R, Ker (D”)(Z, Z),
(Z,7' € BT%X(0, ¢)), of AX(T*S) ® 7} (End(A(T**VX) ® E)) on Tx xw TX.

The following result is the first main result of this paper.

Theorem 1.8 There exist ¢,(Z,Z') € A*(T*S) ® End(A(T*OVX) ® E),, (xo €
Xs,s € S,r € N), polynomials in Z, Z' with the same parity as r and with deg 7, <

. C 1,0 .
3r, whose coefficients are polynomials in RTX, RT""X RE (and T, R") and their
derivatives of order < r —2 (and < r — 1, < r) and reciprocals of linear combinations
of eigenvalues of J at xq, such that by setting

Qrx(Z2,. 2= 4:(Z2,ZNYP(Z2,Z'),
(@)@ (1.61)

G+ D COF

I0Z,Z) = =2nv=1

the following statement holds: There exists C" > 0 such that for any k,m,m’ € N,
there exist N € N and C > 0 with

glal+le’| 1 k _1 _1 _r
——— | g R (2,.2) = Y O (P2 P2 (22 (2 p
3z«3z'* \ p =

¢ m (W)

< Cp~®FI=mMR 4 | /PZI +IVPZ' DY exp(—/C o/PIZ = Z') + 6(p™),  (1.62)
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for any a,a’ € N>, with |a| + |&'| < m, any Z, Z' € Ty, X with |Z|,|Z'| < & and
anyxoe W, p> 1.

In particular, set by ,(x0) = Q2r x,(0,0), then by, € € (W, T (AX(T*S)) ®
End(A(T**VX) ® E)) and for any k,l € N, there exists Cy 1 > 0 such that for any
p €N, p > po, we have

k
1 _
WRK“(D")(X,X)— E by (x)p™"

r=0

Cr p %1 (1.63)

=
EHW)

Remark 1.9 From Theorems 1.7 and 1.8, we get immediately (cf. the argument of the
proof of [32, Lemma 4.6]) the same type asymptotic expansion as in (1.55), (1.62) for
[,,,‘—H(RKef(Dp))q(z, 7" forg > 1.

Proof Let I'CHff 'L T'E pe the respective connection forms of velitff L vE com-
puted with respect to some frame of A (T*(O’ Dy ), L, E. Observe that

VE =d + T 4 prt 4+ TF, (1.64)
By Proposition 1.5, Theorem 1.6, (1.36), (1.51), (1.60), and a rough computation, we

know that there exist polynomials _#,(Z, Z’) € AX(T*S) QEnd(A(T* OV X)) ® E)y
(xo € X5, s € S, r = —2), such that under the notation in (1.62), we have

lo+1e'] K .
P <1 RE Pz, 7)) = 3 g(ﬁz,ﬁz’)x—%<2)x—%<z/)p—z>

9zepz® \ prt! — -
r= & (W)
< Cp~"HMRA 41 /pZI + IVPZ'DN exp(=/C"o/PIZ — Z'])
+0(p™™). (1.65)
But we could not get the precise information on _#, as stated in Theorem.
It should also be possible to prove
(a)n+1)(2) (1.66)
_h = 1 = O, =27 —1—- 1 .
Fa2= I S0 Vol @ foeE

directly from the expansion (1.54), but it seems that it is quite complicate, and this
does not give us a clear way to compute the coefficients _Z,.

In subsections 1.4 and 1.5, we will give a proof of Theorem 1.8 by introducing the
superconnection in local family index theory, and in this way, we get also a general
way to compute the coefficients 7. O

1.4 Superconnection and family Bergman kernels

For xo € Xy, 50 € S, let U be an open neighborhood of 59 € S such that T 'U) ~
U x X,. Let Uy C U be an open neighborhood of sg € § such that U C U.
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We identify Lz, Ez and (E,)z for Z € BTsx0X(0, &) to Ls.xo)s Es.xo) and
(Ep)(s.x) by parallel transport with respect to the connections VL, VE and VE»
along the curve yz : [0,1] > u — uZ. Let {e;} be an oriented orthonormal basis
of T(s,x)X. We also denote by {ei} the dual basis of {e;}. Let ¢;(Z) be the parallel
transport of e; with respect to VX along the above curve.

Now, for ¢ > 0 small enough, we will extend the geometric objects on
BTs0X (0, &)y told x R ~ Ts,x0) X lis (here we identify (Zy, - -+, Z3,) € R?" to
Y iZiej € Tisxy)X =: Xo) such that D, is the restriction of a spin® Dirac operator
on R%" agsociated with a Hermitian line bundle with positive curvature. In this way,
we can replace 7~ (U) by U x R*".

First of all, we denote Lo, Eo the bundles L|zsxx}s Eltsxixo) lifted on Wy =
U x R?. And we still denote by VE, VE, hl etc. the connections and metrics on
Lo, Eo on BT6-0X(0, 4¢)|;; induced by the above identification. Then A%, hZ are
identified with the metrics hL0 = hl6o0 pFo = pEeso Let R = Y, Zie; = Z be
the radial vector field on U x R2",

Let p : R — [0, 1] be a smooth even function such that

p)=11if |v]| <2; p) =0 if |[v| > 4. (1.67)

Let e : U x R — U x R?" be the map defined by ¢; (s, Z) = (s, p(|Z|/€)Z). Let

gSTXO(Z) = g"X (@, (s, Z)) be the metric on T X,. Set T(gz) Wo = TWI:(S’Z)W.

Let VEo = q);VE, then V£ is the extension of VZ on BT<A'»X0>X(0, &)|y. Let VLo
be the Hermitian connection on (Lg, #%0) defined by

1
VE .2y = 92 V5 4 S (1= 2 (1ZI/2DRG 1) (R, ). (1.68)

(s,x0

Then for € small enough, by [22, (4.24)], the curvature RLo of VL0 g non-degenerate

L
along R?" and R(‘Y")Z) = R(LX’XO) and T(ZZ) Wo=TH W for|Z| > 4e.

(s,x0)

Let Jp be the almost complex structure on 7 Xy compatible with %RLO and
such that g7 is Jy-invariant (If we define A € End(T Xo) by g7 X0(AX,Y) =
‘é—?RLO(X, Y), then Jy = A(—A?)"1/2). Thus we have J = J; for |Z| < 2¢ and
Jo(Z) = Jy, for |Z]| > 4e.

Then R%0 is positive in the sense of (1.32) for £ small enough, and the corresponding
constant zo for R0 is bigger than ‘3‘ o. From now on, we fix ¢ as above.

Let 7*0-D X, be the anti-holomorphic cotangent bundle of (Xy, Jy). Let v Cliffo
be the Clifford connection on A(7*©D X)) induced by the connection vIXo on
(T Xo, gTXO) as in Section 1.1 for the fibration U x Xo — U. Let REo, RTXo RCliffo
be the corresponding curvatures on Eq, T X and A(T*©D X).

We identify A(T*0-DX(), with A(T;‘;(O’I)X ) by using the parallel transport with
respect to the connection VCifl0 along the curve yz. Let Sy be a unit section of
Llzsxixy over U x {xo}. Using Sy and the above discussion, we get an isometry
Eop = AT*"OVX0) @ Eg® L) ~ (A(T*ODX) ® E)y, =: Ey,.
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Let DI),(O (resp. VE0.r) be the Dirac operator on X (resp. the connection on Eg, »)
associated with the above data by the construction in Section 1.2. By the argument in

[28, p. 656-657], we know that Theorem 1.5 still holds for Dgo. In particular, there
exists C > 0 such that

8
Spec(DX)? C {0} U [gpuo el +oo[. (1.69)

Let Py, be the orthogonal projection from Qg"(Xo, Lg ® Eo) ~ 65°(Xo, Exy)
on Ker(Df,(O), and let Py p(x, x") be the smooth kernel of Py, p with respect to the
Riemannian volume form dvx, (x').

Proposition 1.10 For any I,m € N, there exists C;,, > 0 such that for x,x' €
BTex0X(0, ¢),

(Po,p — Pp)(x, x") Crmp™'. (1.70)

=
Em (Z/{l xR2n  R2n )

Proof Using (1.39) and (1.69), we know that Py , — F (D)) verifies (1.40) for x, x' €
BTx0%(0, &)y, , thus we get (1.70). O

Set

XO .
RKer(Dp7) — Po,,,RgprO,,, — Po,pvg?pp&pvg?ppo,p, with P(fp =1- P,
(1.71)

X,
Let RKT ") (x, x) € A2(T*S) @ End(A(T* D X) ® E)) s +,) be the smooth kernel
X
of the operator RK"(®»*) with respect to dv xo(x"). As all geometric data on U x
BTsxnX (0, 2¢) inherit from the corresponding geometric data on W, thus Vg » Do, p

are the same as Vf}, D, onl x BTex0X (0, 2¢). By replacing Py, ,, Pp by F(D)) as
in (1.40) and (1.70), from (1.24) and (1.71), we get that for any [, m € N, there exists
C > 0 such that for x, x’ € BTs0X(0, ¢),

X0
RKer(Dp ) RKer(Dp) , / <C —l. 1.72
( I ngany S ClmP (1.72)

As we know from (1.24) that the term B® does not play any role in the construction
of RXerD) thus we will choose the superconnection with B>} = 0, more precisely,
set

B, =D,+ V5. Bop=Dop+ V5, (1.73)
Then

B, =By, on B'o0X(0,26)ly, Py, (Bj )" Py, =0. (1.74)
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From (1.69) and (1.74), as in (1.24), for p > 5C /4o, we have

X0 _
R¥T ) = PO,pRg?pPO’p - P(Bg,p)(l)((Bg,p)(O)) IPOL,p(Bg,p)(l)PQp
| @)
= —— |:/ x— Bg p)_l)\d)»il (1.75)
278/ =1 L jn=puo ’ :

_ @
Tl g ]
— A——B Ad
2m4/—1 [ IAl=po p O’p)

From (1.75) and as explained in (1.21) and (1.22), Bg’p is a second order elliptic

operator along R?", we know that to study the asymptotics of R¥er(P fo), we only need
to work fiberwisely. Now, we will only work on the fiber X, with center xy.

To define an L%-norm, we fix a metric gTS on TS, and let h2®E be the metric
on A(T*S)®E induced by g75, ¢7X and hE. Let (, )o be the scalar product on
650 (R*, A(T*S) ®Ey,) induced by h4®F and dvry as in (1.10).

We denote by R = Zi Zie; = Z the radial vector field on R*. For ¢ €
CKOO(RZ”, A(T*S)@Exo), Z € R?" and fort = #, set

($;0)(Z) =0 (Z/t), V=S8 "tk 2VEr12s,

1 - - (1.76)
Vo.=V.+ ERfO(R, ). L =Sk Bg kS,
By (1.19), (1.69), (1.73) and (1.76), we have
2 ZZ(O) _{_9%(1) +$(2),
] (1.77)
Spec(.Z) = Spec(.Z®) {0} U [guo —c, +oo[.
From (1.77), set
1 ] )
P =—[/ -9~ kdk} . (1.78)
"2/ =T Ui t

Let 2,(Z,Z')(Z,Z' € R*) be the smooth kernel of the operator &, with respect
to dvT(s,xO)X(Z/)' Then by (1.75), (1.76) and (1.78) as in [30, (1.6.660)], we get with

- L
t= 75
X
RRr ) (2. 70y = 22 V() 2y (21, 7' Jo V2 (2). (1.79)

From (1.72) and (1.79), to study the asymptotic expansion of R¥"(P») (x, x"), we
need only to study the asymptotic expansion of & (Z, Z’) which involves supercon-
nections.
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1.5 Taylor expansion of .%#; and the spectrum of %

Set (with wg, - in (1.33), (1.50))

3(0) Dg/ﬂ de s X0 2 Dg()(l) = (1) f A c(el) R (fo{ ’ gl
(1.80)
2P =0 = f"‘ APPRE I I, %= 20 + 20 + 2.

Let O\ := 9,0 := Q; be given in [29, Theorem 2.2]. Let (3%RL),, be the
tensor (8“R )xo (i, eJ) = 9%(RL (¢;, e;j))xy- Set also

O =1 A cten [~ Vor (s .arg + V2RESE e,
O =r* ncten|[ 3R ™ i, epetenctep + 5 Te [R¥] + RE] (flen
1 ~
+ 5 (VYRS 8D 2.2) = ek (fg Dy

1
—((VEXT(£E, (e, ei)xgVo.e — g(akRL»Ozk(R, T(fH, e»m)},
(1.81)

1
oy =314 fﬁ[ Vot e, T VZ(RL(faH’ fﬁH))xo]’
1
2

+ E(VV(RL(faH, IMxo.z.2) +dk (£ 5D

OF =37 n P[5 R er epietente + 3 Te [RTX] + RE] (it )

1
— (VZE T f5D) €)w Voo = 3 OeRMn Zk(R T (' f,g")xO)}.

The operator .%; is the rescaled operator in (1.76), which we now develop in Taylor
series.

Theorem 1.11 There exist polynomials A; j, ( resp. Bi,, C-) (r € N,i,j €
{1,---,2n}) in Z with the following properties:

— their coefficients are polynomials in RTX (resp. dk, T, RTX, RT(I’O)X, RL, RE)
and their derivatives along the fiber X at xo up to orderr — 2 (resp. v — 2, r — 1,
r—2r—=2,r,r—2),

— A; - is a monomial in Z of degree r, the degree in Z of B; , (resp. C,) has the
same parity withr — 1 (resp. r),

— if we denote by

Or - Ai,j,rveivej +Bi,rve,- +Ci”a (182)
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then
=L+ Y 10+ 0", (1.83)
r=1

and there exists m’ € N such that for any k € N, |t| < 1 the derivatives of order
< k of the coefficients of the operator O (t"™+) are dominated by Ct" (1 + |Z])™ .
Moreover £y, Oy, O, are given by (1.80) and (1.81).

Proof Now, by using (1.21), (1.22) and (1.36), we have
2y(0) _ n2 2\(2) _ p
(82)© = p2, (B2 = RY,

(1.84)
BHY = £ neen [RE (Sl e) = ek(F =Vt ]

By (1.74), (1.84), we have established (1.83) for £ in [22, Theorem 4.6], (cf. also

[29, Theorem 2.2]), moreover ’ .,2’0(0), 050)’ O;O) were also computed in [29, Theorem
2.2].
By (1.9), (1.15), (1.36), (1.56) and (1.84),

z —f”m@){ { (RT¥, em>c(el>c<em>+;T[RT‘ ’X]<f” ez

+1 RE(faH? €z + RL(fHa:’;i)tZ - 12ak(fH)zZ — 1V, T(fH, Fi)fz}’
(1.85)

1 ~
2 = f“ AfP { [4 (RTXE, &n)e@)c@n) + = 5 L [RT"VX] ](fa S5z

+2 REGE Sz + REE (02 + Cak(E L Sz =19, 10 g0}

On BT0X (0, 2¢/1), by [22, (4.46), (4.48)] (cf. [30, (1.2.30), (4.1.34)]), we have

1 L
Vialz = Ve + (5RE

1
SR+ g(akRL)xOZk>(R, e) + O, (1.86)

Moreover, as we use the normal coordinates, we have (cf. [30, Lemma 1.2.3])

ei(Z) =ei — éZ(R};X(R, e)R, ej>ej +0(2P). (1.87)
j

By the definition of VEIT for X, ¥ € (X, T X), we have
(VAT c()] = c(VEXY). (1.88)

Note that on BT0X (0, 2¢), we trivialize A(T*©-D X) by using VE*f along the curve
u — uZ and VTXe] = 0, we get as in [5, Lemma 4.13], c(e]) is the constant endo-

morphism c(e;). From (1.85), we get the expansion (1.83) for .,Sﬁ(l), Z( ). Especially,
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their leading terms are .Zo(l), .,%(2) in (1.80). From (1.85), (1.86) and (1.87), we get
the coefficients of the expansions for .,2’,(1), .i”t(z) in (1.81). O

Now we discuss the eigenvalues and eigenfunctions of .,2”0(0) in a more precise way.
We choose {w;}!"_,, an orthonormal basis of Tx(o1 Dy , such that

—27v/~1Jy, = diag(ay, - -+ , an) € End(T{"VX), (1.89)

with0 < a; < ap < --- < a,, and let {wj}’}:1 be its dual basis. Then ez;_1 =
%(wj +w;)and ey; = %(wj —w;j),j=1,...,n form an orthonormal basis of

Ty, X. We use the coordinates on 7y, X =~ R2" induced by {e;} as in (1.49) and in what
follows we also introduce the cqmplex coordinates z=1(z1,,zn) on C" =~ ]R%”.
Thus Z = 7 + z, and w; = ﬁa%’ w; = 28%_. We will also identify z to Zi z,-a%_
andzto ) ; z; 3% when we consider z and 7 as vector fields. Remark that

2 2 1 B 1
% =5 %0 that |z]* = |z)* = §|Z|2. (1.90)

It is very useful to rewrite .ZO(O) by using the creation and annihilation operators. Set

bi=-2V 45, b =2V 4., b=(b1,-- ,by). (1.91)
0’3_Zi 0’8_2,-

Then by (1.76) and (1.89), we have

RPN TR SR R S
b; = —23—z[+§a,zl s bi —23_Z[+§azle (192)

and for any polynomial g(z, z) on z and Z,

[b,‘, bj_] = bib;— — b;—bi = —2al~8,- js
[bi, bjl = [b,b71=0, (1.93)
[8(z. 2. b1 =255-8(2. D). (8. D). b]1=-25528(2.3).

By (1.33) and (1.89), 7o, = Y_; a;. Thus from (1.50), (1.80), (1.89) and (1.91)-(1.93),

L= "bbf, L = "bibT 42 ajw! Ay, (1.94)
j j j

The following result was established in [31, Theorem 1.15] (cf. [30, Theorem 4.1.20]).
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Theorem 1.12 The spectrum of the restriction of £ on L*(R*") is given by
n
Spec(:Zpagan) = 2D o s a=(@, - e eN'](195)
i=1

and an orthogonal basis of the eigenspace of 2y _, aja; is given by

n
b (zﬁ exp (—i Zai|zi|2)> . with b =o',
i j=1

n
# =T, pen. (1.96)
j=1

From Theorem 1.12, we know Z2(Z, Z’) in (1.51) is the smooth kernel of the
orthogonal projection from L?(R*") onto Ker (%2 g2n)). Moreover, from (1.94), we
have

Ker(Z| 2@y = N; Ker(v]),
L (1.97)

(271r)" (ITa) exe (- %Zai('z"'z + Il = 227))).

i=1 i

P(Z,7) =

Let PN(Z,Z') be the smooth kernel of the orthogonal projection PV from
L2(R2", A(T*S) ®E,,) onto Ker(4"”). Set PN" =1 — PV,

Recall that we denote by Icg £ the orthogonal projection from E := A(T*OD X)®
E onto C ® E. Then by (1.94), we have

PNz, 7= 2(Z, Z)IcsE. (1.98)

From (1.80), we get

OF = 1% A (c@RE S w)) + ew)RE (1))
:«/Ef"‘/\(—iij)ﬁJ(faH,wj)—i—ijfo(faH,wj)). (1.99)
From (1.98) and (1.99), we get

PYOV PN =o0. (1.100)
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1.6 Evaluation of O,: a proof of Theorem 1.8

Let P; be the orthogonal projection from 65°(Xo, A(T*S )®Ex0) onto the kernel of
.,2”,(0) with respect to (, )o. From (1.19), (1.23), (1.73) and (1.76), we have

2
I:(k _D%)*]:I :()\, _ z(o))*lz(l)(k _Z(O))flc%(l)()\ _02’;(0))71
L= 2O 2@ )1 (1.101)
P2V P, =0.

The following equation is an analogue of [31, (1.55)]: by (1.77), (1.78), (1.101) and
the residue formula, we have for any k > 1,

1 k

[-i’é(z) +$(‘)(A—D§ﬁ(°))—1$(”](/\ _D%(O))—kﬂ—ldk
1 k —k @
= oy |:/I)»|=M0A =) dx} ) (1.102)

We define first the Sobolev norm || ||;,,, for m € N on %000 (R2, A(T*S)@EXO)
by using V; ., and (, )o as in [30, (4.1.36)]. Note that £ is L} in [22, (4.37)], by
(1.77) and (1.85), we know that the analogue of [22, Theorem 4.7] holds for .%;: There
exist C1, C2, C3 > O such that for ¢ €]0, 1]and any s, s" € G (R, A(T*S)®Ey,),
we have

Re (Zs,5),0 = Cilisllf | — CallslF .

(1.103)
(L5, 5), o1 < C3lislle, s lle,1

Thus [22, Theorems 4.8-4.10] hold for .4;. From (1.102), we can proceed as in the
proof of [30, Theorems 4.1.13-4.1.18] and get that there exist functions Q, on Z, Z’
such that for €10, 11, ¢ > 0, Z, Z’' € T(s.x) X, |Z|,1Z’| < g, we have

k
PuZ,7) — Z Q,(Z, ZNHt" < Cciftl. (1.104)
r=0 cm' (W)

Comparing with (1.65), (1.72), (1.79) and (1.104), we get in (1.65),
Q(2,Z)=091(z2,Z)=0. (1.105)

Remark 1.13 A direct alternate way to obtain (1.62) (i.e., (1.65) and (1.105)) is to
follow the strategy of [22, §4] (cf. [30, §4.2]) by using (1.77). We explain more details
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Fig. 1 Contour

now. Let § be the counterclockwise oriented circle in C of center 0 and radius o /4,
and let A be the oriented path in C defined by Fig. 1.

Let e “Z be the heat operator associated with % for u > 0. By (1.77), (1.78),
(1.101) and the residue formula, we have

1 @
P = — / e — L) da,
t 27“/—1[ [hl=ro/4 t ]

2) 1 2
—u%; _ —Ur _ -1
[Ze ] = 271«/—_1[/5UA6 LA —Z) ] dx, (1.106)
(2) 1 2
2 —u% _ —ury 20y -1
[.z;e ] _2n¢—_1[/Ae 20— 2 ] da.
Set
_ 1 Y ~11®
F, (%) = —2n\/__1[/A e A —ZL) ] di. (1.107)

Then from (1.77), (1.106) and (1.107), we get

1@
P, = lim [_%e‘”j’] ,
u—>—+00

Ful ) = [ze_uz]@ ~ %= /+oo [Zze_ulﬂ](%dm. (1109

From (1.106), in particular, the integral of the third equation is taken only along A,

PRt N
we get the analogue of [30, Theorem 4.2.5] for [.i”,e u ’] and [_% e

Combining it with (1.108), we get the analogue of [30, Corollary 4.2.6]. Then the
argument of [30, Theorems 4.2.7, 4.2.8] gives a direct proof of (1.62).
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Now we concentrate to compute Q,. Let f (X, t) be a formal power series with
values in End(L?(R?", A(T*S)®Ey,))

o
fOuD =30 £, f,() € End(L2®Y, A(T*$)BEy)).  (1.109)
r=0
By (1.83), consider the equation of formal power series for |A| = o,
o0
(_go(()) + A= Z trOfo)) f()\., t) = IdLZ(]Rz”,A(T*S)®ExO) . (1110)
r=I1
Then for r € N, we have
-
Ffr0) = 0= L7 Y0P fimj ), (L111)
j=1
Especially, we have
1
o) =0 = L = PN = 40 PN

f10) =0.— 2000 — 2O, (1.112)
£y =0 = £ 00— 40710 + 0 6. - £™ .

Then by (1.101), as in (1.110), we have the following equation as formal power series
19 _ v M £ D) @ r
[0.-2)7']" = Z( > FOL1OP s+ Y 0% fjs)(x)r .
r=0 "3ri=r 2 Ji=r
(1.113)

By the same argument as in [31, (1.110)] (cf. [30, (4.1.91)]), (1.102) and (1.113), we
get

1
O = > /M Fr QO fr,0)08) frs (W) d
- ST =T =HOo
1
Ty > /M FirOD fi (M di. (1.114)
B i Ji=r =Ho

From Theorems 1.11, 1.12, (1.94), (1.114) and the residue formula, we can get Q,
by using the operators (,,5,”0(0))’1 PN, PNY O (k < r). This gives us a direct method
to compute Q, in view of Theorem 1.12.
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From Theorem 1.11 and (1.114), we get the properties of the coefficients
S (Z, Z"). To finish the proof of Theorem 1.8, we need to compute Ho(Z, Z)).
From Theorem 1.12, (1.100), (1.112) and (1.114), we get

1
Q== G- 2o o — "o - ) da
\ 2 A=no
1 - _
T =)o (0~ 2w
2% =0
= PNOP PN — PYOS PN (£ )0l PV (1.115)

Thus from Theorem 1.12, (1.80), (1.94), (1.98), (1.99) and (1.115), we get

1
Q(Z, 2 = S f* A PRG UL 1D PN 2, 2
+2 (PY i, RE (A w) (£ )7 P AT RE (w0 PY) (2. 7))
= f“Afﬂ[ o fals 15 )——RL (S w)RE (ff ,w,)] PNz, 2)

n+1)(2)

2’“ﬁ( +D@)O

PNz, 7). (1.116)

The proof of Theorem 1.8 is completed.

Remark 1.14 For A € €(W, A3(T*X)), we replace the operator D p» by the modified

Dirac operator D;’A in [7], [30, §1.3.3], certainly, we still have the same Theo-
rems 1.6, 1.8. Especially, if the fiber X is holomorphic and L, E are holomorphic

along the fiber X, let 5LP®E’* be the adjoint of the fiberwise Dolbeault operator

5LP®E along the fiber X, then we can take

D, =v2@""®F + 30, (1.117)
as D) is a modified Dirac operator by [7] (cf. [30, Theorem 1.4.5]).

Remark 1.15 As RL is non-degenerate along the fiber X, we have a natural choice of
the horizontal bundle TH# W in (1.1). Namely, set

THW ={u e TW : w(u, X) =0 forany X € TX}. (1.118)
Then from Theorem 1.12, (1.80), (1.81) and (1.118), we get
o =0, PYoVpPN =o. (1.119)
In this case, we have a simpler formula for Q, from (1.112), (1.114) and (1.119),
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1

27T e
1

ENE Il=so
+()L_30(0))—10?)()\_350))—1052)()L_Z(;0))—1
+()L_g()(o))flo?)()h_gO(O))flOEO)(}L_ZO(O))fl
+()L_3(,(05—1050)()\_Z()(m)—lo((]z)(x_ZéO>)—1OEO>(A_D2ﬂ()(O))—1
+(A—f(,(o))‘l[(9§°)(x—f()(°>)‘1(9§°)+O§0)](A—$0(O))‘IO((,2)(A—.ZO(O))‘I

QZ ()L_fo(O))flogl)()\'_Es/po(()))flogl)()\'_E-S/po(()))fl)\'d)\'

{(,\ _ 2O 0@ - 20

-‘r(A, _ o(f()(o))flo(()z)()\‘ _ o(fo(O))71
[0176.— £ 0 + 0o - £ adn. (1.120)

By [29, Theorem 2.3] (or [30, (4.1.94)]), we know that
PYOV PN — 0. (1.121)
Observe that from (1.80),

a=Z70P -2 = - L2000 = 0 6. — L2
(1.122)

By Theorem 1.12, (1.119)-(1.122) and the residue formula, we get under the
assumption (1.118)

Q, = _PNOEI)(E%(O))APNLOEI)PN + PNoéz)PN

0 0)\ — i 0)\—1 (0 2

_PNO;)(Dgo()) 1pN OEZ)PN_(XO()) log)PNO;)PN
2 0)\—1,~(0 2 0 0)\ — L

_PNoi)(Z)()) loi)PN_PNoi)PNoi)(Z)()) 1 pN

JrPNOiO)O(()Z)(Dgo(o))—ZPNl OiO)PN + (ipo(o))—l PNLOEO)O((E)PNOiO) (Bg/ﬂo(o))—l PNL
_ € _

+(f0<0)) 1 pN [(950)(3()(0)) 1050) _ (/);0)]PNO(()2)

+0 N[0 (4" 0 — 0P (™ P (1.123)

1.7 The curvature as a Toeplitz operator

First, we describe the formalism discovered by Berezin [4] and Boutet de Monvel-
Guillemin [18] on the definition of Toeplitz operators, and further pursued by
Bordemann—Meinrenken—Schlichenmaier [16, 42], and Ma—Marinescu [30, 32].

Let (X, J, ) be a compact symplectic manifold of real dimension 2n, with com-
patible almost complex structure J and g7 X a J-invariant metric. Let (L, kY, VL) be
a prequantum line bundle over X as in (1.31). We consider a Hermitian vector bundle
(E, h£, vE) on X with Hermitian connection V£, and the space (L*(X, E)), (-, -))
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introduced in (1.10). Let P, be the orthogonal projection from L*(X,E p) onto
Ker(D)) as in Section 1.2.

Asectiong € €°°(X, End(E)) defines a vector bundle morphism IdA(T*(O,l)X)®Lp ®g
of E, := A(T**VX) ® L? ® E, which we still denote by g.

In [32, Definition 4.1] (cf. [30, Definition 8.1.8]), Ma-Marinescu defined a vec-
tor space of Toeplitz operators. The following definition is a natural extension of
[32, Definition 4.1] by twisting a finite dimensional algebra .A.

Definition 1.16 A Toeplitz operator with coefficients in a finite dimensional algebra
A over Cis a sequence {T),} = {T)} pen of linear operators

T,: A® L*(X,E,) — A® L*(X, E,), (1.124)

with the properties:

(i) For any p € N, we have
Ty=P, Ty Pp. (1.125)
(i) There exist a sequence g € A ® €°°(X, End(E)) such that for all £ > 0 there
exists C; > 0 with
k
HTp—Pp(Zp"gz)PpH <Cip™*, (1.126)
1=0

where ||-|| denotes the operator norm on the space of bounded operators.

The full symbol of {7},} is the formal series ) ;= Hg e AQ € (X, End(E))[[A]]
and the principal symbol of {7} is go.

Forany f € A® ¢*°(X, End(E)),
Tt.pi=PyfPy: AQL*(X,E,) — A®L*(X, E,) (1.127)

is a Toeplitz operator and called as Berezin-Toeplitz quantization of f. Then we can
express (1.126) symbolically by

k
T, = ng,,pp—’+0(p—"—1). (1.128)
=0

Then we can reformulate [32, Theorem 1.1] (cf. [30, Theorem 8.1.10]) as

Theorem 1.17 The space of Toeplitz operators with coefficients in a finite dimensional
algebra Aover C forms analgebra. Let f, g € AQE (X, End(E)). Then the product
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of the Toeplitz operators Ty, and Ty, p is a Toeplitz operator, more precisely, it admits
the asymptotic expansion in the sense of (1.128) for any k € N:

k

Ty pTep = 0 Teoi.p + Op 5D, (1.129)
r=0

where C, are bidifferential operators and C,(f,g) € A® ¢°°(X,End(E)) and
Co(f.8) = fs

By the characterization of Toeplitz operators via the expansion of their kernels [32,
Theorem 4.9, (4.30)] (cf. [30, Theorem 8.1.9, (8.1.18)]), Theorems 1.7, 1.8 and (1.116)
imply the following result:

Theorem 1.18 The curvature operators %RK‘“(DP) e Q2(S, End(Ker(Dp))) in Sec-

tion 1.3 is a Toeplitz operator with coefficients in A = A*>*(T}S) for any s € S, with
its leading symbol Ro being by ¢ in (0.15).

We have also

Theorem 1.19 For any f € €%(W,End(E)), U € €°(S. TS), Vi "1, is a

Toeplitz operator with leading symbol Vg‘;f(E) f.

Proof From (1.14), (1.16) and (1.127), we get

End(D,
7 ( [)Tf‘p = PyIV(, Pplf Py + PpIVi, f1Py + Py fIVG, PPy,

(V. 1=V, 5" f. (1.130)

We need to show that PP[VQ, Pyl f P, and P,,f[VIS}, Pp]P, are Toeplitz operators.

We use V"X to trivialise T1O X1/ (xo) NE@r (so, xo) in Section 1.4, then the
normal coordinate along X in Section 1.4 and (1.89)-(1.90) is identified as U/ x R2"
with canonical almost complex structure and metric on R*”. By Theorem 1.6, [V[S}, Pyl
has the same type expansion as in (1.54) by replacing .%, by .%, with

FUZ. 7)) = J(2, Z)VP(Z, 7)), (1.131)
and J/(Z, Z') is a polynomial in Z, Z’ with the same parity as r and
3z.7) = (VUH log detc(|J)) — %((VUH Iz -2, 2 -2
—aV =1 ((VyuD)Z, z’))l(c@,;
= {100 @V X0+ V=T (V] e - 2.7 - 7)
—av=1 (0 "0, 7) = (V1" 02 7)) icor. (1132)
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From the argument in the proof of [30, Lemma 7.2.4] and Theorem 1.6 form’ = 0, we
know that PP[VE}, P, f Py has the same type expansion as in (1.54) and the leading
term is given by

PIGP) f(x0) P = f(x0) P(JyP) P =0, (1.133)

here we understand J(.&7 as an operator on C" with kernel (J|&?)(Z, Z') with respect
to the volume form dvyx (Z’). Note that we can get (1.133) by a direct computation

from the kernel calculus in [30, §7.1]: put bﬁ = <(V52'O>XJ)33—Z[,, aiz,>’ then

bj bj
3y =m/=1|=4b a7 45| i = L 27+ (L2 || 22, )l
aj aj

Thus 2(J,P) = n\/—l[ —2b a7t — b — z;)z/j] P(Z, 7)) Icer, and we get

(1.133). Here is an argument without computation: Observe that
F=Vyn P, P*=2P. (1.134)

From the second equation of (1.134), we get 2(Vyun Z) + (Vyn )P = Vyun 2,
thus

DPFDP = P(Vyn P)P =0. (1.135)

By the characterization of Toeplitz operators via the expansion of their kernels

[32, Theorem 4.9, (4.30)] (cf. [30, Theorem 8.1.9, (8.1.18)]) as above, we know that

Py [Vg , Pp1f P, is a Toeplitz operator and its asymptotic expansion starts from p~ L.

Same argument shows that P, f [VE, P, P, is a Toeplitz operator with principal
symbol 0.
The proof of Theorem 1.19 is completed. O

1.8 A proof of Theorems 0.2, 0.4 and 0.8.

From (0.2), in (1.34), J = J™*X  thus a; = 27 in (1.89), and (0, 0) = 1 in (1.97).
By Theorems 1.8 and 1.18, we get Theorems 0.2 and 0.4 for %RK“(D!’). When we
take Z = Z' = 01in (1.62), we get (0.16) and

byr = ( J2r 2)(0,0). (1.136)

Note that in the holomorphic Kéhler situation (0.2), even we work on the full degree
of A(T*©DX), but our connection VAT "X along the fiber X becomes the Chern
connection which preserves the Z-grading of A(T*®-DX) on B™0X(0, 2¢). From
(0.12) and our trivialization, we get _#,(Z, Z') € A2(TE’£S) ® End(E)y, and by, €
E° (W, JT*(A2(T]§S)) ® End(E)). Thus we get also (0.15) from (1.61) (cf. (1.116)).
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In the proof, we wrote for the Hermitian connection Vf}, however, we only useitas a
motivation from the local index theory, all arguments here go through for the curvature
RH'(XC.LP®E) from (0.9). Thus we get also Theorems 0.2 and 0.4 for L R’ (X.L7®E),

Finally, from Theorem 1.17, (0.9) and (0.11), Theorem 0.8 is a special case of
Theorem 1.19.

2 An analogue of Bismut’s local family index theorem for Bergman
kernels

This Section is organized as follows. In Section 2.1, we recall some results on the
Kihler fibration. In Section 2.2, we establish Corollary 0.5 and Theorem 0.6.

In this Section, we will use the notation in Introduction. We denote by (-, -) the
C-bilinear form on Tr X ®g C induced by the metric g’#% in (0.2).

2.1 Kabhler fibration

Let W, S be compact complex manifolds. Let 7 : W — S be a holomorphic submer-
sion with compact fiber X and dimc X = n. Inthis section, we denoteby TW, T S, T X
the corresponding holomorphic tangent bundles, and TR W, Tr S, Tr X the associated
real tangent bundles. Let J"®X be the almost complex structure on the relative real
tangent bundle Tr X .

Let Tlé{ W be a sub-bundle of Tr W such that (0.8) holds.

Let g"#X be a JT®X_invariant metric on Tr X. Let X be the scalar curvature of
(X, gTeX).

Definition 2.1 [10, Def. 1.4] The triple (, g"*X, T} W) is said to define a Kihler
fibration if there exists a smooth closed real 2-form " of complex type (1, 1) on W
such that

° T]R? W and T X are orthogonal with respect to " .
o If X, Y e TRX,

oV (X, Y) = g®X(UTRX X ¥). 2.1

We suppose now that the triple (7, g7#X Tﬂg W) defines a Kéhler fibration.

We will denote by o, ¥ the restrictions of w to T W, Tr X. We extend 0¥, »
to Tk W by taking the convention that if X € Tr X and U € TgrS, then i xo? =0and
iynwX = 0. Therefore

X

o =o' + . 2.2)
The Riemannian volume form dvy on (X, g’®X) is given by

dvy = (@) /n\. (2.3)
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Note that 719 X in Section 1.1 is identified naturally as the holomorphic relative
tangent bundle T X of the fibration 7. Let 47" X be the Hermitian metric on 700 X
induced by g’®%. We still denote by VX the connection on TgX with curvature
RTX defined in Definition 1.1 associated with (m, gTRX, Té{ W). By [10, Theorem
1.7], vI¥ preserves TLOX and TOD X and it is the Chern connection VT(I’O)X on
(T(I’O)X, hT“‘O)X), and for U, V € Tr S, we have

k(U =0, Lyno* =0, o
vI*¥eX =0, dX "W, V) +irgu yue* =0, '
where we denote by d* the exterior differential operator along the fiber X.

Let E be a holomorphic vector bundle on W. Let h” be a Hermitian metric on E.
Let VE be the Chern connection on (E, h£) with curvature RE.

Let VA(T*(O’])X), VAT OVOBE 1 the connections on AT*OD X)) A(T*OD X))
E induced by VTX and VE with curvatures RA(T*(O'I)X), RA(T*(O'I)X)‘X’E. Then
VAT*YX) is the Clifford connection VEff on A (70D X) in Section 1.

Let {w;} be an orthonormal basis of 719 X by the above discussion and (1.9), we
have

RTX — RTU»O)X RCUff _ RA(T*(O’I)X) _ <RTX

u}l‘,wﬂw] A T,

3

71O TX, =~ — X TX — — 25
Tr[R 1 =(R" “wg,wg), r* =2(R" " (wj, w;)wg, wg).

Let 3" be the formal adjoint of the Dolbeault operator 3t along the fibers X with
respect to (1.10), then

D =23 +357% (2.6)

is the Dirac operator along the fiber X (cf. [30, Theorem 1.4.5]). Moreover,

D> =2 (555‘5’* + EE'*ﬁE) 2.7)

preserves the Z-grading of Q¥ (X, E).
For s € X, let H*(X;, E) be the Dolbeault cohomology of E along the fiber Xj.
By the Hodge theory, for any ¢ € N, s € §, we have

Ker(Ds|qo.q) = H1(X;, E). (2.8)

Assumption The rank of H*® (X, E) is locally constant for s € S.

By the Assumption, H*(X;, E) (s € S) form a smooth vector bundle H®(X, E)
on S, and it is the direct image of the sheaf of the holomorphic sections of E for the
map 7. Thus H*(X, E) is canonically a holomorphic vector bundle on S.
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Recall that P is the orthogonal projection from QY%*(X, E) onto Ker(D). The L?-
product on Q%*(X, E) induces naturally a metric /" X-E) on H*(X, E) by (2.8).
We denote also by VH*(X.E) the connection on H*(X, E) defined by (1.16) and (2.8).
By (1.13), (2.3) and (2.4), we know that for U € TRS,

. *(0,1)
Vgl (X.E) _ pyAT*OVXQE p

- UH (29)

The following result was established by [13, Theorem 3.2] (cf. [11, Theorem 3.11]).

Theorem 2.2 The connection V2 X-E) s the Chern connection on (H*(X, E),
hH'(X,E)).

2.2 Family Bergman kernels: a proof of Corollary 0.5 and Theorem 0.6

Let L be a holomorphic line bundle on W. Let i’ be a Hermitian metric on L. Let V-
be the Chern connection on (L, h%) with curvature RE.

We suppose that w := %RL defines a fiberwise Kéhler form along the fiber X.
Let /7""”X be the associated Kihler metric on 7-0 X as in (0.2). Let Tlé{W C
Tr W be the sub-bundle defined by (0.13). Then the triple (, hT(]'O)X, Tﬂg W) defines

a Kihler fibration.

We will add a subscript p to denote the corresponding objects in Sect. 2.1 associated
to L’ ® E.
By (0.3), for p > po,

H(X,, L’ ® E) = H*(X,, L’ ® E) (2.10)

forms a smooth vector bundle H*(X,L” ® E) = H°(X,L? ® E) on S. Thus
H*(X,LP ® E) is canonically a holomorphic vector bundle on S. The L?-product
on Q¥*(X, L? ® E) induces naturally a metric 11" (X-L"®E) on H*(X, L? ® E) by
(2.8).

In this case, by Theorem 2.2, (0.9), (0.11), (2.4) and (2.10) for any p > po,

yKer(Dy) _ yH (X.LPQE) (2.11)

is the Chern connection on (H(X, L? @ E), "X, LP®E)y,
By Theorem 1.8, (1.114), (2.5), (2.6), (2.10) and a; = 27 in (1.89), we get

Theorem 2.3 Under the assumptions of this Section, for the asymptotic expansion
of RHO(X’”@E)(x, x") in Theorem 1.8, the polynomials 7,(Z,Z') € A2(T]§S) ®
End(E)y, (xo € Xs,5 € S), in Z, Z' is of the same parity as r and deg S < 3r,
whose coefficients are polynomials in R TX RE (and T, RL ) and their derivatives of
order <r —2(and <r — 1, <r).

Now we will compute b5 1 in (0.24) by using (1.123).
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We fix x9 € W and we use the notation in Section 1.5. Especially, {w;} (resp. {e;})
is an orthonormal basis of (Tx(o1 ’O)X, gTX) (resp. (Tr,xy X, gTX)), and we will also use
the complex coordinates here.

We will evaluate our tensors at xg, and most of time, we will omit the subscript xg.

Set

X

~ 1 B .
02 =§ <R£)X(R, ei)R, €j> VO,ei VO,ej - RxE()(wj’ w;) — %

(2.12)
ZRIX DR, ej> — RE(R, ej)) Voe, -

1
+ <<§R§0X(R, exer + 3

Lemma 2.4 Under the assumptions of this Section, for Oy, Oy in (1.83), we have

o =0, — (RTX(R, eNWi, W;) @ A i, Vo.e

o =— A C(ei)vo,T(fH,e,)’

O =27 n 1] = oz g + V2 REGE, 0],

0y = ;f A FPLRTX R S @) A by + RE L F4T)

+ E(VWRL(f;’, Moz = (VTS 15, €i)xo Vo, }
(2.13)

Proof By (1.33), (1.34), (1.89) and (2.1), we have in our situation
J=U&X a; =27, ©=27n. (2.14)

At first, as J TR is integrable along the fiber X, we know that J'®X is parallel with
respect to vTX along the fiber, thus as in [30, (4.1.103)], in our normal coordinates,

veTle,» =0, (R (ej,e) =0 atxo. (2.15)

Note that for a (1, 1)-form R, by (1.8) as in [30, (1.3.3)], we have

1 .

ER(E,', ej)c(ei)c(e;) = 2R (w;, WJ')EJ Ay — R(w;, w;). (2.16)
The first two equations of (2.13) follow from [30, Theorem 4.1.25] (or [22, Theorem

5.1]) where the restriction of the operators on € (R?", E,,) are obtained, and also

from [29, Theorem 2.2], (2.5), (2.14), (2.16) as well as the fact that R7X, RE are

(1, 1)-forms.
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Note thatby (0.1) and (0.13), we have RL(faH , ¢j) = 0.Now the last three equations
of (2.13) follow from (1.81), (2.4), (2.5) and (2.15). m]

From (0.13), (1.123) and (2.13), we get
02 = —PYOD(O) 1 PN O P 4 YO pi
Note that for the Riemannian curvature R7X, for U, V, W, Y € Tr X, we have

(RTX @, vy, ¥) = (RT¥ W, v)v, V), (2.18)

RT™XwW,v)w + RTX(v, W)U + RTX(W,U)V = 0.

For ¢ € Tﬂ’gX, by (1.91), we have

leei =20(5) 55 + 20 ()7 beNVoe, = ()b — ¢(52)b;.
(2.19)

By (1.92), (1.98) and (2.14), we have

(b PNYz,2)=0, B:PY)Z,Z)=2nG-7)PN(Z,2Z),

. (2.20)
P7(0,0) = IcgE-

From (1.93), (2.12), (2.14), (2.19), (2.20) and the fact that R”X, RE are (1, 1)-
forms, we get (cf. [30, (4.1.109)])

(PN O, PV (-, 0) = {PNL[% (RTX R, IR, o) bibs

_4n 2
3 (RTX(R a&k)R’ %>_7<RTX(R’ 3ZA)()@I< 3?j>b‘ (2 21)
—g(RTX(z D2, 3 >b + RE(R, )b, ]PN}( 0)
:{PNL[é<RTX(z o)z, 5 ) bibj + REG, 520k, [P} 0),
By Theorem 1.12, (1.93), (2.18) and (2.21), we get (cf. [30, (4.1.109)])
Nt 3 pN NiTDhibj | LTy
(PN 0Py, 0) = | P[22 (R . )z, o)
4b TX d E N
o (BTG a i) + byRE G 5 | PV | 0).
(2.22)
From (1.98) and (2.13), we have
PN OV — B, PN =0. (2.23)
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From Theorem 1.12, (2.22) and (2.23), we get

((jo(o))—IPNlOQO)PN)("O) _ {[%(RTX( 7 &)z, az,>

487
o prx a0 o)y bige VL0, (24
o (R G gt g )+ (2 RE Gl [PY G0 @24

Let h;(Z) (resp. F(Z)) be polynomials in Z with degree 1 (resp. 2). By Theo-
rem 1.12, (1.93) and (2.20), we have

oh; ’F
(bh;2)0,0) = 220 (bib; F(2)2)(0,0) = 4———

0z 0z;07; (2.25)

oh; '
(Zhjb; 2)(0,0) =2—71,

0z;

Note that .,2”,(0) is a formally self-adjoint elliptic operator with respect to || ||o,

thus 92”0(0), (950) are also formally self-adjoint with respect to || ||o. Thus from (2.5),
(2.20), (2.24) and (2.25) (cf. [31, (2.39)] or [30, (4.1.110)]), we get

—(PYOL (L) TPV 0,0) = () PV 0 PY) 0, 0)

1 TX, 0 d 9 a E
= 5 (R G )ty )+ REGE )| e
1 (1
=5y {g o xo(aZ T )}I(C®E- (2.26)

By (0.13), (1.80), (1.98) and (2.2), we have
O = —2nv~Totl, Of PN = PNOP. (2.27)
From (2.27) and (2.26), we get
( _ (3(0))—1 pN* O(O)PNO(()Z) _ 0(()2)PNO£O) (,,5,”0(0))‘1 PNL)(O, 0)

= —2J/— loy, {—er + RE (%, 3? )} IcgE- (2.28)

Let {g4} be a basis of the holomorphic tangent bundle 719§ with dual basis {g®}.
From [10, Theorem 1.7] (or [9, Theorem 2.5]) and (1.6),

the tensor T'is a real (1, 1) — form with values in 7g X and

(2.29)
Tl w)eT"Ox, TEH w)er®Vx.
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By (1.90) and (2.29), we get
T (g W) = 24T (85 W), 55) 55 (2.30)
By (1.8), (1.91), (2.13) and (2.30), we get
1 . -
Og ) = \/5 <§a A lwi VO T(EH LU') —_ gO[ AN ijO,T(gf,wj))

_ \/_g /\sz(T(ga,w]), F)Zk> bt
V28" AT (¥ W), 7). (2.31)

Thus by (1.98), (2.20) and (2.31), we have
OV PN = V2¢* nwH(T (!, w)), )bk PN, (2.32)

By Theorem 1.12, (1.94), (2.14) and (2.32), we get £, " O\" PN = 87 0" PN Now
from (1.90), (1.93), (2.20), (2.31) and (2.32), we get

_PNO?)PNL (go(o))floil)PN
1 g . _ : iy —
= = PY&P A i (TR wi), 550 8" AT (85 ), 5 e PV
1_g _ N
=58 N8 UT@H, wi), Tl wj))ey PV (2.33)
Let F(Z) be a polynomial in Z with degree 2. Then by (2.20), we have

1 9%F ?2F bj 1 3°F bb;
F(Z)?)(Z,0 = P(Z,0
(F@2)2) 2.0 = (53, 92, T gz, Y +28z18114n2) (2.0).
(2.34)
By Theorem 1.12, (1.93) and (2.34),
(PF(Z)P)(Z,0) = (1 °F Zizs 4 °F )@(z 0) (2.35)
29z sz 7 07,07, T '

From (1.98), (2.13), (2.19) and (2.20), we have
PNOP PN = %f"‘ A TEPN[RECEE, ) + %(VV(RL(ff @2
HV T L ), %)bj]PN~ (2.36)
From (0.1), (2.25), (2.35) and (2.36), we get
(PYOP 0,00 = 3 £ A FA[RE . £
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—2V=1(VV( (], )

J
9z

L
3
2V ASE ) 7 |leer. @37)

dz,
From (2.4), for U, V € TrS, we get
Ve, Ve, (U, V) = =V, (X (T (U™, V), &)
= - (VX T V) )
—X (W, v, v/ Xen. (2.38)

Recall that we are using the normal coordinates, from (0.2), (2.15) and (2.38), at xo,
we have

(VV @ WUT VI eepy = (VY@ U, V) )0
= Ve; Ve, (@™ (UM, V)

- (v}jXT(UH, v, JTRXe,->. (2.39)
From (2.37) and (2.39), we get
(PNOP PV)(0,0) = —f A FPRE(EE. fiDIcsE. (2.40)

Now by [6, Theorem 4.14] (cf. [5, Proposition 10.9], [8, (11.61)]), for the tensor S
in (1.4), we have for X, Y e T X, Z, W € TrW,

<RTX(X, Y)PTX7, PTXW) n ((SPTXS)(X, Y)Z, W>

+<(VTXS)(X, Y)Z, W> — <RTX(Z, W)X, Y). (2.41)
By (1.6),if U, V € TS, X, ¥ € Tg X, we have

<(VTXS)(X, Y)UuH, VH> - <V§XT(UH, vy, Y> - %(V?XT(UH, v, X>.

(2.42)

| =

Note that we are using the normal coordinates, thus as in (2.15), for a function & along
the fiber X, the positive Laplacian Ax acts on & as

2p
Axh = —4

at xo. (2.43)
7;07;
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From (2.39), (2.42) and (2.43), we get

1
(VXG5 il 1), =3 VZX (T S5 %

| ,
__<v§<T(faH, T5). al>

2 az,

H H H
_FBZJB_- (fa's f5)

J1
4

Axo™ (£, 151, (2.44)

By (1.6) and the fact that S(-) takes values in anti-symmetric elements of
End(Tgx W), we find that for U, V € TrS, X, Y € Tr X,

((SPTXS)(X, U, VH>
- <S(X)PTXS(Y)UH, VH> _ <S(Y)PTXS(X)UH, VH>
- <PTXS(X)UH, PTXS(Y)VH> - <PTXS(Y)UH, PTXS(X)VH>
- <T(UH, X), T(VH, Y)> - <T(UH, ), T(VH, X)>. (2.45)
From (2.20), (2.29), (2.33), (2.41), (2.44) and (2.45), we get
—(PNOD PN (£ =10 PV (0, 0)
= %((SP”S)(w,-,wj)gg’, s)8 A g* P (0.0)

1
= S {SPTXSGE E f 1f) 1 A fPlcss

1 —1
=5fA f"[(R”(faH, fi5% %) + gAx(w(faH, fﬂ”))]IC@E
= [(% TI'[R;O“,())X])H n \/fAX,xowH]I(C®E~ (2.46)

As we work on E, Icgg = Idg. From (2.17), (2.28), (2.40) and (2.46), we get

by,1(x0) = 22(0,0) = —2v —lwy {—rxo +RE (Bz ; a? )}
V-1

H
+[sz) +5 Tr[R;J(l’O)X]] + X Ao (247)

Note that for any 2-form ¥ on W, by (1.19) and (2.2), we have

@ AP = 09 A (0HO A W 4 97 A (¥
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= (—vV=T0wj, W + o) A @5)". (2.48)

From (2.2), (2.5), (2.47) and (2.48), we get the first two equations of (0.24).
By [30, Lemma 7.2.4, p. 314], for any h € €*°(X;) and f € €°°(X;, End(E)),
we have

Ty p(r,x) =f@)p" + 0",
1
Thp (6. 6) =h()p" + (b1AE) = —(Axm®) " + 0" D). (.49)

with by (x) = 1x + LRE(w-,w-).
87 27 I

Theorem 0.4, (2.47) and (2.49) imply that in (0.20), we have

1
Ri = bai = (100b20(0) = —(Axba0)))

V=1
—A o'l (2.50)

1 . H
- (RE +3 Te[RT" ‘”X]) -
The proof of Theorem 0.6 is completed.
Proof of Corollary 0.5 Leth” """ be a Hermitian metric on 70 S, and h7S®H be the
Hermitian metric on 709§ ® HO(X, L? ® E) induced by RTY0S and pHO (X LPQE)

We define T'Ro,p € End(T!9S @ HYX,L? ® E)) such that for u,v €
7408 01,00 € HO(X, L? ® E),

0 .
RSB (T, (1 ® 01), v ® 02) := (Tg, (1 i) ,O1, 02). (2.51)
We define for u, v e T10S, EnelPQRE,
hy(®E,v@n) =—2mv/—1o @ v")ht"®E & ). (2.52)

As wis a Kéhler formon W, &, is in fact a Hermitian metric on JT*(T(I’O)S) QLPRE.
Butas Ry = —27+/— 1w, we know at s € S,

RTVSOH (o (@ 1), v ® 02) = /X hy(u ® 01(x), v ® 02 (X)) (@ (x))" /n!
) (2.53)

Thus TRO’ p s positive definite. Combining with (0.20), we get Corollary 0.5. O
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