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We give a formula to compare the Quillen metrics associated to a branched covering from

holomorphic line bundles.

Introduction

The Quillen metric is a metric on the determinant of the cohomology of a holomorphic

vector bundle over a complex manifold. It is the product of L2-metric and the analytic

torsion, which is the regularized determinant of the Kodaira Laplacian. By Quillen,

Bismut, Gillet, and Soulé, we know that the Quillen metric has very nice proprieties.

Let i : Y ↪→ X be an immersion of compact complex manifolds. Let η be a

holomorphic Hermitian vector bundle over Y. Let ξ be a holomorphic resolution of η over

X. Bismut and Lebeau [11] have calculated the relation of the Quillen metrics associated

to η and ξ .

Let π : W → S be a holomorphic map of compact complex manifolds. Let ξ be

a holomorphic Hermitian vector bundle over W. Let R•π∗ξ be the direct image of ξ . Let

λ(ξ) and λ(R•π∗ξ) be the inverses of the determinant of the cohomology of ξ and R•π∗ξ .

By [22], λ(ξ) � λ(R•π∗ξ). If π is a submersion, Berthomieu and Bismut [2] have compared

the corresponding Quillen metrics on λ(ξ) and λ(R•π∗ξ).

Suppose now that W, S are arithmetic varieties over Spec(Z). Let ξ be an algebraic

vector bundle on W. In [14], Gillet and Soulé conjectured that an arithmetic Riemann–

Roch formula holds. In [15], by using the Bismut–Lebeau embedding formula for Quillen
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Quillen Metrics and Branched Coverings 6607

metrics [11], they proved it for the first arithmetic Chern class. By using Bismut’s work [5],

the family version of [11], Gillet–Roessler–Soulé [12] show that the arithmetic Riemann–

Roch formula in higher degrees holds.

In [3], Bismut has conjectured an equivariant arithmetic Riemann–Roch formula.

In [4], he was able to show the compatibility of his conjecture with immersions. In [23],

Köhler and Roessler have obtained a version of Bismut’s conjecture by using [4]. For more

recent works in this direction, cf. [21, 24, 28].

In this paper, we will compare the Quillen metrics on λ(ξ) and λ(R•π∗ξ) in the case

that π is a branched covering from a holomorphic line bundle. For any holomorphic line

bundle over a compact complex manifold S, we give a general construction of a smooth

submanifold W ⊂ L (cf. (1.1)) from holomorphic sections of the powers of L on S such

that πW : W → S the projection from W on S, is a branched covering. We obtain the

analogue of the result of Berthomieu–Bismut [2,Theorem 0.1] and its equivariant version

[25, Theorem 3.1] in this situation. In fact, our first result, Theorem 3.4, is compatible with

the arithmetic Riemann–Roch formula. Our second result, Theorem 4.1, fits perfectly well

with Bismut’s conjecture.

This paper is organized as follows. In Section 1, we construct a branched covering

from a holomorphic line bundle. In Section 2, we describe the canonical sections of

determinant lines. In Section 3, applying the Bismut–Lebeau embedding formula [11,

Theorem 0.1], we calculate the Quillen norm of the canonical section. In Section 4, using

the Bismut equivariant embedding formula [4, Theorem 0.1], we calculate the equivariant

Quillen norm of the canonical section.

1 Branched Coverings

Let S be a compact complex manifold. Let L be a holomorphic line bundle on S.

Let αi ∈ H0(S, Li) (1 � i � d, d ≥ 2, d ∈ N∗). For (x, t) ∈ L, x ∈ S, set

F(α)(x, t) = td +
d∑

i=1

αi(x)td−i,

W =
{
(x, t) ∈ L : F(α)(x, t) = 0

}
.

(1.1)

We suppose that W is smooth.

Let V = P(L ⊕ 1) the projectivisation of the vector bundle L ⊕ C, here C is the

trivial line bundle on S. We identify S with {(x, (0, 1)) ∈ V : x ∈ S} ⊂ V. Let π : V → S

be the natural projection with fibre Y. The complement of P(L) � S in V is canonical

isomorphic to L, so we can identify W to a sub-manifold of V = P(L ⊕ 1). Let πW : W → S

be the projection induced by π . Then W is a branched covering of S of degree d.
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6608 X. Ma

Let ξ be a holomorphic vector bundle on S. Let

ξ ′ = π∗
Wξ (1.2)

be the pull-back of the bundle ξ on W. Let R•πW∗ξ ′, R•πW∗OW be the direct images of

OW(ξ ′), OW , the sheaves of holomorphic sections of ξ ′, and of holomorphic functions on

W, respectively. By [17, Theorem 2.4.2], R•πW∗OW = R0πW∗OW is locally free of rank d on

S. By [20, Exercise 3.8.3], we have

R•πW∗ξ ′ = R0πW∗OW ⊗ ξ . (1.3)

Let H•(W, ξ ′) = ⊕dim W
j=1 Hj(W, ξ ′), H•(S, R0πW∗ξ ′) be the cohomology groups of OW(ξ ′) on

W, OS(R0πW∗ξ ′) on S, respectively.

For a complex vector space E, the determinant line of E is the complex line

det E = �maxE. (1.4)

Definition 1.1. Set

λ(ξ ′) =
⊗

i

(
det Hi(W, ξ ′)

)(−1)i+1

,

λ(R•πW∗ξ ′) =
⊗

i

(
det Hi(S, R0πW∗ξ ′)

)(−1)i+1

.

(1.5)

By [22], we have the canonical isomorphism λ(ξ ′) � λ(R•πW∗ξ ′). Let σ be the

canonical section of λ(ξ ′) ⊗ λ−1(R•πW∗ξ ′).

Example: Let CPn be the complex projective space of dimension n. Let

(z0, · · · , zn) = (z0, z) be the homogeneous coordinate. Let S = {z0 = 0} ↪→ CPn. Let W

be a hypersurface of degree d, which doesn’t contain the point (1, 0). Let π : W → S be

the projection from (1, 0). Let L = OS(1) be the hyperplane line bundle on S. By [18, page

167], we can reduce this to the situation (1.1).

Remark 1.2. Let π : S1 → S2 be a finite mapping of Riemann surfaces of degree n.

Let M(S1),M(S2) be the meromorphic function fields on S1, S2. Then π is characterized

by the finite field extension M(S2) ↪→ M(S1) [27, §2.11]. So S1, π is constructed by an

irreducible polynomial

P(T) = Tn + c1Tn−1 + · · · + cn ∈ M(S2)[T]. (1.6)

So our construction contains a large part of general maps of Riemann surfaces.
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Quillen Metrics and Branched Coverings 6609

Let ı : S → V, j : W → V be the natural immersions. Let OV(−1) be the

universal line bundle over V. Let OV(k) = OV(−1)⊗−k. On V, we have the exact sequence

of holomorphic vector bundles [6, (1.21)],

0 → OV(−1)
a→ π∗L ⊕ C

a→ π∗L ⊕ C

OV(−1)
→ 0. (1.7)

Let τ[S](y) ∈
(

π∗L⊕C

OV (−1)

)
y

be given by

τ[S](y) = ay(0, −1). (1.8)

Then τ[S] is a holomorphic section of π∗L⊕C

OV (−1)
, which vanishes exactly on S. The map θ :

π∗L → π∗L⊕C

OV (−1)
induced by the projection from π∗L ⊕C is an isomorphism on L ⊂ P(L ⊕ 1).

Under this identification, τ[S] is the tautological section of π∗L on L. We have

div(τ[S]) = S. (1.9)

Let σ[S] be the canonical section of [S] on P(L ⊕ 1). Then σ−1
[S] ⊗ τ[S] is a nonzero section of

[S]−1 ⊗ π∗L⊕C

OV (−1)
. We identify the line bundle [S] to π∗L⊕C

OV (−1)
via this section. In particular, we

get

[S]|S = L. (1.10)

The exact sequence (1.7) induces also an isomorphism

[S] � π∗L ⊗ OV(1). (1.11)

Remark 1.3. If the linear system |Ld| hasn’t any base points, then for the generic

elements αi ∈ H0(S, Li) (1 � i � d), W is smooth.

In fact, let ν be the holomorphic section of OV(1) defined by (0, 1) ∈ (π∗L ⊕ C)∗,

then

div[ν] = P(L). (1.12)

By (1.8), for c ∈ C, αi ∈ H0(S, Li) (1 � i � d), put

G(α, c) = cτd
[S] +

d∑
i=1

αi(x)νiτd−i
[S] , (1.13)
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6610 X. Ma

then {G(α, c) : αi ∈ H0(S, Li), 1 � i � d, c ∈ C} is a linear system of [dS] on V, and the base

locus of this system is empty. By Bertini’s Theorem [18, page 137], {G(α, 1) = 0} ⊂ P(L⊕1)

is smooth for generic elements αi ∈ H0(S, Li). If we identify π∗L to [S] on L as above, then

G(α, 1) = F(α), so we obtain our Remark.

2 Canonical Isomorphisms of Determinant Lines

By (1.1), we can extend F(α) to a meromorphic section of π∗Ld on V. Let t : L → π∗L

be the tautological section of π∗L on L ⊂ P(L ⊕ 1) = V. Then t extends naturally to a

meromorphic section of π∗L on V. Set

f (α) = F(α)/td. (2.1)

Then f (α) is a meromorphic function on V, and

div(f (α)) = W − d · S. (2.2)

Let δ{W}, δ{S} be the currents on V defined by the integration on W, S. By (2.2), we have

∂∂

2iπ
log |f (α)|2 = δ{W} − d δ{S}. (2.3)

We will identify the line bundle [W] to [dS] via f (α). Let τ[W] be the canonical section of

[W] on V, then

τ[W] = f (α)τd
[S]. (2.4)

Let TY = TV/S be the holomorphic tangent bundle to the fibre Y. By (1.6), as in

[18, page 409], we have an exact sequence of holomorphic vector bundles on V,

0 → C → (π∗L ⊕ C) ⊗ OV(1) → TY → 0. (2.5)

Let KY = T∗Y be the relative canonical bundle on V. By (2.5),

KY � π∗L−1 ⊗ OV(−2). (2.6)

Proposition 2.1. For k > 0, we have canonical identifications

R0π∗OV = C, R0π∗OV(−k) = 0,

R1π∗OV(−1) = R1π∗OV = 0,

R1π∗OV(−(k + 1)) =
k⊕

i=1

Li.

(2.7)

Proof. The first two equations are trivial.
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Quillen Metrics and Branched Coverings 6611

Using the Serre duality [20, page 240] and (2.6), for m ∈ Z, we have

R1π∗OV(−m) � (H0(Y,OV(m) ⊗ KY))∗

= L ⊗ (H0(Y,OV(m − 2)))∗.
(2.8)

The second equation of (2.7) and (2.8) implies the third equation of (2.7).

For k > 0, by [18, page 165], we have

H0(Y,OV(k − 1)) = Symk−1((L ⊕ C)∗) =
k−1⊕
i=0

L−i. (2.9)

By (2.8) and (2.9), we get the last equation of (2.7). �

Proposition 2.2. We have a canonical isomorphism,

R0πW∗OW �
d−1⊕
j=0

L−j. (2.10)

Proof. By [17, §2.4], we can identify R0πW∗OW as the sheaf of polynomial functions

along the fiber L with degree � d − 1, thus we get (2.10). �

Using [20, Exercise 3.8.3], (1.11), (2.7), and (2.10), for k ≥ 2, we get

R•π∗OV([−S]) = 0,

R0π∗OV([−kS]) = 0, R1π∗OV([−kS]) =
k−1⊕
j=1

L−j,

R0πW∗ξ ′ �
d−1⊕
j=0

L−j ⊗ ξ .

(2.11)

Note that we identify [W] with [dS] via (2.4), by (2.11), we have

R0π∗OV([−W]) = 0, R1π∗OV([−W]) =
d−1⊕
j=1

L−j. (2.12)

We have the following exact sequence of sheaves over V:

0 → OV([−W])
τ[W]→ OV → j∗OW → 0. (2.13)
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6612 X. Ma

By (2.7) and (2.13), we get the following exact sequence of sheaves on S:

0 → R0π∗OV
j→ R0πW∗OW

δ1→ R1π∗OV([−W]) → 0. (2.14)

Proposition 2.3. Under the canonical identification (2.10) and (2.12), the exact sequence

(2.14) is canonically split. Let δ :
⊕d−1

i=1 L−i → R1π∗OV([−W]) be the map induced by δ1

and (2.10), then under the decomposition L−1 ⊕ · · · ⊕ L−d+1, we have

δ−1 = (aij) =

⎛
⎜⎜⎝

1 ∗
. . .

0 1

⎞
⎟⎟⎠ . (2.15)

Moreover,

aij = αj−i if j > i,

1 if i = j,

0 if j < i.

(2.16)

Proof. Clearly, under the identification (2.7), j is the canonical embedding of C into the

factor C in R0πW∗OW , so the exact sequence (2.14) is canonical split.

To prove (2.15), we use Čech cohomology. Before prove (2.15), we explain the

compatibility of (2.8), (2.9), and Čech cohomology on CPn.

Let (X0, · · · , Xn) be linear coordinates on Cn+1, and let {xi = Xi/X0 : i = 1, · · · , n}
be the corresponding affine coordinates. Let Ui = (Xi �= 0) ⊂ CPn. Let K = �n(T∗CPn)

be the canonical line bundle on CPn. By [18, page 409], we have an exact sequence of

holomorphic vector bundles on CPn

0 → C → OCPn(1)n+1 → TCPn → 0. (2.17)

By (2.17), we have

K
v� O

CPn(−(n + 1)). (2.18)

We trivialize O
CPn(1) by (1, 0, · · · , 0) ∈ Cn+1,∗ on U0. By [18, page 409], on U0, we have

v(dx1 ∧ · · · ∧ dxn) = 1 ∈ O
CPn(−(n + 1)). (2.19)
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Quillen Metrics and Branched Coverings 6613

By [20, Remark 3.7.1.1], there exists a canonical element a ∈ Hn(CPn, K), which defines

the Serre duality μ. On ∩n
i=0Ui, consider the cocycle, we have

a = 1

x1 · · · xn
dx1 ∧ · · · ∧ dxn. (2.20)

By [20, Theorem 3.5.1], using Čech cohomology, on ∩n
i=0Ui, Hn(CPn,OCPn(−n − k − 1))

(k ∈ N) is generated by the Čech cocycle

{
αl1···ln = x−(l1+1)

1 · · · x−(ln+1)
n :

n∑
i=1

li � k, li ∈ N
}
.

Also H0(CPn,OCPn(k)) (k ∈ N) is generated by

{
βl1···ln = xl1

1 · · · xln
n :

n∑
i=1

li � k, li ∈ N
}

on U0. By (2.19) and (2.20), we have the following commutative diagram:

(2.21)

Thus, the map μ1 is such that

μ1(αl1···ln)(βl′1···l′n) = δ(l1···ln),(l′1···l′n).

Now we are ready to establish (2.15). Let (v, u) be the local homogeneous

coordinates of P(L ⊕ 1). Let U1 = {(v, u) ∈ P(L ⊕ 1) : v �= 0}, U2 = {(v, u) ∈ P(L ⊕ 1) : u �= 0}
with affine coordinate t as a function on U2 with values in π∗L. We will identify U2 with

L, then U1 ∩ U2 = L \ S, t−1 is a section of π∗L−1 on U1 ∩ U2. As explained in the proof of
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6614 X. Ma

Proposition 2.2, on U2, for x ∈ S, we have

(R0πW∗OW)x =
{ d−1∑

i=0

γit
i : γi ∈ OS,x(L−i)

}
. (2.22)

We recall that from (1.11) and (2.2), on V,

[−W] = π∗L−d ⊗ OV(−d).

By (2.7) and (2.21), on U1 ∩ U2, for x ∈ S, we have

(R1π∗OV([−W]))x =
{ d−1∑

j=1

γd−jt
−j : γd−j ∈ OS,x(L−d+j)

}
. (2.23)

On U1 ∩ U2, we have

τ[W](γd−jt
−j) = γd−j

(
td−j +

d∑
i=1

αi(x)td−i−j
)
.

The function γd−j(t
d−j+∑d−j−1

i=1 αi(x)td−i−j) is holomorphic on U2,γd−j(
∑d

i=d−j αi(x)td−i−j)

is holomorphic on U1. By the definition of δ1, we have

δ1

(
γd−j(t

d−j +
d−j−1∑

i=1

αi(x)td−i−j)
)

= γd−jt
−j. (2.24)

By (2.22), (2.23), and (2.24), we have (2.15) and (2.16). �

We also have an exact sequence of sheaves over V

0 → OV([−dS])
τd
[S]→ OV → ı∗OS

( d−1⊕
i=0

L−i) → 0. (2.25)

By (2.7) and (2.25), we have the following exact sequence of sheaves over S:

0 → R0π∗OV → OS

( d−1⊕
i=0

L−i) δ′→ R1π∗OV([−dS]) = OS

( d−1⊕
i=1

L−i) → 0. (2.26)

Proposition 2.4. Under the identifications (2.11), the exact sequence (2.26) is naturally

split, and δ′|⊕d−1
i=1 L−i = Id.
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Quillen Metrics and Branched Coverings 6615

Proof. We use the notation in the proof of Proposition 2.3. On U1 ∩ U2, we have

τd
[S](γd−jt

−j) = γd−jt
d−j. (2.27)

In (2.25) as in (2.23), we have identified ı∗OS(L−i) to {γit
i : γi ∈ OS(L−i)} on U2.

By the definition of δ′ and (2.27), we have Proposition 2.4. �

As in Definition 1.1, we define the complex lines

λ′
d(π∗ξ) = λ(π∗ξ) ⊗ λ−1([−dS] ⊗ π∗ξ),

λW(ξ) = λ(R0π∗OV ⊗ ξ) ⊗ λ(R1π∗([−W]) ⊗ ξ).
(2.28)

By [22], (2.13), and (2.25), we have the canonical isomorphisms:

λ(ξ ′) � λ′
d(π∗ξ), λ(

d−1⊕
i=0

L−i ⊗ ξ) � λ′
d(π∗ξ). (2.29)

Let τd, σ1 be the canonical sections of λ−1(
⊕d−1

i=0 L−i ⊗ ξ) ⊗ λ′
d(π∗ξ) via (2.25), λ−1(ξ ′) ⊗

λ′
d(π∗ξ) via (2.13). Recall that σ is the canonical section of λ(ξ ′) ⊗ λ−1(R•πW∗ξ ′).

Proposition 2.5. Under the identifications (2.11), we have

σ = σ−1
1 ⊗ τd. (2.30)

Proof. Let ν3 be the canonical section of

λ(R1π∗[−W] ⊗ ξ) ⊗ λ(R1π∗[−dS] ⊗ ξ)−1

induced by δ in Proposition 2.3. Let pr :
⊕d−1

i=r L−i → ⊕d−1
i=r+1 L−i be the canonical

projection. Let δr :
⊕d−1

i=r L−i → ⊕d−1
i=r L−i be the map defined by the matrix (aij) as in

(2.16), then we have

(2.31)
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6616 X. Ma

By considering the long exact sequence from (2.31),

(2.32)

as δd−1 : L−d+1 → L−d+1 is the identity map, by recurrence, we know the canonical

section of

λ(

d−1⊕
j=r

L−j ⊗ ξ) ⊗ λ−1(

d−1⊕
j=r

L−j ⊗ ξ)

induced by δr is 1 for all r ≥ 1. We conclude in particular that

ν3 = 1. (2.33)

As in (1.5), we define the complex line λ(ξ) for ξ on S. By Proposition 2.3, (2.14),

and (2.27), we have the following commutative diagram:

(2.34)

Let ν1, ν2 be the canonical sections of

λ−1(R0πW∗ξ ′) ⊗ λW(ξ), λ−1(

d−1⊕
j=0

L−j ⊗ ξ) ⊗ λ(ξ) ⊗ λ(R1π∗OV([−dS]) ⊗ ξ)

induced by (2.14) and (2.26). By (2.15), (2.33), and (2.34), we have

ν1 = ν2 ⊗ ν3 = ν2. (2.35)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/8/6606/7296487 by guest on 22 April 2024



Quillen Metrics and Branched Coverings 6617

In our situation, the Leray spectral sequences [19, §3.7] associated to π : V → S

and the considering vector bundles η (η = [−dS] ⊗ π∗ξ , etc) are degenerate, as R0π∗η = 0

or R1π∗η = 0, so

Hk(V, η) �
⊕

i+j=k

Hi(S, Rjπ∗η). (2.36)

Then by (2.13), (2.14), (2.26), and (2.36), we have the following commutative diagram of

long exact sequences:

(2.37)

Let τ be the canonical section of λ′
d

−1
(π∗ξ)⊗λW(ξ) induced by (2.36). The σ (resp.

τ ) is obtained from the second vertical map (resp. the rest part of the vertical maps) of

the first two lines of (2.37). The σ1 (resp. ν1) is obtained from the first (resp. second) line

of (2.37), and ν2 and τd is obtained from the third and fourth line of (2.37). Finally, τ is

also obtained from the first and third vertical maps of the last two lines of (2.37).

By [7, (1.3)], [22, Proposition 1], (2.13), (2.25), and (2.37), we have

σ ⊗ τ = σ−1
1 ⊗ ν1,

τ = ν2 ⊗ τ−1
d .

(2.38)

By (2.35) and (2.38), we have (2.30). �
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For 0 � i � d − 1, we have an exact sequence of sheaves over V

0 → OV([−(i + 1)S])
τ[S]→ OV([−iS]) → ı∗OS(L−i) → 0. (2.39)

By (2.39), we have the exact sequence of sheaves over V

0 →
d−1⊕
i=0

[−(i + 1)S] ⊗ π∗ξ
τ[S]→

d−1⊕
i=0

[−iS] ⊗ π∗ξ → ı∗OS(

d−1⊕
i=0

L−i ⊗ ξ) → 0. (2.40)

Let λd(π∗ξ), λV([−kS] ⊗ π∗ξ) (k ≥ 1) be the complex lines

λd(π∗ξ) = λ(⊕d−1
i=0 [−iS] ⊗ π∗ξ) ⊗ λ−1(⊕d

i=1[−iS] ⊗ π∗ξ),

λV([−kS] ⊗ π∗ξ) = λ([−(k − 1)S] ⊗ π∗ξ) ⊗ λ−1([−kS] ⊗ π∗ξ).
(2.41)

By [22], (2.39), and (2.40), we have the canonical isomorphisms:

λ(⊕d−1
i=0 L−i ⊗ ξ) � λd(π∗ξ), λ(L−k+1 ⊗ ξ) � λV([−kS] ⊗ π∗ξ),

λd(π∗ξ) = λ′
d(π∗ξ).

(2.42)

Let ϕk, ρd be the canonical sections of

λ−1(L−k+1 ⊗ ξ) ⊗ λV([−kS] ⊗ π∗ξ), λ−1(⊕d−1
i=0 L−i ⊗ ξ) ⊗ λd(π∗ξ).

Then

ρd =
d⊗

i=1

ϕi. (2.43)

Proposition 2.6. Under the identification (2.11), we have

τd = ρd. (2.44)
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Proof. For k ≥ 1, consider the complex of OV-sheaves on V

0 0 0 0

0 →
↑

ı∗OS(L−k)
Id→ ı∗

↑
OS (⊕k

i=0L−i) →↑
ı∗ OS(⊕k−1

i=0 L−i) → ↑
0→ 0

0 → ↑
0→

↑
OV

Id→
↑
OV→ ↑

0→ 0

0 → ↑
0→

τk+1
[S] ↑

OV [−( k + 1)S])
τ[S]→

τk
[S]↑
OV ([−kS]) →

↑
ı∗OS (L−k) → 0

↑
0

↑
0

↑
0

↑
0 .

(2.45)

In (2.45), the rows are exact sequences of sheaves. The second and third columns

correspond to (2.25).

By [22], (2.29), (2.42), and (2.45), we have

τ−1
k ⊗ τk+1 = ϕk+1. (2.46)

By (2.25) and (2.39), we have also

ϕ1 = τ1. (2.47)

By (2.43), (2.46), and (2.47), we have (2.44). �

3 Comparison Formula for the Quillen Metrics

Definition 3.1. Let PV be the vector space of smooth forms on a complex manifold V,

which are sums of forms of type (p, p). Let PV,0 be the vector space of the forms α ∈ PV

such that there exist smooth forms β, γ on V for which α = ∂β + ∂γ .

If A is a (q, q) matrix, set

Td(A) = det
( A

1 − e−A

)
, ch(A) = Tr[exp(A)], c1(A) = Tr[A]. (3.1)

The genera associated to Td and ch are called the Todd genus and the Chern character.

Let P be an ad-invariant power series on square matrices. If (F, hF) is a holomor-

phic Hermitian vector bundle on V, let ∇F be the corresponding holomorphic Hermitian

connection, and let RF be its curvature. Set

P(F, hF) = P
(−RF

2iπ

)
. (3.2)
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By the Chern–Weil theory, P(F, hF) is a closed form that lies in PV , and its cohomology

class P(F) does not depend on hF .

From now on, we use the assumption and notation of Section 1 and S

is a compact Kähler manifold. Then V is Kähler. Recall that we identify S with

{(x, (0, 1)) ∈ V : x ∈ S} ⊂ V.

Let NS/V , NW/V be the normal bundles to S, W in V.

Let hTV be a Kähler metric on TV. Let hTW , hTS, hTY be the metrics on TW, TS, TY

induced by hTV . Let hNS/V , hNW/V be the metrics on NS/V , NW/V , as the orthogonal comple-

ments of TS, TW, induced by hTV .

By (1.8) and (2.4), the maps

NS/V → [S]|S, NW/V → [W]|W ,

y → ∂yτ[S], y → ∂yτ[W]

(3.3)

define the canonical isomorphisms of NS/V � [S]|S, NW/V � [W]|W . Let h[S] (resp. h[W])

be the Hermitian metric on [S] (resp. [W]) on V such that the isomorphisms (3.3) are

isometries.

Let h[−iS] be the metrics on [−iS] induced by h[S] and let hL be the metric on L

induced by h[S] via (1.10). Let h[−W] be the dual metric on [−W] induced by h[W].

Let hξ be a metric on ξ . Let hξ ′
be the metric on ξ ′ induced by hξ . Let hRπW∗ξ ′

be

the metric on R0πW∗ξ ′ induced by hL, hξ under identification (2.11).

Let || ||λ(ξ ′), || ||λ(RπW∗ξ ′) be the Quillen metric [26], [8] on λ(ξ ′), λ(RπW∗ξ ′). Under

the identification (2.11), all complex lines considered in Section 2 provide with the Quillen

metrics.

Let ζ(s) be the Riemann zeta function. Let R(x) be the Gillet–Soulé power series

[14],

R(x) =
∑
n≥1

n odd

(2ζ ′(−n)

ζ(−n)
+

n∑
j=1

1

j

)
ζ(−n)

xn

n!
. (3.4)

We identify R to the corresponding additive genus.

Let PV
W be the set of currents on V, which are sums of currents of type (p, p),

whose wave front set is included in N∗
W/V,R. Let PV,0

W be the set of currents α ∈ PV
W such

that there exist currents β, γ on V, whose wave front set is included in N∗
W/V,R, such that

α = ∂β + ∂γ .
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Let (ξ1, v), (ξ2, v) be the complexes on V

(ξ1, v) : 0 → [−W] ⊗ π∗ξ
τ[W]→ π∗ξ → 0,

(ξ2, v) : 0 →
d−1⊕
i=0

[−(i + 1)S] ⊗ π∗ξ
τ[S]→

d−1⊕
i=0

[−iS] ⊗ π∗ξ → 0.
(3.5)

Let hξ1 (resp. hξ2 ) be the metrics on ξ1 (resp. on ξ2) induced by h[W] (resp. h[S]) and hξ .

Let T(ξ1, hξ1) ∈ PV
W , T(ξ2, hξ2) ∈ PV

S be the Bott–Chern currents constructed in [9,

Theorem 2.5]. The forms T(ξi, hξi) verify the following equations:

∂∂

2iπ
T(ξ1, hξ1) = Td−1(NW/V , hNW/V ) ch(ξ ′, hξ ′

)δ{W} − ch(ξ1, hξ1)

= Td−1([W], h[W])π∗ ch(ξ , hξ )
(
δ{W} − c1([W], h[W])

)
,

∂∂

2iπ
T(ξ2, hξ2) = Td−1(NS/V , hNS/V )

d−1∑
j=0

ch([−jS], h[−jS]) ch(ξ , hξ )δ{S}

− ch(ξ2, hξ2)

=
(1 − e−dx

x

)
([S], h[S])π∗ ch(ξ , hξ )

(
δ{S} − c1([S], h[S])

)
.

(3.6)

Over W, we have the exact sequence of holomorphic Hermitian vector bundles

0 → TW → TV → NW/V → 0. (3.7)

Let T̃d(TW, TV|W , hTV) ∈ PW/PW,0 be the Bott–Chern class constructed in [7, Theorem

1.29], such that

∂∂

2iπ
T̃d(TW, TV|W , hTV) = Td(TV, hTV) − Td(TW, hTW) Td(NW/V , hNW/V ). (3.8)

Over S, we have the exact sequence of holomorphic Hermitian vector bundles

0 → TS → TV → NS/V → 0. (3.9)

Let T̃d(TS, TV|S, hTV) ∈ PS/PS,0 be the corresponding Bott–Chern class of [7]. It verifies

the following equation:

∂∂

2iπ
T̃d(TS, TV|S, hTV) = Td(TV, hTV) − Td(TS, hTS) Td(NS/V , hNS/V ). (3.10)
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The following result is a direct consequence of [13, Proposition 1.3.1] and the

observation that Td−1(F, hF) c1(F, hF) = 1−ch(F−1, hF−1
) for any Hermitian holomorphic

line bundle (F, hF).

Lemma 3.2. For a holomorphic line bundle F on a compact complex manifold Z, and

hF , hF
1 two metrics on F with dual metrics hF−1

, hF−1

1 on F−1, we have in PZ/PZ,0,

−c̃h(F−1, hF−1
, hF−1

1 ) = ˜Td−1(F, hF , hF
1)c1(F, hF) + Td−1(F, hF

1)c̃1(F, hF , hF
1), (3.11)

with c̃h,˜Td−1, c̃1 the Bott–Chern classes such that

∂∂

2iπ
c̃h(F−1, hF−1

, hF−1

1 ) = ch(F−1, hF−1

1 ) − ch(F−1, hF−1
),

∂∂

2iπ
˜Td−1(F, hF , hF

1) = Td−1(F, hF
1) − Td−1(F, hF),

∂∂

2iπ
c̃1(F, hF , hF

1) = c1(F, hF
1) − c1(F, hF).

(3.12)

Note that by [7, Remark 1.28], we have

c̃1(η, hF , hF
1) = − log

hF
1

hF . (3.13)

We define

T (h[S], h[W]) = Td−1([W], h[W]) log ‖τ[W]‖2
h[W]

− Td−1([dS], h[dS]) log ‖τd
[S]‖2

h[dS] − c̃h([−dS], h[−dS], h[−W]). (3.14)

Lemma 3.3. In PV
W∪S/PV,0

W∪S, T (h[S], h[W]) does not depend on the choice of h[S], h[W], thus

we denote it as TS,W , and we have

∂∂

2iπ
TS,W = Td−1(NW/V , hNW/V )δ{W} −

(1 − e−dx

x

)
(NS/V , hNS/V )δ{S}. (3.15)

Proof. By Poincaré–Lelong formula and (3.3), we get first (3.15).
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Let h[W]
1 be another metric on [W] such that (3.3) is an isometry. Then by Lemma

3.2, we have in PV
W∪S/PV,0

W∪S,

T (h[S], h[W]) − T (h[S], h[W]
1 )

=
(

Td−1([W], h[W]) − Td−1([W], h[W]
1 )

)
log ‖τ[W]‖2

h[W]

− Td−1([W], h[W]
1 ) log

h[W]
1

h[W]
+ c̃h([−dS], h[−W], h[−W]

1 )

= ˜Td−1([W], h[W]
1 , h[W])δ{W} = 0, (3.16)

as h[W] = h[W]
1 = hNW/V on W.

By the same argument, we know also T (h[S], h[W]) does not depend on h[S]. �

Theorem 3.4. The following identity holds:

log(||σ ||2
λ(ξ ′)⊗λ−1(RπW∗ξ ′)) =

∫
V

Td(TV, hTV)TS,W π∗ ch(ξ , hξ )

−
∫

W
Td−1(NW/V , hNW/V )T̃d(TW, TV|W , hTV) ch(ξ ′, hξ ′

)

+
∫

S

(1 − e−dx

x

)
(L, h[S])T̃d(TS, TV|S, hTV) ch(ξ , hξ )

+
∫

S
Td(TS)R(TS) ch(R•πW∗OW) ch(ξ) −

∫
W

Td(TW)R(TW) ch(ξ ′). (3.17)

Proof. Let ‖ ‖2
λ′

d(π∗ξ)
be the Quillen metric on λ′

d(π∗ξ) (2.28) induced by h[W], hξ , and

hTV . Let ‖ ‖2
λd(π∗ξ) be the Quillen metric on λd(π∗ξ) � λ′

d(π∗ξ) (2.41) induced by h[S], hξ ,

and hTV . By the anomaly formula [8, Theorem 1.23], we have

log
‖ ‖2

λ′
d(π∗ξ)

‖ ‖2
λd(π∗ξ)

= −
∫

V
Td(TV, hTV)c̃h([−dS], h[−dS], h[−W]) π∗ ch(ξ , hξ ). (3.18)

By using [11, Theorem 6.1], (2.13), (2.40), and (3.5), we have

log(||σ1||2
λ′

d(π∗ξ)⊗λ−1(ξ ′)) = −
∫

V
Td(TV, hTV)T(ξ1, hξ1)

+
∫

W
Td−1(NW/V , hNW/V ) ch(ξ ′, hξ ′

)T̃d(TW, TV|W , hTV)

−
∫

V
Td(TV)R(TV) ch(ξ)(1 − ch([−W])) +

∫
W

Td(TW)R(TW) ch(ξ ′), (3.19)
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log(||ρd||2
λd(π∗ξ)⊗λ−1(R•πW∗ξ ′)) = −

∫
V

Td(TV, hTV)T(ξ2, hξ2)

+
∫

S
Td−1(NS/V , hNS/V )T̃d(TS, TV|S, hTV) ch(R•πW∗ξ ′, ⊕ih

L−i ⊗ hξ )

−
∫

V
Td(TV)R(TV) ch(ξ)(1 − ch([−dS])) +

∫
S

Td(TS)R(TS) ch(R•πW∗ξ ′).

By [10, Remark 3.5 and Theorem 3.17],

T(ξ1, hξ1) = π∗(ch(ξ , hξ )) Td−1([W], h[W]) log ||τ[W]||2h[W] in PV
W/PV,0

W ,

T(ξ2, hξ2) = π∗(ch(ξ , hξ )) ch(⊕d−1
i=0 [−iS], ⊕h[−iS]) Td−1([S], h[S]) log ||τ[S]||2h[S]

= π∗(ch(ξ , hξ )) Td−1([dS], h[dS]) log ||τd
[S]||2h[dS] in PV

S /PV,0
S .

(3.20)

By (1.10), (2.11), and (3.3), we have

Td−1(NS/V , hNS/V ) ch(R•πW∗ξ ′, ⊕ih
L−i ⊗ hξ ) =

(1 − e−dx

x

)
(L, h[S]) ch(ξ , hξ ). (3.21)

By Propositions 2.5, 2.6, and our identification of λd(π∗ξ) to λ′
d(π∗ξ) by (2.35), we

have

||σ ||2
λ(ξ ′)⊗λ−1(RπW∗ξ ′) = (||σ1||2

λ′
d(π∗ξ)⊗λ−1(ξ ′))

−1

· ||ρd||2
λd(π∗ξ)⊗λ−1(R•πW∗ξ ′)

‖ ‖2
λ′

d(π∗ξ)

‖ ‖2
λd(π∗ξ)

. (3.22)

From Lemma 3.3, (3.18)–(3.22), we deduce (3.17). �

Remark 3.5. From V = P(L ⊕ 1), as holomorphic vector bundles on S, we have

TV|S = TS ⊕ L, and TY|S = L � NS/V . (3.23)

Starting from a metric on L, by using the first Chern form of OV(1) and a Kähler metric

on S, we can construct a Kähler metric on V such that (3.23) is an isometry with induced

metrics on TS, TY. Under this assumption, (3.9) splits with metrics as in (3.23), thus

T̃d(TS, TV|S, hTV) = 0. (3.24)
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4 Comparison Formula for Equivariant Quillen Metrics

In the sequel, we suppose that for 1 � i � d − 1, αi = 0 in (1.1). So

W =
{
(x, t) ∈ L : td + αd(x) = 0

}
. (4.1)

Let G = Z/dZ = {0, 1, · · · , d − 1}. In this case, the group G acts naturally on V.

The action of G is defined by: for g = 1, (t, u) ∈ L ⊕ C, the homogeneous coordinate of V.

g · (t, u) = (ei2π/dt, u). (4.2)

Then G preserves W, and S = W/G. Let G act on OV by

g · f (·) = f (g−1·), for g ∈ G, f ∈ OV .

Let G act trivially on ξ . Then G acts also on ξ ′. Let G act on L by following: for

g = 1, t ∈ L,

g · t = ei2π/dt. (4.3)

Then it induces also an action on L−i, π∗L.

If given W ∈ Ĝ, λW , μW are complex lines, if λ = ⊕W∈ĜλW , μ = ⊕W∈ĜμW , set

λ−1 =
⊕
W∈Ĝ

λ−1
W , λ ⊗ μ =

⊕
W∈Ĝ

λW ⊗ μW . (4.4)

Let λG(ξ ′), λG(R•πW∗ξ ′) be the inverse of the equivariant determinant of the

cohomology of ξ ′ and R•π∗ξ ′ on W, S [4, §2]. Then λG(ξ ′) (resp. λG(R•πW∗ξ ′)) is a direct

sum of complex lines. As in [4] and [22], we have a canonical isomorphism of direct sums

of complex lines

λG(ξ ′) � λG(R•πW∗ξ ′). (4.5)

Let σG be the canonical nonzero section of λG(ξ ′) ⊗ λ−1
G (R•πW∗ξ ′).

Let hTV be a G-invariant Kähler metric on V (cf. Remark 3.5 for the existence).

We provide the G-invariant Hermitian metrics h[S], h[W], hξ on [S], [W], ξ such that

(3.3) are isometries. Then they determine the G-equivariant Quillen metrics || ||λG(ξ ′),

|| ||λG(R•πW∗ξ ′) on the equivariant determinants λG(ξ ′), λG(R•πW∗ξ ′) [4, §2a)].
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By our constructions, (2.13), (2.25), and (2.39) are G-equivariant exact sequences

of sheaves. And the splits of (2.14) and (2.26) are also G–equivariant. Set

λ′
d,G(π∗ξ) = λG(π∗ξ) ⊗ λ−1

G ([−W] ⊗ π∗ξ),

λd,G(π∗ξ) = λG(⊕d
i=1[−iS] ⊗ π∗ξ) ⊗ λ−1

G (⊕d−1
i=0 [−iS] ⊗ π∗ξ).

(4.6)

As in [22], [4, §3b)], by (2.13), (2.25), and (2.39), we have the canonical isomorphisms of

direct sums of complex lines

λG(ξ ′) � λ′
d,G(π∗ξ), λG(R•πW∗ξ ′) = λG(⊕d−1

i=0 L−i ⊗ ξ) � λd,G(π∗ξ). (4.7)

Let σ1,G, ρd,G be the canonical sections of λ−1
G (ξ ′)⊗λ′

d,G(π∗ξ), λ−1
G (⊕d−1

i=0 L−i ⊗ξ)⊗λd,G(π∗ξ).

We denote by � = W∩S = {x ∈ S : αd(x) = 0}. As we suppose that W is a manifold,

we know that � is a submanifold of S and ∂αd(x) �= 0 for any x ∈ �. For g ∈ G, set

Vg = {x ∈ V : gx = x}, Wg = {x ∈ W : gx = x}. (4.8)

If g �= 0, then Vg = S ∪ P(L), Wg = �.

Let Tdg(TV, gTV) be the Chern–Weil Todd form on Vg associated to the holo-

morphic Hermitian connection on (TV, hTV) [4, §2a)], which appears in the Lefschetz

formulas of Atiyah–Bott [1]. Other Chern–Weil form will be denoted in a similar way. In

particular, the forms chg(ξ1, hξ1) on Vg is the Chern–Weil representative of the g-Chern

character form of (ξ1, hξ1). Also, we denote by Tdg(TV), chg(ξ1) · · · the cohomology classes

of Tdg(TV, gTV), chg(ξ1, hξ1) · · · on Vg.

Let R(θ , x) be the power series in [3, (7.39)], [4, (7.43)], which verifies R(0, x) = R(x).

Let Rg(TV), · · · be the corresponding additive genera [3, §7c)], [4, §7g)].

Let hT� be the metric on T� induced by hTS. Let hN�/S be the metrics on N�/S

induced by hTV . As smooth vector bundles on �, we have the following G-equivariant

orthogonal splitting:

TV|� = T� ⊕ N�/S ⊕ NS/V = T� ⊕ N�/W ⊕ NW/V , (4.9)

as G acts trivially on T�, N�/S, and nontrivially on NS/V , N�/W , we conclude that

N�/S = NW/V , hN�/S = hNW/V , N�/W = NS/V , hN�/W = hNS/V on �. (4.10)
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Theorem 4.1. For g = j (0 < j � d − 1), the following identity holds:

log(||σG||2
λG(ξ ′)⊗λ−1

G (RπW∗ξ ′))(g)

=
∫

S
Td(TS, hTS) Tdg(NS/V , hNS/V ) Td−1([W], h[dS]) ch(ξ , hξ ) log ||αd||2h[dS]

−
∫

�

Td−1(NW/V , hNW/V ) Tdg(NS/V , hNS/V )T̃d(T�, TS|� , hTS) ch(ξ , hξ )

+
∫

�

Td(TS, hTS) Tdg(NS/V , hNS/V )
˜Td−1(NW/V , h[dS], hNW/V ) ch(ξ , hξ )

+
∫

S
Td(TS)R(TS) ch(ξ) chg(R•πW∗OW) −

∫
�

Tdg(TW)Rg(TW) ch(ξ). (4.11)

Proof. By the anomaly formula [4, Theorem 2.5], we have

log
(‖ ‖2

λ′
d(π∗ξ)

‖ ‖2
λd(π∗ξ)

)
(g) = −

∫
S∪P(L)

Tdg(TV, hTV)c̃hg([−dS], h[−dS], h[−W]) ch(ξ , hξ ). (4.12)

By applying [4, Theorem 0.1] to (2.13) and (2.40), we have

log(||σ1,G||2
λ′

d,G(π∗ξ)⊗λ−1
G (ξ ′))(g) = −

∫
S∪P(L)

Tdg(TV, hTV)Tg(ξ1, hξ1)

+
∫

�

Td−1
g (NW/V , hNW/V ) chg(ξ , hξ )T̃dg(TW|� , TV|� , hTV)

−
∫

S∪P(L)

Tdg(TV)Rg(TV)π∗ ch(ξ)(1 − chg([−W])) +
∫

�

Tdg(TW)Rg(TW) chg(ξ). (4.13)

log(||ρd,G||2
λd,G(π∗ξ)⊗λ−1

G (R•πW∗ξ)
)(g) = −

∫
S∪P(L)

Tdg(TV, hTV)Tg(ξ2, hξ2)

+
∫

S
Td−1

g (NS/V , hNS/V )T̃dg(TS, TV|S, hTV) ch(ξ , hξ ) chg(R•πW∗OW , ⊕h[−iS])

−
∫

S∪P(L)

Tdg(TV)Rg(TV)π∗ ch(ξ)(1 − chg([−dS]))

+
∫

S
Tdg(TS)Rg(TS)π∗ ch(ξ) chg(R•πW∗OW).
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In this case, since the identifications in Section 2 is G-equivariant, as in (3.22),

we have

‖σG‖2
λG(ξ ′)⊗λ−1

G (RπW∗ξ ′)(g) =
{
(‖σ1,G‖2

λ′
d,G(π∗ξ)⊗λ−1

G (ξ ′))
−1

· ‖ρd,G‖2
λd,G(π∗ξ)⊗λ−1

G (R•πW∗ξ ′)

‖ ‖2
λ′

d(π∗ξ)

‖ ‖2
λd(π∗ξ)

}
(g). (4.14)

Note that by (1.11), g = j acts on [S] as multiplication by ei2π j/d on S = Vg ∩ S, and

g acts on [W]|S as gd = Id. By [4, §6b)], [10, Theorem 3.17], (3.5), and (4.8), on S = Vg ∩ S,

we calculate easily

Tg(ξ1, hξ1) = ch(ξ , hξ ) Td−1([W], h[W]) log ||αd||2h[W] in PS
�/PS,0

� ,

Tg(ξ2, hξ2) =0 in PS/PS,0.
(4.15)

In the second equation of (4.15), we use τ[S] = 0 on Sg = Vg ∩ S, thus the form

Trs[gNH exp(−C2
u)] in the definition of Tg(ξ2, hξ2) does not depend on u, and automatically

Tg(ξ2, hξ2) vanishes.

As explain above, on S∪P(L), g acts as identity on [dS] = [W], and by the argument

in (3.16), and (4.10), we know in PS
�/PS,0

� ,

Td−1([W], h[W]) log ||αd||2h[W] − c̃hg([−dS], h[−dS], h[−W])

− Td−1([W], h[dS]) log ||αd||2h[dS]

= ˜Td−1([W], h[dS], h[W])δ{�} = ˜Td−1([W], h[dS], hNW/V )δ{�}. (4.16)

On P(L), by (1.8), g acts on [S] as identity, and by (1.7), we have

[−W] = [−S] = O
P(L) on P(L). (4.17)

By using [4, §6b)], we have also

Tg(ξ1, hξ1) = c̃h
(
[−W]|P(L), hOV , h[−W]

)
ch(ξ , hξ ) in PP(L)/PP(L),0,

Tg(ξ2, hξ2) =
d∑

i=1

c̃h
(
[−iS]|P(L), h[−(i−1)S], h[−iS]

)
ch(ξ , hξ ) in PP(L)/PP(L),0.

(4.18)
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From (4.17), we have

d∑
i=1

c̃h
(
[−iS]|P(L), h[−(i−1)S], h[−iS]

)
+ c̃hg([−dS], h[−dS], h[−W])

= c̃h
(
[−W]|P(L), hOV , h[−W]

)
in PP(L)/PP(L),0. (4.19)

From (4.17)–(4.19), we see that the contribution from P(L) in (4.14) via (4.12) and (4.13)

is zero.

Since g acts on NW/V = [W] on � as Id, we have

Td−1
g (NW/V , hNW/V ) = Td−1(NW/V , hNW/V ) on �. (4.20)

The restriction of the exact sequence (3.7) on � is split as in [4, (6.8)] to two

following exact sequences:

0 → T� → TS → N�/S → 0, 0 → N�/W → NS/V → 0 → 0. (4.21)

By (3.6), (4.10), and (4.21), we have

T̃dg(TW|� , TV|� , hTV|� ) = Tdg(NS/V , hNS/V )T̃d(T�, TS|� , hTS) in P�/P�,0,

Tdg(TV, hTV) = Tdg(NS/V , hNS/V ) Td(TS, hTS) on S.
(4.22)

As (3.9) splits G-equivariantly and isometrically, as in (3.23), we get

T̃dg(TS, TV|S, hTV) = 0 in PS/PS,0. (4.23)

By (4.12)–(4.23), we have (4.11). �
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