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Orbifold Submersion and Analytic Torsions
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Abstract. In this paper, we establish the curvature theorem of determinant
line bundles for an orbifold Kähler fibration as an extension of Bismut–Gillet–
Soulé’s curvature theorem. Then we introduce Bismut–Köhler analytic torsion
form for an orbifold Kähler fibration. Finally we calculate the behaviour of
the Quillen metric by orbifold submersions as an extension of Berthomieu–
Bismut’s result.
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0. Introduction

Let ξ be a Hermitian vector bundle on a compact Hermitian complex manifold X .
Let λ(ξ) be the inverse of the determinant of the cohomology of ξ. Quillen defined
first a metric on λ(ξ) in the case that X is a Riemann surface. Quillen metric is
the product of the L2 metric on λ(ξ) by the Ray–Singer analytic torsion of the
Dolbeault complex. The logarithm of the Ray–Singer analytic torsion [39] is a lin-
ear combination of derivatives at zero of the zeta function of the Hodge Laplacians
acting on smooth forms of various degrees. In [12], Bismut, Gillet, and Soulé have
established a general theory on Quillen metric for any dimensional compact Kähler
manifolds, in particular their anomaly formulas for Quillen metrics computes the
variation of Quillen metric on the metrics on ξ and TX by using some Bott–Chern
classes; for a holomorphic submersion, they proved their determinant line bundle
from spectral theory has canonically a holomorphic structure, and is isomorphic
canonically to the Knudsen–Mumford line bundle from sheaf theory, as holomor-
phic line bundles. They have shown that the Quillen metric is a smooth metric on
the determinant line bundle λ(ξ) of the cohomology groups of the fibers, even both
L2-metric and the analytic torsion could be discontinuous, their curvature formula
calculates the curvature of λ(ξ) with Quillen metric which refines the degree two
part of the Riemann–Roch–Grothendieck theorem at the differential form level.

Later, Bismut and Köhler [13] (refer also [11], [22] in the special case) have
extended the analytic torsion of Ray–Singer to the analytic torsion forms T for a

holomorphic submersion. In particular, the equation on ∂∂
2iπT gives a refinement of
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the Riemann–Roch–Grothendieck theorem at the level of differential forms. They
have also established the corresponding anomaly formulas.

In [22], Gillet and Soulé had conjectured an arithmetic Riemann–Roch theo-
rem in Arakelov geometry. The analytic torsion form is contained in their definition
of direct image. In [23], they have established it for the first arithmetic Chern class
and Bismut–Lebeau’s embedding formula [15] for Quillen metric plays an impor-
tant role in their proof. In [24], they have established the high degree version by
using Bismut’s embedding formula [6] for torsion forms. For the various equivariant
extensions cf. [29], [5], [16], and the recent works [17, 18].

Note also that for a submersion π :M → B of compact Kähler manifolds and
a holomorphic vector bundle ξ onM , by [28], there exists a canonical isomorphism
σ from λM (ξ), the determinant of the cohomology of ξ over M , to λ(R•π∗ξ), here
R•π∗ξ is the direct image of ξ. In [2], Berthomieu and Bismut have obtained a
formula for the Quillen norm of σ in terms of Bott–Chern classes on M and the
analytic torsion forms of the fibration π. In our thesis [31, 32], we establish the
family version of [2].

In [34], we define the analytic torsion for orbifolds and established the corre-
sponding anomaly formula and embedding formula. This paper is a continuation
of [34]. For an orbifold submersion, we will study the curvature formula for the
Quillen metric and define the analytic torsion form, then extend Berthomieu–
Bismut’s result [2] for an orbifold submersion.

An complex orbifold can be always represented locally by Cn/G where the
finite group G acts C-linearly on Cn. The simplest complex orbifold is a global
orbifold M/G where G is a finite group acting holomorphically on a complex
manifold M .

We will use the heat kernel method to solve our problem. Thanks to finite
propagation speed of the solution of the hyperbolic equation [20], [35, Appendix
D], we can use the local family index theory of Bismut [3]. Since, locally, we have to
meet G-manifold, to generalize the results to the orbifold case, we must understand
very well the situation of G-equivariant complex manifolds. After localized, we will
apply the results of [5] and [33] to our situation.

Orbifold appears naturally in many important cases, for example: the sym-
plectic reduction, the problem on moduli spaces. In [27], Kawasaki has extended
the Riemann–Roch–Hirzebruch theorem to the orbifold case. Bismut and Labourie
[14] also proved the Verlinde formula by using Kawasaki’s theorem.

For applications of the analytic torsion in Arakelov geometry, cf. the book
[42], in particular the recent works [17], [36], [37]. We also hope our results have
corresponding versions in Arakelov geometry. For applications of analytic torsion
on the moduli space ofK3 surfaces, cf. Yoshikawa’s works [43], [44], in particular, in
[45], for general abelian Calabi–Yau orbifolds of dimension three, BCOV invariant
was defined and the curvature theorem was proved for global orbifolds there.

Let us explain the contain of this paper in detail now. For a complex vector
space F , we denote detF = ΛmaxF and denote by (detF )−1 := detF ∗ its dual
line.
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Let ξ be a holomorphic orbifold vector bundle on an n-dimensional complex
orbifold X . Let H•(X, ξ) be the cohomology of sheaf of holomorphic sections of ξ
over X .

The determinant of the cohomology of ξ over X is defined as

λ(ξ) := (detH•(X, ξ))−1 = ⊗nj=0(detH
j(X, ξ))(−1)j+1

. (0.1)

Let ΣX be the strata of X which has a natural orbifold structure. Let mi

be the multiplicity of the connected component Xi of X ∪ΣX (cf. (1.2)). For α a
differential form on X ∪ΣX , we denote simply∫

X∪ΣX

α =
∑
i

1

mi

∫
Xi

α. (0.2)

Let hTX , hξ be Hermitian metrics on TX, ξ. Then as in the smooth case, in
[34], we defined the analytic torsion and the Quillen metric on the complex line λ(ξ)
(cf. (3.4)) and established the anomaly formula in [34, Theorem 4.2], and the local
term are certain integral of differential forms on X ∪ΣX , not on X . For example,
TdΣ(TX, hTX) is the Todd form on X ∪ ΣX associated with the holomorphic
Hermitian connection on (TX, hTX), which appears in Kawasaki’s formulas [27].
Other Chern–Weil forms will be denoted in a similar way. In particular, the form
chΣ(ξ, hξ) (cf. (2.8)) on X ∪ ΣX is the Chern–Weil representative of the Chern
character of (ξpr, hξ), with ξpr the maximal proper orbifold subbundle of ξ.

As the space of C∞ sections of an orbifold vector bundle is identified as the
space of C∞ sections of its maximal proper orbifold subbundle. In the whole paper,
we can assume that ξ is a proper orbifold vector bundle.

Let π : M → B be a proper orbifold submersion of complex orbifolds. Then
by Proposition 1.4, locally π is a quotient of a fibration with fiber of a compact
orbifold X , by a finite group.

We assume that π is a Kähler fibration in the sense of Bismut–Gillet–Soulé,
i.e., there is a smooth closed real (1, 1)-form on M such that it induces a Kähler
form along the fiber, cf. Definition 1.7. Let ξ be a holomorphic orbifold vector
bundle on M . Let hξ be a Hermitian metric on ξ.

When the base B is a complex manifold, then the direct image R•π∗ξ is well
defined as an element in K-group of B. In this case, we establish in Theorem
2.3 the family local index theorem as an extension of Bismut’s family local index
theorem.

When B is a complex orbifold, as one of our main results, in Section 3.3, we
define the determinant line bundle as a proper orbifold holomorphic line bundle on
B by using the spectral analysis, also Knudsen–Mumford orbifold line bundle from
sheaf theory, then Theorem 3.5 as an extension of [12, Theorem 3.14], shows the
canonical isomorphism of these orbifold line bundles is holomorphic. In Theorem
3.6, we compute the curvature of the associated Chern connection as a consequence
of the family local index theorem. Thus we extend Bismut–Gillet–Soulé’s classical
curvature theorem [12, Theorem 0.3] to the orbifold case.
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We assume now that the direct image Rkπ∗ξ(0 ≤ k ≤ dimX) are orbifold
vector bundle on B. Then in Section 4, we introduce the analytic torsion form
which is a differential form on B ∪ΣB, and we establish its anomaly formula.

Now we assume further that M,B are compact Kähler orbifolds. Let σ be
the canonical section of λM (ξ)⊗ λ−1(R•π∗ξ).

Let hTM , hTB be Kähler metrics on TM and TB. Let hTX be the metric on
TX induced by hTM . Let ωM be the Kähler form of hTM .

Let H•(X, ξ|X) be the cohomology of ξ|X . Let hH(X,ξ|X ) be the L2-metric
on H•(X, ξ|X) constructed in Section 4 associated to hTX , hξ. Let T (ωM , hξ) be
the analytic torsion forms on B ∪ ΣB constructed in Section 4, which extend the

analytic torsion forms of Bismut–Köhler to the orbifold case. Let T̃d
Σ
(TM, TB,

hTM , hTB) be the Bott–Chern class on M ∪ΣM constructed as in [10] such that

∂∂

2iπ
T̃d

Σ
(TM, TB, hTM , hTB) = TdΣ(TM, hTM)

− π∗(TdΣ(TB, hTB))TdΣ(TX, hTX). (0.3)

Let || ||λM (ξ)⊗λ−1(R•π∗ξ) be the Quillen metric on the complex line λM (ξ)⊗
λ−1(R•π∗ξ) attached to the metrics hTM , hξ, hTB, hH(X,ξ|X ) on TM, ξ, TB,R•π∗ξ.
The last purpose of this paper is to calculate the Quillen metric

||σ||λM (ξ)⊗λ−1(R•π∗ξ)

as an extension of [2, Theorem 3.1]

Theorem 5.1. The following identity holds,

log(||σ||2λM (ξ)⊗λ−1(R•π∗ξ)) =−
∫
B∪ΣB

TdΣ(TB, hTB)T (ωM , hξ) (0.4)

+

∫
M∪ΣM

T̃d
Σ
(TM, TB, hTM , hTB) chΣ(ξ, hξ).

Let mi,B,mi,M be the multiplicities of the connected components Bi,Mi of
B ∪ΣB,M ∪ ΣM . Then we can reformulate (0.4) as

log(||σ||2λM (ξ)⊗λ−1(R•π∗ξ)) =−
∑
i

1

mi,B

∫
Bi

TdΣ(TB, hTB)T (ωM , hξ) (0.5)

+
∑
i

1

mi,M

∫
Mi

T̃d
Σ
(TM, TB, hTM , hTB) chΣ(ξ, hξ).

This paper is organized as follows. The first four sections are concerned with
some generalities of orbifolds and of analytic torsions. In Section 1, we recall the
definition of orbifold, and construct the Bismut superconnection for a submersion
of orbifolds. In Section 2, We extend Kawasaki’s theorem to a relative situation. In
Section 3, we construct the Quillen metrics for an orbifold, and prove their anomaly
formulas. In Section 4, we construct the analytic torsion forms for a submersion
of orbifolds. In Section 5, we extend the result of [2] to the orbifold case.
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The first version of this paper was written in 1998 when I was visiting at
ICTP. The first part was published in [34]. For the recent works on the analytic
torsion for orbifold flat vector bundles, cf. recent works [21], [41].

In the whole paper, we use the superconnection formalism of Quillen [38]. If
E = E+ ⊕ E− is a Z2-graded vector space, and τ = ±1 defines the Z2-grading,
for A ∈ End(E), we denote Trs[A] the supertrace of A, i.e.,

Trs[A] = Tr[τA]. (0.6)

The reader is referred for more details to [4], [10], [2].

Acknowledgements. We are very much indebted to Professor Jean-Michel Bismut
for very helpful discussions and suggestions. Thanks also to a referee for his useful
comments.

1. Orbifolds and superconnections

In this section, we extend the Bismut superconnection of [3] to a Kähler fibration
of orbifolds.

This section is organized as follows. In Section 1.1, we recall the definition of
an orbifold following [34, §1.1]. In Section 1.2, we describe the Kähler fibration. In
Section 1.3, we explain the construction of the Bismut superconnection Bu(u > 0)
[3] for a submersion of orbifolds.

1.1. Definition of an orbifold

We define at first a category Ms as follows: The objects of Ms are the class of
pairs (G,M) where M is a connected smooth manifold and G is a finite group
acting effectively onM . Let (G,M) and (G′,M ′) be two objects, then a morphism
Φ : (G,M) → (G′,M ′) is a family of open embedding ϕ :M →M ′ satisfying:

i) For each ϕ ∈ Φ, there is an injective group homomorphism λϕ : G→ G′ that
makes ϕ be λϕ-equivariant.

ii) For g ∈ G′, ϕ ∈ Φ, we define gϕ :M → M ′ by (gϕ)(x) = gϕ(x) for x ∈M . If
(gϕ)(M) ∩ ϕ(M) 	= φ, then g ∈ λϕ(G).

iii) For ϕ ∈ Φ, we have Φ = {gϕ : g ∈ G′}.
Definition 1.1. Let X be a paracompact Hausdorff space and let U be a cover of
X consisting of connected open subsets. We assume U satisfies the condition:

For any x ∈ U ∩ U ′, U , U ′ ∈ U , there
is U ′′ ∈ U such that x ∈ U ′′ ⊂ U ∩ U ′.

(1.1)

Then an orbifold structure V on X is the following:

i) For U ∈ U , V(U) = ((GU , Ũ)
τ→ U) is a ramified covering Ũ → U giving an

identification U � Ũ/GU .

ii) For U, V ∈ U , U ⊂ V , there is a morphism ϕV U : (GU , Ũ) → (GV , Ṽ ) that
covers the inclusion U ⊂ V .

iii) For U, V,W ∈ U , U ⊂ V ⊂W , we have ϕWU = ϕWV ◦ ϕV U .
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If U ′ is a refinement of U satisfying (1.1), then there is an orbifold structure
V ′ such that V ∪V ′ is an orbifold structure. We consider V and V ′ to be equivalent.
Such an equivalence class is called an orbifold structure over X . So we may choose
U arbitrarily fine.

In the above definition, we can replace Ms by a category of manifolds with
an additional structure such as orientation, Riemannian metric or complex struc-
ture. We understand that the morphisms (and the groups) preserve the specified
structure. So we can define oriented, Riemannian or complex orbifolds.

Let (X,V) be an orbifold. For each x ∈ X , we can choose a small neigh-

bourhood (Gx, Ũx) → Ux such that x̃ ∈ Ũx, the unique inverse image of x, is a
fixed point of Gx. (Such Gx is unique up to isomorphisms for each x ∈ X , [40, p.
468].) Let (1), (h1x), . . . , (h

ρx
x ) be the conjugacy classes in Gx. Let ZGx(h

j
x) be the

centralizer of hjx in Gx. One also notes Ũ
hjx
x the fixed points of hjx over Ũx. Then

we have a natural bijection{
(y, (hjy)) : y ∈ Ux, j = 1, . . . , ρy

}
�

ρx∐
j=1

Ũ
hjx
x /ZGx(h

j
x). (1.2)

So we can define globally

ΣX = {(x, (hjx)) : x ∈ X,Gx 	= {1}, j = 1, . . . , ρx}. (1.3)

Then ΣX has a natural orbifold structure defined by{
(ZGx(h

j
x)/K

j
x, Ũ

hjx
x ) → Ũ

hjx
x /ZGx(h

j
x)
}
(x,Ux,j)

. (1.4)

Here Kj
x is the kernel of the representation ZGx(h

j
x) → Diffeo (Ũ

hjx
x ), the diffeo-

morphism group of Ũ
hjx
x . The number m = |Kj

x| is called the multiplicity of ΣX
in X at (x, (hjx)). Since the multiplicity is locally constant on ΣX , we may assign
the multiplicity mi to each connected component ΣXi of ΣX .

Definition 1.2. An orbifold vector bundle ξ over an orbifold (X,V) is defined as

follows: ξ is an orbifold and for U ∈ U , (GξU , p̃U : ξ̃U → Ũ) is a GξU -equivariant
vector bundle such that the morphism ϕξUξV is a morphism of equivariant vector

bundles, and (GξU , ξ̃U ) (resp. (G
ξ
U/KU , Ũ),KU = Ker(GξU → Diffeo(Ũ))) (In gen-

eral, GξU does not act effectively on Ũ , i.e., KU 	= {1}) is the orbifold structure of

ξ (resp. X). For x ∈ X , we denote the fiber of the vector bundle ξ̃U at an inverse

image of x in Ũ , as the vector space ξ̃x.

If GξU acts effectively on Ũ for U ∈ U , we call that ξ is a proper orbifold
vector bundle.

For an orbifold vector bundle ξ, let ξ̃prU be the maximal KU -invariant sub-

bundle of ξ̃U → Ũ , then (GU , ξ̃
pr
U ) defines a proper orbifold vector bundle ξpr.

A natural example is the (proper) orbifold tangent bundle TX which is de-
fined by:

(GU , T Ũ → Ũ), for U ∈ U
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Let ξ → X be an orbifold vector bundle. A section s : X → ξ is called C∞

(or C k) if for each U ∈ U , s|U is covered by a GξU -invariant smooth (or C k) section

s̃U : Ũ → ξ̃U .
If X is oriented, we define the integral

∫
X ω for a form over X (i.e., a section

of Λ(T ∗X) over X): if supp(ω) ⊂ U ∈ U , then∫
X

ω =
1

|GU |
∫
˜U

ω̃U . (1.5)

In the sequel, if G does not act effectively on the connected manifold M ,
we will identify the couple (G,M) as an element (G/K,M) in Ms, with K =
Ker(G→ Diffeo(M)).

Definition 1.3. Let M,B be two orbifolds, a map π : M → B is said to define an
orbifold submersion if there exist U , U ′ open covers ofM , B, such that π(U) ⊂ U ′,
and (GU , Ũ)U∈U , (GV , Ṽ )V ∈V are the orbifold structures ofM , B; for U ∈ U , there
is π̃ : Ũ → Ṽ a GU -equivariant submersion of Ũ onto Ṽ that covers π : U → V =

π(U), and (GU , Ṽ ) = (GV , Ṽ ) in Ms; if U1 ⊂ U2, U1, U2 ∈ U , then Φπ(U2)π(U1) is
induced by ΦU2U1 .

Let π : M → B be an orbifold submersion of M onto B, then the related

tangent bundle TM/B is defined by: over Ũ , ((GU , T Ũ/Ṽ ) → Ũ).

Proposition 1.4. If π :M → B is a proper orbifold submersion of M onto B, then

for each b ∈ B, there exists a small neighborhood (Gb, Ṽb) → Vb, M̃b an orbifold,

such that π is induced by a Gb-equivariant orbifold submersion π̃b : M̃b → Ṽb with
compact fiber X.

Proof. Let U be a cover of M in Definition 1.3. For U ∈ U , set
KU = Ker{GU → Diffeo(π̃(Ũ))}. (1.6)

As π is proper, for b ∈ B, we can find V ⊂ B open, b ∈ V , (Gb, Ṽ )
γ→ V be a

ramified covering of V , and γ−1(b) = {b0}, such that there is ((GUi , Ũi) → Ui)i∈I
( I = {1, · · · , q}) induced by the orbifold structure ofM , the map π̃ : (GUi , Ũi) →
(GUi , Ṽ ) = (Gb, Ṽ ) is a GUi -equivariant submersion of Ũi onto Ṽ , and π−1(V ) =
∪i∈IUi.

For W1 ⊂W2,W1,W2 ∈ U , by definition, there exist morphisms

ΦW2W1 : (GW1 , W̃1) → (GW2 , W̃2),

Φπ(W2)π(W1) : (Gπ(W1), π̃(W̃1)) → (Gπ(W2), π̃(W̃2)) in Ms,
(1.7)

such that Φπ(W2)π(W1) is induced by ΦW2W1 . We note that π̃(W̃j) is a ramified
covering of π(Wj) for j = 1, 2.

Let Ũ = {(W̃ , ϕ): there exist i ∈ I, such that (GW , W̃ ) → W ⊂ Ui, W ∈ U ,
and ϕ ∈ ΦV π(W )}. Let a1 = (W̃1, ϕ1), a2 = (W̃2, ϕ2) ∈ Ũ , W1 ⊂ W2, for each
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ψ ∈ ΦW2W1 , we also denote ψ ∈ Φπ(W2)π(W1) the associated open embedding.
Thus for ψ ∈ ΦW2W1 , we have the commutative diagram

W̃1

ψ

��

g �� W̃1

ψ

��

π̃ �� π̃(W̃1)

ψ

��

g �� π̃(W̃1)

ψ

��

ϕ1 �� Ṽ

W̃2

λψ(g) �� W̃2
π̃ �� π̃(W̃2)

λψ(g) �� π̃(W̃2)
ϕ2 �� Ṽ

(1.8)

Put

Φa2a1 = {ψ ∈ ΦW2W1 : ϕ2ψ = ϕ1 as a map from π̃(W̃1) to Ṽ }. (1.9)

I.e., for ψ ∈ Φa2a1 , the commutative diagram (1.8) is completed by the identity

map Id : Ṽ → Ṽ .

Claim: Φa2a1 : (KW1 , (W̃1, ϕ1)) → (KW2 , (W̃2, ϕ2)) is a morphism in Ms.

Proof of the claim. The KW1 -action on (W̃1, ϕ1) is defines by its action on W̃1. i)
For ψ ∈ Φa2a1 ⊂ ΦW2W1 , the injective group homomorphism λψ : GW1 → GW2

makes that ψ is λψ-equivariant. Note that for g ∈ GW1 , x̃ ∈ W̃1, by (1.8), we have

ψ(gx̃) = λψ(g)ψ(x̃), ψπ̃(gx̃) = λψ(g)π̃ψ(x̃) = λψ(g)ψπ̃(x̃). (1.10)

Thus if g ∈ KW1 , λψ(g) ∈ GW2 fixes π̃(ψ(W̃1)) = ψ(π̃(W̃1)), an open set of π̃(W̃2).

But GW2 is compact and acts on W̃2 which is connected, thus we conclude that

λψ(g) acts as identity on π̃(W̃2), i.e., λψ(g) ∈ KW2 . Thus λψ induces an injective
group homomorphism λψ : KW1 → KW2 .

ii) Assume now (hψ)(W̃1) ∩ ψ(W̃1) 	= φ, and h ∈ KW2 . The first condition
implies h ∈ λψ(GW1 ), i.e., there exists g ∈ GW1 such that h = λψ(g). But h ∈ KW2

means that λψ(g) acts as identity on π̃(W̃2), this implies that g acts as identity

π̃(W̃1) by (1.8), i.e., g ∈ KW1 . We conclude that h ∈ λψ(KW1).

iii) For any ψ′, ψ ∈ Φa2a1 , there exists g ∈ GW2 such that gψ = ψ′. By (1.9),

λϕ2(g)ϕ2ψ = ϕ2gψ = ϕ2ψ
′ = ϕ1 = ϕ2ψ. (1.11)

Thus λϕ2(g) acts as identity on an open set ϕ2ψ(π̃(W̃1)) of Ṽ , thus as identity on

Ṽ , this implies that g acts as identity on π̃(W̃2), i.e., g ∈ KW2 , thus Φa2a1 = {gψ :
g ∈ KW2}.

The proof of the claim is completed. �

For i ∈ I, we denote Ũi = (Ũi, 1) ∈ Ũ . We define an equivalence relation

∼ on M = ∪i∈I Ũi/KUi : For x̃ ∈ Ũi, ỹ ∈ Ũj, x̃ ∼ ỹ if and only if there exist

(GW , W̃ ) →W ⊂ Ui ∩ Uj, ϕ1, ϕ2 ∈ ΦV π(W ), z̃ ∈ W̃ such that

x̃ ∈ Φ
˜Uia1

({z̃}), ỹ ∈ Φ
˜Uja2

({z̃}), for a1 = (W̃ , ϕ1), a2 = (W̃ , ϕ2) ∈ Ũ . (1.12)
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We can interpret (1.12) for x̃, z̃ by the following commutative diagram:

z̃ ∈ W̃

Φ
˜Uia1

��

π̃ �� π̃(W̃ )

��

ϕ1

���
��

��
��

��
�

x̃ ∈ Ũi
π̃ �� π̃(Ũi) = Ṽ

Id �� Ṽ

(1.13)

Let M̃b =M/ ∼. Let U ′ = {(W̃ , ϕ)/KW : (W̃ , ϕ) ∈ Ũ}, then U ′ is a covering

of M̃b which satisfies the condition (1.1). We get the conditions i), ii), iii) of

Definition 1.1 from the claim. So U ′ defines an orbifold structure on M̃b.
Note that KUi is a normal subgroup of GUi and Gb = GUi/KUi , thus Gb

acts naturally on Ũi/KUi, so Gb acts on M̃b. Let π̃ : M̃b → Ṽ be induced by

π̃ : Ũi → Ṽ , then π̃ is an orbifold submersion, and π̃ is Gb -equivariant.

Now the procedure is standard. Note that the kernel of dπ̃ : TM̃b → T Ṽ

is an orbifold vector bundle. By choosing a horizontal subbundle THM̃b of TM̃b

(for example, by taking the orthogonal complement of Ker(dπ̃) with respect to a

metric on TM̃b), such that

TM̃b = Ker(dπ̃)⊕ THM̃b. (1.14)

As Ṽ is a manifold, we know that THM̃b is a usual vector bundle. Now the hori-

zontal lift of any ball B(p, r), with the center p and radius r, in Ṽ along the radius
direction gives a trivialization

π̃−1(B(p, r)) = B(p, r)×Xp. (1.15)

Note that for any point in V such that Gp = {1}, Xp = π−1({p}), thus as a real

orbifold, the fiber X has a canonical model.
The proof of Proposition 1.4 is completed. �

Let (X,V) be a compact connected Riemannian orbifold. For x, y ∈ X , put

d(x, y) = Inf
{∑

i

∫ ti
ti−1

| ∂∂t γ̃i(t)|dt
∣∣∣γ : [0, 1] → X, γ(0) = x, γ(1) = y, such that

there exist t0 = 0 < t1 < · · · < tk = 1, Ui ∈ U , γ([ti−1, ti]) ⊂ Ui,

γ̃i : [ti−1, ti] → Ũi C∞, that covers γ|[ti−1,ti].
}

Then (X, d) is a metric space.

1.2. Kähler fibrations

In the rest of this paper, we always work on complex orbifolds, especially, all
morphisms considered in Section 1.1 are holomorphic. For an orbifold complex
vector bundle, we denote the underlying real orbifold vector bundle by adding a
subscript R.

Definition 1.5. A Kähler form on a complex orbifold X is a real closed (1, 1)-form
ω on X such that ω induces a (orbifold) metric on TX .
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Let π : M → B be a proper holomorphic orbifold submersion of M onto B.
Let TM, TB be the holomorphic tangent bundles to M,B. From Proposition 1.4,
the holomorphic relative tangent bundle TX of the fibration π is well defined as
an orbifold vector bundle over M . Let JTX be the complex structure on the real
relative tangent bundle TRX .

Lemma 1.6. For π : M → B a proper holomorphic orbifold submersion, for any

b ∈ B, we can choose M̃b in Proposition 1.4 such that π is induced by a Gb-

equivariant holomorphic orbifold submersion π̃b : M̃b → Ṽb.

Proof. As all morphisms in the proof of Proposition 1.4 are holomorphic, we get
Lemma 1.6 from the proof of Proposition 1.4. �

Let hTX be a Hermitian metric on TX . Let THM be an orbifold vector
subbundle of TM , such that

TM = THM ⊕ TX. (1.16)

We now define the Kähler fibration as in [11, Definition 1.4].

Definition 1.7. The triple (π, hTX , THM) is said to define a Kähler fibration if
there exists a smooth real 2-form ω of complex type (1,1), which has the following
properties:

a) ω is closed.
b) TH

R
M and TRX are orthogonal with respect to ω,

c) If X,Y ∈ TRX , then ω(X,Y ) =
〈
X, JTXY

〉
gTRX

with gTRX the metric on

TRX induced by hTX .

Now we have an analogue of [11, Theorems 1.5 and 1.7].

Theorem 1.8. Let ω be a real smooth 2-form on M of complex type (1, 1), which
has the following two properties:

a) ω is closed.
b) The bilinear map X,Y ∈ TRX → ω(JTXX,Y ) defines a Hermitian product

hTX on TX.

For x ∈M , set

THx M = {Y ∈ TxM : for any X ∈ TxX,ω(X,Y ) = 0}.
Then THM is an orbifold subbundle of TM such that TM = THM ⊕ TX. Also
(π, hTX , THM) is a Kähler fibration, and ω is an associated (1, 1)-form.

A smooth real (1, 1)-form ω′ on M is associated with the Kähler fibration
(π, hTX , THM) if and only if there is a real smooth closed (1, 1)-form η on B such
that

ω′ − ω = π∗η.

Proof. The proof is as same as in [11, Theorems 1.5 and 1.7]. �
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1.3. The Bismut superconnection of a Kähler fibration

In this part, we will define the Bismut superconnection by proceeding as in [13,
§1], [2, §2].

Let π : M → B be a proper holomorphic orbifold submersion of M onto B
with fibre X . Let ωM be a real closed (1,1) form on M taken as in Theorem 1.8.
Let ξ be a complex orbifold vector bundle on M . Let hξ be a Hermitian metric on
ξ. Let ∇TX ,∇ξ be the holomorphic Hermitian connections on (TX, hTX), (ξ, hξ).

We will temporarily assume that B is a complex manifold. Then π is a fibra-
tion of M on B which is modelled on orbifold X : There is an open covering U of
B such that if U ∈ U , π−1(U) is diffeomorphic to U ×X .

Definition 1.9. For 0 ≤ k ≤ dimX , b ∈ B, let Ekb be the vector space of C∞

sections of (Λk(T ∗(0,1)X)⊗ ξ)|Xb over Xb. Set

Eb = ⊕dimX
k=0 Ekb , E+

b = ⊕k evenE
k
b , E−

b = ⊕k oddE
k
b . (1.17)

As in [3, §1f)], [11, §1d)], we can regard the Eb’s as the fibers of a smooth
Z-graded infinite-dimensional vector bundle over the base B. Smooth sections of
E over B will be identified with smooth sections of Λ(T ∗(0,1)X)⊗ ξ over M .

Let dvX be the Riemannian volume form on X associated with hTX . Let
〈 〉Λ(T∗(0,1)X)⊗ξ be the Hermitian product induced by hTX , hξ on Λ(T ∗(0,1)X)⊗ξ.
The Hermitian product 〈 〉 on E is defined by: If s, s′ ∈ E, set

〈s, s′〉 =
( 1

2π

)dimX
∫
X

〈s, s′〉Λ(T∗(0,1)X)⊗ξ dvX . (1.18)

For b ∈ B, let ∂
Xb

be the Dolbeault operator acting on Eb, and let ∂
Xb∗

be
its formal adjoint with respect to the Hermitian product (1.18). Set

DX = ∂
Xb

+ ∂
Xb∗

. (1.19)

If U ∈ TRB, let UH be the lift of U in TH
R
M , so that π∗UH = U .

Definition 1.10. If U ∈ TRB, if s is a smooth section of E over B, set

∇E
U s = ∇Λ(T∗(0,1)X)⊗ξ

UH
s. (1.20)

Let c(TRX) be the Clifford algebra of (TRX,h
TX). The bundle Λ(T ∗(0,1)X)⊗ξ

is a c(TRX)-Clifford module. In fact, if U ∈ TX , let U ′ ∈ T ∗(0,1)X correspond to
U by the metric hTX . If U, V ∈ TX , set

c(U) =
√
2U ′∧, c(V ) = −√

2iV . (1.21)

Let PTX be the projection TM � THM ⊕ TX → TX .
If U, V are smooth vector fields on B, set

T (UH , V H) = −PTX [UH , V H ]. (1.22)

Then T is a tensor. By [11, Theorem 1.7], we know that as a 2-form, T is of
complex type (1,1).
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Let f1, . . . , f2m be a base of TRB, and let f1, . . . , f2m be the dual base of
T ∗
R
B.

Definition 1.11. Set

c(T ) =
1

2

∑
1≤α,β≤2m

fαfβc
(
T (fHα , f

H
β )
)
. (1.23)

Then c(T ) is a section of (Λ2(T ∗
R
B)⊗̂End(Λ(T ∗(0,1)X)⊗ ξ))odd.

Definition 1.12. For u > 0, let Bu be the Bismut superconnection constructed in
[3, §3], [11, §2a)],

Bu =
√
uDX +∇E − c(T )

2
√
2u
. (1.24)

Let NV be the number operator defining the Z-grading on Λ(T ∗(0,1)X) ⊗ ξ
and on E. NV acts by multiplication by k on Λk(T ∗(0,1)X)⊗ ξ. If U, V ∈ TRB, set

ωHH(U, V ) = ωM (UH , V H). (1.25)

Definition 1.13. For u > 0, set

Nu = NV +
iωHH

u
. (1.26)

In general, B is not a complex manifold. By Proposition 1.4, we verify easily
that the above objects go down to B (Ex, E is an orbifold bundle over B), so we

can define the Bismut superconnection Bu (u > 0) over B as locally over Ṽb.

2. Family index theorem

In this section, we describe basic properties of the operator ∂
X

on a complex
orbifold, and we extend Kawasaki’s theorem to a relative situation.

This section is organized as follows. In Section 2.1, we give the Hodge de-

composition for ∂
X

operator over a complex orbifold. In Section 2.2, we state the
family version of Kawasaki’s theorem.

We use the notation of Section 1.

2.1. ∂-operator on a complex orbifold

Let X be a compact complex orbifold of complex dimension l. Let ξ be a holomor-
phic orbifold vector bundle on X .

Let OX be the sheaf over X of local GU -invariant holomorphic functions over

Ũ , for U ∈ U . Then by [19], (X,OX) is an analytic space. The local GξU -invariant

holomorphic sections of ξ̃ → Ũ define also a coherent analytic sheaf OX(ξ) overX .
Let Dk(ξ) be the sheaf of C ∞ sections of Λk(T ∗(0,1)X)⊗ ξ over X . Then we

have the operator ∂
X

: Dk(ξ) → Dk+1(ξ) and an exact sequence of OX -sheaves

0 → OX(ξ) → D1(ξ)
∂
X

→ · · · ∂
X

→ Dl(ξ) → 0. (2.1)
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Put Ωk(X, ξ) = Γ(X,Dk(ξ)), Ω•(X, ξ) = ⊕kΩk(X, ξ), then we have (Ω•(X, ξ), ∂
X
)

the Dolbeault complex of C∞ sections of Λ(T ∗(0,1)X)⊗ ξ over X :

0 → Ω0(X, ξ)
∂
X

→ · · · ∂
X

→ Ωl(X, ξ) → 0. (2.2)

The sheaves Dk(ξ) are fine [27], so their higher cohomology groups vanish.
So

H•(Ω•(X, ξ), ∂
X
) � H•(X,OX(ξ)). (2.3)

In the sequel, we also note H•(X,OX(ξ)) by H•(X, ξ).
Let hTX , hξ be Hermitian metrics on TX, ξ. Then DX in (1.19) induced by

hTX , hξ is an elliptic operator and

DX,2 = ∂
X
∂
X∗

+ ∂
X∗
∂
X

(2.4)

preserves the Z-grading on Ω•(X, ξ).
The following proposition is [34, Proposition 2.2].

Proposition 2.1 (The Hodge Decomposition Theorem). There is a L2-orthogonal
direct sum decomposition of the ξ-value (0, k)-forms

Ωk(X, ξ) = Ker(DX)⊕ Im(∂
X
)⊕ Im(∂

X∗
). (2.5)

From (2.3), (2.5), there is a canonical identification

Ker(DX) � H•(X, ξ). (2.6)

Definition 2.2. Let PX be the vector space of smooth forms on X , which are sums
of forms of type (k, k). Let PX,0 be the vector space of the forms α ∈ PX such
that there exist smooth forms β, γ on X for which α = ∂β + ∂γ.

We define PX∪ΣX , PX∪ΣX,0 in the same way.

2.2. Family index theorem

We use the notation of Section 1.3.

Let M be a complex orbifold. Let ΣM be the strata of M defined by (1.3).
Let B be a complex manifold. Let π : M → B be a proper orbifold holomorphic
submersion of M onto B with compact fibre X . Then π′ : M ∪ ΣM → B is also
an orbifold submersion with compact fibre X ∪ ΣX . Let mi be the multiplicity
of each connected component Mi (mi = 1, if Mi = M) of M ∪ ΣM . Let ξ be an
orbifold vector bundle on M . Let ξpr be the maximal proper orbifold subbundle
of ξ.

We assume that π is a Kähler fibration with respect to a real closed (1, 1)-form
ωM on M . Let DX

+ , D
X
− be the restrictions of DX to E+, E−.

Let Bu (u > 0) be the Bismut superconnection on E constructed in Section
1.3 which is attached to the (1,1) form ωM on M and to the metric hξ on ξ.
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If A is a (q, q) matrix, set

Td(A) = det
( A

1− e−A
)
, Td′(A) =

∂

∂u
Td(A+ u)|u=0,

ch(A) = Tr[exp(A)].
(2.7)

The genera associated with Td and ch are called the Todd genus and the Chern
character.

Let U be a cover of (M,V) which defines the submersion π as in Definition

1.3. Recall that for U ∈ U , we denote V(U) = ((GU , Ũ) → U). By [5, (2.20)], [33,

(1.15)], [34, (1.6), (1.7)], the forms TdΣ(TX, hTX), chΣ(ξ, hξ) over M ∪ ΣM are

defined by: on Ũg/ZGU (g) (g ∈ GU ), as Tdg(T̃X, h
TX) and

chg(ξ̃pr, h
ξ) = Tr

[
g exp(

i

2π
R

˜ξpr)
]
, (2.8)

where R
˜ξpr is the curvature of the holomorphic Hermitian connection on (ξ̃pr, hξ).

Then TdΣ(TX, hTX), chΣ(ξ, hξ) are closed on M ∪ ΣM , and their cohomology
classes don’t depend on the metrics hTX , hξ.

Let Φ be the homomorphism of Λeven(T ∗
R
B) into itself: α → (2iπ)− degα/2α.

The following result extends [11, Theorem 2.2].

Theorem 2.3. For any u > 0, the differential forms on B, Trs[exp(−B2
u)] are

elements of PB. They are closed and they are in the same cohomology class, which
does not depend on u > 0. Also uniformly on compact sets in B,

lim
u→0

ΦTrs[exp(−B2
u)] =

∑
i

1

mi

∫
Mi/B

TdΣ(TX, hTX) chΣ(ξ, hξ), (2.9)

and the differential form in the right-hand side of (2.9) is also in the same coho-
mology class as ΦTrs[exp(−B2

u)].
If B is compact, then the index bundle as an element in the K-group K(B)

is well defined:

Ind(DX
+ ) = Ker(DX

+ )−Ker(DX
− ) ∈ K(B). (2.10)

The differential forms considered above represent in cohomology ch(Ker(DX
+ ) −

Ker(DX
− )).

Proof. Let Pu(x, y, b) (x, y ∈ π−1(b), b ∈ B) be the kernel of the heat operator
exp(−B2

u) with respect to the Riemannian volume form dvX(y) on (TX, hTX). By
the method of [1, Theorem 9.50], we know Pu(x, y, b) defines a smooth family of
smoothing operators along the fibers X .

Proceeding as in [11, Theorem 2.2], Trs[exp(−B2
u)] ∈ PB. They are closed

and they are in the same cohomology class.
In [34, §6.6], we observe that the finite propagation speed for hyperbolic equa-

tions [20, §7.8], [35, Appendix D.2] holds for orbifolds. By (1.24), and using finite
propagation speed as in [6, §11b)], [7], one shows that the problem of calculating
the limit of Trs[exp(−B2

u)] as u→ 0 is local on Xb(b ∈ B).
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By Definition 1.3 and the discussion between (1.2)–(1.4), for each x ∈ M ,

we can choose a chart τ : (Gx, Ũx) → Ux, such that τ−1(x) is a point x̃ and

π̃ : Ũx → π(Ux) is a Gx-equivariant submersion. For ε > 0, let B(x̃, ε) ⊂ Ũx be
the ball with the center x̃ and radius ε. If ε is small enough, there exist xi ∈
π−1(b)(i ∈ I = {1, . . . , k}), such that {(Gxi , B(x̃i,

ε
2 )) → B(x̃i,

ε
2 )/Gxi}i∈I is

a cover of π−1(b). Let {ρxi} be a partition of unity subordinate to this cover.

Then we can replace X by (T̃X)xi/Gxi = C
l/Gxi (l = dimX), with 0 ∈ (T̃X)xi

representing xi.

Note that if QU has a C k-kernel Q̃U (ỹ1, ỹ2) over Ũ × Ũ , then for y1, y2 ∈ U ,

QU (y1, y2) =
1

|Kξ
U |

∑
g∈GξU

(g, 1)Q̃U (g
−1ỹ1, ỹ2), (2.11)

is the kernel of the operator

QU : C∞(U, ξ|U ) → C∞(U, ξ|U ),
with τ(ỹi) = yi(i = 1, 2).

Let ′∇Λ(T∗
R
B)⊗Λ(T∗(0,1)X) be the connection on Λ(T ∗

R
B) ⊗ Λ(T ∗(0,1)X) along

the fibre X given as in [6, Definition 11.7].

For u > 0, let ψu : Λ(T ∗
R
B) → Λ(T ∗

R
B) be the map

α ∈ Λ(T ∗
RB) → u−

deg α
2 α ∈ Λ(T ∗

RB).

Taken y ∈ C
l, set Y = y + y. We identify

(Λ(T ∗
RB)⊗ Λ(T ∗(0,1)X))Y , ξY with (Λ(T ∗

RB)⊗ Λ(T ∗(0,1)X))0, ξ0

by parallel transport along the curve t ∈ [0, 1] → tY with respect to the connection

ψu
′∇Λ(T∗

R
B)⊗Λ(T∗(0,1)X)

ψ−1
u , ∇ξ.

Let dvTxiX(y) be the Riemannian volume form on ((T̃X)xi , h
TX
xi ) � R2l. For

y ∈ Cl, |y| < ε/2, set

dvX(y) = k(y)dvTxiX(y). (2.12)

Let P̃u(x, y, b)(x, y ∈ (T̃X)xi) be the kernel of exp(−B2
u) associated to dvTxiX(y).

Then by (2.11), and using finite propagation speed as in [6, §11b)], we get

lim
u→0

∫
M/B

ρxiΦTrs[Pu(y, y, b)]dvX(y)

= lim
u→0

∫
˜Uxi/Vxi

ρxi
1

|Gxi |
∑
g∈Gxi

ΦTrs[gP̃u(g
−1y, y, b)]k(y)dvTxiX(y).

(2.13)
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By [3, Theorems 4.11–4.15] and [33, Proof of Theorem 2.12], (1.4), one finds that

lim
u→0

∫
˜Uxi/Vxi

1

|Gxi |
∑
g∈Gxi

ρxiΦTrs

[
g exp(−B2

u)(g
−1y, y, b)

]
k(y)dvTxiX(y)

=
1

|Gxi |
∑
g∈Gxi

∫
˜Ugxi/Vxi

ρxi Tdg(TX, g
TX) chg(ξ, h

ξ) (2.14)

=
∑
j

1

mj

∫
Xj

ρxi Td
Σ(TX, gTX) chΣ(ξ, hξ).

By (2.13), (2.14), we get (2.9).
Using the same argument of [3, Theorem 3.4] (also. [1, Chap. 9]), we get the

last part of Theorem 2.3. �

3. Quillen metrics and curvature theorem

In this section, we construct the Quillen metrics on the inverse of the determinant
of the cohomology of a holomorphic orbifold vector bundle, and establish the
curvature formula. We extend the results of [12] to complex orbifolds.

This section is organized as follows. In Section 3.1, by [12], we construct the
Quillen metrics. In Section 3.2, we recall our anomaly formulas. In Section 3.3, we
establish the curvature formula.

In this section, we use the notation of Section 1.1. We remark that all the
morphisms considered in Section 1.1 are holomorphic in the rest of the paper.

3.1. Quillen metrics

Let X be a compact complex orbifold of complex dimension l. Let ξ be a holo-
morphic orbifold vector bundle on X . Let hTX , hξ be smooth Hermitian metrics
on TX, ξ. Let hH(X,ξ) be the corresponding metric on H•(X, ξ) induced by the
restriction of the L2-metric (1.18) to Ker(DX) via the canonical isomorphism (2.6).

Let λ(ξ) be the inverse of the determinant of the cohomology of ξ on X .

detH•(X, ξ) = ⊗dimX
i=0 (detHi(X, ξ))(−1)i , λ(ξ) = (detH•(X, ξ))−1. (3.1)

Let | |λ(ξ) be the metric on λ(ξ) induced by hH(X,ξ). The metric | |λ(ξ) will be
called the L2-metric on λ(ξ).

Let P be the orthogonal projection operator from Ω•(X, ξ) on Ker(DX) with
respect to the Hermitian product (1.18). Set P⊥ = 1 − P . Let N be the number
operator defining the Z-grading of Ω•(X, ξ), i.e., N acts by multiplication by k on
Ωk(X, ξ). For s ∈ C,Re(s) > dimX , set

θξ(s) = −Trs[N(DX,2)−sP⊥]. (3.2)

Then

θξ(s) =
−1

Γ(s)

∫ +∞

0

ts−1 Trs

[
N exp(−tDX,2)P⊥

]
dt. (3.3)
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From the small time asymptotic expansion of the heat kernel (cf. [34, Proposition
2.1]), (3.3), θξ(s) extends to a meromorphic function of s ∈ C which is holomorphic
at s = 0.

Following [38], [12], now we define the Quillen metric on the line λ(ξ).

Definition 3.1. Let || ||λ(ξ) be the Quillen metric on the line λ(ξ),

|| ||λ(ξ) = | |λ(ξ) exp
(
− 1

2

∂θξ

∂s
(0)
)
. (3.4)

3.2. Anomaly formulas for Quillen metrics

Let h
′TX , h′ξ be another couple of metrics on TX, ξ. We denote with a ′ the objects

attached to h
′TX , h′ξ.

As in [10, §1f)], in [34, (1.8)], we constructed classes T̃d
Σ
(TX, hTX , h′TX)

and c̃h
Σ
(ξ, hξ, h′ξ) in PX∪ΣX/PX∪ΣX,0 such that

∂∂

2iπ
T̃d

Σ
(TX, hTX , h′TX) = TdΣ(TX, h′TX)− TdΣ(TX, hTX),

∂∂

2iπ
c̃h

Σ
(ξ, hξ, h′ξ) = chΣ(ξ, h′ξ)− chΣ(ξ, hξ).

(3.5)

Let mi be the multiplicity of each connected component Xi of X ∪ΣX .
The following result is [34, Theorem 0.1] which extends the anomaly formulas

of [12, Theorem 1.23], to orbifolds.

Theorem 3.2. Assume that the metrics hTX and h′TX are Kähler. Then

log

( || ||′2λ(ξ)
|| ||2λ(ξ)

)
=
∑
i

(
1

mi

∫
Xi

T̃d
Σ
(TX, hTX , h′TX) chΣ(ξ, hξ)

+
1

mi

∫
Xi

TdΣ(TX, h′TX)c̃h
Σ
(ξ, hξ, h′ξ)

)
.

(3.6)

3.3. The curvature of the determinant line bundle for a Kähler fibration

We now do the same assumption as in Section 1.3 and we use the same notations.
Let π : M → B be a proper holomorphic orbifold submersion of M onto B

with compact fibre X . Let ξ be a holomorphic orbifold vector bundle on M . Let
ωM be a real, closed (1,1) form on M taken as in Theorem 1.8. Let hTX be the
metric on TX induced by ωM . Let hξ be a Hermitian metric on ξ.

We will temporarily assume that B is a complex manifold. Let λ be the C∞

determinant line bundle on B constructed as in [12, §1b)]. By proceeding as in [12,
§1c)], we can define a holomorphic structure on the line bundle λ.

We explain the construction in detail here. Let ∇E′′
be the anti-holomorphic

part of the connection ∇E in (1.20) on the infinite-dimensional vector bundle E
on B. For a > 0, set

Ua = {y ∈ B : a 	∈ Spec(D2
y)}, (3.7)
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where Spec(D2
y) is the spectrum of the operator D2

y. Then on Ua, the sum of the

eigenspaces of the operator D2
y acting on Ejy of eigenvalues < a, Ka,j

y forms a
smooth finite-dimensional vector bundle. On Ua, λ coincides with the line bun-
dle λa

λa = ⊗dimX
j=0 (detKb,j)(−1)j+1

, (3.8)

and for 0 < a < c, over Ua ∩ U c, we identify λa and λc by

s ∈ λa → s⊗ T (∂
(a,c)

) ∈ λc, (3.9)

with ∂
(a,c)

the restriction of ∂
X

to Kc,j/Ka,j and the torsion T (∂
(a,c)

) for the

complex (Kc,j/Ka,j, ∂
(a,c)

) is defined in [10, Definition 1.1]. Let P a be the orthog-
onal projection operator from E onto Ka. By [12, Theorem 1.3], the holomorphic
structure on λa is defined by

∂
λa

= Trs[P
a∇E′′

P a] (3.10)

and the identification λa and λc in (3.9) is holomorphic.
The sheafOM is coherent as explained in Section 2.1. By [35, Theorem 5.4.16],

(M,OM ) is a normal complex space and OM (ξ) is a OM -coherent analytic sheaf,
thus by a theorem of Grauert [25], for all i ≥ 0, the OB-module Riπ∗ξ is coherent.
If i > dimM , then Riπ∗ξ = 0. The functor R•π∗ maps the derived category of
OM -module to the derived category of OB-modules and sends coherent sheaves to
complexes with coherent cohomology. As B is a complex manifold, for any y ∈ B,
the local ring OB,y is regular, hence all coherent analytic sheaves on B is perfect
and more generally any complex with bounded coherent cohomology is perfect.
Thus as in [12, Theorem 3.4], we can associate a (graded) invertible holomorphic
sheaf det(R•π∗ξ) on B, and the associated Knudsen–Mumford determinant line
bundle is

λKM = (det(R•π∗ξ))−1. (3.11)

In particular, if Riπ∗ξ is locally free for all i, we get

λKM (ξ) = ⊗i≥0(det(R
iπ∗ξ))(−1)i+1

. (3.12)

Let O∞
B be the sheaf of C∞ functions on B. Let H j

∂
(ξ) be the cohomology

sheaves of the relative Dolbeault complex (D•
X(ξ), ∂

X
) in (2.1) as O∞

B -modules.
Let D•

M be the sheaf of Dolbeault complexes on M , then we can use the partition
of unity argument for D•

M , thus D•
M is fine, from the argument of [12, p. 342],

Rjπ∗ξ = H j(π∗(D•
M (ξ)). (3.13)

The natural map T ∗M → T ∗X induces a map of complexes D•
M (ξ) → D•

X(ξ),
thus a canonical map on cohomology sheaves

�j : (R
jπ∗ξ)⊗OB O∞

B → H j

∂
(ξ). (3.14)
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Again as B is a manifold, the algebraic argument in the proof of [12, Theorem
3.5] holds, thus we get the analogue of [12, Theorem 3.5]:

Theorem 3.3. For all j ≥ 0, the map �j is an isomorphism.

Under the assumption of the Kähler fibration, as in [11, Theorem 2.8], we
have

∂
M

= ∇E′′
+ ∂

X
. (3.15)

From the arguments of the proof of [12, Corollary 3.9, Theorem 3.14], by Theorem
3.3 and (3.15), we get the analogue of [12, Theorem 3.14]:

Theorem 3.4. The smooth isomorphism λKM and λ via (3.14) is an isomorphism
of holomorphic line bundles.

If B is not a complex manifold, then for each b ∈ B, we consider over Ṽb
as in Lemma 1.6. By proceeding as in the proof of Proposition 1.4, we construct

ξ̃ a holomorphic orbifold vector bundle on M̃b induced by ξ. Then the above

construction gives a Gb-equivariant holomorphic line bundle λ̃ on Ṽb and natural

compatibilities for different local charts (Gb, Ṽb) in Lemma 1.6. Thus we get the
determinant line bundle λ as a holomorphic orbifold line bundle on B.

From the algebraic side, the Knudsen–Mumford line bundle λ̃KM on Ṽb is
also well defined and Gb-action lifts naturally on it. Thus we get the Knudsen–
Mumford line bundle λKM as a holomorphic orbifold line bundle overB. Moreover,

the isomorphism �j in (3.14) over Ṽb is Gb-equivariant via the argument from [12,
§3]. Thus we get

Theorem 3.5. The smooth isomorphism λKM and λ via (3.14) is an isomorphism
of holomorphic orbifold line bundles.

For α ∈ Λ(T ∗
R
B), α(j) denotes the component of α in Λj(T ∗

R
B).

Let mj be the multiplicity of the component Xj of X ∪ ΣX in Proposition
1.4. The following result extends the curvature theorem [10, Theorem 0.3], [12,
Theorem 1.27] to orbifolds.

Theorem 3.6. The Quillen metric ‖ ‖λ on λ is a smooth metric on B. Let ∇λ

be the holomorphic Hermitian connection on the Hermitian orbifold line bundle
(λ, ‖ ‖λ), then

(∇λ)2 = 2iπ

[∑
j

1

mj

∫
Xj

TdΣ(TX, gTX) chΣ(ξ, hξ)

](2)
. (3.16)

Proof. Note that for b ∈ B, the Quillen metric ‖ ‖
˜λ on the Gb-equivariant holo-

morphic line bundle λ̃(ξ) over Ṽb, is smooth and Gb-invariant. Thus ‖ ‖λ on the
orbifold line bundle λ(ξ) is smooth over B.

We still need to compute the curvature of (λ̃, || ||
˜λ) on Ṽb, for b ∈ B.
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As the argument of [12, Theorem 1.8] is purely functional analysis, by [8,

Theorem 1.18] and [9, Theorem 1.19], we know (∇λ)2 over Ṽb is the constant term
in the asymptotic of

Trs[exp(−B2
u)]

(2) as u→ 0. (3.17)

Now by combining with Theorem 2.3 for the fibration π̃b : M̃b → Ṽb, we get
(3.16). �

4. Analytic torsion forms and anomaly formulas

In this section, we construct the analytic torsion forms associated with an orbifold
submersion, and we explain the anomaly formulas. This extends the results of [11],
[13] to the orbifold case.

This section is organized as follows. In Section 4.1, we describe the trans-
gression formulas of the superconnection forms, which depend on u ∈]0,+∞[. In
Section 4.2, proceeding as in [3], [11], [1], we obtain the results on the asymptotics
of these forms as u → 0 and u → +∞. In Section 4.3, we construct the analytic
torsion forms, which extend [13]. In Section 4.4, we give the anomaly formulas of
the analytic torsion forms, which extend [13] to the orbifold case.

We use here the same notation as in Sections 1, 2.1.

4.1. Superconnection forms and double transgression formulas

Let π : M → B be a proper holomorphic orbifold submersion of M onto B with
compact fibre X . Let n = dimM . Let ξ be a holomorphic orbifold vector bundle
on M .

By Lemma 1.6, for each b ∈ B, there exists a neighbourhood (Gb, Ṽb) → Vb,

an orbifold M̃b, such that π is induced by a Gb-equivariant orbifold submersion

π̃b : M̃b → Ṽb with compact fibre X . By proceeding as in the proof of Proposition

1.4, we construct ξ̃ a holomorphic orbifold vector bundle on M̃b induced by ξ.

The direct image R•π∗ξ is well defined as a OB-sheaf. Let Dj
M (ξ) be the

sheaf of C∞ sections of Λj(T ∗(0,1)M)⊗ ξ over M . We have an exact sequence of
OM -sheaves:

0 → OM (ξ) → D1
M (ξ)

∂
M

→ · · · ∂
M

→ Dn
M (ξ) → 0. (4.1)

The sheaves Dj
M (ξ) are fine, as we can apply the partition of unity argument for

D•
M (ξ), so (D•

M (ξ), ∂
M
) is a π∗-acyclic resolution of OM (ξ). So the direct image

R•π∗ξ is defined by the presheaf, cf. (3.13):

V → H•(Γ(π−1(V ),D•
M (ξ)), ∂

M
) .

But for b ∈ B, on Vb, the presheaf V → H•(Γ(π−1(V ),D•
M (ξ)), ∂

M
) is exactly the

Gb-invariant sections of R
•π̃b∗ξ̃ over Ṽb.
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If on each Ṽb, we define a Gb-equivariant coherent sheaf R•π̃b∗ξ̃, then by
construction, we verify that this defines a proper coherent sheaf on B.

By the above discussion, the direct image R•π∗ξ is an orbifold OB-coherent

sheaf: over Ṽb, it is defined by R•π̃b∗ξ̃.
We make the basic assumption that for 0 ≤ k ≤ dimX , b ∈ B, the sheaves

Rkπ̃b∗ξ̃ is locally free. Then R•π∗ξ is a proper orbifold vector bundle over B. For

p ∈ Ṽb, let H
•(Xp, ξ̃|Xp) = ⊕dimX

k=0 Hk(Xp, ξ̃|Xp) be the cohomology of the sheaf of

holomorphic sections of ξ̃ restricted to Xp. Then the H•(Xp, ξ̃|Xp) are the fibres

of a Gb-equivariant holomorphic Z-graded vector bundle H•(Xp, ξ̃|Xp) on Ṽb, and
H•(Xp, ξ̃|Xp) = R•π̃b∗ξ̃. So the H•(Xp, ξ̃|Xp) defined an orbifold vector bundle
H•(X, ξ|X).

Let ωM be a real closed (1,1) form on M such that ωM induces a Kähler
metric on TX (cf. Theorem 1.8). Let hξ be a Hermitian metric on ξ.

We verify easily that the objects on M (for example: ωM , ξ, hξ) lift on M̃b.
We denote with a ˜ the objects we considered in Section 1.1 which are attached

to π̃b : M̃b → Ṽb.
For p ∈ Ṽb, set

Kp =
{
f ∈ Ẽp : ∂

Xp
f = 0, ∂

Xp∗
f = 0

}
. (4.2)

By the Hodge theory (2.6),

Kp � H•(Xp, ξ̃|Xp). (4.3)

The identification (4.3) induces an identification of the corresponding smooth vec-

tor bundles on Ṽb. Also K inherits a Gb-invariant Hermitian product from the

L2-Hermitian product on Ẽ. Let hH(X,ξ|X ) be the corresponding smooth metric
on H•(X, ξ|X).

Recall that Ẽ is a Gb-equivariant bundle over Ṽb and the contribution of ξ is
only from its maximal proper orbifold subbundle ξpr of ξ.

Let Bu be the Bismut superconnection on E constructed in Section 1.3.

Let P̃u(x, y, p) (x, y ∈ π̃−1(p), p ∈ Ṽb) be the kernel associated to the operator

exp(−B2
u) with respect to dvX(y)/(2π)dimX , then we know P̃u(x, y, p) defines a

smooth family of smoothing operators.
We define TrΣs [exp(−B2

u)], Tr
Σ
s [Nu exp(−B2

u)] as forms over B ∪ ΣB by: If

a connected component Bi of B ∪ ΣB, is locally defined by
(
(ZGb(h), Ṽ

h
b ) →

Ṽ hb /ZGb(h)
)
(h ∈ Gb, Ṽ

h
b is the fixed point of h over Ṽb), then over Ṽ hb /ZGb(h),

TrΣs [exp(−B2
u)] = Trs[h exp(−B2

u)],

TrΣs [Nu exp(−B2
u)] = Trs[hNu exp(−B2

u)].
(4.4)

As in [11, Theorems 2.2 and 2.9], the forms

ΦTrΣs [exp(−B2
u)] and ΦTrΣs [Nu exp(−B2

u)]
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lie in PB∪ΣB. By Theorem 2.3, we know that the forms ΦTrΣs [exp(−B2
u)] are

closed and that their cohomology class is constant and equal to chΣ(H•(X, ξ|X)).

Theorem 4.1. For u > 0, the following identity holds

∂

∂u
ΦTrΣs [exp(−B2

u)] = − 1

u

∂∂

2iπ
ΦTrΣs [Nu exp(−B2

u)]. (4.5)

Proof. In (4.4), the action h commutes with Bu, Nu. Now, by proceeding as in
[11, Theorem 2.9], we get (4.5). �

If (αu)u>0 is a family of smooth forms over B ∪ΣB, we write that as u→ 0
(resp. u → +∞), αu = O(uk), if for any compact subset K ⊂ B ∪ ΣB, and any
j ∈ N, there is C > 0 such that the sup of αu and its derivative of order ≤ j on K
are dominated by Cuk.

4.2. The asymptotics of the superconnection forms

Clearly, for b ∈ B, in Proposition 1.4, we can choose the ramified covering (GUi , Ũi)

of π−1(Vb) as the type (Gx, Ũx) such that Ũx is a neighbourhood of 0 ∈ Cn(n =
dimM) and such that Gx acts linearly on C

n. Now, we fixe a choice of

(GUi , Ũi) = (Gxi , Ũxi)i∈I(I = {1, . . . , k}), (Gb, Ṽb) → Vb. (4.6)

Let π̃ : (GUi , Ũi) → (Gb, Ṽb) be the GUi -equivariant holomorphic submersion of

Ũi onto Ṽb, and π
−1(Vb) = ∪i∈IUi. The map π̃ induces naturally a morphism πi :

GUi → Gb. Let Kxi = KUi = Ker{πi : GUi → Gb}. Then for h ∈ Gb, g ∈ π−1
i (h),

π̃ : Ũgi → Ṽ hb is also a submersion. Let ρi be a partition of unity of π−1(V1)
subordinate to {Ui}i∈I , for b ∈ V1 ⊂ Vb compact.

Let β = infi∈I{injectivity radius of xi on Ũxi}. Take α ∈]0, β/4].
Let f be a smooth even function defined on R with values in [0, 1], such that

f(t) =

{
1 for |t| ≤ α/2
0 for |t| ≥ α.

(4.7)

Set

g(t) = 1− f(t). (4.8)

Definition 4.2. For u ∈]0, 1], a ∈ C, set

Fu(a) =

∫ +∞

−∞
exp(ita

√
2) exp

(−t2
2

)
f(ut)

dt√
2π
, (4.9)

Gu(a) =

∫ +∞

−∞
exp(ita

√
2) exp

(−t2
2

)
g(ut)

dt√
2π
.

Clearly

Fu(a) +Gu(a) = exp(−a2). (4.10)
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The functions Fu(a), Gu(a) are even holomorphic functions. So there exist

holomorphic functions F̃u(a), G̃u(a) such that

Fu(a) = F̃u(a
2), Gu(a) = G̃u(a

2). (4.11)

Let μ be a form on M ∪ ΣM , we define
∫
X∪ΣX μ as a form over B ∪ ΣB:

locally over Ṽ hb /ZGb(h) ⊂ B ∪ ΣB, we denote∫
X∪ΣX

μ =
∑
i∈I

1

|KUi |
∑

g∈τ−1
Ui

(h)

∫
˜Ugi /

˜V h
ρiμ. (4.12)

Put

C−1 =

∫
X∪ΣX

ωM

2π
TdΣ(TX, hTX) chΣ(ξ, hξ),

C0 =

∫
X∪ΣX

(
− (Td′)Σ(TX, hTX) + dimX TdΣ(TX, hTX)

)
chΣ(ξ, hξ).

(4.13)

Set

chΣ(H•(X, ξ|X), hH(X,ξ|X )) =
dimX∑
k=0

(−1)k chΣ(Hk(X, ξ|X), hH(X,ξ|X )),

ch′Σ(H•(X, ξ|X), hH(X,ξ|X )) =
dimX∑
k=0

(−1)kk chΣ(Hk(X, ξ|X), hH(X,ξ|X )).

(4.14)

Theorem 4.3. As u→ 0

ΦTrΣs [exp(−B2
u)] =

∫
X∪ΣX

TdΣ(TX, hTX) chΣ(ξ, hξ) +O(u). (4.15)

There are forms C′
j ∈ PB∪ΣB(j ≥ −1) such that for k ∈ N, as u→ 0

ΦTrΣs [Nu exp(−B2
u)] =

k∑
j=−1

C′
ju
j +O(uk+1). (4.16)

Also
C′

−1 = C−1,

C′
0 = C0 in PB∪ΣB/PB∪ΣB,0.

(4.17)

Proof. Recall that in the construction of the orbifold M̃b, we use the local coordi-

nate system (KUi , Ũi) → Ũi/KUi .
By (2.8) and the definition of smooth sections for an orbifold vector bundle,

only the maximal proper orbifold subbundle ξpr of ξ makes contributions in various
steps, thus we will assume simply that ξ is a proper orbifold vector bundle on M .

Following (4.4), we will calculate the following limit as u→ 0,

Ii(h, u) =

∫
X

ρi(p, x)ΦTrs[hP̃u(x, x, p)]dvX . (4.18)
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Lemma 4.4. There exist c > 0, C > 0 such that for u ∈]0, 1]∣∣∣Trs[ρihG̃u(B2
u)]
∣∣∣ ≤ c exp

(−C
u2

)
. (4.19)

Proof. By proceeding as in the proof of [2, Proposition 8.3], we have (4.19). �

Let F̃u(B
2
u)(x1, x2)((x1, x2) ∈ Xp×Xp) be the smooth kernel associated with

F̃u(B
2
u) with respect to dvX(x2)/(2π)

dimX . Using (4.5), (4.9), and finite propa-

gation speed [20, §7.8], [35, Appendix D. 2], it is clear that F̃u(B
2
u)(x, x

′) = 0 if

d(x, x′) > α, and F̃u(B
2
u)(x, x

′) depends only on the restriction of B2
u to BX(x, α).

We replace X by (T̃X)xi/Kxi = Cl/Kxi (l = dimX), with 0 ∈ (T̃X)xi
representing xi, and that the extended fibration over Cl coincides with the given
fibration over B(0, 2α) ⊂ Cl.

Let ΔTX be the standard Laplacian on ((T̃X)xi , h
TX
xi ). Let ρ(Y ) be a C∞

function over Cl which is equal 1 if |Y | ≤ α, equal 0 if |Y | ≥ 2α. Let

L1
u = (1− ρ2(Y ))

(
−1

2
uΔTX

)
+ ρ2(Y )B2

u. (4.20)

Let F̃u(L
1
u)(x, x

′)(x, x′ ∈ Cl) be the smooth kernel of F̃u(L
1
u) with respect to

dvTxiX(x′)/(2π)dimX . For y ∈ Cl, |y| < 2α, as in (2.12), set

dvX(y) = k(y)dvTxiX(y). (4.21)

Then, for |y| < 2α, y ∈ (T̃X)gxi , we get

dvXg (y) = k(y)dvTxiXg (y). (4.22)

By (2.11) and the above discussion, if α is enough small, for

(x, x′) ∈ supp(ρi)× supp(ρi),

we get

F̃u(B
2
u)(x, x

′) = k(x′)
∑
g∈Kxi

(g, 1)F̃u(L
1
u)(g

−1x̃, x̃′). (4.23)

Note that Kxi acts on ξ̃ as we explained above (4.18) that ξ is proper.
By (4.18), (4.19), (4.23), we get

lim
u→0

Ii(h, u) = lim
u→0

∫
X

ρi(p, x)ΦTrs[hF̃u(B
2
u)(x, x)]dvX/(2π)

dimX (4.24)

= lim
u→0

∫
Cl

1

|Kxi|
∑
g∈Kxi

ρi(p, x)ΦTrs[h(gF̃u(L
1
u))(x̃, x̃)]k(x̃)dvTxiX/(2π)

dimX

= lim
u→0

∫
Cl

1

|Kxi|
∑

g∈τ−1
Ui

(h)

ρi(p, x)ΦTrs[gF̃u(L
1
u)(g

−1x̃, x̃)]k(x̃)dvTxiX/(2π)
dimX .
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We observe that for any k ∈ N, c > 0, there is C > 0, C′ > 0 such that for
u ∈ ]0, 1],

sup
|Im(a)|≤c

|a|k
∣∣∣F̃u(a2)− exp(−a2)

∣∣∣ ≤ C′ exp(
−C
u2

). (4.25)

For each g ∈ τ−1
Ui

(h), by using (4.22), (4.25), and by proceeding as in [33, (2.42)–
(2.51)], we get

lim
u→0

∫
Cl

ρi(p, x̃)ΦTrs[gF̃u(L
1
u)(g

−1x̃, x̃)]k(x̃)dvTxiX/(2π)
l

= lim
u→0

∫
(˜TX)gxi

∫
z∈ ˜NXg/X

ρi(p, (x̃, z̃))ΦTrs[gF̃u(L
1
u)(g

−1(x̃, z̃), (x̃, z̃))]

k(x̃, z̃)dvTxiXg (x̃)dvNXg/X ,xi(z̃)/(2π)
l

=

∫
(˜TX)gxi

ρi(p, x̃)Tdg(T̃X, h
TX) chg(ξ̃, h

ξ). (4.26)

By (4.12), (4.18), (4.19), (4.24), (4.26), we get (4.15).
By combining the techniques of proof of [11, Theorems 2.2, 2.3, 2.9 and 2.16]

and the proof of (4.15), we get (4.16) and (4.17). �

Theorem 4.5. As u→ +∞
ΦTrΣs [exp(−B2

u)] = chΣ(H•(X, ξ|X), hH(X,ξ|X )) +O

(
1√
u

)
,

ΦTrΣs [Nu exp(−B2
u)] = ch′Σ(H•(X, ξ|X), hH(X,ξ|X )) +O

(
1√
u

)
.

(4.27)

Proof. Equation (4.27) was stated in [13, Theorem 3.4], ifM,B are complex mani-
folds. By proceeding as in [1, Theorem 9.23], we get also (4.27) in our situation. �

4.3. Analytic torsion forms

For s ∈ C,Re(s) > 1, set

ζ1(s) = − 1

Γ(s)

∫ 1

0

us−1
(
ΦTrΣs [Nu exp(−B2

u)]− ch′Σ(H•(X, ξ|X), hH(X,ξ|X ))
)
du.

Using (4.16), we see that ζ1(s) extends to a holomorphic function of s ∈ C near
s = 0.

For s ∈ C,Re(s) < 1
2 , set

ζ2(s) = − 1

Γ(s)

∫ +∞

1

us−1
(
ΦTrΣs [Nu exp(−B2

u)]−ch′Σ(H•(X, ξ|X), hH(X,ξ|X ))
)
du.

Then ζ2(s) is a holomorphic function of s.

Definition 4.6. Set

T (ωM , hξ) =
∂

∂s
(ζ1 + ζ2)(0). (4.28)
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Then T (ωM , hξ) is a smooth form on B ∪ΣB. Using (4.16), (4.27), we get

T (ωM , hξ) = −
∫ 1

0

(
ΦTrΣs [Nu exp(−B2

u)]−
C′−1

u
− C′

0

)du
u

−
∫ +∞

1

(
ΦTrΣs [Nu exp(−B2

u)]− ch′Σ(H•(X, ξ|X), hH(X,ξ|X ))
)du
u

+ C′
−1 + Γ′(1)

(
C′

0 − ch′Σ(H•(X, ξ|X), hH(X,ξ|X ))
)
. (4.29)

Theorem 4.7. The form T (ωM , hξ) lies in PB∪ΣB. Moreover

∂∂

2iπ
T (ωM , hξ) = chΣ

(
H•(X, ξ|X), hH(X,ξ|X )

)
−
∫
X∪ΣX

TdΣ(TX, hTX) chΣ(ξ, hξ).

(4.30)

Proof. By Theorems 4.1, 4.3, 4.5, we get (4.30). �

4.4. Anomaly formulas for the analytic torsion forms

Let now (ω′, h′ξ) be another couple of objects similar to (ω, hξ). We denote with
a ′ the objects associated to (ω′, h′ξ).

Theorem 4.8. The following identity holds in PB∪ΣB/PB∪ΣB,0,

T (ω′, h′ξ)− T (ω, hξ) = c̃h
Σ
(
H•(X, ξ|X), hH(X,ξ|X ), h′H(X,ξ|X )

)
(4.31)

−
∫
X∪ΣX

[
T̃d

Σ
(TX, hTX , h′TX) chΣ(ξ, hξ) + TdΣ(TX, h′TX)c̃h

Σ
(ξ, hξ, h′ξ)

]
.

In particular, the class of T (ω, hξ) ∈ PB∪ΣB/PB∪ΣB,0 depends only on (hTX , hξ).

Proof. By (4.4), and by combining the proof of [33, Theorem 2.13 ], and Theorem
4.3, we have (4.31). �

5. The Quillen norm in the submersion case

Let π :M → B be a holomorphic orbifold submersion of M onto B with compact
fibre X . Let ξ be a holomorphic orbifold vector bundle on M . In this section, we
will calculate the Quillen norm of the canonical section of λM (ξ) ⊗ λ−1(R•π∗ξ).
This extends the result of [2, Theorem 3.1] to the orbifold case.

This section is organized as follows. In Section 5.1, we state a formula for the
Quillen norm of the canonical section σ. In Section 5.2, we introduce a 1-form on
R

∗
+×R

∗
+ as in [2, §3a)]. In Section 5.3, we state eight intermediate results which we

need for the proof of Theorem 5.1, whose proofs are delayed to Sections 5.5–5.8.
In Section 5.4, we prove Theorem 5.1. In Section 5.5, we prove Theorems 5.7–5.11.
In Section 5.6, we prove Theorem 5.12. In Section 5.7, we prove Theorem 5.13. In
Section 5.8, we prove Theorem 5.14.

We use the notation of Sections 1, 4.
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5.1. A formula for the Quillen norm of the canonical section σ

LetM,B be compact complex orbifolds. Let π :M → B be a holomorphic orbifold
submersion of M onto B with compact fiber X . Let ξ be a holomorphic orbifold
vector bundle on M .

We assume that the sheaves Rkπ∗ξ(0 ≤ k ≤ dimX) are orbifold vector
bundles on B. Set

λM (ξ) = ⊗j(detHj(M, ξ))(−1)j+1

,

λ(R•π∗ξ) = ⊗j,k(detHj(B,Rkπ∗ξ))(−1)j+k+1

.
(5.1)

By [28], the line λM (ξ)⊗ λ−1(R•π∗ξ) has a canonical nonzero section σ.
Let hTM , hTB be Kähler metrics on TM and TB. Let hTX be the metric

induced by hTM on TX . Let hξ be a Hermitian metric on ξ.
OnM , we have the exact sequence of holomorphic Hermitian proper orbifold

vector bundles (cf. Definition 1.2)

0 → TX → TM → π∗TB → 0. (5.2)

By a construction of [10, §1f)], there is a uniquely defined class of forms

T̃d
Σ
(TM, TB, hTM , hTB) ∈ PM∪ΣM/PM∪ΣM,0,

such that

∂∂

2iπ
T̃d

Σ
(TM, TB, hTM , hTB)

= TdΣ(TM, hTM)− π∗(TdΣ(TB, hTB))TdΣ(TX, hTX).

(5.3)

Let ωM be the Kähler form of hTM . Let || ||λM (ξ)⊗λ−1(R•π∗ξ) be the Quillen

metric on the line λM (ξ) ⊗ λ−1(R•π∗ξ) attached to the metrics hTM , hξ, hTB,
hH(X,ξ|X ) on TM , ξ, TB, R•π∗ξ.

Recall that the integral
∫
B∪ΣB is defined in (4.12).

Now we state the main result of this section, which extends [2, Theorem 3.1].

Theorem 5.1. The following identity holds,

log
(
||σ||2λM (ξ)⊗λ−1(R•π∗ξ)

)
= −

∫
B∪ΣB

TdΣ(TB, hTB)T (ωM , hξ) (5.4)

+

∫
M∪ΣM

T̃d
Σ
(TM, TB, hTM , hTB) chΣ(ξ, hξ).

Proof. The remainder of this section is devoted to the proof of Theorem 5.1. �

Remark 5.2. By Theorem 4.8, to prove Theorem 5.1 for any Kähler metrics hTM ,
hTB, we only need to establish (5.4) for one given metrics hTM , hTB. So by

replacing hTM by hTM + π∗hTB, we may and we will assume that h̃TM is a
Kähler metric on TM and

hTM = h̃TM + π∗hTB. (5.5)
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5.2. A fundamental closed 1-form

Let NV , NH be the number operators of Λ(T ∗(0,1)X), Λ(T ∗(0,1)B). As in [2, §4],
the operators NV and NH act naturally on Λ(T ∗(0,1)M). Of course, N = NV +NH
defines the total grading of Λ(T ∗(0,1)M)⊗ ξ and Ω•(M, ξ).

Definition 5.3. For T > 0, let hTMT be the Kähler metric on TM

hTMT =
1

T 2
h̃TM + π∗hTB. (5.6)

Let 〈 〉T be the Hermitian product (1.18) on Ω•(M, ξ) attached to the met-

rics hTMT , hξ. Let DM
T be the corresponding operator constructed in (1.19) acting

on Ω•(M, ξ). Let ∗T be the Hodge operator with respect to the metric hTMT . Then
∗T acts on Λ(T ∗

R
M)⊗ ξ.

Theorem 5.4. Let αu,T be the 1-form on R∗
+ × R∗

+

αu,T =
2du

u
Trs

[
N exp(−u2DM,2

T )
]
+ dT Trs

[
∗−1
T

∂∗T
∂T

exp(−u2DM,2
T )

]
. (5.7)

Then αu,T is closed.

Proof. The proof of Theorem 5.4 is identical to the proof of [2, Theorem 4.3 and
(4.30)]. �

Take ε, A, T, 0 < ε ≤ 1 ≤ A < +∞, 1 ≤ T0 < +∞. Let Γ = Γε,A,T0 be the
oriented contour in R∗

+ × R∗
+

1

2

3

A

4

1 T00

u

T

The contour Γ is made of the four oriented pieces Γ1, . . . ,Γ4 indicated above.
For 1 ≤ k ≤ 4, set

I0k =

∫
Γk

α. (5.8)
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Theorem 5.5. The following identity holds,

4∑
k=1

I0k = 0. (5.9)

Proof. This follows from Theorem 5.4. �

5.3. Eight intermediate results

Let ∂
B∗

be the formal adjoint of the operator ∂
B

acting on Ω•(B,R•π∗ξ), with
respect to the metrics hTB, hH(X,ξ|X ). Set

DB = ∂
B
+ ∂

B∗
, F = Ker(DB). (5.10)

By the Hodge theory,

H•(B,R•π∗ξ) � F. (5.11)

Let Q be the orthogonal projection from Ω•(B,R•π∗ξ) on F with respect to the
Hermitian product (1.18) attached to the metrics hTB, hH(X,ξ|X ). Set Q⊥ = 1−Q.

Let a ∈]0, 1] be such that the operator DB,2 has no eigenvalues in ]0, 2a].

Definition 5.6. For T > 0, set

ET = Ker(DM,2
T ). (5.12)

Let PT be the orthogonal projection operator from Ω•(M, ξ) on ET with respect
to 〈 〉T .

Let E
[0,a]
T (resp. E

]0,a]
T ) be the direct sum of the eigenspaces of DM,2

T asso-

ciated with eigenvalues λ ∈ [0, a] (resp. λ ∈]0, a]). Let DM,2,[0,a]
T (resp. D

M,2,]0,a]
T )

be the restriction of DM,2
T to E

[0,a]
T (resp. E

]0,a]
T ). Let P

[0,a]
T (resp. P

]0,a]
T ) be the

orthogonal projection operator from Ω•(M, ξ) on E
[0,a]
T (resp. E

]0,a]
T ) with respect

to 〈 〉T . Set P ]a,+∞[ = 1− P
[0,a]
T . Set

χ(ξ) =
∑
k

(−1)k dimHk(M, ξ), χ(Rjπ∗ξ) =
∑
k

(−1)k dimHk(B,Rjπ∗ξ).

We now state eight intermediate results contained in Theorems 5.7–5.14
which play an essential role in the proof of Theorem 5.1. The proof of Theorems
5.7–5.14 are deferred to Sections 5.5–5.8.

Theorem 5.7. For any u > 0,

lim
T→+∞

Trs

[
N exp(−u2DM,2

T )
]
= Trs

[
N exp(−u2DB,2)

]
. (5.13)

For any u > 0, there exists C > 0 such that for T ≥ 1,∣∣∣Trs[NV exp(−u2DM,2
T )]−

dimX∑
j=0

(−1)jχ(Rjπ∗ξ)
∣∣∣ ≤ C

T
. (5.14)
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For any ε > 0, there exists C > 0 such that for u ≥ ε, T ≥ 1,∣∣∣Tr[exp(−u2DM,2
T )]

∣∣∣ ≤ C. (5.15)

Theorem 5.8. For any u > 0,

lim
T→+∞

Trs

[
N exp(−u2DM,2

T )P ]a,+∞[
]
= Trs

[
N exp(−u2DB,2)Q⊥

]
. (5.16)

There exist c > 0, C > 0 such that for u ≥ 1, T ≥ 1,∣∣∣Tr[N exp(−uDM,2
T )P ]a,+∞[]

∣∣∣ ≤ c exp(−Cu). (5.17)

Theorem 5.9. The following identity holds,

lim
T→+∞

Tr
[
D
M,2,[0,a]
T

]
= 0. (5.18)

For T ≥ 1 large enough, for 0 ≤ k ≤ dimM ,

dimE
[0,a],k
T =

k∑
j=0

dimHj(B,Rk−jπ∗ξ). (5.19)

Let (Er , dr) (r ≥ 2) be the spectral sequence of the Dolbeault complex

(Ω•(M, ξ), ∂
M
) filtered as in [2, §1a)]. Then as in [2, §4], for r ≥ 2, Er is equipped

with a metric hEr associated to hTM , hTB, hξ. For r ≥ 2, let r| |λM (ξ) be the

corresponding metric on λM (ξ) � (detEr)
−1

For r ≥ 1, let N|Er , NH|Er , NV |Er be the restrictions of N,NH , NV to Er.

Theorem 5.10. The following identity holds,

lim
T→+∞

{
Trs[N log(D

M,2,]0,a]
T )] + 2

∑
r≥2

(r − 1)
(
Trs[N|Er ]− Trs[N|Er+1

]
)
log(T )

}
= log

(∞| |λM (ξ)

2| |λM (ξ)

)2
. (5.20)

For T ≥ 1, let | |λM (ξ),T be the L2 metric on the line λM (ξ) associated to

the metrics hTMT , hξ on TM, ξ.

Theorem 5.11. The following identity holds,

lim
T→+∞

{
log
( | |λM (ξ),T

| |λM (ξ)

)2
+ 2
(
− dimXχ(ξ) + Trs[NV |E∞ ]

)
log(T )

}
= log

(∞| |λM (ξ)

| |λM (ξ)

)2
. (5.21)

For u > 0, let Bu be the Bismut superconnection on Ω•(X, ξ|X) constructed

in Section 1.3 which is attached to hTM , hξ on TM, ξ. Let Ñu be the operator

defined in Section 1.3 associated with the metric h̃TM .
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Theorem 5.12. For any T ≥ 1,

lim
ε→0

Trs

[
∗−1
T/ε

∂

∂T
(∗T/ε) exp(−ε2DM,2

T/ε )
]

=
2

T

∫
B∪ΣB

TdΣ(TB, hTB)ΦTrΣs

[
ÑT 2 exp(−B2

T 2)
]
− 2

T
dimXχ(ξ).

(5.22)

Let ωM , ω̃M , ωB be the Kähler forms associated with hTM , h̃TM , hTB. Let
∇TM
T be the holomorphic Hermitian connection on (TM, hTMT ), and let RTMT be

its curvature.

Theorem 5.13. There exists C > 0 such that for ε ∈]0, 1], ε ≤ T ≤ 1,∣∣∣Trs [ ∗−1
T/ε

∂

∂T
(∗T/ε) exp

(
− ε2DM,2

T/ε

)]
(5.23)

− 2

T 3

∫
M∪ΣM

ω̃M

2π
TdΣ(TM) chΣ(ξ)

+

∫
M∪ΣM

∂

∂b
TdΣ

(−RTMT/ε
2iπ

− b(hTMT/ε )
−1 ∂

∂T
(hTMT/ε )

)
b=0

chΣ(ξ, hξ)
∣∣∣ ≤ C.

Theorem 5.14. There exist δ ∈]0, 1], C > 0 such that for ε ∈]0, 1], T ≥ 1,∣∣∣Trs [ ∗−1
T/ε

∂

∂T
(∗T/ε) exp(−ε2DM,2

T/ε )
]

− 2

T

( dimX∑
j=0

(−1)jjχ(Rjπ∗ξ)− dimXχ(ξ)
)∣∣∣ ≤ C

T 1+δ
.

(5.24)

Besides, at a formal level, Theorems 5.7–5.14 can be obtained formally from
[2, Theorems 4.8–4.15]. This will permit us to transfer formally the discussion in
[2, §4] to our situation.

5.4. A proof of Theorem 5.1

By Theorem 5.5, Theorems 5.7–5.14 and proceeding as in [2, §4c), d)], we get (5.4).
5.5. A proof of Theorems 5.7–5.11

The proof of Theorems 5.7–5.11 is essentially the same as the proof of [2, Theorems
4.8–4.12] given in [2, §5, §6], where the corresponding results were established when
M,B are manifolds. Now we use the notation of [2, §5].

By Proposition 1.4, for each b ∈ B, there exists a small neighbourhood

(Gb, Ṽb) → Vb, an orbifold M̃b, such that π is induced by a Gb-equivariant orbifold

submersion π̃b : M̃b → Ṽb with compact fiber X .

Then Ker(DX
T ) is a Gb-equivariant vector bundle on Ṽb. This defines an orb-

ifold Hermitian vector bundle Ker(DX
T ) on B.

For T ∈ [1,+∞], let E1,T be the vector space of the smooth sections on B of
Ker(DX

T ). As in [2, (5.26)], we have

E1,T � E1. (5.25)

The proof of Theorems 5.7–5.11 then proceeds as in [2, §5, §6] by using (3.15).
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5.6. A proof of Theorem 5.12

Now we use the notation of [33, §7].
By Proposition 1.4, for each b ∈ B, there exists a small neighbourhood

(Gb, Ṽb) → Vb (Ṽb is a neighbouhood of 0 ∈ Cm and Gb acts linearly on Cm),

an orbifold M̃b, such that π is induced by a Gb-equivariant orbifold submersion

π̃b : M̃b → Ṽb with compact fibre X .

Let (Gbi , Ṽbi)i∈I be a cover of B such that (Gbi ,
1
2 Ṽbi)i∈I also is a cover of B.

Let β = infi∈I{injectivity radius of bi on Ṽbi}. Let α ∈]0, β/8].
If b ∈ B, let BB(b, r) be the open ball of center b and radius r in B.

Proposition 5.15. For δ > 0, there exist c > 0, C > 0 such that for 0 < ε ≤ δ,
T ≥ 1, ∣∣∣Trs [ ∗−1

T

∂

∂T
(∗T )G ε

T
(
ε

T
DM
T )
]∣∣∣ ≤ c exp

(
− CT 2

ε2

)
. (5.26)

Proof. The proof of (5.26) is essentially the same as the proof of [2, Proposition
8.3]. �

For T ≥ 1 fixed, we use (5.26) with ε = T and T replace by T/ε, we find∣∣∣Trs [ ∗−1
T/ε

∂

∂T
(∗T/ε)Gε(εDM

T/ε)
]∣∣∣ ≤ c exp

(
− C

ε2

)
. (5.27)

Set

A′
ε,T =

(T
ε

)NV
εDM

T/ε

(T
ε

)−NV
. (5.28)

Let Fε(εD
M
T/ε)(x, x

′), Fε(A′
ε,T )(x, x

′)(x, x′ ∈ M) be the smooth kernel asso-

ciated with Fε(εD
M
T/ε), Fε(A

′
ε,T ) with respect to the volume form dvM (x′)

(2π)dimM . Using

(2.11), (4.9) and finite propagation speed [20, §7.8], [35, Appendix D. 2], it is clear
that for ε ∈]0, 1], T ≥ 1, x, x′ ∈M , if dB(π(x), π(x′)) ≥ α, then

Fε(εD
M
T/ε)(x, x

′) = 0

and moreover, given x ∈ M , Fε(εD
M
T/ε)(x, ·) only depends on the restriction of

DM
T/ε to π−1(BB(π(x), α)).

Let ρi be a partition of unity subordinate to the cover (Gbi ,
1
2 Ṽbi)i∈I of B.

Then by (5.28), we get as in [2, (7.8)]

Trs

[
∗−1
T/ε

∂

∂T
(∗T/ε)Fε(εDM

T/ε)
]
= Trs

[
∗−1
T/ε

∂

∂T
(∗T/ε)Fε(A′

ε,T )
]
. (5.29)

We replace M̃bi by (T̃B)bi×Xbi = Cm×Xbi and trivialize the vector bundles
as indicated in [33, §7b)].

As in [2, §9b)], for α > 0 small enough, there is also a smooth Z-graded vector

bundle K ⊂ Ωbi over (T̃B)bi � R
2m which coincides with Ker(DX) on B(0, 4α),
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with Ker(DX
bi
) over (T̃B)bi\B(0, 6α) and such that if K⊥ is the orthogonal bundle

to K in Ωbi ,

K⊥ ∩Ker(DX
bi ) = {0}. (5.30)

Let Pb be the orthogonal projection operator from Ωbi on Kb. Set P
⊥
b = 1− Pb.

Let ΔTB be the standard Laplacian on the vector space (T̃B)bi with respect

to the metric hTBbi . Let dvTbiB be the Riemannian volume form on ((T̃B)bi , h
TB
bi

).

Let ϕ : R → [0, 1] be a C∞ function which is equal 1 if |t| ≤ 2α, equal 0 if
|t| ≥ 4α. Let L1

ε,T be the operator on Cm ×Xb0

L1
ε,T = ϕ2(|Y |)A′2

ε,T + (1− ϕ2(|Y |))
(−ε2ΔTB

2
+ T 2P⊥

Y D
X,2
bi

P⊥
Y

)
. (5.31)

Let F̃ε(L
1
ε,T )

(
(Y, x), (Y ′, x′)

)
((Y, x), (Y ′, x′) ∈ (T̃B)bi ×Xb0) be the smooth

kernels associated with F̃ε(L
1
ε,T ) with respect to

dvTbiB
(Y ′)dvXbi (x

′)

(2π)dimM .

For (Y, x) ∈ (T̃B)bi ×Xbi , |Y | < β/4, set

dvM (Y, x) = k(Y, x)dvTbiBdvXbi . (5.32)

Using finite propagation speed and (2.11), we see that if (Y, x) ∈ (T̃B)bi×Xbi ,
|Y | < α, then

Fε(A
′
ε,T )

(
(Y, x), (Y, x)

)
=
∑
h∈Gbi

k(Y, x)hF̃ε(L
1
ε,T )

(
h−1(Y, x), (Y, x)

)
. (5.33)

By (5.33), and proceeding as in [33, §7], we have Theorem 5.12.

5.7. A proof of Theorem 5.13

As in [2, §8] or [33, §8], the following theorem implies Theorem 5.13.

Theorem 5.16. There exists C > 0 such that for 0 < u ≤ 1, T ≥ 1,∣∣∣Trs [ ∗−1
T

∂∗T
∂T

exp(− u2

T 2
DM,2
T )

]
− 2

u2

∫
M∪ΣM

ω̃M

2πT
TdΣ(TM) chΣ(ξ) (5.34)

+

∫
M∪ΣM

∂

∂b
TdΣ

(−RTMT
2iπ

− b(hTMT )−1 ∂

∂T
(hTMT )

)
b=0

chΣ(ξ, hξ)
∣∣∣ ≤ Cu2

T
.

Proof. By (5.28)

A′
1/T,1 = TNV

1

T
DM
T T

−NV . (5.35)

Therefore

Trs

[
∗−1
T

∂∗T
∂T

exp(− u2

T 2
DM,2
T )

]
= Trs

[
∗−1
T

∂∗T
∂T

exp(−u2A′2
1/T,1)

]
. (5.36)

By (3.15), we can replace M by (Cm × Xbi)/Kbi , and trivialize the vector
bundles as indicated in [33, §7b)]. Then we will prove (5.34) in this situation.
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Let Pu,T (x,x
′) be the smooth kernel associated with the operator

exp(−u2A′2
1/T,1) with respect to dvM (x′)

(2π)dimM . Let

P 1
ε,T,u((Y, x), (Y

′, x′)) ((Y, x), (Y ′, x′) ∈ (T̃B)bi ×Xbi)

be the smooth kernel associated with the operator exp(−u2L1
ε,T ) with respect to

dvTbiB
(Y ′)×dvXbi (x

′)

(2π)dimM . By Proposition 5.15, as u → 0, uniformly on T ≥ 1, the

asymptotics of the following three terms is the same∫
M

ρiTrs

[
∗−1
T

∂∗T
∂T

Fu/T (uA
′
1/T,1)(x, x

′)
]
dvM/(2π)

dimM ,∫
M

ρiTrs

[
∗−1
T

∂∗T
∂T

Pu,T (x, x
′)
]
dvM/(2π)

dimM ,∫
(˜TB)bi×Xbi

ρi
∑
h∈Gbi

1

|Gbi |
Trs

[
h ∗−1

T

∂∗T
∂T

P 1
1/T,1,u(h

−1(Y, x), (Y, x))
]

k(Y, x)dvTbiB(Y )× dvXbi (x)/(2π)
dimM .

(5.37)

By [33, §8], (5.36), (5.37), we get Theorem 5.16. �

5.8. A proof of Theorem 5.14

Proposition 5.17. There exists C > 0, such that for 0 < ε ≤ 1, T ≥ 1∣∣∣Trs [ ∗−1
T/ε

∂

∂T
(∗T/ε)Gε(εDM

T/ε)
]

− 2

T

( dimX∑
j=0

(−1)jjχ(Rjπ∗ξ)− dimXχ(ξ)
)
Gε(0)

∣∣∣ ≤ C

T 2
.

(5.38)

Proof. By an analogue of the McKean–Singer formula [1, Theorem 3.50], we find
that

Trs[NVGε(εD
B)] =

dimX∑
j=0

(−1)jjχ(Rjπ∗ξ)Gε(0). (5.39)

Using (5.39) and proceeding as in [2, Proposition 9.1], we have (5.38). �

By (4.10) and (5.38), to establish Theorem 5.14, we only need to establish
the following result,

Theorem 5.18. If α > 0 is small enough, there exist δ > 0, C > 0, such that for
0 < ε ≤ 1, T ≥ 1∣∣∣Trs [ ∗−1

T/ε

∂

∂T
(∗T/ε)Fε(εDM

T/ε)
]

− 2

T

( dimX∑
j=0

(−1)jjχ(Rjπ∗ξ)− dimXχ(ξ)
)
Fε(0)

∣∣∣ ≤ C

T 1+δ
.

(5.40)
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Proof. Using (5.28), we deduce that

Trs

[
∗−1
T/ε

∂

∂T
(∗T/ε)Fε(εDM

T/ε)
]
= Trs

[
∗−1
T/ε

∂

∂T
(∗T/ε)F̃ε(A′2

ε,T )
]
. (5.41)

Let F̃ε(A
′2
ε,T )(x, x

′)(x, x′ ∈M) be the smooth kernel associated with F̃ε(A
′2
ε,T ) with

respect to dvM (x′)/(2π)dimM . Using finite propagation speed, it is clear that if

x ∈M , F̃ε(A
′2
ε,T )(x, ·) only depends on the restriction of A′

ε,T to π−1(BB(π(x), α)).

We use the same trivialization and notation as in Section 5.6. If (Y, x) ∈
(T̃B)bi ×Xbi , |Y | < α, then

ρi(Y, x)F̃ε(A
′2
ε,T )((Y, x), (Y, x))

= ρi
∑
h∈Gbi

k(Y, x)hF̃ε(L
1
ε,T )(h

−1(Y, x), (Y, x)). (5.42)

By [33, §9], (5.41), (5.42), we get Theorem 5.18. �

The proof of Theorem 5.14 is completed. �
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torsion. J. Eur. Math. Soc. (JEMS) 16 (2014), no. 3, 463–535.

[18] J. Burgos Gil, G. Freixas i Montplet, R. Liţcanu, The arithmetic Grothendieck–
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