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Abstract. In this paper, we establish the curvature theorem of determinant
line bundles for an orbifold Kéhler fibration as an extension of Bismut—Gillet—
Soulé’s curvature theorem. Then we introduce Bismut—Kohler analytic torsion
form for an orbifold Ké&hler fibration. Finally we calculate the behaviour of
the Quillen metric by orbifold submersions as an extension of Berthomieu—
Bismut’s result.
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0. Introduction

Let € be a Hermitian vector bundle on a compact Hermitian complex manifold X.
Let A(€) be the inverse of the determinant of the cohomology of €. Quillen defined
first a metric on A(§) in the case that X is a Riemann surface. Quillen metric is
the product of the L? metric on A\(£) by the Ray—Singer analytic torsion of the
Dolbeault complex. The logarithm of the Ray—Singer analytic torsion [39] is a lin-
ear combination of derivatives at zero of the zeta function of the Hodge Laplacians
acting on smooth forms of various degrees. In [12], Bismut, Gillet, and Soulé have
established a general theory on Quillen metric for any dimensional compact Ké&hler
manifolds, in particular their anomaly formulas for Quillen metrics computes the
variation of Quillen metric on the metrics on £ and T'X by using some Bott—Chern
classes; for a holomorphic submersion, they proved their determinant line bundle
from spectral theory has canonically a holomorphic structure, and is isomorphic
canonically to the Knudsen—-Mumford line bundle from sheaf theory, as holomor-
phic line bundles. They have shown that the Quillen metric is a smooth metric on
the determinant line bundle A(€) of the cohomology groups of the fibers, even both
L?-metric and the analytic torsion could be discontinuous, their curvature formula
calculates the curvature of A\(¢) with Quillen metric which refines the degree two
part of the Riemann—-Roch-Grothendieck theorem at the differential form level.
Later, Bismut and Kohler [13] (refer also [11], [22] in the special case) have
extended the analytic torsion of Ray—Singer to the analytic torsion forms 7" for a

holomorphic submersion. In particular, the equation on %T gives a refinement of
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the Riemann—Roch—Grothendieck theorem at the level of differential forms. They
have also established the corresponding anomaly formulas.

In [22], Gillet and Soulé had conjectured an arithmetic Riemann—Roch theo-
rem in Arakelov geometry. The analytic torsion form is contained in their definition
of direct image. In [23], they have established it for the first arithmetic Chern class
and Bismut-Lebeau’s embedding formula [15] for Quillen metric plays an impor-
tant role in their proof. In [24], they have established the high degree version by
using Bismut’s embedding formula [6] for torsion forms. For the various equivariant
extensions cf. [29], [5], [16], and the recent works [17, 18].

Note also that for a submersion 7 : M — B of compact Kéhler manifolds and
a holomorphic vector bundle £ on M, by [28], there exists a canonical isomorphism
o from A/ (€), the determinant of the cohomology of £ over M, to A(R*7.£), here
R°m.£ is the direct image of £. In [2], Berthomieu and Bismut have obtained a
formula for the Quillen norm of o in terms of Bott—Chern classes on M and the
analytic torsion forms of the fibration 7. In our thesis [31, 32], we establish the
family version of [2].

In [34], we define the analytic torsion for orbifolds and established the corre-
sponding anomaly formula and embedding formula. This paper is a continuation
of [34]. For an orbifold submersion, we will study the curvature formula for the
Quillen metric and define the analytic torsion form, then extend Berthomieu-
Bismut’s result [2] for an orbifold submersion.

An complex orbifold can be always represented locally by C™/G where the
finite group G acts C-linearly on C™. The simplest complex orbifold is a global
orbifold M/G where G is a finite group acting holomorphically on a complex
manifold M.

We will use the heat kernel method to solve our problem. Thanks to finite
propagation speed of the solution of the hyperbolic equation [20], [35, Appendix
D], we can use the local family index theory of Bismut [3]. Since, locally, we have to
meet G-manifold, to generalize the results to the orbifold case, we must understand
very well the situation of G-equivariant complex manifolds. After localized, we will
apply the results of [5] and [33] to our situation.

Orbifold appears naturally in many important cases, for example: the sym-
plectic reduction, the problem on moduli spaces. In [27], Kawasaki has extended
the Riemann—Roch—Hirzebruch theorem to the orbifold case. Bismut and Labourie
[14] also proved the Verlinde formula by using Kawasaki’s theorem.

For applications of the analytic torsion in Arakelov geometry, cf. the book
[42], in particular the recent works [17], [36], [37]. We also hope our results have
corresponding versions in Arakelov geometry. For applications of analytic torsion
on the moduli space of K3 surfaces, cf. Yoshikawa’s works [43], [44], in particular, in
[45], for general abelian Calabi-~Yau orbifolds of dimension three, BCOV invariant
was defined and the curvature theorem was proved for global orbifolds there.

Let us explain the contain of this paper in detail now. For a complex vector
space F, we denote det I = A™®F and denote by (det F)~! := det F'* its dual
line.
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Let £ be a holomorphic orbifold vector bundle on an n-dimensional complex
orbifold X. Let H®(X, &) be the cohomology of sheaf of holomorphic sections of £
over X.

The determinant of the cohomology of & over X is defined as

A(€) = (det H*(X,£)) ™" = @J_o(det H(X,£)) =D, (0.1)

Let XX be the strata of X which has a natural orbifold structure. Let m;

be the multiplicity of the connected component X; of X UXX (cf. (1.2)). For a a
differential form on X U XX, we denote simply

»/XUEX ‘- 21: miZ / . @ (0.2)

Let hTX, h¢ be Hermitian metrics on TX, £. Then as in the smooth case, in
[34], we defined the analytic torsion and the Quillen metric on the complex line A(§)
(cf. (3.4)) and established the anomaly formula in [34, Theorem 4.2], and the local
term are certain integral of differential forms on X UX. X, not on X. For example,
Td*(TX,hTX) is the Todd form on X U XX associated with the holomorphic
Hermitian connection on (T'X, hTX), which appears in Kawasaki’s formulas [27].
Other Chern—Weil forms will be denoted in a similar way. In particular, the form
ch™(&,h8) (cf. (2.8)) on X UXX is the Chern Weil representative of the Chern
character of (£P7, k%), with £PT the maximal proper orbifold subbundle of &.

As the space of € sections of an orbifold vector bundle is identified as the
space of € sections of its maximal proper orbifold subbundle. In the whole paper,
we can assume that £ is a proper orbifold vector bundle.

Let m: M — B be a proper orbifold submersion of complex orbifolds. Then
by Proposition 1.4, locally 7 is a quotient of a fibration with fiber of a compact
orbifold X, by a finite group.

We assume that 7 is a Kahler fibration in the sense of Bismut-Gillet—Soulé,
i.e., there is a smooth closed real (1,1)-form on M such that it induces a Kahler
form along the fiber, cf. Definition 1.7. Let £ be a holomorphic orbifold vector
bundle on M. Let hé be a Hermitian metric on £.

When the base B is a complex manifold, then the direct image R*7.¢ is well
defined as an element in K-group of B. In this case, we establish in Theorem
2.3 the family local index theorem as an extension of Bismut’s family local index
theorem.

When B is a complex orbifold, as one of our main results, in Section 3.3, we
define the determinant line bundle as a proper orbifold holomorphic line bundle on
B by using the spectral analysis, also Knudsen-Mumford orbifold line bundle from
sheaf theory, then Theorem 3.5 as an extension of [12, Theorem 3.14], shows the
canonical isomorphism of these orbifold line bundles is holomorphic. In Theorem
3.6, we compute the curvature of the associated Chern connection as a consequence
of the family local index theorem. Thus we extend Bismut—Gillet—Soulé’s classical
curvature theorem [12, Theorem 0.3] to the orbifold case.
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We assume now that the direct image kaé (0 < k < dim X) are orbifold
vector bundle on B. Then in Section 4, we introduce the analytic torsion form
which is a differential form on B U ¥ B, and we establish its anomaly formula.

Now we assume further that M, B are compact Kéahler orbifolds. Let o be
the canonical section of Ay (£) @ A H(R®m,.€).

Let h™ RhTB be Kihler metrics on TM and TB. Let hTX be the metric on
TX induced by h™™. Let w™ be the Kihler form of hT.

Let H*(X,£|x) be the cohomology of &|x. Let h(X:€1x) be the L2-metric
on H*(X,&|x) constructed in Section 4 associated to h7X h¢. Let T'(w™ h®) be
the analytic torsion forms on B U XB constructed in Section 4, which extend the

—x
analytic torsion forms of Bismut—Kohler to the orbifold case. Let Td (TM,TB,
RTM  hTB) be the Bott—Chern class on M U XM constructed as in [10] such that

00 ~%
—Td (TM, TB,h™ nTB) = 1d*(T M, hT™)

(e

— 7*(Td*(TB, h*B)) Td*(T X, h*™). (0.3)
Let [|  [|Ix, ©)@r—1(rer.e) be the Quillen metric on the complex line Axs(§) @
A~ H(R®,£) attached to the metrics RTM | hé KTE hHXEIX) on TM, €, TB, R*T.£.
The last purpose of this paper is to calculate the Quillen metric
ol ©@r-1(rem.e)

as an extension of [2, Theorem 3.1]

Theorem 5.1. The following identity holds,

log(llo13,, (e)@r-1 (rer.e) = = / Td*(TB, W' )T (™, hf) (0.4)
BUSB

~ %
+ / Td (TM, TB,h"™ hTB)ch™ (€, he).
MUSM
Let m; B, m;i p be the multiplicities of the connected components B;, M; of

BUYB,M UXM. Then we can reformulate (0.4) as

! / Td*(TB, h""P)T (WM, ht) (0.5)
i, B i

log(llol1R,; (¢)@r-1 (Rer.e) = — Z m

£y / Td™ (TM,TB, k™™ hTB) chZ (¢, hS).
o MM J

This paper is organized as follows. The first four sections are concerned with
some generalities of orbifolds and of analytic torsions. In Section 1, we recall the
definition of orbifold, and construct the Bismut superconnection for a submersion
of orbifolds. In Section 2, We extend Kawasaki’s theorem to a relative situation. In
Section 3, we construct the Quillen metrics for an orbifold, and prove their anomaly
formulas. In Section 4, we construct the analytic torsion forms for a submersion
of orbifolds. In Section 5, we extend the result of [2] to the orbifold case.
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The first version of this paper was written in 1998 when I was visiting at
ICTP. The first part was published in [34]. For the recent works on the analytic
torsion for orbifold flat vector bundles, cf. recent works [21], [41].

In the whole paper, we use the superconnection formalism of Quillen [38]. If
E = Et @ E~ is a Zy-graded vector space, and 7 = 1 defines the Z,-grading,
for A € End(FE), we denote Trg[A] the supertrace of A4, i.e.,

Trg[A] = Tr[T Al (0.6)
The reader is referred for more details to [4], [10], [2].

Acknowledgements. We are very much indebted to Professor Jean-Michel Bismut
for very helpful discussions and suggestions. Thanks also to a referee for his useful
comments.

1. Orbifolds and superconnections

In this section, we extend the Bismut superconnection of [3] to a Kéhler fibration
of orbifolds.

This section is organized as follows. In Section 1.1, we recall the definition of
an orbifold following [34, §1.1]. In Section 1.2, we describe the Kéhler fibration. In
Section 1.3, we explain the construction of the Bismut superconnection B, (u > 0)
[3] for a submersion of orbifolds.

1.1. Definition of an orbifold

We define at first a category M as follows: The objects of M, are the class of
pairs (G, M) where M is a connected smooth manifold and G is a finite group
acting effectively on M. Let (G, M) and (G’, M") be two objects, then a morphism
O (G,M) — (G',M’) is a family of open embedding ¢ : M — M’ satisfying:
i) For each ¢ € ®, there is an injective group homomorphism A, : G — G’ that
makes ¢ be A, -equivariant.
ii) For g € G',p € @, we define g : M — M’ by (g9p)(x) = ge(z) for x € M. If
(99)(M) N p(M) # ¢, then g € Ay (G).
iii) For ¢ € ®, we have ® = {gp : g € G'}.

Definition 1.1. Let X be a paracompact Hausdorff space and let & be a cover of
X consisting of connected open subsets. We assume U satisfies the condition:
Forany e UNU', U, U’ € U, there (1.1)
is U” €U such that x €e U CcUNU'.
Then an orbifold structure V on X is the following:
i) For U € U, V(U) = ((Gu,U) = U) is a ramified covering U — U giving an
identification U ~ U /Gy.
ii) For U,V € U,U C V, there is a morphism ¢y : (GU,ﬁ) — (GV,‘N/) that
covers the inclusion U C V.
iii) For U,V,W e U,U C V C W, we have oy = owv © pvu.
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If U’ is a refinement of U satisfying (1.1), then there is an orbifold structure
V' such that VUV’ is an orbifold structure. We consider V and V' to be equivalent.
Such an equivalence class is called an orbifold structure over X. So we may choose
U arbitrarily fine.

In the above definition, we can replace Mg by a category of manifolds with
an additional structure such as orientation, Riemannian metric or complex struc-
ture. We understand that the morphisms (and the groups) preserve the specified
structure. So we can define oriented, Riemannian or complex orbifolds.

Let (X,V) be an orbifold. For each z € X, we can choose a small neigh-
bourhood (G, U,) — U, such that & € U,, the unique inverse image of z, is a
fixed point of G,. (Such G, is unique up to isomorphisms for each x € X, [40, p.
468].) Let (1), (hl),..., (h2=) be the conjugacy classes in G,. Let Zg, (h%) be the

centralizer of hJ in G,. One also notes UL+ the fixed points of hl over U,. Then
we have a natural bijection

{00 sy Und =gy} = T 0 26, (). (12)
j=1

So we can define globally

X = {(z, (W) :w € X,Go # {1} j=1,...,ps}- (1.3)
Then ¥ X has a natural orbifold structure defined by
{Zo. W) /KLU » O 26, )} (1.4)
z,Vz,J

Here K7 is the kernel of the representation Zg, (h}) — Diffeo ((73};&), the diffeo-
morphism group of ﬁfi The number m = |K7| is called the multiplicity of XX
in X at (x, (hZ)). Since the multiplicity is locally constant on XX, we may assign
the multiplicity m; to each connected component ¥X; of ¥ X.

Definition 1.2. An orbifold vector bundle £ over an orbifold (X,V) is defined as
follows: ¢ is an orbifold and for U € U, (GU,pU v = U)is a GS {-equivariant
vector bundle such that the morphism (¢, ¢, is a morphism of equivariant vector
MMMM%@Wm@M@)%—M@%MMWMMm
eral, G does not act effectively on U, i.e., Ky # {1}) is the orbifold structure of
¢ (resp. X). For z € X, we denote the fiber of the vector bundle & at an inverse
image of x in U as the vector space 51

If ij acts effectively on U for U € U, we call that £ is a proper orbifold
vector bundle.

For an orbifold vector bundle g, let f be the maximal Kp-invariant sub-

bundle of & — U, then (Gu, §U ) defines a proper orbifold vector bundle £P*.
A natural example is the (proper) orbifold tangent bundle T'X which is de-
fined by:
(Gu, TU = U), for Uel
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Let &€ — X be an orbifold vector bundle. A section s : X — £ is called ¥
(or ‘5’“) if for each U € U, sy is covered by a GE -invariant smooth (or €*) section
SU U — fU

If X is oriented, we define the integral fX w for a form over X (i.e., a section
of A(T*X) over X): if supp(w) C U € U, then

IEE ﬁ/ﬁau (1.5)

In the sequel, if G does not act effectively on the connected manifold M,
we will identify the couple (G, M) as an element (G/K,M) in M, with K =
Ker(G — Diffeo(M)).

Definition 1.3. Let M, B be two orbifolds, a map 7 : M — B is said to define an
orbifold submersion if there exist ¢, U’ open covers of M, B, such that 7(U) C U’,

and (GU, )Ueu, (Gv, )Vev are the orbifold structures of M, B; for U € U, there
is7:U—>Va Gu-equivariant submersion of U onto V that covers 7 : U — V =

m(U), and (Gy,V) = (Gy,V) in M; if Uy C Uy, Uy, Uy € U, then (bﬂ'(Ug)ﬂ'(Ul) is
induced by @y, .

Let m : M — B be an orbifold submgrsion of ]\4 onto BN, then the related
tangent bundle TM/B is defined by: over U, ((Gy,TU/V) — U).

Proposition 1.4. If m: M — B is a proper orbifold submersion of M onto B, then
for each b € B, there exists a small neighborhood (Gy, Vi) — Vi, My, an orbifold,

such that ™ isﬂzduced by a Gy-equivariant orbifold submersion m, : My — YN/b with
compact fiber X.

Proof. Let U be a cover of M in Definition 1.3. For U € U, set
Ky = Ker{Gy — Diffeo(7(U))}. (1.6)

As 7 is proper, for b € B, we can find V' C B open, b € V, (Gy, ) 5V bea
ramified covering of V', and v~ 1(b) = {bo}, such that there is ((Gy,,U;) — Ui)ier
(I=1{1,---,q}) induced by the orbifold structure of M, the map 7 : (GU,, i) —
(Gu,,V) = (Gy, V) is a Gy,-equivariant submersion of U; onto V, and 7 1(V) =
UierUi.

For Wy € Wy, Wy, Wy € U, by definition, there exist morphisms

(I)W2W1 : (GW17W1) - (Gwzvﬁ//?)v
Qo (Wa)m(Wr) (Gﬂ(Wl),%(WA/Z)) — (G,T(WQ)?%(I/IA/;)) in Mg,

such that @ y,)r(w,) is induced by ®w,w,. We note that %(I/Iﬁ/;) is a ramified
covering of ﬂ(Wj) for j=1,2.

Let U = {(W,¢): there exist i € I, such that (G, ) - WcU,Wel,
and ¢ € @Vﬂ(w)} Let a1 = (W1,<p1) as = (Wg,(pg) € Z/{ Wi € Ws, for each

(1.7)
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Y € Pw,w,, we also denote ¥ € Py, r(w,) the associated open embedding.
Thus for 1 € @y, w,, we have the commutative diagram

Wl g Wl %(Wl) g %(Wl) LP; ‘7
lw lw lw lw (1.8)
PRI — = o~ (e o~ ~
W, 29w, F(W) YL 500 2 7

Put
Dyoa, = {0 € Pwwy, : 20 = 1 as a map from %(Wl) to V}. (1.9)

Le., for ¢ € ®g,q4,, the commutative diagram (1.8) is completed by the identity
map Id: V —» V.
Claim: ®,,q, : (Kw,, W1,01)) = (Kw,, (Wa,¢2)) is a morphism in M.

Proof of the claim. The Kyy,-action on (AW/l, 1) is defines by its action on Wi i)
For ¢ € ®4,4, C ®Pw,w,, the injective group homomorphism Ay : Gw, = Gw,
makes that 1 is Ay-equivariant. Note that for g € Gw,, ¥ € Wy, by (1.8), we have

P(97) = Ap(9)P(@),  P7(92) = Ay (9)T(F) = Ay (9)P7(T). (1.10)

Thus if g € Kw,, Ay (9) € Gw, fixes F(W(Wh)) = (7 (W1)), an open set of 7(Ws).
But Gw, is compact and acts on Wg which is connected, thus we conclude that
Ay (g) acts as identity on %(WQ), ie., \y(g) € Kw,. Thus Ay induces an injective
group homomorphism Ay : Ky, — Ky,.

ii) Assume now (he)(W1) N (W1) # ¢, and h € Kyy,. The first condition
implies h € Ay (Gw, ), 1.€., there exists g € Gw, such that h = Ay (g). But h € Ky,
means that Ay (g) acts as identity on TT(WQ), this implies that g acts as identity
7(W1) by (1.8), ie., g € Kyw,. We conclude that h € Ao (Kw,).

iii) For any ¢', 1 € ®,,,,, there exists g € Gy, such that gy = +'. By (1.9),

Apx (9)p2t) = pagv = P2t = 1 = a1). (1.11)

Thus A,,(g) acts as identity on an open set ¢2w(%(W1)) of V, thus as identity on
V, this implies that g acts as identity on 7(Ws), i.e., g € K, thus ®q,4, = {g¢ :
g € KWQ}

The proof of the claim is completed. O

For i € I, we denote U; = ((71, 1) € U. We define an equivalence relation
~on M = Ujc;U;/Ky,: For € U, 5 € Uj, © ~ y if and only if there exist
(Gw, W) =W CcU;NUj, ¢1,92 € Pyrwy, 2 € W such that

Fedy, ({27 € Py, ({2}, forar = (W,p1),a0 = (W,0) €U (1.12)

i
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We can interpret (1.12) for z,Z by the following commutative diagram:

zZe W—— (1.13)
l%"” l \
T e U, ;> 7(U) =V oy

Let My =M/ ~. Let U' = {(W,¢)/Kw : (W,p) € U}, then U’ is a covering
of M, which satisfies the condition (1.1). We get the conditions i), ii), iii) of
Definition 1.1 from the claim. So U’ defines an orbifold structure on Mb

Note that KU is a normal subgroup of Gy, and Gb = GU /Ky,, thus G,
acts naturally on U/KU, so (7 acts on Mb Let 7 : Mb — V be induced by
T U — V then 7 is an orbifold submersion, and 7 is G, -equivariant.

Now the procedure is standard. Note that the kernel of d7 : Tﬁb — Z:E/

is an orbifold vector bundle. By choosing a horizontal subbundle 77 Mb of T M,
(for example, by taking the orthogonal complement of Ker(dw) with respect to a

metric on TMZ,), such that
T M, = Ker(d7) & T M,. (1.14)

AsVis a manifold, we know that TH Mb is a usual vector bungle. Now the hori-
zontal lift of any ball B(p, r), with the center p and radius 7, in V along the radius
direction gives a trivialization

7 HB(p,r)) = B(p,7) x X,. (1.15)
Note that for any point in V such that G, = {1}, X, = 7= 1({p}), thus as a real

orbifold, the fiber X has a canonical model.
The proof of Proposition 1.4 is completed. O

Let (X,V) be a compact connected Riemannian orbifold. For z,y € X, put
d(z,y) = Inf{ S S 12A#)dt]y < [0,1] = X,5(0) = 2,7(1) = , such that
there exist tg =0 <t <--- <t =1,U; €eU,v([ti-1,t:]) C Us,
Vi i [tic1,ti] — U, ¢, that covers v|i,_, ]
Then (X, d) is a metric space.
1.2. Kihler fibrations

In the rest of this paper, we always work on complex orbifolds, especially, all
morphisms considered in Section 1.1 are holomorphic. For an orbifold complex
vector bundle, we denote the underlying real orbifold vector bundle by adding a
subscript R.

Definition 1.5. A Kéhler form on a complex orbifold X is a real closed (1, 1)-form
w on X such that w induces a (orbifold) metric on T'X.
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Let 7 : M — B be a proper holomorphic orbifold submersion of M onto B.
Let T M, T B be the holomorphic tangent bundles to M, B. From Proposition 1.4,
the holomorphic relative tangent bundle T'X of the fibration 7 is well defined as
an orbifold vector bundle over M. Let J7X be the complex structure on the real
relative tangent bundle TR X.

Lemma 1.6. For m : M — B a proper holomorphic orbifold submersion, for any
b € B, we can choose My in Proposition 1.4 such that w is induced by a Gp-
equivariant holomorphic orbifold submersion T, : My — Vj.

Proof. As all morphisms in the proof of Proposition 1.4 are holomorphic, we get
Lemma 1.6 from the proof of Proposition 1.4. O

Let hTX be a Hermitian metric on TX. Let THM be an orbifold vector
subbundle of T'M, such that

TM =TPM o TX. (1.16)
We now define the Kéahler fibration as in [11, Definition 1.4].

Definition 1.7. The triple (7, hTX,TH M) is said to define a Kihler fibration if
there exists a smooth real 2-form w of complex type (1,1), which has the following
properties:

a) w is closed.
b) T M and Tg X are orthogonal with respect to w,
¢) If X,Y € TrX, then w(X,Y) = <X7 JTXY>QTRX with ¢™#% the metric on
TrX induced by hTX.
Now we have an analogue of [11, Theorems 1.5 and 1.7].
Theorem 1.8. Let w be a real smooth 2-form on M of complex type (1,1), which

has the following two properties:

a) w is closed.
b) The bilinear map X,Y € TrX — w(JTXX,Y) defines a Hermitian product
RTX on TX.

Forx € M, set
TEM ={Y e T,M : for any X € T, X,w(X,Y) = 0}.
Then THM is an orbifold subbundle of TM such that TM = THM @ TX. Also
(m, KTX  THM) is a Kdihler fibration, and w is an associated (1, 1)-form.
A smooth real (1,1)-form w' on M is associated with the Kdhler fibration

(7, KTX  THM) if and only if there is a real smooth closed (1,1)-form n on B such
that

! *
W —w=m"1.

Proof. The proof is as same as in [11, Theorems 1.5 and 1.7]. O



Orbifold Submersion and Analytic Torsions 151

1.3. The Bismut superconnection of a Kahler fibration

In this part, we will define the Bismut superconnection by proceeding as in [13,
§1], [2, §2].

Let w : M — B be a proper holomorphic orbifold submersion of M onto B
with fibre X. Let w™ be a real closed (1,1) form on M taken as in Theorem 1.8.
Let ¢ be a complex orbifold vector bundle on M. Let h¢ be a Hermitian metric on
€. Let VX, V¢ be the holomorphic Hermitian connections on (T'X, hTX), (&, h%).

We will temporarily assume that B is a complex manifold. Then = is a fibra-
tion of M on B which is modelled on orbifold X: There is an open covering U of
B such that if U € U, 7=1(U) is diffeomorphic to U x X.

Definition 1.9. For 0 < k < dim X, b € B, let E} be the vector space of €
sections of (AF(T**VX) ® ¢)|x, over X,. Set
Ey, = omXEl, Ef = ®revenEl, E; = ®roddEy. (1.17)
As in [3, §1f)], [11, §1d)], we can regard the Ej,’s as the fibers of a smooth
Z-graded infinite-dimensional vector bundle over the base B. Smooth sections of
E over B will be identified with smooth sections of A(T*(*1)X) ® ¢ over M.
Let dvx be the Riemannian volume form on X associated with ATX. Let
(" )a(r©.1 x)g¢ be the Hermitian product induced by RTX h& on A(T*OVX)®E.
The Hermitian product ( ) on E is defined by: If s,s" € E, set
, 1 \ dim X ,
(5,5) = (5=) /X (5,5") g0 706 A0 (1.18)

For b € B, let gxb be the Dolbeault operator acting on Ej, and let gxb* be
its formal adjoint with respect to the Hermitian product (1.18). Set

DX =7 4T (1.19)
If U € T B, let UM be the lift of U in T M, so that m.U? =U.
Definition 1.10. If U € Ty B, if s is a smooth section of E over B, set
VEs = yAT O 0se (1.20)

Let ¢(Tk X) be the Clifford algebra of (T X, h”X). The bundle A(T*(V) X )®¢
is a ¢(TpX)-Clifford module. In fact, if U € TX, let U’ € T*(%D X correspond to
U by the metric /7%, If U,V € TX, set

c(U) =V2U'A, (V) = —V2ip. (1.21)
Let PTX be the projection TM ~THM & TX — TX.
If U,V are smooth vector fields on B, set
TUH Vi) = —pTX[UH v, (1.22)
Then T is a tensor. By [11, Theorem 1.7], we know that as a 2-form, T is of
complex type (1,1).
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Let f1,..., fam be a base of TrB, and let f!,..., f>™ be the dual base of
T3 B.
Definition 1.11. Set
(D) =5 > (TR ). (1.23)
1<a,B<2m
Then ¢(T) is a section of (A?(T3B)® End(A(T*(OVX) ® ¢))°dd.
Definition 1.12. For u > 0, let B,, be the Bismut superconnection constructed in
[3, §3], [11, §2a)],
o(T)
2v2u’
Let Ny be the number operator defining the Z-grading on A(T*NDX) ® ¢
and on E. Ny acts by multiplication by k on A¥(T*OVX) @ €. If U,V € TrB, set
W (U, V) = MU, VH). (1.25)
Definition 1.13. For u > 0, set

B, = VuD* + V¥ — (1.24)

- HH
Ny=Ny+2 (1.26)
U

In general, B is not a complex manifold. By Proposition 1.4, we verify easily
that the above objects go down to B (Ex, F is an orbifold bundle over B), so we

can define the Bismut superconnection B, (u > 0) over B as locally over V.

2. Family index theorem

In this section, we describe basic properties of the operator gx on a complex
orbifold, and we extend Kawasaki’s theorem to a relative situation.

This section is organized as follows. In Section 2.1, we give the Hodge de-
composition for gx operator over a complex orbifold. In Section 2.2, we state the
family version of Kawasaki’s theorem.

We use the notation of Section 1.

2.1. O-operator on a complex orbifold
Let X be a compact complex orbifold of complex dimension [. Let £ be a holomor-
phic orbifold vector bundle on X.
Let Ox be the sheaf over X of local Gy-invariant holomorphic functions over
U, for U € Y. Then by [19], (X, Ox) is an analytic space. The local GS; -invariant
holomorphic sections of §~ — U define also a coherent analytic sheaf Ox (§) over X.
Let D*(€) be the sheaf of > sections of AF(T*(DX) @ ¢ over X. Then we

have the operator 7 D (€) — DF+1(€) and an exact sequence of Ox-sheaves

=X

0 0x(&) - DS ---5—);1)1(5)%0. (2.1)
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Put QF(X, €) = T(X, DH(¢)), 0°(X, £) = &0 (X, £), then we have (2*(X,£),0)
the Dolbeault complex of > sections of A(T*(®VX) ® ¢ over X:

o—>Q°(X,§)5—>X -..5—X>QZ(X,§)—>0. (2.2)

The sheaves DF(¢) are fine [27], so their higher cohomology groups vanish.
So

H*(Q°(X,6),0" ) = H*(X,0x(¢)). (2.3)

In the sequel, we also note H*(X,Ox(§)) by H*(X,¢).
Let hTX k¢ be Hermitian metrics on TX, &, Then DX in (1.19) induced by
RTX h& is an elliptic operator and
DX2 =77+ (2.4)
preserves the Z-grading on Q°(X,§).
The following proposition is [34, Proposition 2.2].

Proposition 2.1 (The Hodge Decomposition Theorem). There is a L?-orthogonal
direct sum decomposition of the &-value (0, k)-forms

OF(X,€) = Ker(DX) & Tm(@ ) & Im(T ). (2.5)
From (2.3), (2.5), there is a canonical identification
Ker(D¥) ~ H*(X,€). (2.6)

Definition 2.2. Let P¥X be the vector space of smooth forms on X, which are sums
of forms of type (k, k). Let PX: be the vector space of the forms a € PX such
that there exist smooth forms 3,7 on X for which @ = 98 + 0.

We define PXYEX | pXUEX.0 ip the same way.

2.2. Family index theorem

We use the notation of Section 1.3.

Let M be a complex orbifold. Let XM be the strata of M defined by (1.3).
Let B be a complex manifold. Let 7 : M — B be a proper orbifold holomorphic
submersion of M onto B with compact fibre X. Then «’ : M UXM — B is also
an orbifold submersion with compact fibre X U XX. Let m; be the multiplicity
of each connected component M; (m; =1, if M; = M) of M UXM. Let £ be an
orbifold vector bundle on M. Let &P* be the maximal proper orbifold subbundle
of €.

We assume that 7 is a Kéhler fibration with respect to a real closed (1, 1)-form
wM on M. Let Df, DX be the restrictions of DX to E+,E~.

Let B, (u > 0) be the Bismut superconnection on E constructed in Section
1.3 which is attached to the (1,1) form w™ on M and to the metric h¢ on £.
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If Ais a (q,q) matrix, set

P
/ —_—
), Td'(4) = 5= Td(A + )0,

Td(A) = det (1 —

ch(A) = Trlexp(A)].

The genera associated with Td and ch are called the Todd genus and the Chern
character.

Let U be a cover of (M,V) which defines the submersion 7 as in Definition
1.3. Recall that for U € U, we denote V(U) = ((Gy,U) — U). By [5, (2.20)], [33,
(1.15)], [34, (1.6), (1.7)], the forms Td*(TX, hTX), ch™(&, hé) over M U XM are

defined by: on U9/ Zg, (g) (9 € Gu), as ng(ﬁ,hTX) and

(2.7)

chy (7, 1) = Tr [gexp(;-RT)], (28)

where RS™" is the curvature of the holomorphic Hermitian connection on (£P7, h€).
Then Td*(TX,hTX),ch* (&, he) are closed on M U XM, and their cohomology
classes don’t depend on the metrics h™X, hS.
Let ® be the homomorphism of A®¥* (T B) into itself: a — (2im)~ 98 /2q,
The following result extends [11, Theorem 2.2].

Theorem 2.3. For any u > 0, the differential forms on B, Trslexp(—B2)] are
elements of PB. They are closed and they are in the same cohomology class, which
does not depend on u > 0. Also uniformly on compact sets in B,

1
. 2\ P TX PN 3
lim @ Tr, [exp(—B7)] = § E/M/B Td*(TX, h™™X) ch™ (&, h®), (2.9)

and the differential form in the right-hand side of (2.9) is also in the same coho-
mology class as ® Tr,lexp(—B2)].

If B is compact, then the index bundle as an element in the K-group K(B)
is well defined:

Ind(DY) = Ker(D¥) — Ker(D¥) € K(B). (2.10)

The differential forms considered above represent in cohomology ch(Ker(Df) —
Ker(DY)).

Proof. Let P,(x,y,b) (z,y € m(b),b € B) be the kernel of the heat operator
exp(—B2) with respect to the Riemannian volume form dvx (y) on (T X, hTX). By
the method of [1, Theorem 9.50], we know P, (z,y,b) defines a smooth family of
smoothing operators along the fibers X.

Proceeding as in [11, Theorem 2.2], Trs[exp(—B2)] € PP. They are closed
and they are in the same cohomology class.

In [34, §6.6], we observe that the finite propagation speed for hyperbolic equa-
tions [20, §7.8], [35, Appendix D.2] holds for orbifolds. By (1.24), and using finite
propagation speed as in [6, §11b)], [7], one shows that the problem of calculating
the limit of Try[exp(—B2)] as u — 0 is local on X,(b € B).
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By Definition 1.3 and the discussion between (1.2)—(1.4), for each = € M,
we can choose a chart 7 : (Gy,U,) — U,, such that 7—!(z) is a point Z and
7: U, — 7(U,) is a Gy-equivariant submersion. For e > 0, let B(Z,¢) C U, be
the ball with the center  and radius e. If € is small enough, there exist x; €
7 tb)i € I = {1,...,k}), such that {(Gy,, B(x4,5)) — B(Zi,5)/Ge, bier is
a cover of m=1(b). Let {p,,} be a partition of unity subordinate to this cover.
Then we can replace X by (T'X), /Gy, = C1/G,, (I = dim X), with 0 € (TX),,
representing x;.

Note that if Qy has a €*-kernel @U@l,ﬂz) over U x (7, then for y1,y2 € U,

Qu(y1,y2) = S > (9, )Qulg ', 1), (2.11)

§
1Ko eae
is the kernel of the operator

QU : %OO(U7€|U> — %OO(U7€|U>7

with 7(;) = v:(i = 1,2).

Let /VATEBISAT Y X) 16 the connection on AT B) @ A(T**VX) along
the fibre X given as in [6, Definition 11.7].

For u > 0, let ¥, : A(TB) — A(T; B) be the map

deg o

ae AMTEB) = u~ 2 a e A(TEB).
Taken y € C!, set Y = y + 7. We identify
(AM(TEB) @ A(T* OV X))y, & with  (A(TEB) @ ATV X))o, &
by parallel transport along the curve t € [0, 1] — tY with respect to the connection

P, VATEDEATTEIN) 2 g

Let dvr, x(y) be the Riemannian volume form on (TX).,, hIX) ~R?. For
y € CL |yl < €/2, set

dvx (y) = k(y)dvr, x (y)- (2.12)

Let Py(z,y,b)(z,y € (TX)s,) be the kernel of exp(—B2) associated to dvr,, x (y)-

3

Then by (2.11), and using finite propagation speed as in [6, §11b)], we get

lim pz; @ Trs[Pu(y, y,b)]dvx (y)

u—0 M/B
. - (2.13)
Y ®TrfgPulg Y, . 0)]k(y)dvr, x(y).
9gE€G,;

= lim Pa
- i
u—0 Uz, /Vz, |Gr1
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By [3, Theorems 4.11-4.15] and [33, Proof of Theorem 2.12], (1.4), one finds that

. 1 B
lim -/ Tl > pu@Tr, [gexp(—BZ)(g 'y, ,0) [k(y)dvr,, x (y)
u—0 UZi/V’Ii | 17| GEC.
1
S X L e TaTX )y (1) (214)
T; 9€C,, Ufi /Vmi

1
=Y [ TN T (€ )
;I
By (2.13), (2.14), we get (2.9).

Using the same argument of [3, Theorem 3.4] (also. [1, Chap. 9]), we get the
last part of Theorem 2.3. O

3. Quillen metrics and curvature theorem

In this section, we construct the Quillen metrics on the inverse of the determinant
of the cohomology of a holomorphic orbifold vector bundle, and establish the
curvature formula. We extend the results of [12] to complex orbifolds.

This section is organized as follows. In Section 3.1, by [12], we construct the
Quillen metrics. In Section 3.2, we recall our anomaly formulas. In Section 3.3, we
establish the curvature formula.

In this section, we use the notation of Section 1.1. We remark that all the
morphisms considered in Section 1.1 are holomorphic in the rest of the paper.

3.1. Quillen metrics

Let X be a compact complex orbifold of complex dimension [. Let & be a holo-
morphic orbifold vector bundle on X. Let hTX h¢ be smooth Hermitian metrics
on TX, €. Let h(X:€) be the corresponding metric on H*® (X,¢) induced by the
restriction of the Lo-metric (1.18) to Ker(DX) via the canonical isomorphism (2.6).
Let (&) be the inverse of the determinant of the cohomology of £ on X.

det H*(X,€) = @M X (det H/(X, €)D", A€) = (det H*(X, ). (3.1)

Let | |x) be the metric on A(§) induced by RH(X:8)  The metric | [aee) will be
called the Lo-metric on A(€).

Let P be the orthogonal projection operator from 2°(X, ¢) on Ker(D¥) with
respect to the Hermitian product (1.18). Set P+ = 1 — P. Let N be the number
operator defining the Z-grading of Q°*(X, &), i.e., N acts by multiplication by k on
QF(X,€). For s € C,Re(s) > dim X, set

0%(s) = — Try[N(D¥?)=*P]. (3.2)
Then
0% (s) = % / T iy, [Nexp(—tDXz)PL}dt. (3.3)
$) Jo
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From the small time asymptotic expansion of the heat kernel (cf. [34, Proposition
2.1]), (3.3), 65(s) extends to a meromorphic function of s € C which is holomorphic
at s = 0.

Following [38], [12], now we define the Quillen metric on the line A(€).

Definition 3.1. Let || |[[y() be the Quillen metric on the line A(§),

1 065
Il lxe) =1 Ixe exp ( - §E(O)>' (3.4)

3.2. Anomaly formulas for Quillen metrics

Let h/TX7 h'¢ be another couple of metrics on T'X, €. We denote with a’ the objects
attached to h T K€,

—x
As in [10, §1f)], in [34, (1.8)], we constructed classes Td (TX,hTX p'TX)
and ¢ (€, hE, 1€) in PXUBX | pXUBX.0 queli that

00 ~x

5 Td(TX, RTX WTXY = Td*(T X, WTX) — Td* (T X, k™),
i
- (3.5)
00 (€, W, W) = ehP(E, W) — b, ).
1T

Let m; be the multiplicity of each connected component X; of X UXX.
The following result is [34, Theorem 0.1] which extends the anomaly formulas
of [12, Theorem 1.23], to orbifolds.

Theorem 3.2. Assume that the metrics hT~ and WTX are Kihler. Then

12
tog [ 10 —Z(i / Td (TX, WX, W) ch® (¢, he)
F i) 5 A 56)

1 ~
+— / TA™(TX, WTX)eh (€, B, W€ )) :
X;

m;
3.3. The curvature of the determinant line bundle for a Kahler fibration

We now do the same assumption as in Section 1.3 and we use the same notations.

Let w : M — B be a proper holomorphic orbifold submersion of M onto B
with compact fibre X. Let £ be a holomorphic orbifold vector bundle on M. Let
wM be a real, closed (1,1) form on M taken as in Theorem 1.8. Let hTX be the
metric on TX induced by w™. Let hé be a Hermitian metric on £.

We will temporarily assume that B is a complex manifold. Let A be the €*°
determinant line bundle on B constructed as in [12, §1b)]. By proceeding as in [12,
§1c)], we can define a holomorphic structure on the line bundle .

We explain the construction in detail here. Let V¥ " be the anti-holomorphic
part of the connection V¥ in (1.20) on the infinite-dimensional vector bundle F
on B. For a > 0, set

U*={y € B:a¢Spec(D})}, (3.7)
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where Spec(Di) is the spectrum of the operator Dg. Then on U%, the sum of the
eigenspaces of the operator D} acting on EJ of eigenvalues < a, K}/ forms a
smooth finite-dimensional vector bundle. On U®, A\ coincides with the line bun-
dle \*

A = @3 X (det KOI) DT (3.8)
and for 0 < a < ¢, over U* NU*, we identify A* and A° by
seN 5 s@T@ ") e, (3.9)

with 3 the restriction of & to K¢3/K%J and the torsion T(E(a’c)) for the

complex (Kc’j/K“’j,g(a’c)) is defined in [10, Definition 1.1]. Let P be the orthog-
onal projection operator from F onto K. By [12, Theorem 1.3], the holomorphic
structure on A\* is defined by

3" = Tr,[PovE pa] (3.10)

and the identification A* and A\ in (3.9) is holomorphic.

The sheaf Oy is coherent as explained in Section 2.1. By [35, Theorem 5.4.16],
(M, Oypr) is a normal complex space and O (&) is a Ops-coherent analytic sheaf,
thus by a theorem of Grauert [25], for all i > 0, the Og-module Ri7.£ is coherent.
If i > dim M, then Rim,£ = 0. The functor R®m, maps the derived category of
Ojr-module to the derived category of Opg-modules and sends coherent sheaves to
complexes with coherent cohomology. As B is a complex manifold, for any y € B,
the local ring Op,, is regular, hence all coherent analytic sheaves on B is perfect
and more generally any complex with bounded coherent cohomology is perfect.
Thus as in [12, Theorem 3.4], we can associate a (graded) invertible holomorphic

sheaf det(R°m.§) on B, and the associated Knudsen—-Mumford determinant line
bundle is

MM — (det(R®m.£)) 7 . (3.11)
In particular, if Rim,.£ is locally free for all i, we get
NEM(€) = @izo(det(Rm.€))"

Let OF be the sheaf of ¥ functions on B. Let %%j(f) be the cohomology

sheaves of the relative Dolbeault complex (D% (f),gx) in (2.1) as O%-modules.
Let D3, be the sheaf of Dolbeault complexes on M, then we can use the partition
of unity argument for D%, thus DY, is fine, from the argument of [12, p. 342],

Rim.& = A7 (m(Dy(€))- (3.13)

_1)itt

(3.12)

The natural map T*M — T*X induces a map of complexes D$,(§) — D% (&),
thus a canonical map on cohomology sheaves

0; : (RIm.8) @0, OF — HL(E). (3.14)
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Again as B is a manifold, the algebraic argument in the proof of [12, Theorem
3.5] holds, thus we get the analogue of [12, Theorem 3.5]:

Theorem 3.3. For all j > 0, the map p; is an isomorphism.

Under the assumption of the K&hler fibration, as in [11, Theorem 2.8], we
have

o =vE 1+ 3. (3.15)

From the arguments of the proof of [12, Corollary 3.9, Theorem 3.14], by Theorem
3.3 and (3.15), we get the analogue of [12, Theorem 3.14]:

Theorem 3.4. The smooth isomorphism MM and \ via (3.14) is an isomorphism
of holomorphic line bundles.

If B is not a complex manifold, then for each b € B, we consider over YN/b
as in Lemma 1.6. By proceeding as in the proof of Proposition 1.4, we construct
5 a holomorphic orbifold vector bundle on Mb induced by £. Then the above
construction gives a Gp-equivariant holomorphic line bundle A on ‘7}, and natural
compatibilities for different local charts (Gp, ‘N/b) in Lemma 1.6. Thus we get the
determinant line bundle A\ as a holomorphic orbifold line bundle on B.

From the algebraic side, the Knudsen-Mumford line bundle NEM on T, is
also well defined and Gj-action lifts naturally on it. Thus we get the Knudsen—
Mumford line bundle X as a holomorphic orbifold line bundle over B. Moreover,
the isomorphism g; in (3.14) over V, is Gp-equivariant via the argument from [12,
§3]. Thus we get

Theorem 3.5. The smooth isomorphism MM and \ via (3.14) is an isomorphism
of holomorphic orbifold line bundles.

For o € A(Ty B), o) denotes the component of a in A7 (T B).

Let m; be the multiplicity of the component X; of X UX.X in Proposition
1.4. The following result extends the curvature theorem [10, Theorem 0.3], [12,
Theorem 1.27] to orbifolds.

Theorem 3.6. The Quillen metric || ||x on \ is a smooth metric on B. Let V*
be the holomorphic Hermitian connection on the Hermitian orbifold line bundle

A [lx), then

(VM2 = m{z L / Td*(TX,g"™)ch™ (&, n%) ? (3.16)
—~mj Jx, ’ ’ ' '

Proof. Note that for b € B, the Quillen metric || |5 on the Gy-equivariant holo-

morphic line bundle A(€) over Vj, is smooth and Gy-invariant. Thus || |/ on the
orbifold line bundle A(¢) is smooth over B.

We still need to compute the curvature of (X, || l|5) on Vp, for b € B.
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As the argument of [12, Theorem 1.8] is purely functional analysis, by [8,
Theorem 1.18] and [9, Theorem 1.19], we know (V*)2 over V}, is the constant term
in the asymptotic of

Trg[exp(—B2)]? as u — 0. (3.17)

Now by combining with Theorem 2.3 for the fibration m, : Mb — YN/I,, we get
(3.16). O

4. Analytic torsion forms and anomaly formulas

In this section, we construct the analytic torsion forms associated with an orbifold
submersion, and we explain the anomaly formulas. This extends the results of [11],
[13] to the orbifold case.

This section is organized as follows. In Section 4.1, we describe the trans-
gression formulas of the superconnection forms, which depend on u €]0, +oc0|. In
Section 4.2, proceeding as in [3], [11], [1], we obtain the results on the asymptotics
of these forms as u — 0 and u — 4o00. In Section 4.3, we construct the analytic
torsion forms, which extend [13]. In Section 4.4, we give the anomaly formulas of
the analytic torsion forms, which extend [13] to the orbifold case.

We use here the same notation as in Sections 1, 2.1.

4.1. Superconnection forms and double transgression formulas

Let w : M — B be a proper holomorphic orbifold submersion of M onto B with
compact fibre X. Let n = dim M. Let £ be a holomorphic orbifold vector bundle
on M.

By Lemma 1.6, for each b € B, there exists a neighbourhood (G, YN/b) — WV,
an orbifold Mb, such that 7 is induced by a Gp-equivariant orbifold submersion
T : Mb — Vp with compact fibre X. By proceeding as in the proof of Proposition
1.4, we construct 5 a holomorphic orbifold vector bundle on Mb induced by ¢&.

The direct image R°m.§ is well defined as a Op-sheaf. Let Dg\4(§) be the
sheaf of €>° sections of A7(T*OYD M) @ ¢ over M. We have an exact sequence of
O s-sheaves:

51\4 51\4

0— Om(&) = Dy(§) = -+ = DY (€) — 0. (4.1)
The sheaves Dgw (&) are fine, as we can apply the partition of unity argument for
D3, (&), so (D3, (5),5M) is a m.-acyclic resolution of Oj/(§). So the direct image
R°*m.& is defined by the presheaf, cf. (3.13):

V= HY (O (V) D3,(6),9).

But for b € B, on V4, the presheaf V. — H®*(I'(7~1(V), DM({)),EM) is exactly the
Gp-invariant sections of R'%b*g over YN/I,.
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If on each ‘7},7 we define a Gjp-equivariant coherent sheaf R'%b*{; then by
construction, we verify that this defines a proper coherent sheaf on B.

By the above discussion, the direct image R®m.£ is an orbifold Op-coherent
sheaf: over Vp, it is defined by R'%b*g

We make the basic assumption that for 0 < k < dim X, b € B, the sheaves
Rk%b*g is locally free. Then R°®m.£ is a proper orbifold vector bundle over B. For
p € Vi, let He*(X,, §~|Xp) = aimXHk (X, §~|Xp) be the cohomology of the sheaf of
holomorphic sections of 5 restricted to X,,. Then the H*(X,, §| x,) are the fibres
of a Gy-equivariant holomorphic Z-graded vector bundle H®(X,, E| x,) on ‘N/b, and
H'(Xp,axp) = R*T3.£. So the H'(Xp,axp) defined an orbifold vector bundle
H* (X, €| x).

Let w™ be a real closed (1,1) form on M such that w™ induces a Kéhler
metric on TX (cf. Theorem 1.8). Let h® be a Hermitian metric on &.

We verify easily that the objects on M (for example: w™, &, h¢) lift on M,.
We denote with a ~ the objects we considered in Section 1.1 which are attached
to mp : Mb — ‘71,

For p € YN/I,, set

Ky={f€E,:0"f=00""f=0). (4.2)
By the Hodge theory (2.6),
Ky~ H*(X,,€|x,)- (4.3)

The identification (4.3) induces an identification of the corresponding smooth vec-
tor bundles on ‘7},. Also K inherits a Gp-invariant Hermitian product from the
Lo-Hermitian product on E. Let hH(X£1x) be the corresponding smooth metric
on H*(X,¢|x).

Recall that E is a Gp-equivariant bundle over YN/b and the contribution of £ is
only from its maximal proper orbifold subbundle £P* of &.

Let B, be the Bismut superconnection on E constructed in Section 1.3.

Let P,(z,y,p) (x,y € T 1(p), p € Vi) be the kernel associated to the operator
exp(—B2) with respect to dvx (y)/(2r)3™ X then we know P,(z,y,p) defines a
smooth family of smoothing operators.

We define Tr> [exp(—B2)], Tr>[N, exp(—B2)] as forms over B U XB by: If

a connected component B; of B U XB, is locally defined by ((Zgb (h)ﬂz") —
V' Za, (h)) (h € Gy, Vi is the fixed point of h over V3), then over V}"/Zq, (h),
T [exp(—By)] = Trs[hexp(—B7)],
Ty [Nu exp(—By)] = Trs [Ny exp(—=B)].
As in [11, Theorems 2.2 and 2.9], the forms
® Trr[exp(—B2)] and & TrY[N, exp(—B?)]

(4.4)
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lie in PBYB. By Theorem 2.3, we know that the forms ® Tr>[exp(—B2)] are
closed and that their cohomology class is constant and equal to ch™(H®*(X, €| x)).

Theorem 4.1. For u > 0, the following identity holds

2@ Tr* [exp(—B2)] = —la—,aq) Tr* [N, exp(—B2)]. (4.5)

ou u 24T

Proof. In (4.4), the action h commutes with B,, N,. Now, by proceeding as in
[11, Theorem 2.9], we get (4.5). O

If (ay)u>0 is a family of smooth forms over B U X B, we write that as u — 0
(resp. u — +00), a,, = O(u), if for any compact subset K C B U XB, and any
j € N, there is C' > 0 such that the sup of a,, and its derivative of order < j on K
are dominated by Cu*.

4.2. The asymptotics of the superconnection forms

Clearly, for b € B, in Proposition 1.4, we can choose the ramified covering (G, (71)
of 771(V4) as the type (G, U,) such that U, is a neighbourhood of 0 € C"(n =
dim M) and such that G, acts linearly on C". Now, we fixe a choice of

(Gu.,Ui) = (Ga, Uy )icr(I = {1,.. ., k}), (G, V) = Vi (4.6)

Let 7 : (Gu,,U;) — (Gy, V3) be the Gy, -equivariant holomorphic submersion of
(71- onto ‘N/b, and 77 1(V}) = UiesU;. The map 7 induces naturally a morphism 7; :
Gy, — Gyp. Let K, = Ky, = Ker{m; : Gy, — Gy}. Then for h € Gy, g € ;' (h),
T ﬁf — ‘N/bh is also a submersion. Let p; be a partition of unity of 7=1(V;)
subordinate to {U; }ier, for b € Vi C V}, compact.

Let 3 = infe{injectivity radius of 2; on U,,}. Take o €]0, 8/4].

Let f be a smooth even function defined on R with values in [0, 1], such that

ro={ 4y o s o
Set
g(t) =1—f(t). (4.8)

Definition 4.2. For u €]0,1],a € C, set

2 dt

F.(a) = /+OO exp(itav/2) exp (%) f(ut)— (4.9)

Gula) = / " exp(itay®) exp <_Tt2> g(ut)%.

Clearly
Fu(a) + Gyu(a) = exp(—a?). (4.10)
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The functions Fy,(a),Gy(a) are even holomorphic functions. So there exist
holomorphic functions F,(a), Gy (a) such that

Fu(a) = Fy(a®), Gu(a)=Gy(d?). (4.11)

Let p be a form on M U XM, we define quEXM as a form over B U XB:
locally over ‘N/bh/ZGb(h) C BUZXB, we denote

p= /~ Pt (4.12)

1
|KUi

Put

w]\/[ P TX Py S
C,l = ﬁTd (Tth )Ch (gvh )7
XUSX (4.13)
Co = / (= (Ta)=(TX, BTX) + dim X Ta*(TX,h7) ) eh™(&, h).
XUXX

Set
dim X
ch® (H*(X, &|x), Oy = 5 7 (—1)F ch™ (HF(X, €] x), RO,
h=0 (4.14)
dim X
ch™ (H* (X, €x), ATCOS)) = 3 7 (= 1)Fk eh™ (" (X, €| x), 1 0510),
k=0
Theorem 4.3. Asu — 0
® Tr¥[exp(—B2)| = / Td*(TX, h"X) ch® (€, 1) + O(u). (4.15)
XUSX
There are forms C} € PBYEB(j > —1) such that for k €N, as u — 0
k
O Te) [Nyexp(—B2)] = > Cjul + O@Wr™h). (4.16)
j=—1
Also )
C— — C—l7
! (4.17)

Cl=Cy in PBUEB/PBUEB,O.

Proof. Recall that in the construction of the orbifold Mb, we use the local coordi-
nate system (Ky,,U;) — U; /Ky, .

By (2.8) and the definition of smooth sections for an orbifold vector bundle,
only the maximal proper orbifold subbundle £P" of £ makes contributions in various
steps, thus we will assume simply that £ is a proper orbifold vector bundle on M.

Following (4.4), we will calculate the following limit as u — 0,

Ii(h,u):/Xpi(p,x)@’l’lfs[hﬁu(x,x,p)]dvx. (4.18)
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Lemma 4.4. There exist ¢ > 0,C > 0 such that for u €]0,1]

Try[pihGu(B2)]| < cexp (;—f) (4.19)

Proof. By proceeding as in the proof of [2, Proposition 8.3], we have (4.19). O

Let F,(B2)(x1,22)((z1,22) € X, X X,) be the smooth kernel associated with
fu(Bg) with respect to dvx(w2)/(2m)4™X. Using (4.5), (4.9), and finite propa-
gation speed [20, §7.8], [35, Appendix D. 2], it is clear that fu(Bg)(x,x’) =0if
d(z,2') > o, and F,(B2)(z, ') depends only on the restriction of B2 to BX (z, ).

We replace X by (TX)y, /Ky, = C/K,, (I = dimX), with 0 € (TX),,
representing z;, and that the extended fibration over C! coincides with the given
fibration over B(0,2a) C C.

Let ATX be the standard Laplacian on ((TX)s,, hIX). Let p(Y) be a €

function over C! which is equal 1 if |Y| < a, equal 0 if |Y| > 2a. Let

LI =1 - p*Y)) (—%UATX> +p*(Y)B2. (4.20)

Let Fo(LY)(x,2')(x,2’ € C!) be the smooth kernel of F,(LL) with respect to
dvr, x(2')/(2m) X For y € C!, |y| < 2, as in (2.12), set

dvx (y) = k(y)dvr,, x (y)- (4.21)
Then, for |y| < 2a, y € (T?()gi, we get
dvxs(y) = k(y)dvr,, xo (y)- (4.22)

By (2.11) and the above discussion, if « is enough small, for
(z,2") € supp(p;) x supp(pi),
we get

Fu(BY)(,a") = k(@) Y (9. DF(Ly) (97", 2. (4.23)
gEK,;

Note that K,, acts on & as we explained above (4.18) that £ is proper.
By (4.18), (4.19), (4.23), we get

ii_)mofi(h,u):ii_)mo/xpi(p,x)fI)Trs[hﬁu(Bi)(x,x)]dvx/(Qﬂ')dimX (4.24)
. 1 I~ ~ ~ ~ im
= lim Clmq;}{: pi(p, 2)® Try[h(gFu (L)) (E, T)|k(E)dvr,, x /(2m)
—tm [ = Y pp )@ Trg (L) (g E ) k(@) v, x /(27) .

u—0 Cl |Kfﬁz

gETJil(h)
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We observe that for any k € N, ¢ > 0, there is C > 0,C’ > 0 such that for
u €10,1],

sup [af*|Fu(a®) — exp(—a®)| < O exp(—).

[Tm(a)|<c
For each g € T[;il(h% by using (4.22), (4.25), and by proceeding as in [33, (2.42)—
(2.51)], we get

(4.25)

lim pi(p7 Zf)@ Trs[gﬁu(Lb)(g_lf7 5E)]IC(ZE)CZ’UT%X/(27T)l

u—0 (Cl
—im [ [ GR35, )
w0 NTX)g, J2ENxg, x
k(Z, Z)dvr, xo(F)dony, .2, (2)/(27)"
= / pi(p, @) Tdy(TX, hTX) chy (€, hS). (4.26)
(TX)4,

By (4.12), (4.18), (4.19), (4.24), (4.26), we get (4.15).
By combining the techniques of proof of [11, Theorems 2.2, 2.3, 2.9 and 2.16]

and the proof of (4.15), we get (4.16) and (4.17). O
Theorem 4.5. As u — +o0
& TeZfexp(—B2)] = o (H* (X, |), i) 10 (=) |
Vu
X (4.27)
& T[N, exp(~B2)] = o™ (H* (X, € ), HHCC61)) 4 0 <7) |
M

Proof. Equation (4.27) was stated in [13, Theorem 3.4], if M, B are complex mani-
folds. By proceeding as in [1, Theorem 9.23], we get also (4.27) in our situation. [

4.3. Analytic torsion forms
For s € C,Re(s) > 1, set

40 =75

Using (4.16), we see that (1(s) extends to a holomorphic function of s € C near
s =0.
For s € C,Re(s) < 3, set
1 [t
G0 =~ / uS*l(chrf[Nu exp(—Bg)]—ch'E(H'(X,5|X),hH<X»E\X>))du.
$)J1

Then (2(s) is a holomorphic function of s.

1
/ (@ TE [Ny exp(—B2)] — e (H* (X, €]x), A1) ) du.
0

Definition 4.6. Set
0
T(w™, he) = %(Cl +¢2)(0). (4.28)
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Then T'(w™, k%) is a smooth form on B UXB. Using (4.16), (4.27), we get

L ! d
T(wM, he) = —/ <CI> TeE[N, exp(—B2)] — ——- — cg)—“
0 U u

e b Y du
‘/ (@ THF [N exp(—B2)] — eb™(H* (X, ] x), b X)) ) 22
1 u
+CL +T7(1) (06 — ch™(H*(X,¢|x), hH<X’f|X>)). (4.29)
Theorem 4.7. The form T(w™, he) lies in PPY=B. Moreover
00
5T 1) = ch” (H'(X’§|X)7hH(X7£|x))
. (4.30)
— / Td*(TX, hTX) ch™ (&, hS).
XUSX
Proof. By Theorems 4.1, 4.3, 4.5, we get (4.30). O

4.4. Anomaly formulas for the analytic torsion forms

Let now (w’, ') be another couple of objects similar to (w, h®). We denote with
a’ the objects associated to (w’, h'¢).

Theorem 4.8. The following identity holds in PBY*E | pBYEB0,

T(W 1) = T(w,h) = b (H'(X,f|x>, pHEL, h’H<Xf‘X>) (4.31)

Py ~
— / [Td (TX, hTX WTX) b (€, hE) + Td™(TX, KTX)eh (¢, hé, 1'9)].
XUXX

In particular, the class of T'(w, h¢) € PBY=B | pBUEB.0 qepends only on (T hE).

Proof. By (4.4), and by combining the proof of [33, Theorem 2.13 ], and Theorem
4.3, we have (4.31). O

5. The Quillen norm in the submersion case

Let w : M — B be a holomorphic orbifold submersion of M onto B with compact
fibre X. Let £ be a holomorphic orbifold vector bundle on M. In this section, we
will calculate the Quillen norm of the canonical section of Ap(€) ® A™LH(R*7.€).
This extends the result of [2, Theorem 3.1] to the orbifold case.

This section is organized as follows. In Section 5.1, we state a formula for the
Quillen norm of the canonical section ¢. In Section 5.2, we introduce a 1-form on
R* xR* as in [2, §3a)]. In Section 5.3, we state eight intermediate results which we
need for the proof of Theorem 5.1, whose proofs are delayed to Sections 5.5-5.8.
In Section 5.4, we prove Theorem 5.1. In Section 5.5, we prove Theorems 5.7-5.11.
In Section 5.6, we prove Theorem 5.12. In Section 5.7, we prove Theorem 5.13. In
Section 5.8, we prove Theorem 5.14.

We use the notation of Sections 1, 4.
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5.1. A formula for the Quillen norm of the canonical section o
Let M, B be compact complex orbifolds. Let m : M — B be a holomorphic orbifold
submersion of M onto B with compact fiber X. Let £ be a holomorphic orbifold
vector bundle on M.

We assume that the sheaves kaé (0 < k < dimX) are orbifold vector
bundles on B. Set

Aur(€) = @;(det HI (M, €)D",
AR*7.€) = ®; x(det HY (B, RFr,€))1
By [28], the line Ay (&) ® A1 (R*7.€) has a canonical nonzero section o.
Let h™M BTB be Kihler metrics on TM and TB. Let h™X be the metric
induced by h™™ on TX. Let h® be a Hermitian metric on £.

On M, we have the exact sequence of holomorphic Hermitian proper orbifold
vector bundles (cf. Definition 1.2)

0—-TX -TM — n*TB — 0. (5.2)

(5.1)

yith+1

By a construction of [10, §1f)], there is a uniquely defined class of forms
—~
Td (TM,TB,h"™™ n'5) e pM»M/pMUEMO,
such that
00

—~
—Td (TM,TB,hT™ hrTB)
2m

(5.3)
= Td*(TM, h™) — 7*(Td*(TB, k")) Td*(T X, h*¥).

Let w™ be the Kéhler form of K™ . Let || [|x,, (©)er—1(rex.¢) be the Quillen
metric on the line Ay (¢) ® A1 (R*7.&) attached to the metrics hTM hS ATE,
hHXEX) on TM, €, TB, R*m.£.

Recall that the integral [, ., is defined in (4.12).

Now we state the main result of this section, which extends [2, Theorem 3.1].

Theorem 5.1. The following identity holds,

08 (Il en-tren0) = = [ TETBHTET(M, 1) (54)

—~ %
+ / Td (TM, TB,h™ nTB)ch™ (€, he).
MUXM

Proof. The remainder of this section is devoted to the proof of Theorem 5.1. [
Remark 5.2. By Theorem 4.8, to prove Theorem 5.1 for any Kéhler metrics h™M
hTB | we only need to establish (5.4) for one given metrics hT™, hTB. So by
RTM

replacing K™ by hTM 4+ 7*hTB we may and we will assume that is a

Kéahler metric on T'M and
RTM = pTM 4 e 7B, (5.5)
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5.2. A fundamental closed 1-form

Let Ny, Ny be the number operators of A(T*(OVX), A(T*(®VB). As in [2, §4],

the operators Ny and Ny act naturally on A(T*(%VM). Of course, N = Ny + Ny

defines the total grading of A(T*(“VD M) @ ¢ and Q*(M,€).

Definition 5.3. For T > 0, let ~2M be the Kéhler metric on TM

1

T2
Let (), be the Hermitian product (1.18) on Q°(M, &) attached to the met-

rics h%M , h&. Let D:J% be the corresponding operator constructed in (1.19) acting

on Q°(M,€). Let 7 be the Hodge operator with respect to the metric AL . Then
s« acts on A(TE M) @ €.

WM = B 4 o pTE. (5.6)

Theorem 5.4. Let o, 1 be the 1-form on RY x R%

2d
QT = s ' Nexp(—u2D¥I’2)] +dT Tr, {*;1 %*—; exp(—u2D¥’2)] (5.7)
u
Then a1 is closed.

Proof. The proof of Theorem 5.4 is identical to the proof of [2, Theorem 4.3 and
(4.30)]. O

Take €, A, 7,0 < e <1< A< 400, 1 <Ty < +00. Let I' = I'c 4,1, be the
oriented contour in R* x R*

u
b
A |
I; A
3
4
I
8 777777 I 4 I
0 1 T T
The contour I' is made of the four oriented pieces I'1, ..., I indicated above.

For 1 <k <4, set

10— /F o (5.8)
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Theorem 5.5. The following identity holds,

4
Y R=o. (5.9)
k=1
Proof. This follows from Theorem 5.4. O

5.3. Eight intermediate results
Let 3 be the formal adjoint of the operator 3’ acting on Q°(B, R*m.£), with
respect to the metrics hT B, hH(X:£1x) | Qe
DB =3" +3”, F=Ker(DP). (5.10)
By the Hodge theory,
H*(B,R°m.£) ~ F. (5.11)
Let @ be the orthogonal projection from Q°(B, R*m.£) on F with respect to the

Hermitian product (1.18) attached to the metrics K75, B (X&1x) Set Q- =1-Q.
Let a €]0, 1] be such that the operator DZ? has no eigenvalues in ]0, 2a].

Definition 5.6. For T" > 0, set
Er = Ker(Dy"?). (5.12)

Let Pr be the orthogonal projection operator from Q¢ (M, ) on Ep with respect
to ().

Let EFEFO ] (resp. Elfo %)) be the direct sum of the eigenspaces of Dyl? asso-
ciated with ecigenvalues A € [0,a] (resp. A €]0,a]). Let D% (resp. Y2100l
be the restriction of D¥[’2 to E?’a] (resp. E]To’a]). Let P:[po’a] (resp. P]To’a]) be the
orthogonal projection operator from Q° (M, §) on EPE,?’G] (resp. Elfo’a]) with respect
to { )p. Set Platol=1— P:[Fo’a]. Set

X(€) =Y (=1)Fdim H*(M,¢), x(R'm&) =Y (~1)F dim H*(B, R/m.£).

k k

We now state eight intermediate results contained in Theorems 5.7-5.14
which play an essential role in the proof of Theorem 5.1. The proof of Theorems
5.7-5.14 are deferred to Sections 5.5-5.8.

Theorem 5.7. For any u > 0,

Jlim T, [Nexp(—ﬁp?ﬁ’?)} — Tr, [Nexp(—uzDB»Q)] (5.13)
—+00
For any u > 0, there exists C' > 0 such that for T > 1,

dim X
| T[Ny exp(—u2DY2)] = 7 (~1)x(RIm)| <

Jj=0

§lQ

(5.14)
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For any € > 0, there exists C' > 0 such that foru>¢e, T > 1,
’ Tr[exp(—u2DTM’2)]’ < C. (5.15)
Theorem 5.8. For any u > 0,
Jlim T, {Nexp(—u2D¥’2)P]“’+°°[} = Ty, {Nexp(—uQDB’Q)QL] (5.16)
There exist ¢ > 0,C' > 0 such that foru>1,T > 1,

’ Tr[N exp(—uD¥’2)P]a’+°°[]‘ < cexp(—Cu). (5.17)
Theorem 5.9. The following identity holds,
. M,2,[0,a
lim Tr [DT [ ]} — 0. (5.18)

For T > 1 large enough, for 0 < k < dim M,

k
dim B = 3" dim B (B, R* I m.€). (5.19)
=0

Let (E,,d,) (r > 2) be the spectral sequence of the Dolbeault complex
(Q'(M,§)75M) filtered as in [2, §1a)]. Then as in [2, §4], for » > 2, F, is equipped
with a metric hf" associated to hT™ hTB hé. For r > 2, let | Ixa(¢) be the
corresponding metric on Aps(€) ~ (det E,.)~*

For r > 1, let N\g,, Nyg,, Nv|g, be the restrictions of N, Ny, Ny to E,.

Theorem 5.10. The following identity holds,

Jlim {1 [V10g(D 0] 4237 (r = 1) (T [N, | = T[N, . ) log(T) }

r>2
2
= log (M) ) (5.20)
2| e

For T'> 1, let | [x,,(¢),r be the Ly metric on the line Aj/(&) associated to
the metrics h%M, h& on TM,E.

Theorem 5.11. The following identity holds,

Tl—i)I-EOO { log (%)2 + 2( — dim X x(&) + Trs [NV\EOOD log(T)}

2
— log (M) . (5.21)
| |>\M(E)
For u > 0, let B, be the Bismut superconnection on Q°(X, &|x) constructed
in Section 1.3 which is attached to 7™ h¢ on TM,¢. Let Ny be the operator
defined in Section 1.3 associated with the metric h7M.
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Theorem 5.12. For any T > 1,
0
. -1 2 ~M,2
EI%TI'S |:*T/a 8_T(*T/e) exp( DT/E )}
2
T JpusB

Let w™, oM w5 be the Kihler forms associated with hTM,TLTM7hTB. Let
VEM he the holomorphic Hermitian connection on (T'M,hEM) and let REM be
its curvature.

Theorem 5.13. There exists C' > 0 such that for e €]0,1],e <T <1,

|, [ 47, %(*T/s)exp( 2py?)] (5.23)

) (5.22)
Td>(TB, hTE)d Tv> [NTz exp(—BF2)| — 7 dim X x(¢).

_ 2 ol Td*(TM) ch*(€)

3
T° Jyposm 27

+/ 51 (_R%%‘b(h 102w >) ch™(¢ hf)‘<c.
musm Ob 2im T/e) T \T/e) ), ) <

Theorem 5.14. There exist § €]0,1],C > 0 such that for e €]0,1],T > 1,

50 [ o) expl 2232

o ,dimX ‘ ‘ . (524)
2 (X ViR — dim Xx(©)] <
j=0

Besides, at a formal level, Theorems 5.7-5.14 can be obtained formally from
[2, Theorems 4.8-4.15]. This will permit us to transfer formally the discussion in
[2, §4] to our situation.

5.4. A proof of Theorem 5.1
By Theorem 5.5, Theorems 5.7-5.14 and proceeding as in [2, §4c), d)], we get (5.4).

5.5. A proof of Theorems 5.7-5.11
The proof of Theorems 5.7-5.11 is essentially the same as the proof of [2, Theorems
4.8-4.12] given in [2, §5, §6], where the corresponding results were established when
M, B are manifolds. Now we use the notation of [2, §5].

By Proposition 1.4, for each b € B, there exists a small neighbourhood
(Gp, Vb) — V4, an orbifold Mb, such that 7 is induced by a Gjp-equivariant orbifold
submersion 7, : Mb — V}, with compact fiber X.

Then Ker(D2') is a Gp-equivariant vector bundle on V. This defines an orb-
ifold Hermitian vector bundle Ker(D5) on B.

For T € [1,+400], let Ey ¢ be the vector space of the smooth sections on B of
Ker(D¥). As in [2, (5.26)], we have

EI,T ~ El. (525)
The proof of Theorems 5.7-5.11 then proceeds as in [2, §5, §6] by using (3.15).
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5.6. A proof of Theorem 5.12

Now we use the notation of [33, §7].

By Proposition 1.4, for each b € B, there exists a small neighbourhood
(Gy, Vi) — Vi (V; is a neighbouhood of 0 € C™ and G, acts linearly on C™),
an orbifold Mb, such that 7 is induced by a Gjp-equivariant orbifold submersion
T Mb — ‘N/b with compact fibre X.

Let (Gy,, Vi, )icr be a cover of B such that (G, , Vi, )ier also is a cover of B.

Let 3 = infe/{injectivity radius of b; on V3, }. Let o €]0, 8/8].
If b € B, let BB(b,7) be the open ball of center b and radius r in B.

Proposition 5.15. For § > 0, there exist ¢ > 0, C > 0 such that for 0 < & <,
T>1,

0 € CcT?
—1 M
‘TrS [*T 8_T(*T)G%(TDT )} ‘ < cexp ( - ) (5.26)
Proof. The proof of (5.26) is essentially the same as the proof of [2, Proposition
8.3]. O

For T > 1 fixed, we use (5.26) with ¢ = T and T replace by T'/e, we find

‘Trs [*%/15 %(*T/E)Gs(w%s)” < cexp ( - 592) (5.27)

Set

T\ Nv TN\ —Nv
Alp = (;> eD%a(;) . (5.28)
Let Fs(eD%a)(x,x’), F.(AL 7)(z,2")(w,2" € M) be the smooth kernel asso-

ciated with F. (ED%E), F. (A;/-;,T) with respect to the volume form (g:z)\ﬂi(i’)w . Using
(2.11), (4.9) and finite propagation speed [20, §7.8], [35, Appendix D. 2], it is clear

that for € €]0,1], T > 1, 2,2’ € M, if d®(r(z),n(2)) > «, then
Fa(ED:,AfI/E)(x,x’) =0

and moreover, given z € M, FE(EDTA{’[/s)($7 -) only depends on the restriction of

D:,Aff/a to 7Y BB (n(x),a)).

Let p; be a partition of unity subordinate to the cover (Gy,, %‘717,-)1'61 of B.
Then by (5.28), we get as in [2, (7.8)]

L0 L0
Tr, [*T}E ﬁ(*T/E)Fs(sD;yf/s)} — Tr, [*T}s ey ) e ;,T)] (5.29)

We replace Mbi by (j”\é)bi x Xp, = C™ x X3, and trivialize the vector bundles
as indicated in [33, §7b)].

Asin [2, §9b)], for v > 0 small enough, there is also a smooth Z-graded vector
bundle K C €, over (j”\é)bi ~ R2™ which coincides with Ker(DX) on B(0, 4a),
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with Ker(Dg\) over (ﬁ)bi\B(O, 6c) and such that if K+ is the orthogonal bundle
to K in Qp,,

K+ nKer(Dy) = {0}. (5.30)
Let P, be the orthogonal projection operator from 2;, on Kj. Set PbL =1—F,.
Let ATB be the standard Laplacian on the vector space (T'B)p, with respect
to the metric AP, Let dvr, g be the Riemannian volume form on ((7'B)s,, hEB).
Let ¢ : R — [0,1] be a €°° function which is equal 1 if |¢| < 2«, equal 0 if
|t| > 4a. Let L! . be the operator on C™ x X,
_EQATB
2
Let ﬁg(L;T)((Kac)7 (Y’,x')) ((Y,z),(Y',2') € (TB);, X Xp,) be the smooth

L= A(YDAZ: + (1= (Y )( +T2PEDYPPE). (5.31)

~ dv Y’ )dv x’
kernels associated with FE(L;T) with respect to Tb?‘}(z(ﬂ)d)im ;ﬁbi( ).
For (Y,z) € (TB)y, x Xy, |Y| < B/4, set
dU]\/[ (}/, LL’) = k(}/, x>dUTbin/vai . (532)

Using finite propagation speed and (2.11), we see that if (Y, z) € (TB)y, x Xo,,
Y| < a, then

F(AL ) ((Ve), (Voa)) = S0 k() F(Ll o) (7 (V2), (v,2)). (5.38)
hEGy,

By (5.33), and proceeding as in [33, §7], we have Theorem 5.12.

5.7. A proof of Theorem 5.13
As in [2, §8] or [33, §8], the following theorem implies Theorem 5.13.

Theorem 5.16. There exists C > 0 such that for 0 <u <1,T > 1,

2 ~M
‘Trs [*;1 %izfexp(—“—DIT”*z)} - % /M Y rdS(TM)ch®(€)  (5.34)

T sy 27T
0 > ( %M TMN—1 0 TM 5 Cuz
ap 14 —b(h 7 (h W (¢, h8)| < ——.
+/MUEM35 ( 2im (hr™) 8T(T )) ¢ (&%) < T
Proof. By (5.28)
1
All/T,l = TNVTD%‘[T_NV, (535)
Therefore
1 Oxr u? Mo _q Oxp 5 9
Tr, [*T 8—Texp(_ﬁDT )} = Tr, {*T a—Texp(—u Al/T,l)] (5.36)

By (3.15), we can replace M by (C™ x X3,)/K,, and trivialize the vector
bundles as indicated in [33, §7b)]. Then we will prove (5.34) in this situation.
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Let P, r(z,2') be the smooth kernel associated with the operator

exp(—u?A ) with respect to (‘21;”)‘{1% Let

Pl,T,u((K x)v (Ylvx/)) ((sz)v (Ylvzl) € (ﬁ)bl X Xbi)

€

be the smooth kernel associated with the operator exp(—u2Lé’T) with respect to

d Y')xd '
UTbiB((%))di,,, b - ). By Proposition 5.15, as u — 0, uniformly on 7" > 1, the

asymptotics of the following three terms is the same

— 8>|<T im
/M pi Trg [*Tl ﬁFu/T(UA;/T,l)(IJ/)} dvyy [ (2m)dim M

— Ox im
[ ot [ S Pun(o ) du (2,
M ) 5 (5.37)
—1 O*T 51 -1
pi ——Try |h*t =P, LT (Yx), (Y, )
/(j“\é)bi XX, hezc:b |G, [ T T " YT
k(Y x)dvaiB(Y) x dvx, (I)/(?ﬂ')dim M.
By [33, §8], (5.36), (5.37), we get Theorem 5.16. O
5.8. A proof of Theorem 5.14
Proposition 5.17. There exists C' > 0, such that for0 <e <1, T >1
4 0
| T, [ 4], 57 Gery)Ge(eD)|
dim X (5.38)
2 P ; . C
—2( X0 ViR — dim Xx(9)) G- (0)| < -
§=0

Proof. By an analogue of the McKean—Singer formula [1, Theorem 3.50], we find
that

dim X
Tr[NyGe(eDP)] = Y (~1)ix(R/m.£)G=(0). (5.39)
=0
Using (5.39) and proceeding as in [2, Proposition 9.1], we have (5.38). O

By (4.10) and (5.38), to establish Theorem 5.14, we only need to establish
the following result,

Theorem 5.18. If a > 0 is small enough, there exist 6 > 0,C > 0, such that for
0<e<1, T>1

|10, [ 5] (o) (DY)
o dimX ‘ C (5.40)
. f( (1) jx(R/m.&) — dimXX(é))Fa(())' S T

Jj=0
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Proof. Using (5.28), we deduce that
4, 0 4, 0 ~
Tr, [*T}E a_T(*T/E)FE(ngkf/a)} — Tr, [*T}E o erye) e ;%T)] (5.41)

Let ﬁg(A"f’T)(ac7 /)(z,2’ € M) be the smooth kernel associated with F. (AZ}) with
respect to dvps(z')/(2m)4™ M. Using finite propagation speed, it is clear that if
reM, ﬁs(AgT)(:E, -) only depends on the restriction of A. ;. to 7' (B (n(x), ).

We use the same trivialization and notation as in Section 5.6. If (Y,z) €
(TB)y, x X,, |Y| < a, then

pilY,2) FL(A27) (Y, @), (Y, z))

=pi Y KY0)hE(LL ) (h 7 (V.2), (Y, ). (5.42)

hGGbi
By [33, §9], (5.41), (5.42), we get Theorem 5.18. O
The proof of Theorem 5.14 is completed. O
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