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Abstract

In this paper we consider a punctured Riemann surface endowed with a Hermitian metric that
equals the Poincaré metric near the punctures, and a holomorphic line bundle that polarizes
the metric. We introduce a new method to compare the Bergman kernels of high tensor powers
of the line bundle and of the Poincaré model near the singularity and show that their quotient
tends to one uniformly on a neighborhood of the singularity up to arbitrary negative powers
of the tensor power.
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1 Introduction

In this paper we study the asymptotics of Bergman kernels of high tensor powers of a singular
Hermitian line bundle over a Riemann surface under the assumption that the curvature has
singularities of Poincaré type at a finite set. We show namely that the quotient of these
Bergman kernels and of the Bergman kernel of the Poincaré model near the singularity tends
to one up to arbitrary negative powers of the tensor power. In our previous paper [5] (see also
[4]) we obtained a weighted estimate in the C"”-norm near the punctures for the difference
of the global Bergman kernel and of the Bergman kernel of the Poincaré model near the
singularity, uniformly in the tensor powers of the given bundle. Our method is inspired by
the analytic localization technique of Bismut-Lebeau [7].

There exists a well-known expansion of the Bergman kernel on general compact manifolds
[8, 11, 14, 20, 22, 23, 28, 29] with important applications to the existence and uniqueness
of constant scalar curvature Kahler metrics [17, 28] as part of the Tian—Yau—Donaldson’s
program. Coming to our context, a central problem is the relation between the existence of
special complete/singular metrics and the stability of the pair (X, D) where D is a smooth
divisor of a compact Kéhler manifold X; see e.g. the suggestions of [27, §3.1.2] for the
case of “ asymptotically hyperbolic Kéhler metrics , which naturally generalize to higher
dimensions the complete metrics wy studied here. Moreover, the technique developed here
can be extended to the higher dimensional situation in the case of Poincaré type Kéahler
metrics with reasonably fine asymptotics on complement of divisors, see the construction of
[2, 8§1.1] and [3, Theorem 4].

The Bergman kernel function of a singular polarization is of particular interest in arithmetic
situations [6, 9, 10]. In [5] we applied the precise asymptotics of the Bergman kernel near
the punctures in order to obtain optimal uniform estimates for the supremum of the Bergman
kernel, relevant in arithmetic geometry [1, 18, 21]. There are also applications to *“ partial
Bergman kernels ”, see [13].

We place ourselves in the setting of [5] which we describe now. Let X be a compact
Riemann surface and let D = {ay, ..., any} C X be a finite set. We consider the punctured
Riemann surface ¥ = X \. D and a Hermitian form wy on X. Let L be a holomorphic line
bundle on T, and let & be a singular Hermitian metric on L such that:

() h is smooth over X, a@ for all J = 1,..., N, there is a trivialization of L in the
complex neighborhood V; of a; in X, with associated coordinate z; such that |1|%(z i) =
llog(lz;»)].

(B) There exists ¢ > 0 such that the (smooth) curvature RZ of & satisfies i RY > ews, over
¥ and moreover, i R = wx, on V;:=V; \ {a;}; in particular, oy = wp+ in the local
coordinate z; on V; and (¥, wy) is complete.

Here wp+ denotes the Poincaré metric on the punctured unit disc D*, normalized as follows:

idz Ndz
wopri=——————— -
|z12log(|z[?)

(1.1)

For p > 1, let h?:=h®P be the metric induced by 4 on L?|x, where L”:=L®”. We denote
by H(Oz) (X, LP) the space of L*-holomorphic sections of L7 relative to the metrics 4” and
wy,

Hi) (2, L7) = {s € H(Z.LP): ||S||iZ:=/ ISl 0z < +oo}, (1.2)
z
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endowed with the obvious inner product. The sections from H(Oz) (X, L?) extend to holomor-
phic sections of L? over X, i.e., (see [22,(6.2.17)])

HQ\(2, LP) ¢ H'(Z, LP). (1.3)

In particular, the dimension d), of H(Oz)(E, LP) is finite.

We denote by B (-, -) and by B, (-) the (Schwartz-)Bergman kernel and the Bergman
kernel function of the orthogonal projection B, from the space of L?-sections of L” over
Y onto H(Oz)(E, L?). They are defined as follows: if {SZ7 }Zi | is an orthonormal basis of
H(OZ)(E, LP), then

dp d[’
By(x,y):=Y SI(x)® (S/(y)* and B,(x):=Y_ IS ()]}, (14)
=1 =1

Note that these are independent of the choice of basis (see [22,(6.1.10)] or [12,Lemma 3.1]).
Similarly, let BE)' (x,y) and BP* (x) be the Bergman kernel and Bergman kernel function of

(]D)*, wp+, C, |10g(|z|2)|p ho) with hg the flat Hermitian metric on the trivial line bundle C.
Note that for k € N, the C¥-norm at x € ¥ is defined for o € C>®(Z,LP)as

o lckur () = (Iolhr + V7o |, -+ (VP o, )@, (1.5)

where V7% is the connection on (7X)®® ® L? induced by the Levi—Civita connection
on (T%, wy) and the Chern connection on (L?, A7), and the pointwise norm | « |pr ¢y iS
induced by wy, and h”. In the same way we define the C*-norm |flek(x) at x € X of a
smooth function f € C*° (X, C) by using the Levi-Civita connection on (T X, wyx).

We fix a point a € D and work in coordinates centered at a. Let ¢;, be the holomorphic
frame of L near a corresponding to the trivialization in the condition («). By assumptions
(o) and (B) we have the following identification of the geometric data in the coordinate z on
the punctured disc D}, of radius 4r centered at a, via the trivialization ¢; of L,

with0 <r < (46)_1.
(1.6)

(2, ws, L, h)

b = (D*, wps, C, hp+ = [log(1z1»)] - ho)

)
ID)4r

In [5,Theorem 1.2] we proved the following weighted diagonal expansion of the Bergman
kernel:

Theorem 1.1 Assume that (X, ws, L, h) fulfill conditions («) and (B). Then the following
estimate holds: for any £,k € N, and every § > 0, there exists C = C({, k, §) > 0 such that
forall p € N*, and z € V1 U ... U Vy with the local coordinate Zj,

* - -8
1B, = BY'| @) = cp~ flogz; )], (1.7
with norms computed with help of ws, and the associated Levi-Civita connection on ID},..

Note that in [5,Theorem 1.1] we also established the off-diagonal expansion of the Bergman
kernel B, (-, +).

For each p > 2 fixed (|z|2|log(|z|2)|p)’1 B?* (z) is smooth and strictly positive on Dy,
as follows from (2.7). By [5,Remark 3.2], any holomorphic L?-section of L? over ¥ extends

to a homomorphic section on X (see the inclusion (1.3)) vanishing at 0 in Dy,. Thus by the
formula (1.4) for B, we see that the quotient ;ﬁ is a smooth function on Dy, for each p > 2.
P
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2342 H. Auvray et al.

The main result of the present paper is the following estimate of the quotient of the
Bergman kernels from (1.7):

Theorem 1.2 If (2, ws, L, h) fulfill conditions (o) and (B), then

sup

=
zeV1U...UVy B]D)

P (z) - ‘ O(p™), (1.8)

i.e., for any £ > QO there exists C > 0 such thatfor any p € N* we have

sup <cp~t (1.9)

zeViU..UVy

BD* L) -

Theorem 1.2 is related to estimates in exponentially small neighborhoods of the punctures
obtained in [24,Theorem 1.6] and [25,Lemma 3.3].

Theorem 1.3 Forallk > 1 and Dy, ..., Dy € [ 3Z] we have

sup |(Dy++ DL

7| =0 (1.10)
ZEV[U UVN

BD*

Remark 1.4 Theorem 1.1 admits a generalization to orbifold Riemann surfaces. Indeed,
assume that X is a compact orbifold Riemann surface such that the finite set D C X does
not meet the (orbifold) singular set of X. Then by the same argument as in [5,Remark 1.3]
(using [14, 15]) we see that Theorems 1.2 and 1.3 still hold in this context.

Note that the C*-norm used in (1.7) is induced by wp+, roughly the sup-norm with respect
to the derivatives defined by the vector fields z log(lzlz)g—Z and Zlog(|z|2)%, which vanish
at z = 0. Hence the norm in (1.10) is stronger than the C k_norm used in (1.7), because the
norm in (1.10) is defined by using derivatives along the vector fields a% and 337 .

Let us mention that the difficulty of the estimates (1.9) and (1.10) consists in the fact that
B?* (+) takes extremely small values arbitrarily near the origin (this can be seen in [5,§3.2]
and it is specific to the non-compact framework), thus they don’t follow from [5,Theorem
1.2]. What estimate (1.8) says is that B,(-) follows such a behaviour very closely in the
corresponding regions of X via the chosen coordinates.

In order to tackle this difficulty we employ the following strategy to approach Theorems

1.2 and 1.3. We choose a special orthonormal basis {0 (p)}e | of H(z)(E, LP) starting from

Z on ;. forl <l <6, with0 <a <8,/p < a; < 1. Our choice ofal(p) implies that the
coefficients of the expansion

al(p)(z) Za(p)

of crz(p) on D}, satisfy a(p) =0if j <8, and j <[ <d, (cf. (2.32)). Now we separate

the contribution of ae(p) (P) (cf. (2.6)), a(p) in B, BE* in two groups: 1 < j, € < §p;
max{j, £} > §, + 1. The contrlbutlon corresponding tol < j, £ < §,, will be controlled
by using Lemma 2.1 (or 3.1). The contribution corresponding to max{j, ¢} > &, + 1 will
be handled by a direct application of Cauchy inequalities (2.23). It turns out that by suitably
choosing ¢, A > 0 this contribution has uniformly the relative size 27*P compared to BE’*

on |z < ep~h.
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Quotient of Bergman kernels on punctured... 2343

This paper is organized as follows. In Sect. 2, we establish Theorem 1.2 based on the
off-diagonal expansion of Bergman kernel from [5,86]. In Sect. 3, we establish Theorem
1.3 by refining the argument from Sect. 2. In Sect. 4 we give some applications of the main
results.

Notation: We denote | x| as the integer part of x € R.

2 C%estimate for the quotient of Bergman kernels

This section is organized as follows. In Sect. 2.1, we obtain the C°-estimate for the quotient
of Bergman kernels, Theorem 1.2, admitting first an integral estimate, Lemma 2.1. In Sect.
2.2, we deduce Lemma 2.1 from the two-variable Poincaré type Bergman kernel estimate of
[5,Theorem 1.1 and Corollary 6.1].

2.1 Proof of Theorem 1.2

We recall first some basic facts. For o € C§°(X, L?), the space of smooth and compactly
supported sections of L? over X, set

||a||i%@):=/ o[ @3- @.1)
P

Let L2(X) be the || - || 2 5,-completion of C§°(Z, LP).
P
By [5,Remark 3.2] the inclusion (1.3) identifies the space H(02) (X, LP)of Lz—holomorphic

sections of L over X to the subspace of H(X, L?) consisting of sections vanishing at the
punctures, so it induces an isomorphism of vector spaces

HY\(2, LP) = H)(Z, L? ® O5(—D)), 2.2)

where @s(—D) is the holomorphic line bundle on ¥ defined by the divisor —D. By the
Riemann—Roch theorem we have for all p with pdeg(L) — N > 2g — 2,

dp = dim H) (£, L") = dim H*(, L? ® Og(—-D)) =deg(L) p+1—g— N, (23)

where deg(L) is the degree of L over X, and g is the genus of X.
The Bergman kernel function (1.4) satisfies the following variational characterization, see
e.g. [12,Lemma 3.1],

lo ()12,

B,(z) = , forzeX. (2.4)

2
0o cHY (,LP) ||‘7||L%(2)

By the expansion of the Bergman kernel on a complete manifold [22,Theorem 6.1.1] (cf.
also [5,Theorem 2.1, Corollary 2.4]), there exist coefficients b; € C*°(X), i € N, such that
for any k, m € N, any compact set K C X, we have in the C"-topology on K,

k
By(x) =) bi()p' " +0(p7F), asp— +oo, 2.5)
i=0
with by = —b| = - on each V.

2r

@ Springer



2344 H. Auvray et al.

Consider now for p > 2 the space H(z) (D*) of holomorphic L?-functions on D* with
respect to the weight |1 1%(z) = |10g(|z| )} (corresponding to a metric on the trivial line

bundle C) and volume form wp+ on D*. An orthonormal basis of H”, S (D*) is given by (cf.
[5,Theorem 3.1]),

W » ermt N
4 : v _(_ = _
¢, /" withe eN, £ > landc,” = (271’(1) — 2)!> =z ”Lz(]D)*) (2.6)
and hence
BY" (2) = |log(lz| )\”Z(c(")) 1212, forz e D*. Q.7
=1

Foranym e N,0 < b < land0 < y < %thereexistsby [5,Proposition3.3]e = €(b, y) > 0
such that

= (’)(e*l’l_zy) as p — +00. (2.8)

D* p—1
-2

2

Cm({be=PY <|z|<1},wpx)

Taking into account Theorem 1.1 and (2.8) we see that in order to prove Theorem 1.2 it
suffices, after reducing to some V; and identifying the geometric data on D}, and X via
(1.6), to show that for some (small) ¢ > 0 and (large) A > 0, and for all / > 0 there exists
C =C(c, A, 1) > 0 such that for all p > 2,

sup
0<lzl<cp~

BD*

A

P (z) — ‘ <cp. (2.9)

We now start to establish (2.9). In the whole paper we use the following conventions.

Wefix0 <r < (4e)71 asin (1.6), and 0 < 8 < 1 such that B <or.
We fix a (non-increasing) smooth cut-off function x : [0, 1] — R,
satisfying y (u) = 1ifu < r? and x(u) = 0if u > 2r.

p—2
2| logr|

We set §), = \‘ J forpeN, p=>2. (2.10)

The choice of §,, will become clear in (2.19), (2.27) and (2.41), for example. By (2.10) there
exist o > 0 such that

1
ap <4, and 8p+1§§p for p > 2+ 2|logr|. (2.11)
To establish (2.9) we proceed along the following lines:
1. For£ e{l,...,8,}, we set

ot = P x (122" (2.12)

2. Using the trivialization, that is, identifying ¢(p ) with qﬁépo) ef when we work on X, we

see the qﬁ(p ) as (smooth) L? sections of L” over ¥, that we correct into holomorphic L2

(p)

sections ¢,"” of L”, by orthogonal Lf, (X)-projection.
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Quotient of Bergman kernels on punctured... 2345

3. Next we correct the family (¢§p ) 1<e<s, into an orthonormal family (oz(p ) 1<e<s, by
the Gram-Schmidt procedure, and we further complete (%(p ) ) 1=¢<s, into an orthonormal

basis (Ol(p))1§e5dp of H&)(E, L?). In particular, for any 1 < j < 4§,
Span{¢>}{30), e ,¢(p)} = Span{¢>(p), e ¢;p)} = Span{ol(p), e ,cr;p)}. (2.13)

4. Finally, we carefully compare B? with B, using the three steps of the above construction
to get estimate (2.9); of particular importance are the following intermediate estimates
which will be deduced from [5,§6]:

Lemma 2.1 With the notations above, for all m € N, there exists C = C(m) > 0 such that
forallp e N*, p>2,andall j, L e{l,...,8,},

1=Cp " <[ 125 = () [D 1 AzDlzl tog(1zP) | wpr

2r
2
s@w)/ x(IzD1z1* [log(1zH)|” wpx < 1, (2.14)
D;r
and moreover,

”Gzz(p) (P) ”L2 = =Cp",

[F3e "e(p)>L%(z) — el =cp. @15)

The proof of Lemma 2.1 is postponed to Sect. 2.2.

Notice that we take care of stating estimates uniform in j, £ € {1,...,5,}. Observe
moreover that (2.14), (2.15) are integral estimates, whereas we want to establish pointwise
estimates in the end, hence we need an extra effort to convert these (among others) into (2.9).

Let us see now how to build on (2.15) to get the desired (2.9).

First, by (1.4), (2.7), (2.12), and the construction of ¢>(p ) and a(p ) we have for z € Df,

B) (2) —Z|¢<”)|hpz+|log(|z| )| Z (" 1z

t=8,+1
d, p
= B,(z) — Z }Uz(p)ﬁp,z"'ZRe[Z( (P) ¢(p) (p)>h1’,z]
(=8,+1 =1
8p
+Z|¢(p) (p)‘hpz+|10g(|z| )|p Z (C(p)) |Z|22. (2.16)
=8,+1

We deal with the summands of the last three terms separately; we start by claiming that up
to a judicious choice of ¢ > 0 and A > 0 we have for 0 < |z] < cp~*:

[log(1z%)|” Z P =0(p™) - BY (). asp—oco, (217
0=38,+1

that is,

sup  [BY (2)"'[log(lz[*)|” Z (" 1zl ] = 0(p™).
0<|z]<ep=4 t=5,+1
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2346 H. Auvray et al.

Indeed, we have Hf” <6, + 1forall £ > 1, s0 by (2.6) we have for z € D¥,

ENTIR P 2 _ bz o (LSNPl g o
log(zP)]” D2 (e 1el* = [logzP)|” 5 _2),2( )" e
T =1

t=6,+1 ¢
S Jz 21PN oty 20
<@+ DPF m\log(m )| ;ﬂ’ l2]
= 8+ 1) 2?0 BY (). (2.18)
From (2.11) follows
(5p + DI/ P~ < 2 plzP < 2 forall 2] = p /%, (2.19)

From (2.18) and (2.19) we get (2.17) withc =r and A = i .
In the similar vein we now show the following.

Lemma2.2 Forc =rand A = 2 , with o satisfying (2.11), we have uniformlyinz € ID):p_A,

dP
2 _ %
Y o). =00 BY (). (2.20)
e=8,+1
We have uniformly in z € Djpfm and L € {1,...,8,)},
" =], . = O™ BY ()2, @21

Proof Let p > 2, ¢ € {1,---,d,}. By [5,Remark 3.2] and (1.3) we know that az(p) is a
holomorphic section of L? over X vanishing at D. We use the trivialization (1.6) to set

o0
D= (Y al )=t onDj. 2.22)
j=1

We have for j > 1 by (1.4), (1.6), (2.5), (2.22) and Cauchy inequalities,

P = @7 sup |5 @)

lz|=2r

= @) |log(12r®)| 7" sup |0” @),

lz|=2r

< @r)|log(2r)| 7" sup B,(z)'/?
|z|=2r

< cp'@n) I log(l2r )| (2.23)
Thus by (1.6) and (2.23) we have for z € D},

P J NI~ 1/2 2722 (121}
Z aj = Cllog(lzP)|”* 3" p"2log(2r )| (—)

2r
j=8p+1 h? j=8p+1

/2 -1 8p+1
oo () (3
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By (2.6) and (2.7) we have
2 * *
[log (121|121 = Izl = Izl 200 By @7 = @x(p —2))'2B) ("2 (225)

We deduce from (2.24) and (2.25) that there exists C > 0 such that the following estimate
holds uniformly in £ € {1, ...,d,}, |z] € Dz,

° 28p/p NV
aDzi| <cp ] BRSO UCRC LY
| ZBZ g ((2r fog(2ryj) B @ 229

By (2.11) we have for A = 5-, cg = re'/®®|log(|2r|?)|"/?®) > r,and p > 1,

28,/p 1 20 1
kl —— < | — < 2_2"‘5, for|z| < cop™™. (2.27)
2r llog(12r|?)] 2r llog(12r )] p

Recall that the Stirling formula states

LA (2np)*1/2e”(1 n O(p”)) as p — +oo. (2.28)
We infer from (2.26), (2.27) and (2.28), that there exists C > 0 such that the following
estimate holds uniformly in |z| <r p~ and € € {1,...,d,},
e .
> | <car Yo' (2.29)
j=8p+1

Note that qb(p) ¢(p) is orthogonal to H(0 (X, LP). By (2 1), (2.12), (2.22), and since al(p)
are holomorphlc we have for j € {1,---,8,}, € € {l, ,dpl,

(r) (p) () (p) _ (» _(p) 12 2
(0.7 81" )2z = (00" 630l 25y = et fD x(zh |2/ | og(Iz1)I” @p+. (2.30)

2r

By (2.13) we have
(@’”,@'”)Li(x) =0 forje{l,---,8,}j <t (2.31)
From (2.30) and (2.31) we get
;12):0 for je{l, -+, 8ph Le{dp+ 1, dp) (2.32)
By (2.3), (2.29) and (2.32), we get (2.20).
Fixing £ € {1, ..., 6,}, we have on D} by (2.10), (2.12), (2.22),
( (») ¢L%)ei)(z) _ ((ae(f) (p) €y Za(p) ) (2.33)
J#
From Lemma 2.1 and (2.30) we have uniformly for j, £ € {1, ...,6,},

aff) = (7 /D x(2D|<? PliogdePI w5) (o0 2,

2r

= Bje+0(p)Nc. (2.34)
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2348 H. Auvray et al.

Thus from (2.7), (2.34) we have on D} uniformly in £ € {1, ..., §,},

3p 2
‘((aéf) (p) )z +Za(p)z’>eL y = |log(|Z| )| Z( ﬁlz) 3/“(1’))
j=1
/#
Sp ‘
< 0(p~)[log(1z)|"8, Y () 1z1% < 8,0(p™)BY (2). 2.35)

j=1

Now §, can be absorbed in the factor O(p~), since §, = O(p) by (2.10). Combining

(2.29) with (2.35) we conclude that (2.21) holds uniformly in £ € {1, ..., §,}. ]
. _ (p) 12 :

Since 8, = O(p) and |0, |pr ; < Bp(z) /4, (2.21) also yields

Sp

Z< (p) ¢(P) @(p)>hp’z — O(pfoo) . BE]])* (Z)l/zBp(Z)l/z on D:p—A~ (236)
=1

This way, putting together (2.16), (2.17), (2.20), (2.21) and (2.36), we obtain

(1+0(p™) - By () = By(2) + O(p™) - B) ()*By()"/* on D, 4, (2.37)

and this implies (2.9). The proof of Theorem 1.2 is completed.

2.2 Proof of Lemma 2.1

Atfirst,as 0 < x < I and supp(x) C DD}, we get from (1.6), (2.6) and (2.10),
1960132 5) = 1910172 e, = (") / x(1zD[log (12”121 wp+

= (") / [log (1) 12 wpe = lle” 2 N3 ., = 1. (238)
This implies the inequalities of the right-hand side of (2.14).

We establish now the lower bound of (2.14). For £ € {1, ..., §,} we have by (1.1), (2.6),
(2.10) and (2.12),

L= 1805 ey = (6”)’ / flog(z)|” {1 = x2(1zD} 121 wp-

er=1 2tdt
, / log(r*)[" 1 (1 = (1) —————
(-2 12[log(1?)|
208 log |
u=-2logs __1 ‘/' e up—ze—u<1—-xz(e—uuza))du
(r—=2'Jo
1 28,Blogr|
< L/ uP=2e "du. (2.39)
(p—=2)!

The function u + logu — u is strictly increasing on (0, 1] and equals —1 at u = 1, hence

logf —p < —1. (2.40)
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AsuP2e 4 s strictly increasing on [0, p —2],and 26,| logr| < p —2 (by (2.10)), so (2.28)
and (2.40) imply

1 28pBllogr] 1 (p—2)8
/ uP=Ze Mdy < / uP=2e " dy
0 0

(p—2)! (-2
< 4(12 p__z)z';zewleog BB (p— )
_ (PT;z)”zﬁ(l n @(p—l))e(p—Z)(logﬂ—ﬁH)
= 0(p~™). (2.41)

Combining (2.39) and (2.41) we obtain that the first inequality of (2.14) holds uniformly in

efl, ..., 58,}.
We move on to (2.15) and we first estimate ||¢>e(17 ) _ ¢l%) I L2, Using the identification
(1.6) as in [5,(6.1)] we denote for x, y € D,

By (x,y) = |log(ly[)|"B) (x. ).

. . oo 1 1
By (x,3) = [log(y)| "B, (x, y) with B, (x. y) = 5 > eIt
=1

7(p —2)! &
(2.42)
For€ e {l,...,5,) set
15,’2<x)=/y€ Dog(yP|”{BF .3 — B (e 9} IyDy wpe (1),
;
LY ) = /}D [log(y )| B2 (e, {x Iy = 1}y wne (),
131 () = [y o, Tlogy|”8y" (e 30y wpr ) =, (2.43)

where the last equality is a consequence of the reproducing property of the Bergman kernel

B]B* (+, +). By the construction of ¢‘(Zp ), (2.10), and the reproducing property of B, (-, -) we
have for x € D,

8" (1) = (Bppye)(x) = f

By (x. ) () 0z (y)
yex

= / log(1y®)|” B2 (x. »x (¥’ wp+ ()
yeD3,

=P (1{{2 ) + 1 ) + 1) (x)). (2.44)
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Now [5,Theorem 1.1 or (6.23)] and (2.6) yield for fixed v > 0 and m > 0 and for any
xeDj.,.p>2,

v+p/2

17 )] = Comnp™ oge®) ™ [ gy BT k3Dl @ 0)

ye]D)Zr

< C(m, v)p~"[log(x )| "~/

1/2 )
([ oy 715 o ) ([ rogtyP 2D o)
D* D*
= C'Gm.v)p " flog(x )| ()7 (2.45)

Keeping v fixed and varying m in (2.45) we obtain the following uniform estimate in £ €

{1,....8p},

(p) 7 (p)
‘Ce Iy

=0O(p~ ™). 2.46
e (2.46)

By circle symmetry first and (2.6), (2.14), (2.42) and (2.43) we obtain,

1) () = (") [ / § ylog<|y|2>\”{x<|y|)—1}|y|%m(y>}xf=O<p‘°°>«xf,
yeD*

(2.47)
uniformly in € € {1,...,8,}. Since ||c§”)xﬁ||L%(D§) < ||cép)x£||L%(D*) — 1, this tells us
already that

(p) (p) —00
=O(p™™). (2.48)
H Li(D;r)

Since0 <1—yx <land1— x(t) =0fort < P, we get by (2.6), (2.41) and (2.43), as
in (2.39), that for £ € {1, ..., §,} the following holds,

2
HCEP)I(P)(X) (17)( )‘ HCEP)(l _ X(|x|))x£‘

L2 (D%)

L2(D3,)
er=t 2tdt

S / log(12) 7121 = x (1)) —22
(p =21 Jys 12|log(12)|

_ 2tB|logr|
u——2=610gt ( 1 0 / e ul’—2e—’4(1 — X(e—u/(Zﬁ)))zdu
P — .

1 28,8 logr| )

= / uP™%e™"du = O(p~™). (2.49)
(p—2)!

By (2.44), (2.46), (2.48) and (2.49) we get the following estimate uniformly in £ €

{1,.... 8}

Ieg's = @t 2 s ) = O™, (2.50)

A weak form of [5,Corollary 6.1] tells us that for any k € N, ¢ > 0, there exists C > 0 such
that

1By(x, )| < Cp™* ford(x,y) > e, p=2. 2.51)
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By (2.38), (2.44) and (2.51),

(p))2 —2k
(2 ”Lg(z\mf;r) =Cp /Z\D; @ /*

2r

67 oM jrox(y) < Cp~* / ws. (2.52)
by
From (2.50) and (2.52) we have uniformly in £ € {1, ...,45,},
(p) (p) _ 4P (p) )2 (p) _ —o0
67 = #6012 cx) = 186” = 00 152 0y, + 187 |2y = O™ (253)

By (2.14) and (2.53), as qﬁj.p) — ¢;p) is orthogonal to H, 2)(2 L?), we have uniformly in
Jote{l, ..., 8,

() ,(p) () ,(p)
<¢ ¢ )LZ(E) <¢] 07‘/’ >L§,(>:)
() . (p) () ,(p) (p)
(¢ f ¢epo >L§(D§ (¢ i X2 ! ¢eﬁ) >L§(2)
=8j0+ O(p™™). (2.54)

(p)

Note that the circle symmetry and (2.12) imply that (677, ¢") =0ifj # ¢

>L§,(JD>§,)
We now observe that the Gram-Schmidt orthonormalization (Uz ))155551, of the “almost-

orthonormal” family (qbép ))15555 » is the normalization of

— 1(¢2P) ¢(P)> ?)(2)

/(P) — ¢(]7) Z

(p)
(P () P (2.55)
k=1 (¢k X >L§)(z)

Now (2.11), (2.53)—(2.55) yield (2.15). This completes the proof of Lemma 2.1.

3 Ck-estimate of the quotient of Bergman kernels

The proof of Theorem 1.3 follows the same strategy as in Sect. 2 (use of the orthonormal basis
(oj(.p ))15 jfdp)» but with some play on the parameters (in particular, the truncation floor §,
of Step 1. in the outline of the proof of Theorem 1.2). Some precisions on this basis are also
needed: we’ll see more precisely that in some sense, and provided relevant choices along the
construction, the head terms o, () , 1 <€ < §) are much closer to their counterparts c(p )¢
of D* than sketched above.

This section is organized as follows. In Sect. 3.1, we establish a refinement of the integral
estimate Lemma 2.1 which is again deduced from [5]. In Sect. 3.2, we establish Theorem 1.3

by using Lemma 3.1.

3.1 Arefined integral estimate
To establish Theorem 1.3, we follow Steps 1. to 4. in the outline of the proof of Theorem 1.2
by modifying 6, thus refining Lemmas 2.1 to 3.1 below.

Let « > 0 fixed. We start by choosing c(«x) € (0, e~ 1) so that

log(c(k)) < —1 — 2«. 3.1)
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Then we replace 8, in (2.10) by

(p —2)c(x)
8 =8 (k) = Lij - 3.2
p =500 2llog ]| 5-2)
Lemma 3.1 There exists C = C(k) > O such that forall p > 1 and € € {1, ..., 8;},
(]7) (P) ‘ <C —Kp 33
o x(zhatef] , = Cpe?. (3.3)
Moreover, (aép))lfgfdp is in echelon form up to rank §', in the sense that if £ =1, ..., 8;,,
then ae(p ) admits an expansion
o0
P = (Za((;é)zq)ei onDj,, (34)
q=t
and if £ = 8;, +1,...,dp, then oe(p) admits an expansion
oz(p) = ( Z a(p) ) on Dj,. (3.5)

_5/ +1

As will be seen, estimate (3.3) is directly related to the play on §’), whereas the echelon
property as such is not, and (3.4), (3.5) are a direct consequence of (2.30) and (2.31). More-
over, no estimate is given on the o (p ) for ¢ > 8’ + 1 in the above statement; as in the proof
of Theorem 1.2, it turns out that We content ourselves with rather rough estimates on these
tail sections.

Proof of Lemma 3.1 Let 5”* be the formal adjoint ofng on (CP(Z, L2, || 2 ) Then
P
0, = 8“ *8L 1 C°(Z, LP) — C°(%, LP) is the Kodaira Laplacian on L” and
ker O, = H) (S, LP). (3.6)
Observe that the construction of the qbép ), L=1,..., 8;,, following Steps 1. to 4. of the
proof of Theorem 1.2 can be led alternatively by the following principle:
1’. with the cut-off function x in (2.10), for £ =1, ..., 8;,, set
do =0y = ¢ x (122 el. 3.7)
) P)
2’. give an explicit estimate of H quﬁo ”L2(2)

3’. we correct d)(p) into holomorphic LZ?-section ¢/§p) of L?, by orthogonal L2(%)-
projection. we use the spectral gap property [5,Corollary 5.2] (as a direct consequence
of [22,Theorem 6.1.1]) together with the step 2’ to get (3.3).

Step 1’. We compute, by (2.6) and (2.10), as in (2.39), for £ =1, ..., 6/

9 p’
1 2¢B|logr| o B
01— [e”s xeDef |72 z) = 7@_2),/0 w2 (1= 20 )du
1 28" Bllogr|
< 7/ 3 uP=2e~dy. (3.8)
(p—=2'Jo
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As uP~Ze7t is strictly increasing on [0, p — 2] and log 8 < 0, and from (3.2), 2(8;, +
2)|logr| < (p — 2)c(k), by (2.28), (3.1), we get a refinement of (2.41),

| 25/, log | 1 (p=2ec()p
/ uP=2e7Udy < / uP=2e " dy

(r=2! ~(p—2)!
- P =" oy oscp)-ciop)
T (p = De()B
(pznz) (K)/3<1 + O )> (p=2)(log(c(x) p)—c()B+1)
= O(e 7). 3.9)

From (3.8) and (3.9), uniformly in ¢ € {1, ..., 8;,},
2 _
167 122 sy = etz xUzDe [z sy = 1+ OGP, (3.10)

Step 2°. Recall from [5,(4.13), (4.14), (4.15) or (4.30)] that on D3, (seen in %),

2
Ty ef) = (= IeP g1z = pilog(lel 3= )¢l (3.11)

Hence we obtain from (3.7) and (3.11), for £ =1, ..., 8;,

9? 9
0,007 = cf”” (= 27108”1215 = (x(Dz) = pZlog(1z) 5= (x(12D)<") )]

(3.12)
Since Z[x (122 = (Zx(12D)z" = Zx'(1z)z". we have
e [emn=] = 2 Lt + Ltran, (3.13)
which yields
Tp087 = e (= 2 el tog (e 12
—Z|z|2z‘ log?(212)x"(J21) = S 121z log(1z1%)x (12D ) ¢f (3.14)

on ]D)gr, and this readily extends to the whole X. Therefore,
2041
“qub(p) ”1}(2) = Czp)( 4 |||Z|[—H 1082(|Z|2)X/(|Z|)HL?’(D*)

P
+Z|y|z|“2 log? (121 1" (1D g2 oy + 5 1217 10g(|z|2)x’(|z|)HL%(D*)). (3.15)

Using nonetheless arguments similar to those of Step 1’. above, we claim that there exists
C > Osuch thatforall p > 1 and £ = 1,...,6’p,

11+ 10g (21X (e 2 ey < Clef™) e,
[12142 108> (21 X" (12D 12 ey = Clefy™) e,

[1e1 og(eP)x (2D | 12 ey < Cleffi™ e (3.16)
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Indeed, from (3.2) and since 2(8;7 +2)|logr| < (p — 2)c(x), applying (3.9) for p + 4 as in
(2.39), we get with Co = supyg 17 X'l

(p+4) | |Z+l

ey log” (1<) (D |2 )

4 4 A tdt
1(5141_ )) / ‘1 og(t )|p+ 2042 /(t 2 .
12|log(12)|

- 2+ 1Bl logr| L \\2
u=-2(r 1) log! ! / u”"'ze_“()(,(efm)) du

(p+2)!
2 2(8,,+ DBl logr|
< < / ' ~ uPt2edy
(p+2)!
C? (p+2)c()p
<20 / uPte™du = O(e=2P). (3.17)
(p+2)!
Consequently, by (3.15) and (3.16), there exists C > 0 such that forall p > 1 and £ =

/
8,
4 4 2 —
|||:|p¢(p) }LZ < CC(P)(E(CEIH- )) 1+( £P+ )) 1 +p(cgp+ )) ) Kp

1 1 1 1
(N e Ve PV e
_C<<p—2>!> (€<(E+1>P+3> +<(£+2>P+3) +p<<e+1>ﬂ+1> ‘

< Cpe P, (3.18)

Step 3°. Recall that the spectral gap property [5,Corollary 5.2] tells us that there exists C; > 0
such that for all p > 1 we have

Spec(,) C {0} U [Cip, +00). (3.19)
For £ € {I,....8,} let Y} € L3(%) such that v/} L HO (2. LP) and Opy") =
0@ Then by (3.6),

By (3.18), (3.19) and (3.20) we get
l6¢” = 72 lzm) = 190 Iz ) < ComYI0p067 N2 5y < CC e, (3:21)

uniformlyin¢ =1, ..., 8’ . Note that (3.10) can be reformulated as
(807 90 )12 () = 8¢ (1 + O™D)), (3.22)
(the case £ # j provides 0 by circle symmetry). Thus (3.20)—(3.22) entail

(‘f’(p)"f’;p))ﬁ(z) (@07 ‘pé,pj'))L?,(z) (Vo7 WW)L%(E) = 8j¢ + O(p’e™*7),(3.23)

uniformly in £, j = 1,..., 8;,. Because (Ug(p))lsisé‘;, is obtained by the Gram-Schmidt

orthonormalisation of (qbép ))1 <t<s), (which is a 8; = O(p) process) we infer from (2.55)
and (3.23) that

||Ug/(p) _ (pg(p)”l%(z) — O(p3€_2Kp), Ho.e/(p) ”L?)(z) =14+ O(p3e—2Kp)_ (324)
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Since cre(p) = alf(p)/ ||cré(p) Il 22 5:)» We conclude from (3.24) that there exists C > 0 such that
P

for p > 1,
||015(P) - ¢1§p) Iz es) = ‘”U;p)”L%(E) - 1‘ + ”Gé(p) - ¢4§p)||Lf,(>:) < Cple P, (3.25)
hence, by (3.21) and (3.25) that we have uniformly in¢ =1, ..., 8;, for p > 1,
lo” — P x 1zt | 2o = o — o) lp2s) < Cpe™”. (3.26)
Echelon property. — We use the expansion (2.22) of of on D . By construction, d)j(.p ) e
span{o|”. ...} for 1 < j < &), s0if j < ¢, then ¢ L) 0" As ¢ is the
L% (X)-projection of qﬁ(()pj) on holomorphic sections, we have as in (2.31) that
(p) L (p) —_ (P L (p) _ .
(o ,¢>0,j)L%(E) = (o, 9 >L%<2> =0, ifj<d. (3.27)
Now (2.30) and (3.27) entail
al) =0 ifj<t jell,....8}L el dy) (3.28)
From (2.22) and (3.28) we get (3.4) and (3.5). The proof of Lemma 3.1 is completed. O

The following consequence of Lemma 3.1 that refines (2.34) is very useful in our com-
putations.

Lemma 3.2 We have uniformly for j, € € {1,...,8,},

0 for j < ¢

(p) _
dje = C;P) ((sz + (’)(pe_‘{p)) for j > £. (3.29)

Proof First note that by (3.20) we have
(U(p) ¢(p)) _ (U<p) ¢(17)> _(G(p) _¢(p) ¢(17)> +<¢(p) ¢(p)) 3.30
¢ 0P ki) V% P02z T\% 0.6> %0,/ 1L2(%) 0.¢° %0, /L2 (2)" (3.30)

Further, (3.3), (3.22) and (3.30) imply

(o 8 )iz ) = Ope™ ") + 810 (1+ O€7). (3.31)
By (2.38) and (3.10) we have uniformly on j € {1, ..., 81’”},
(c§™)? / log(1z1*)[”12* x (Iz)) @px = 1+ O(e™>P). (332)
Dj,
The first equality of (2.34), (3.28), (3.31) and (3.32) entail (3.29). O

3.2 Proof of Theorem 1.3

We show now how to establish Theorem 1.3 by using Lemma 3.1. It can be noticed here that
while estimate (3.3) is essential in establishing Theorem 1.3, the echelon property is not, but
helps nonetheless clarify some of the upcoming computations.

The proof goes as follows: we start by explicit computations, then use Lemma 3.1 to lead
a precise analysis of head terms, i.e., all its indices < &’ ; and recall some rough estimates of
tail terms, i.e., some of its indices > 8;, + 1.
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On some shrinking disc family {|z| < c/p*A/ 1, we will conclude from (2.23) that the tails
terms can be controlled by 27* BE’* , hence on some fixed trivialization disc, as for Theorem
1.2.

From (2.42), for z € D}, set

By =8y, By @=8, (2. (333)
By (2.42) and (3.33), we have
By(z) By
D* - *
B () B, (@
With the notations of Lemma 3.1 we compute explicitly on D},. By (1.4), (2.7), (2.22), (2.42)
and (3.33), we have

,BPZ(Z) _ Z (Za(p) (p)>ZqZS, IBP*(Z) Z(C(P)) |Z|2q' (3.35)

q.s=1

=148 =B, )BY @)~ (3.34)

For g, s € N*, set

dy
Z) a(p)
€gs=p - o ~ Bas- (3.36)
=1«
From (3.35) and (3.36), we get
d * *
By =)@ 8, @
o0 P o
Z (Z“(p) P15 g ()2 s) Z (P2
o0
Z (P))ZCC(IP)C(P) szq+m712‘v+m, (3.37)
m=1
and similarly,
d o0
(ﬂ;: — ﬂ? ) (@) - d?'BﬁIj) (2) = Z m(C(p))zct(/v)c(p)6 (gatm—lzstm. (3.38)
q,s,m=1

From (3.34), (3.37) and (3.38), we get

B o0
j BD*(,) By, @7 Y [(q m) (e e ePe, ]z“m*lzﬁ"ﬁ (3.39)

q,s,m=1

Observe that the coefficient inside [...] in the above sum vanishes if ¢ = m. This allows to
separate the above sum into
> oom Y

g=1,s>1,m>2 q=2,s>1,m>1

We first tackle the sum over ¢ = 1, s > 1 and m > 2, focusing on the cases s, m < 8;,; then
we deal with the sum over ¢ > 2, s > 1 and m > 1, focusing on ¢, s, m < 8;,, before we
also address the cases of “large indices” (max{q, s, m} > 8;, + 1).
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Head terms. — We look at first

58,
IPsB;;(Z) = Z Z |: m)(c(P))Z (p) (P)ely]Zster. (340)
s=1m=2
By (3.4), (3.5), (3.29) and (3.36), uniformly for ¢, s € {1, ..., 8;)},
min{q,s} (Z) ﬁ
=D ?m 7~ das = 0@, pe™?). (3.41)
=1 Cq s
Foralltr € {2, .. .,8;)},j ef{l,..., 8;}, by (2.6),
. r (=2 -
[t — peiP| < 8;,(?) o) = 8,202, (3.42)

From (3.40)-(3.42), we get

/ /

|1.,@)| = 33— DV e e 21

s=1m=2
8/ /
((8/ )22p/2p e—K[) Z Z C}S’[p)cfnp) ]C(p)CAgp)|Z|S+2m- (343)
s=1m=2
But
s, 8 3
SOF e PP - (Zc§p>c§”)|z|1“> < Z P, (P)1|Z|2m71>
s=1m=2 s=1
1 1
2 2
< ((S (C(P)) | |2+Z(C(P)) |Z|25)<Z(C_(P))2 |2m> (Z(C(p) )2 |2(m—1)>
<@, + 1>(Z<c§-”))2|z|2f) = &, + DY @) (3.44)
j=1
We proceed similarly with the sum
8/ 8’ S/
IIp,(S;, (Z) ZZ Z [ q— m)(C(P))Z (p) (P) ]Zq+m—lzs+m. (345)
q=2s=1 m=1
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We have analogously to (3.44),

52 BZ Z(C(p) 2 (17) ‘E”)|z|’1+“+2'”“
q=2s=1 m=1
3, 5,
= (Zcf]”_)nzrf—‘)(Zci”w) ( Z<c<">)2|z|2m>
q=2 s=1
8, 1
< 8;(Z<c;’”31>2|z|24*2>2 (Z(c“”) |z|2‘v) (Z(c”’)) |z|2'”)
g=2
< 38,8, @) (3.46)

From (3.41), (3.42), (3.45) and (3.46), we get

5’ 8’ 5’
‘Hp’%(z) ZZZ(C(p)) (g = m)e? | legs 1212
g=2 s=1 m=1
8’ 6/ ’
((5 )22p/2pefl(p ZZ Z(c(p))z (p) A(_P)|Z|q+s+2m71
qg=2 s=1 m=1
O((8,)°2P 2 pe™*P) - (BY (2))*. (3.47)

Tail terms. — Set
A}, ={(q,s,m) e (N3 : g > 8;, +1;s,m < 8;,},
A ={(g.s.m)e N} 15 >68 +1;m<35,},
A ={(g.5,m) e N*)? 1 m =5, +1}). (3.48)

For j =1,2,3,set

I(Ajp)(Z) — Z (q m)(C(p))ZCL(]p)C(p)G Zq+m_lzs+m. (349)
(g,5,m)eA)
By (3.39), (3.40), (3.45) and (3.49), we have

d B
dBD*

L@ =6, (z))*(M;,(z)+11p,5/,,<z>+1<A},>(z)+1<A§)(z)+1(A§,)(z>).
(3.50)

We now look at the remaining terms of the sum in (3.50), i.e., I(A )(j =1,2,3).
First, for all triple (g, s, m) of Al as q > 8;, +1> 8;, > s, by (3.28), (3.36), one has:

dp 8 _
c;p)cy’)e s = aéﬁ)aif) = aé’é)a‘gf). (3.51)
=1 =1
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From (3.49) and (3.51), we have

HAp@I=cd, 3 a sup 10l 1)( sup [0l )zl

(q,s.,m)eA}, 1<t=d, 1<t=d,
[o.¢]
= Cdp< > a( sup |a§,’£)|)|z|‘f*1>
q=5),+1 1<t=d,
i (p) o (p)
x(Z( sup |ag) |)|z|S>(Z(cm” >2|z|2'">. (3.52)
s=1 I=t=d, m=1

By (3.28) and (3.29) we get uniformly in j € {1, ---, 8;7},

sup |af)| = sup |af)| < CcP. (3.53)

1<t=d, 1<t<s,

By (3.35) and (3.53), observe that for z € D},

5 5
> ([ )ir = €3
s=1 l=t=dy, s=1
5 12 )
S C(S;)1/2<Z(C‘EP))2|Z|25> S C((S;))l/z(ﬁ? (Z))1/2- (354)
s=1

Now we give an estimate via ﬁ?* (z) for the sum )
and N > 0 we have that

g=8, +1 in (3.52). Recall that for & € [0, 1)
P

o a3 g - W ADEV - NEM VeV
t]:zlvzrlqs <q§4—1$> (1-¢)? - (1= 323

thus, if |z| <r,

(5 <6070 a0 s

2r 2r r
q=6,+1
Taking now
A=l g W ¢ = re"* [log (j2r )|/ (3.57)
20!’ 4|logr| ’ '
we obtain from (3.2) that for any v € N fixed,
a'p<é8,—t for  p>1 (3.58)
Thus, as in (2.27), we have by (3.57) and (3.58) for 7 € N fixed,
2(8,—-1)/ 1 7| 2/ 1 /
G = ) e = e
2r [log(|2r|%)] 2r [Tog(|2r )] P
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forp > 1,|z| < c’p’A/. To conclude, we estimate by (2.28), (3.35) and (3.59) forany t € N
fixed,

-p/2 (2] 8, —t+l1
o () " (5,)

|Z| 2(5;,—1')/17 1 p/2 (p)
- 2 (p — 2)!
T ( <2r |log(|2r2)] ( 7(p )) 2l

< Cp~ P2l ()12, (3.60)

forall p > 1and|z] < c’p’A/. Thus by (2.23), (3.56) and (3.60) for T = 1, we have for all
p>land|z] <c'p~4,

0 1/2 _ o _
_ C p/2 zl\a—1
> g swp 1@t < L g Y g (2
1<l<d 2r 2}"
q=6),+1 q=8,+1
< €827 PR (o), (3.61)

By (2.3), (3.52), (3.54) and (3.61) we have forall p > 1 and |z] < ¢/p~#,
AL )] = €)Y 2dp 277 (B (20)* < Cp227 P (B (). (3.62)

Sums over Af, and AZ. — We continue to work on the estimates of the tail terms. We first
deal with the sum over .A%,. By (3.36) and (3.49), one has:

IAD@D = Y (@-m@) (Zay;)agg))zq*m*z”m

(q,s.m)E.A2

Z Z(S m)(C(P)) (C(p))225+m—lzs+m.

s= S/+1m 1
=5 - 5. (3.63)
Now, since |g — m| < gm for all (¢, s, m) € A2 we obtain,
o0 o0 8/

|sl|§d,,Zq<lsupd |a;’g)|)|z|‘f > ( sup, |a<”>|>\z|5 ! Zm(c,”’)) 2. (3.64)

q=1 =t=dp s=8),+1 I=t=dp

By (3.53), (3.54) and (3.61) we geton |z| < ¢/p~4',

o0
Zq( sup a(p) )Izlq <C¢ Zc(p)lzlq + CIzl(S’p2’°{/”,B;I,D*(Z)l/2
g=1 1=<t=d,

((8,,)3/2 +8,27P) (Y ()2 (3.65)
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From (2.23) and (3.60) for t = 1 we infer that we have for |z| < c/p’A/,

< (») s—1 172 2\|7P? . s o
> ( sup o} |)|z|‘ = cp'liog (12r2)| T Y (5) et
s=5,4+1 \1=t=dp s=8),+1
C . 1n NP2 1z
- e (o) () i
2r p og(| r|> <2r 1 —|z|/2r
= 2Py @', (3.66)
Obviously,
(S,
Zm(cf”) 2P <8 Z(c‘”) 2" < 8,8 (). (3.67)

m=1

Thus, using these three estimates (3.65)—(3.67) together with (2.3), (3.2), we see that
(3.64) yields:

S1l=O(p - p* - p)279PBY (2)* for |z < /p. (3.68)

From (3.63),

|S2| < Z Z |S ml(C(P)) (C(p)) |Z|25+2m—1

s=8),+1m=1
o0
S( Z S(C(p)) |Z|2S—l>(Z(C(P)) |Z|2m>- (369)
x=6;}+1 m=1

Note that by the argument in (2.23) for D* (or directly from (2.7), (2.8)), there exists C > 0
such that for any s € N*, p > 2, we have

e | < cp'/?(2r) " log(12r )| 7P/ (3.70)
By (3.2), (3.55), (3.60) for r = 1, and (3.70), we get as in (3.56) for all p > 1 and
I <ep™,
ad - ad 252
(P2 251 — ‘1 (2 2)’ Pzl (@)
(Zm )12l )_Cog|r| yetd G C
s=6),+1 s=6,+1

@, +1 (Izl)%p

T arlay) = e @ G

4
< cpliog (12r)| "l
By (3.63), (3.68), (3.69) and (3.71) we obtain
11(A2) @) = 0?27 P)BY (2)* on el < /p~™. (3.72)
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We finally deal with the sum over A?,, using the same principles'. Write:

I(.A:;’))(Z) — Z (q m)(c(P) (Za(P) (P)>2q+m 1ZY+m

(q,s.m)E.A3

_Z Z (S m)(C(P)) (C§P))2zs+mflzs+m

s=1 m= S’+]
s (3.73)

On the one hand, rather similarly as for (3.64) (observe the precise exponents though),

o0 o0 (o]
|Si|sdeq(ls;p |a”’>|>|z|‘12< sup |a(”)|)|z|s 3 mle)? P (3.74)
g=1 <t<d, P

s=1 \1=t=d m=8/,+1

Again, we deal separately with Z ’ ”,and Zs =541 from (3.54), (3.66).
In conclusion, by (2.3), (3.54), (3.65), (3.66), (3.71) and (3.74), we have on |z| < ¢'p —A' ,

1S1] < O(p*272P)BY" (2)%. (3.75)

On the other hand, we have by (3.71) on the set |z| < c’p‘A/,

|S2| < Z Z q m|(C(P))2(C(P)) |Z|2q+2m—1

q= lm—5/+l
oo
(Zq(C(P)) |Z|2q)< Z m(c(p)) |Z|2m_]>
m==4),+1

=c(s, Z(c”’)) 2P+ p27 B (@)) p2 7B ()

< c2—2“ Pp? By (2)%. (3.76)

By (3.73), (3.75) and (3.76) we have on the set |7| < c’p‘A/,

‘I(Af,)u)

= O(p* 272 7)Y ()2, (3.77)

Conclusion. — We sum up the estimates above (head terms (3.43), (3.44), (3.47), and tail
terms (3.62), (3.72), (3.77)) in (3.50), with « any fixed number larger than % log 2, and obtain

for some y > 0,
d ( B ol =
dz BD* <

Applying Theorem 1.1 fork = 1, § = 0, we get

sup O(e™7P). (3.78)

|zl<c'p™

Al

d £
sup |z [log(z)| ‘d—Z(Bp - B, )(@)|=0(p™), (3.79)

¢/ p=A <lz|<r

! Fine uniform control for small indices, rou§h control via Cauchy formula for large indices, sacrifice of a
few powers of |z| and restriction to |z]| < ¢p™* for resulting sums.

@ Springer



Quotient of Bergman kernels on punctured... 2363

which can be rephrased as follows:

d )
sup a(B,, —B))(@)|=0(p™). (3.80)

pA <lz|<r

Estimates (2.8), (3.78), (3.80) yield (1.10) for k = 1.
Higher k-order estimates are established along the same lines: (1) the sum over the set of

indices in Af, where one of indices satisfies > 8;, + 1, will be controlled by a polynomial in
p times 27%'7 ,3?* (2); (2) to handle the sum over the set of indices < &' , we observe first

that the contribution from the terms with sum of indices < 2k + 2 is zero, so we will increase
k to absorb the exponential factor in the estimates. Thus the analogue of (3.78) holds for

k > 1. We exemplify this for the second derlvatlve > to show how the above argument
works. From (3.39), we get
d* B,
dz? BD*

L@ =B

Z (q m)(q +m—-1— Zt)(c([?) (P))Zc((lp)c(l’)e Zl]+m 2+t X+m+l‘ (3 8])
q,s,t,m=1

It is clear that the contribution of the indices with ¢ +m +t < 5 is zero, so the trick (3.42)
works even in the presence of a z~>-term in (3.81). O
4 Applications
Theorem 1.3 can be interpreted in terms of Kodaira embeddings. Following the seminal papers
[8,11,14,17,23,28,29] one of the main applications of the expansion of the Bergman kernel
is the convergence of the induced Fubini— Study metrics by Kodaira maps. Let us consider the
Kodaira map at level p > 2 induced by H 2)(2 L?), which is a meromorphic map defined
by

Jp@ T - P(HY(Z,LP)) = CPY !, x+— {0 € H) (S, LP) 1 0(x) = 0}(4.1)

Recall that by [5,Remark 3.2] the sections of H(Oz)(E, L?) extend to holomorphic sections

of L? over X that vanish at the punctures and this gives an identification
HY\ (2. LP) = {o € H'(Z, L) : o|p = 0}. (4.2)
Let op be the canonical section of the bundle &5 (D). The map
HY(Z,LP ® 65(~D)) —» {0 e H'(Z,LP) :0|p =0}, s+>s@ap, (4.3)

is an isomorphism imd we have an identification H(Z, L? ® O5(=D)) ® op =
H(OZ)(E, LP)y c HO(Z, LP). Since the zero divisor of op is D we have for x € T,

o e H)(Z.LP) :0(x) =0} = {s € H'(T, L” ® O5(—D)) : s(x) = 0} ® op.
4.4)
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Let j, the Kodaira map defined by H 0T, LP® U5 (—D)). We have by (4.4) the commutative
diagram

ddi P(HY, (S, L7)") 4.5)

f im

P(H(Z, L? ® Os(—D))*)

Ip

It is well known that j, is a holomorphic embedding for p large enough, namely for all
p satisfying p deg(L) — N > 2g (see [19,p. 215]). Thus j, (2) is also an embedding for p
large enough, as the restriction of an embedding of X.

The L2-metric (2.1) on H(Oz)(E, L?) induces a Fubini-Study Kihler metric wfs,, on

the projective space IP’(H(%)(E, L?)*) and a Fubini-Study Hermitian metric hrs , on the
hyperplane line bundle (1) — IP’(H(OZ)(E, LP)*). By [22,Theorem 5.1.3] j, and j, (2
induce canonical isomorphisms

j;ﬁ(l) ~ L? ® 0(—D), ];(2)@(1) ~ L"|2. (4.6)
Let j; (2)th, p be the Hermitian metric induced by %, , via the isomorphism (4.6) on L? | 5
Theorem 4.1 Let (X, wx, L, h) fulfill conditions («) and (B). Then as p — oo,

Jhohesy = (1+0(p=) (B )" 'h?,

1, 1 i . _

- =— ——0dlog (B O(p~), 47
I @@Fs.p = 7 own o 0dlog (B, )+ O(p™) 4.7

uniformly on Vi UV, U ... U Vy.

Proof We have indeed by [22,Theorem 5.1.3],

i i -
— Rl + —— 39 log(B,), 4.8
gt 2 p og(Bp) (4.3)

o (4.7) follows from Theorems 1.2 and 1.3. ]

1
-1
Ip.hEs.p = (Bp)" h", ;J;(Z)wFS,P =

We compare next the induced Fubini-Study metrics by 7, 2) on ¥ and on D*, and show
that they differ from each other (modulo the usual identification on D}, in (1.6) with the
neighbourhood of a singularity of X) by a sequence of (1, 1)-forms which is O(p~°) (at
every order) with respect to any smooth reference metric on D, : the situation is just as good
as in the smooth setting.

The infinite dimensional projective space CP* is a Hilbert manifold modeled on the
space £ of square-summable sequences of complex numbers (a j)jen endowed with the
norm [|(a;)|| = (ijo |aj|2)l/2. Then CP*® = ¢2\ {0}/C* and for a € €% we denote
by [a] its class in CIP°°. The affine charts are defined as usual by U; = {[a] : a; # 0}.
The Fubini-Study metric wrs, « is defined by wgs 0o = ﬁaﬁ log ||a ||2 to the effect that for a
holomorphic map F : M — CP* from a complex manifold M to CP*> we have F*wps oo =
ﬁaglog || F|I?. We define the Kodaira map of level p associated with (D*, wp+, C, hp+) by
using the orthonormal basis (2.6) of H(’;) M),

1p D" — CP*®, 1,(z) = [cip)z, cép)zz, .. .,cép)ze, ...] e CP*®, zeD* (4.9
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Theorem 4.2 Suppose that D}, and V C X are identified as in (1.6). On D}, we set
l;wps,oo - j;’(z)wps,p =npidz NdZ. (4.10)

Then 1, extends smoothly to D, and one has, for allk > 0, £ > 0,
Inpllckm,) < Crep™.  asp— oo, (4.11)

where || - || ck(p,) is the usual C*-norm on D.

Proof We first observe that 1, is an embedding, since already z +— [cip )z, cép )z2] e CPlis
an embedding. We have

P _ i = D*
2 D = 1, WFS,00 — gaalog (B, ) (4.12)

and consequently on D,

*

[ - "
ORS00 = J; ) @Fs.p = 500 log (BY /By). (4.13)
so the assertion follows from Theorem 1.3. O

We finish with an application to random Ké&hler geometry, more precisely to the distribution
of zeros of random holomorphic sections [12, 16, 26].

Let us endow the space H, (02) (X, L?) with a Gaussian probability measure y,, induced by
the unitary map H(Oz)(E, LP) = C% given by the choice of an orthonormal basis (S f );1p= 1
Given a section s € H) (£, L?) C H(E, L?) we denote by [s = 0] the zero distribution

on X defined by the zero  divisor of s on . If the zero divisor of s is given by > m; Pj,
where mj; € Nand P; € X, then[s =0] = ) m;8 P where §p is the delta distribution at

P € X. We denote by (-, -) the duality between distributions and test functions. For a test
function ® € C*®(X) and s as above we have ([s = 0], ®) = ijQD(Pj).

The expectation distribution E[s, = 0] of the distribution-valued random variable
H(Oz)(E, L?) 5 5, + [sp = 0] is defined by

(Els, = 0], @) = / ([sp =01, ®)dpup(sp), (4.14)
Hg)(z,m)

where @ is a test function on X. We consider the product probability space

e.¢] oo
(How) = | [T HEE. L) [T wp
p=1 p=1

Theorem 4.3 (i) The smooth (1,1)-form j; 2)@FS.p extends to a closed positive (1,1)-current

on T denoted vp (called Fubini-Study current) and we have E[s, = 0] = y,. (ii) We have
%yp — ﬁRL as p — 00, weakly in the sense of currents on %, where R is the curvature

current of the singular holomorphic bundle (L, h) on X. ‘
(iii) For almost all sequences (sp) € (H, 1) we have %[s,, = 0] —» iRL as p — oo,

weakly in the sense of currents on .
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Proof The convergence of the Fubini-Study currents y, follows from (4.7). The rest of the
assertions follow from the general arguments of [12,Theorems 1.1, 4.3]. The conditions (A)-
(C) in [12,Theorems 1.1, 4.3] are implied by our hypotheses («), (8) and the required local
uniform convergence %log B, — 0 as p — +00 on X is a consequence of [22,Theorem
6.1.1]. O
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