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Abstract. We prove non-vanishing theorems for the central values of L-series
of quadratic twists of the Gross elliptic curve with complex multiplication by

the imaginary quadratic field Q(
√
−q), where q is any prime congruent to 7

modulo 8. This completes the non-vanishing theorems proven by Coates and
the second author in which the primes q were taken to be congruent to 7

modulo 16. From this, we obtain the finiteness of the Mordell–Weil group and

the Tate–Shafarevich group for these curves. For a prime P lying above the
prime 2, we also prove a converse theorem in the rank 0 case and the P-part

of the Birch–Swinnerton-Dyer conjecture for the higher-dimensional abelian

varieties obtained by restriction of scalars.

1. Introduction

We let q be a prime number congruent to 7 modulo 8. We define K to be the
imaginary quadratic field Q(

√
−q), viewed as a subfield of C, with ring of integers

OK and class number h. Let H = K(j(OK)) be the Hilbert class field of K, where
j(OK) denotes the j-invariant of the complex lattice OK . The prime 2 then splits
in K, say 2OK = pp∗, and since q ≡ 3 mod 4 is a prime, h is odd by genus theory
due to Gauss.

Amongst the elliptic curves with complex multiplication by K, Gross has intro-
duced in [10] an elliptic curve A with particularly nice properties (in fact, the Gross
curve can be defined for any prime q ≡ 3 mod 4). The Gross elliptic curve A is the
unique elliptic curve which is defined over Q(j(OK)) with complex multiplication
by OK , minimal discriminant (−q3) (so that A has bad reduction only at the prime
q), and which is a Q-curve, in the sense that it is H-isogeneous to all its conjugates
Aσ, where σ is any element of the automorphism group of H. In addition, Gross
has shown that A has a global minimal model over OH , and we write Ω∞ for the
corresponding complex period.

The study of the arithmetic of A has attracted many mathematicians since it was
developed in [10]. In particular, Gross has shown in [10] by a 2-descent argument
that A has Mordell–Weil rank zero over H. Motivated by this, Rohrlich showed in
[19] that the L-function L(A/H, s) of A over H does not vanish at s = 1. Following
this, Rodriguez Villegas gave another proof in [18] for the fact that L(A/H, 1) 6= 0
using a factorisation formula, parallel to the work of Waldspurger.

Let A(D) be a quadratic twist of A by the extension H(
√
D)/H for a square-free

integer D. We note that this is a non-trivial extension since the class number h is
odd. The arithmetic of A(D) has also received a lot of attention. For example, using
theta liftings and analytic methods, Yang [22, 23] showed that L(A(D)/H, 1) 6= 0

when D is small compared to q, roughly, D < q
1
4 .

We now introduce some notation to state our main theorem. Let R denote the
set of all square-free positive integers R of the form R = r1 · · · rk, where k ≥ 0
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(k = 0 means R = 1) and r1, . . . , rk are distinct primes such that (i) ri ≡ 1 mod 4,
and (ii) ri is inert in K, for i = 1, . . . , k. For R ∈ R with R 6= 1, we write A(R)

for the twist of A by the quadratic extension H(
√
R)/H. We write L(A(R)/H, s)

for the complex L-series of A(R)/H. By Deuring’s theorem, L(A(R)/H, s) is a
product of Hecke L-functions coming from the Hecke character ψR associated to
A(R)/H. This can in turn be written as a product of Hecke characters associated
to ResH/KA

(R) = B(R) obtained from A(R) by restriction of scalars from H to K.

In view of the relations discussed in Section 2, it suffices to show L(φR, 1) 6= 0 for
a Hecke character of B(R) to conclude L(A(R)/H, 1) 6= 0. We write T for the CM
field of B, and we write P for the special prime of T lying above 2 whose existence
is given in Proposition 2.1, where without loss of generality we assume that it also
lies above the prime p of K. We shall prove the following result.

Theorem 1.1. For any R = r1 · · · rk ∈ R. Then L(φR,1)
√
R

Ω∞
∈ TH, and for any

prime P of TH lying above P, we have

ordP

(
L(φR, 1)

√
R

Ω∞

)
= k − 1.

In particular, L(A(R)/H, 1) 6= 0. Moreover, the Mordell–Weil group A(R)(H) and
and the Tate–Shafarevich group X(A(R)/H) of A(R) are finite.

The implication that L(A(R)/H, 1) 6= 0, then A(R)(H) is finite, is a theorem
of Coates–Wiles [8] and its extensions due to Arthaud [1] and Rubin [20]. In the
case of the congruent number curves, such an implication was used by Tunnell [21]
to provide a method of verifying a given positive integer is not congruent, and
the 2-adic valuation of the algebraic part of their L-values was analysed by Zhao
[24, 25].

The implication that L(A(R)/H, 1) 6= 0, then both A(R)(H) and X(A(R)/H)
are finite, follows either from an Euler system argument due to Kolyvagin [16] and
Gross–Zagier [13], or its extension due to Kato [14] for twists of eigen cusp forms
f . We recall that A is a Q-curve and its restriction of scalars is modular, and the
relation (2.2) satisfied by the Hecke characters can be used to show that the curves
we deal with appear as quotients of the Jacobian J0(N) (see [3]). We also note that
in the case f has complex multiplication, the proof of Kato is based on the work of
Rubin on the main conjecture for imaginary quadratic field [20].

Letting R = 1 in Theorem 1.1, we obtain L(A/H, 1) 6= 0, reproving the result
of Rohrlich in [19]. The key difference is that our result gives the exact valuation
at the primes above P of the L-value for the base curve, which provides the crucial
initial step in the induction on which the proof of Theorem 1.1 relies.

We remark that when q ≡ 7 mod 16, the above result was proven by John Coates
and the second author in [6]. The new part of the theorem thus concerns the case
when q ≡ 15 mod 16. We stress that this case could not be covered in [6], and
this is due to the fact that the a corresponding Iwasawa module X(F∞) introduced
in Section 5 is trivial in the case q ≡ 7 mod 16, but it was proven to be always
non-trivial in the case q ≡ 15 mod 16 [17]. It is thus essential to obtain a better
understanding of this Iwasawa module.

The module X(F∞) is the Pontryagin dual of a certain Selmer group (see Theo-
rem 5.1). A key method used to prove Theorem 1.1 is thus a combination of various
descents at finite levels and an infinite descent in the setting of Iwasawa theory.

In proving Theorem 1.1, we will first study the abelian variety B = ResH/K(A)
over K. Another key ingredient is the Iwasawa main conjecture at the special
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prime P, following [6]. Indeed, the field F∞ above is given by K(BP∞), obtained
by adjoining to K all P-power division points on B. In order to treat the case
p = 2, we also need to show that X(F∞) is a finitely generated Z2-module. This
will follow from our earlier work [4], in which we show that the Iwasawa module
X(H(Ap∞)) corresponding to the field H(Ap∞) is a finitely generated Z2-module.
Combined with the descent arguments, this gives us a non-vanishing result for the
base curve A and a rank zero P-converse theorem for B. Furthermore, we prove
the P-part of the Birch–Swinnerton-Dyer conjecture for B over K, a refinement
due to Buhler and Gross [3]. Using this as the base case, we apply an induction
argument on the number of prime divisors of R ∈ R, a generalisation of Zhao’s
method to abelian varieties, to extend the non-vanishing result to the twists A(R)

as in Theorem 1.1. We stress that knowing the non-vanishing result for the base
curve A is not sufficient for obtaining the non-vanishing result for the twisted curve
A(R), and we crucially use the exact P-adic valuation for the base curve in our
argument.

In a subsequent paper [15], we will study the exact Birch–Swinnerton-Dyer
formula for A(R) by proving the refined Birch–Swinnerton-Dyer conjecture at all
primes of the CM field lying above 2.

We remark that, as a consequence of Theorem 1.1, we obtain the following
density result. Let D ≥ 1 denote a fundamental discriminant, and let

N(X) = #{D < X : L(A(D)/H, 1) 6= 0}.
Then we have

Corollary 1.2.

N(X) >>
X

log
3
4 X

.

This paper is structured as follows. In Section 2, we introduce some notation
and preliminary results. We give a 2-descent argument in Section 3 showing that
B has no first descent at the special prime P of T lying above 2. In Sections 4
and 5, we prove a rank zero converse theorem for B at the prime P, and prove the
P-part of the Birch–Swinnerton-Dyer conjecture. This uses Iwasawa theory for the
prime P and the descent results, giving the exact P-adic valuation of the algebraic
part of the Hecke L-value associated to B/K at s = 1. In Section 6, we apply a
generalisation of Zhao’s induction method to obtain the non-vanishing result for
the twisted curves, concluding the proof of Theorem 1.1. The proof of Corollary
1.2 can be found at the end of Section 6.

Acknowledgement This is one of the two papers we wish to dedicate to
John Coates. John encouraged us to give a full detailed proof of the full Birch–
Swinnerton-Dyer conjecture for these elliptic curves with complex multiplication
based on classical approaches which he, Wiles and Rubin developed. He believed in
the power of small primes in number theory, and he inspired us to pursue it. With
this paper, we wish to tell him that what he predicted is indeed true.

2. Preliminaries

Since the minimal discriminant ideal (−q3) of A is a principal ideal, it raises the
question as to whether there exists a global minimal Weierstrass equation for A
over the ring of integers OH of H. Gross has proven that this is indeed the case
[11], and we fix one such equation

(2.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with ai ∈ OH . We let B/K be the abelian variety which is the restriction of scalars
from H to K of the Gross curve A/H. For each R ∈ R, we write B(R) for the twist
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of B by the quadratic extension K(
√
R)/K, and A(R) for the twist of A by the

quadratic extension H(
√
R)/H. It is easily seen that B(R) is in fact the restriction

of scalars from H to K of A(R).
We write

T = EndK(B(R)) = EndK(B) and T = T ⊗Z Q.
Then T is a CM field of degree h over K, where h denotes the class number of
K. Let α : T ↪→ C be an embedding of T into C which extends our embedding
of K into C. There are h such choices of α. We write ψ for the Hecke character
of A/H and φ = φα for the Hecke character of B/K relative to α. We then have
ψ = φ ◦NH/K , where NH/K denotes the norm map from H to K. Since (R, q) = 1,

the Hecke character φR of B(R)/K is then given by φR = φχR, where χR denotes

the abelian character of K defining the quadratic extension K(
√
R)/K. Moreover,

since H/K is unramified, the Hecke character ψR of A(R)/H is equal to

(2.2) ψR = φR ◦NH/K .
Note that the Hecke characters φ and φR take values in T . In what follows, we
shall write ψ and φ for the complex conjugate characters of ψ and φ, respectively.
Since A is a Q-curve, we have L(A/H, s) = L(ψ, s)2 by a theorem of Deuring, and
we have the relation between L-series [10, Section 18]

(2.3) L(ψ, s) =
∏

α∈HomK(T,C)

L(φ
α
, s),

where the product runs over the h distinct embeddings of T lying above our fixed
embedding of K. We will first show the non-vanishing of L(φ, 1). Since the same

arguments show that L(φ
α
, 1) 6= 0 for any α, we may conclude that L(A/H, 1) 6= 0.

Similarly, in order to show L(A(R)/H, 1) 6= 0, it is sufficient to show L(φR, 1) 6= 0.
We now choose a prime of T lying above 2, which is well suited for our purpose.

Note that the index of T in the maximal order of T is prime to 2 (see Section 13
of [10]). As q ≡ 7 mod 8, the prime 2 splits in K into two distinct primes, which
we will denote by p and p∗. The following lemma (see [3] or Lemma 2.1 in [6])
gives the existence of a degree one prime P of T above p, which is the special prime
mentioned in the introduction and which will play a fundamental role throughout
this paper.

Proposition 2.1. There exists a unique, unramified degree one prime P of T lying
above p.

Of course, since the index of T in the ring of integers of T is prime to 2, P∩T will
be a degree one prime ideal of T , which for simplicity we shall again denote by P.
We will also use the degree one prime P∗ of T lying above p∗, which is obtained by
applying the complex conjugation to P.

3. The first 2-descent on B over K

Iwasawa theory of B for the prime P shall deal with the extension F∞/K,
where F∞ = K(BP∞). Its Galois group is of the form Γ × ∆ where Γ ' Z2

and ∆ ' Z/2Z. The main conjecture of Iwasawa theory relates the corresponding
Iwasawa module X(F∞) to a P-adic L-function, which interpolates the Hecke L-
value L(φ, 1) (see Section 5). In the case q ≡ 7 mod 16 treated in [6], it could be
shown that X(F∞) = 0. In the new case q ≡ 15 mod 16 treated here, we know that
X(F∞) is non-trivial [17]. We will get around this by studying its Pontryagin dual
SelP∞(B/F∞). In particular, we will show that its Γ-invariant part SelP∞(B/F∞)Γ
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is finite and compute the P-adic valuation of its order to relate it to the P-adic
valuation of the Hecke L-value. This requires carrying out various descents, both at
finite and inifinite levels, and proving exact relations between them. In this section,
we will carry out a 2-descent on B over K.

We let G = Gal(H/K), which is a group of order h, an odd number by our
choice of q. In this section, we will use a G-invariant 2-descent result on A/H due
to Gross (see the proof of Proposition 3.1) to prove a 2-descent result on B/K.
Recall that T is the ring of K-endomorphisms of the abelian variety B. For each
integer n ≥ 1, let BPn be the Galois module of Pn-division points on B. We define
the Selmer group SelPn(B/K) by the exact sequence

SelPn(B/K) = Ker

(
H1(K,BPn)→

∏
v

H1(Kv, B)Pn

)
,

where v runs over all finite places of K, and Kv is the completion at v of K.
Recall that P lies above p, where p is one of the primes of K lying above 2. Let

Ap be the Galois module of p-division points on A. We similarly define the Selmer
group Selp(A/H) by the exact sequence

Selp(A/H) = Ker

(
H1(H,Ap)→

∏
w

H1(Hw, A)p

)
,

where w runs over all finite places of H, and Hw is the completion at w of H. This
Selmer group is also a G-module, and we denote by Selp(A/H)G the subgroup of
Selp(A/H) consisting of elements fixed by G.

Proposition 3.1. We have

Selp(A/H)G ' Z/2Z.

Proof. Let Sel2(A/H) be the 2-Selmer group of A/H using the Galois module A2 of
2-torsion points on A defined in a similar way as above. This is also a G-module, and
we denote by Sel2(A/H)G its Galois invariant subgroup. The G-invariant Selmer
group is much easier to compute than the full Selmer group, and Gross shows in
[10] that

(3.1) Sel2(A/H)G ' OK/2OK .
Note that A2 = Ap ×Ap∗ as Gal(K/H)-modules, where Ap∗ the Galois module of
p∗-torsion points on A, and A2 is contained in A(H). Thus, by the definitions of the
Selmer groups, we have Sel2(A/H) = Selp(A/H)× Selp∗(A/H), where Selp∗(A/H)
is defined in a similar way to Selp(A/H) given above. Since both Selp(A) and
Selp∗(A) are G-modules and G is of odd order, we have

Sel2(A/H)G = Selp(A/H)G × Selp∗(A/H)G.

Note that Selp(A/H)G is an OKp
-module where OKp

is the ring of integers of Kp,
and OKp

/pOKp
' Z/2Z, The proposition follows on taking the tensor product on

both sides of (3.1) with OKp
. �

Next, we calculate the P-Selmer group SelP(B/K) using standard exact se-
quences of Galois cohomology. We will also use the following isomorphism of Galois
modules.

Lemma 3.2. We have an isomorphism

BP ' Ap.

of Gal(K/H)-modules.
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Proof. Since BP is a Gal(K/K)-module, we can naturally view it as a Gal(K/H)-

module. Both modules are isomorphic to Z/2Z, and the action of Gal(K/H) on
both modules is trivial, so the result follows. �

Proposition 3.3. We have

SelP(B/K) ' Z/2Z.
In particular, B(K) is finite since BP(K) is non-trivial, and

X(B/K)(P) = 0.

Here, we denote by X(B/K)(P) the P-primary part of the Tate–Shafarevich group
of B/K.

Proof. The proof crucially depends on the 2-descent result in Proposition 3.1. We
recall the following definitions for SelP(B/K) and Selp(A/H) using the exact se-
quences

0→ SelP(B/K)→ H1(K,BP)→
∏
v

H1(Kv, BP)

Imκv(B)

and

0→ Selp(A/H)→ H1(H,Ap)→
∏
w

H1(Hw, Ap)

Imκw(A)
,

where, κv(B) (resp. κw(A)) denotes the local Kummer map of B (resp. A) at
v (resp. w). Recall that G = Gal(H/K). By taking the G-invariant part of the
second exact sequence, we obtain the exact sequence

0→ Selp(A/H)G → H1(H,Ap)G →

(∏
w

H1(Hw, Ap)

Imκw(A)

)G
.

Using Lemma 3.2 and noting that #(G) is odd, we see that the restriction map

(3.2) i : H1(K,BP)→ H1(H,Ap)G

is an isomorphism. Furthermore, locally at each prime v of K we can identify
G with the group Gal((Kv ⊗K H)/Kv). Thus, the restriction map also gives the
isomorphism

(3.3) j0 : H1(Kv, BP)→

∏
w|v

H1(Hw, Ap)

G

.

Now, since B is the restriction of scalars of A from H to K (or from [10]), we have

B(Kv) = A(Kv ⊗K H) =
∏
w|v

A(Hw).

SinceB(Kv) is fixed byG = Gal((Kv⊗KH)/Kv), given any point (Pw) ∈
∏
w A(Hw)

and any σ ∈ G, we may identify (Pw) with (Pσσw).
Note that we have OTP

/P = OK/p = Z/2Z, and thus∏
w|v

A(Hw)

⊗ (OK/p) = B(Kv)⊗ (OTP
/P).

Consider the maps

B(Kv)⊗ (OTP
/P)

κv(B)
↪→ H1(Kv, BP)

'−→

∏
w|v

H1(Hw, Ap)

G

,
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where the last isomorphism is given by j0 in (3.3). From our remark on the Galois
action of G, we see that the composition of these maps coincides with

∏
w|v κw(A).

It then follows from the definition of the Selmer groups and the isomorphisms (3.2)
and (3.3) that i sends SelP(B/K) isomorphically to Selp(A/H)G. The result now
follows from Proposition 3.1. �

We define

SelP∞(B/K) = lim
−→

SelPn(B/K)

to be the direct limit of the Selmer groups SelPn(B/K) with respect to n. We then
immediately obtain

Corollary 3.4. We have

SelP∞(B/K) = 0.

We end this section with the following remark which will be used in Sections 4 and
5.

Remark 3.5. By replacing P with P∗ (the degree one prime of T lying above p∗)
above, we similarly obtain that X(B/K)(P∗) and SelP∗∞(B/K) are trivial. Thus,
both B(K) and X(B/K)(PP∗) are finite.

4. Descent theory on B over the fields K and F = K(BP2)

The elliptic curve A only has additive reduction at each place w of H lying above
q =
√
−qOK . For each such w, we write A0(Hw) for the subgroup of A(Hw) consist-

ing of points with non-singular reduction modulo w, and put Cw = A(Hw)/A0(Hw).
Of course, Cw is a OK-module, and by the theory of the Néron model, the order of
Cw is at most 4.

Lemma 4.1. Let w be a place of H lying above q =
√
−qOK . Then Cw ' OK/2OK

as a OK-module. In particular, Cw is of order 4.

Proof. Since w does not divide 2 and A has additive reduction at w, it follows that
multiplication by 2 must be an automorphism of A0(Hw), whence the kernel of
multiplication by 2 on Cw must be isomorphic to A(Hw)2 = OK/2OK , as required.

�

Since B = ResH/KA, we know that

(4.1) B(Kq) =
∏
w|q

A(Hw).

We define

(4.2) B0(Kq) =
∏
w|q

A0(Hw),

where the two products are taken over all places w of H above q, and we set

Cq =
B(Kq)
B0(Kq) .

Lemma 4.2. We have

(1) Cq =
∏
w|q Cw, and

(2) Cq is a module over OT ⊗Z Z2, and (Cq)(P∗) ' OTP∗/P
∗OTP∗ .
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Proof. The first assertion follows from the restriction of scalar properties for Néron
models. For the details, see Proposition 4.5 of [12]. The second assertion follows
from the fact that [T : K] = [H : K] = h, combined with Lemma 4.1 and the
structure theory for modules over principal ideal domains. �

It is known that B is a self dual abelian variety (see 4 lines below (3.1) in [12]).
Thus, we have the following lemma.

Lemma 4.3. We have

(i) H1(Kq, B)(P) is finite of order 2, and

(ii) H1(Kp, B)(P) is finite of order equal to | (1− φ(p)/2) |−1
P .

Here, | · |P is the multiplicative valuation on TP, normalised so that |2|P = 2−1.

Proof. Recall that T is the ring of K-endomorphisms of the abelian variety B.
We fix any non-zero element π of T such that the ideal factorisation of π in the
ring of integers of T is Pr for some integer r ≥ 1. Since B is self-dual, Tate local
duality shows that, for all n ≥ 1, H1(Kq, B)πn is dual to B(Kq)/π∗nB(Kq), whence
H1(Kq, B)(P) is dual to lim←−nB(Kq)/π∗nB(Kq). Here, π∗ is the non-zero element

of T such that the ideal factorisation of π∗ in the ring of integers of T is P∗r.
From the formulae (4.1) and (4.2), we have the exact sequence

(4.3) 0→ B0(Kq)→ B(Kq)→ Cq → 0.

Now, for each w above q, we use the reduction modulo w exact sequence for A0(Hw).
Noting that A has additive reduction at w and w is prime to 2, we see from (4.1)
and (4.2) that π∗n is an automorphism of B0(Kq). Then from the exact sequence
(4.3), we obtain

B(Kq)/π∗nB(Kq) = Cq/π
∗nCq.

The first assertion of the lemma now follows easily from Lemma 4.2.
For the second assertion, given a local field Lv, we write k(Lv) for the residue

field of Lv. Then we have B̃(k(Kp)) =
∏
w|p Ã(k(Hw)), where Ã is the reduction

of A modulo w using the global model (2.1) and B̃ is the reduction of B modulo p.

Since A has good reduction at p, we know that π∗n is an automorphism on
∏
w|p Âw,

where Âw denotes the formal group of A at w. Then by the same reasoning as in
(i), we have that H1(Kp, B)(P) is dual to

lim←−
n

B(Kp)

π∗nB(Kp)
= lim←−

n

B̃(k(Kp))

π∗nB̃(k(Kp))
= B̃(k(Kp))(P∗).

Now, by the theory of complex multiplication, φ(v) is the unique element of the
ring of endomorphisms T = EndK(B) whose reduction modulo p is the Frobenius

endomorphism of B̃ over the finite field k(Kp). Note that φ(p)φ(p) = 2 and φ(p)−1
is a P-unit. Thus,∣∣∣#(B̃(k(Kp))(P∗))

∣∣∣−1

P
=| (φ(p)− 1)(φ(p)− 1) |−1

P =

∣∣∣∣(1− φ(p)

2

)∣∣∣∣−1

P

.

This completes the proof of the second assertion of the lemma. �

Let L/K be an algebraic extension over K, and let S be a finite set of primes of
K. Then we define

SelSP∞(B/L) = ker

H1(L,BP∞)→
∏
v-S

H1(Lv, B)(P)

 ,
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where the product runs over all primes v of L not lying above the primes in S and
Lv denotes the compositum field of all completions at v of finite extensions over K

contained in L. In the following, we will simply write Sel′P∞(B/L) for Sel
{p}
P∞(B/L)

and SelWP∞(B/L) for Sel
{p,q}
P∞ (B/L).

Proposition 4.4. We have∣∣∣#(SelWP∞(B/K)
)∣∣∣−1

P
=

∣∣∣∣(1− φ(p)

2

)∣∣∣∣−1

P

.

Proof. We recall that π is a fixed element of T satisfying the factorisation (π) = Pr

in the ring of integers of T for some r ≥ 1. For each integer n ≥ 1, we have the
short exact sequence

(4.4) 0→ Selπn(B/K)→ SelWπn(B/K)
un−−→

∏
v∈W

H1(Kv, B)πn ,

where SelWπn(B/K) is defined in a similar manner for Bπn , and we write un for the
right hand homomorphism in this sequence. On the other hand, by the definition
of the Selmer group Selπ∗n(B/K), we have the natural homomorphism

(4.5) sn : Selπ∗n(B/K)→
∏
v∈W

B(Kv)/π
∗nB(Kv).

Note that the groups on the right of (4.4) and (4.5) are dual to each other by Tate
local duality and self-dualness of B. By the modified Poitou–Tate sequence (see, for
example, [2, Section 3.3]), we conclude that Coker(un) is equal to the Pontryagin
dual of Im(sn) for all n ≥ 1. Hence, writing u∞ for the inductive limit of the
maps un as n → ∞, it follows that Coker(u∞) is dual to the image of the map
s∞ = lim←−n sn, where

s∞ : lim←−
n

Selπ∗n(B/K)→
∏
v∈W

B(Kv)⊗T OTP∗ .

But by Remark 3.5, B(K) and X(B/K)(P∗) are both finite. It follows that
lim←−n Selπ∗n(B/K) is isormorphic to B(K)(P∗), which is cyclic of order 2. Moreover,

s∞ is injective becauseW is non-empty. Thus, the cokernel of u∞ has order equal to
#(B(K)(P∗)). The result now follows on taking the inductive limit over all n ≥ 1
of the exact sequences (4.4) and combining with Lemma 4.3 and Corollary 3.4. �

Let F = K(BP2). One can easily show that the degree of F over K is equal to
2. The next proposition is Theorem 2.4 of [6].

Proposition 4.5. The abelian variety B has good reduction everywhere over F .

Let K∞ be the unique Z2-extension over K which is unramified outside of the
prime p. Then we have F∞ = K(BP∞) = K∞(BP2). We denote by

G = Gal(F∞/K) = Γ×∆,

where Γ ' Z2 and ∆ = Gal(F∞/K∞) ' Gal(F/K) is of order 2. We write δ for
the generator of ∆, so that δ acts on BP∞ by multiplication by −1. We refer the
reader to [6] for more details on these fields and Galois groups.

Since Sel′P∞(B/F ) is a module over Gal(F/K), we may denote by Sel′P∞(B/F )∆

the subgroup of elements in Sel′P∞(B/F ) fixed by ∆.
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Proposition 4.6. We have the exact sequence

(4.6) 0→ H1(F/K,B(F )P∞)→ SelWP∞(B/K)→ Sel′P∞(B/F )∆ → 0.

Proof. The assertion, except for the surjectivity, will follow from the commutative
diagram
(4.7)

0 // SelWP∞(B/K)

j1

��

// H1(K,BP∞)

j2

��

// ∏
v/∈W H1(Kv, B)(P)

j3
��

0 // Sel′P∞(B/F )∆ // (H1(F,BP∞))∆ //
(∏

w/∈{p}H
1(Fw, B)(P)

)∆

,

where j2 is the restriction map and j1 is induced by the restriction of j2 to SelWP∞(B/K).
We first show that

(4.8) j2

(
SelWP∞(B/K)

)
⊂ (SelPP∞(B/F ))∆.

To prove this, we note that since B has good reduction everywhere over F , the
prime q must ramify in F . We write w for the unique prime of F above q. We now
claim that the local restriction map

rq : H1(Kq, B)(P)→ H1(Fw, B)(P)

must be the zero map, from which (4.8) follows easily. Indeed, we know from
Lemma 4.3 that H1(Kq, B)(P) is of order 2. Hence, it suffices to prove that the
restriction map from H1(Kq, B)2 to H1(Fw, B)2 is the zero map, or equivalently,
that the dual map from B(Fw)/2B(Fw) to B(Kq)/2B(Kq) given by the norm is
the zero map. Since q is prime to 2, multiplication by 2 is an automorphism of the
formal group of B at w. Moreover, B has good reduction at w, and we write B̃ for
the reduction of B modulo w. Thus, B̃ is an abelian variety over the residue field
k(Fw) = k(Kq), and we have

B(Fw)/2B(Fw) = B̃(k(Fw))/2B̃(k(Fw)).

But since k(Fw) = k(Kq), the non-trivial element of ∆ acts trivially on the group
on the right hand side, and so the norm map will just be multiplication by 2 on
this group, which clearly annihilates it, proving that rq is indeed the zero map. On
the other hand, if v 6= q is a place of K where B has good reduction, then v is
unramified in F . Thus, writing ∆v for the decomposition group of any prime w of F
above v, a basic local property of abelian varieties with good reduction tells us that
H1(∆v, B(Fw)) = 0. Thus, rv : H1(Kv, B)(P)→ H1(Fw, B)(P) is injective in this
case. A simple diagram chase in (4.7) then shows that the kernel of j2 restricted to

SelW(E/H,Ep∞) must be equal to the kernel of j2, which is equal to H1(∆, Ep2).
By applying the snake lemma to the diagram (4.7), we obtain the exact sequence

0→ H1(F/K,B(F )P∞)→ SelWP∞(B/K)
j1−→ Sel′P∞(B/F )∆.

We next show that j1 is surjective. We simply write v = q in W, and let Iv
be the inertia subgroup of some fixed prime of the algebraic closure of K above v.
Since v is ramified in F/K, we can find an element θ of Iv whose restriction to F
is δ
∣∣
F

. We now take ξ to be any element of Sel′P∞(B/F )∆. We must show that

there exists a cohomology class ρ in H1(K,BP∞) such that j2(ρ) = ξ. Note that

any such ρ must automatically lie in SelWP∞(B/K) by the injectivity of j3. Since
B has good reduction everywhere over F , we can choose a cocycle representative
g of ξ which is trivial on Iv ∩ Gal(K/F ), whence g(θ2n) = 0 for all integers n, as
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θ2n lies in Iv ∩ Gal(K/F ). For each z in BP∞ , let d(z) denote the 1-coboundary

on Gal(K/F ) defined by d(z)(σ) = (σ − 1)z. Note that

(δd)(z) = θ(θ−1σθ − 1)z = (σ − 1)δ(z) = −d(z).

Now, since the cohomology class ξ is fixed by ∆, we have (1− δ)g = d(z) for some
z ∈ BP∞ . Let u be any element of BP∞ such that 2u = z. We claim that the
equivalent cocycle f defined by f = g − d(u) is then actually invariant under the
action of ∆. Indeed, we have

(1− δ)f = (1− δ)g − (1− δ)d(u) = d(z)− 2d(u) = 0.

Note also that we have f(θ2n) = 0 for all integers n. Now, every element τ in
Gal(K/K) can be written in the form τ = σθi, where σ is in Gal(K/F ) and
i ∈ {0, 1}. We define the map h : Gal(K/K) → BP∞ by h(τ) = f(σ). We claim
that h is indeed a 1-cocycle, that is, taking τk = σkθ

ik for k ∈ {1, 2}, we must show
that

(4.9) h(τ1τ2) = h(τ1) + τ1h(τ2).

Note first that, for any σ in Gal(K/F ) and any integer m, we have h(σθm) = f(σ)
since f vanishes on the even powers of θ. Now, we have τ1τ2 = σ1σ

′
2θ
i1+i2 , where

σ′2 = θi1σ2θ
−i1 , whence it follows that

h(τ1τ2) = f(σ1σ
′
2) = f(σ1) + σ1f(σ′2).

But by construction, the cocycle f is fixed by ∆, and so we have f(σ′2) = θi1f(σ2),
and the equality (4.9) follows. This completes the proof. �

Combining Propositions 4.4 and Proposition 4.6, and noting that

B(K)(P∗) ' Z/2Z and H1(F/K,B(F )(P)) ' BP2/BP,

we obtain the following corollary.

Corollary 4.7. The Selmer group Sel′P∞(B/F )∆ is finite, and we have∣∣# (Sel′P∞(B/F )∆
)∣∣−1

P
=

1

2

∣∣∣∣(1− φ(p)

2

)∣∣∣∣−1

P

.

5. Infinite descent over the field F∞ = K(BP∞) and a main
conjecture for F∞/K

In this section, we will use an infinite descent method due to Coates [5] and a
main conjecture of Iwasawa theory in order to show that L(φ, 1) 6= 0, and to give the
precise P-adic valuation for the algebraic part of the L-value L(φ, 1). This precise
P-adic valuation will play a key role as the base case of an induction argument in
Section 6. We recall that F∞ = K(BP∞). A large part of this section, namely
the construction of the P-adic L-function for B over F∞/K and the proof of the
main conjecture for B for the tower F∞/F , has been established in [6]. We will
just briefly recall these results and use the results from Sections 3 and 4 in order
to obtain the desired P-adic valuation for the algebraic L-value of φ.

We define M(F∞) to be the maximal abelian 2-extension of F∞ which is unram-
ified outside the primes lying above p, and we put

X(F∞) = Gal(M(F∞)/F∞).

By maximality, M(F∞) is Galois over K, and thus G = Gal(F∞/K) acts on X(F∞)
in the usual manner via lifting of inner automorphisms. We list some results relating
X(F∞) to the Selmer groups in the following theorem.
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Theorem 5.1. We have

(1) SelP∞(B/F∞) = Sel′P∞(B/F∞) = Hom(X(F∞), BP∞), where all these
modules are Galois modules over G .

(2) Sel′P∞(B/F∞) = Sel′P∞(B/F∞)∆, where ∆ = Gal(F∞/K∞).
(3) The restriction map yields the isomorphism

Sel′P∞(B/F ) ' Sel′P∞(B/F∞)Γ,

where Γ = Gal(F∞/F ).

Proof. For a detailed proof, we refer to Theorem 3.9, Proposition 3.10 and Propo-
sition 3.11 in [6]. �

Note that Γ is isomorphic to Zp, and we write Λ(Γ) for the Iwasawa algebra of
Γ with coefficients in Zp. For each choice of a topological generator γ of Γ, there is
a unique isomorphism of compact Zp-algebras

i : Λ(Γ) ' Zp[[T ]]

which maps γ to 1 + T , where Zp[[T ]] denotes the ring of formal power series in
variable T with coefficients in Zp. Let M be any finitely generated torsion Λ(Γ)-
module. The structure theory of finitely generated Λ(Γ)-modules asserts that there
is an exact sequence of Λ(Γ)-modules

0→ ⊕mk=1Λ(Γ)/fkΛ(Γ)→M→ D → 0,

where the fk for k = 1, . . . ,m are non-zero elements of Λ(Γ) and D is some finite
Λ(Γ)-module. Moreover, the ideal C(M) = f1 · · · fmΛ(Γ) is then uniquely deter-
mined by M, and is called the characteristic ideal of M. Any generator of this ideal
is called a characteristic element of M, and the image of a characteristic element
under the isomorphism i will be called a characteristic power series of M. The
following elementary lemma is then classical [7, Appendix A.2].

Lemma 5.2. Let M be a finitely generated torsion Λ(Γ)-module, and let cM(T ) be
any characteristic power series of M. Then the following assertions are equivalent:
(i)cM(0) 6= 0, (ii) MΓ is finite, and (iii) MΓ is finite. Moreover, when these
equivalent assertions hold, we have

|cM(0)|−1
p = #(MΓ)/#(MΓ).

Here, | · |p is a fixed multiplicative valuation on Cp extending | · |P. We note here
that we always fix an embedding of T into Cp via the prime P.

In particular, if M has no non-zero finite Γ-submodules, then the lemma shows that
MΓ = 0 when cM(0) 6= 0. Finally, we write I for the ring of integers of the com-
pletion of the maximal unramified extension of TP, and we define ΛI (Γ) = I [[Γ]]
to be the Iwasawa algebra of Γ with coefficients in I .

Another key input we need for treating the case p = 2 is that we need to show
X(F∞) is a finitely generated Z2-module. Fortunately, this follows easily from our
earlier work [4].

Lemma 5.3. The Iwasawa module X(F∞) is a finitely generated Z2-module.

Proof. We have the inclusions of fields

F∞ ⊂ H(Ap∞) ⊂M(F∞) ⊂M(H(Ap∞)),

where M(H(Ap∞)) denotes the maximal abelian 2-extension of H(Ap∞) which is
unramified outside the primes lying above p. In [4], it was shown thatX(H(Ap∞)) =
Gal(M(H(Ap∞))/H(Ap∞)) is a finitely generated Z2-module. Thus, the quotient
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Gal(M(F∞)/H(Ap2)) of X(H(Ap∞)) is also a finitely generated Z2-module. The
lemma now follows since X(F∞) consists of finite copies of Gal(M(F∞)/H(Ap2)).

�

In particular, X(F∞) is a finitely generated torsion Λ-module. We write cX(T )
for a characteristic power series of X(F∞). Let

ρP : G → Z×2
be the character giving the action of the Galois group G on BP∞ . We denote

by TPB the P-adic Tate module of B. Let TPB
⊗(−1) = Hom(BP∞ , TP/OTP

)

be the free OTP
-module of rank 1 on which Γ acts by the character ρ−1

P,Γ, where
ρP,Γ denotes the restriction of ρP to Γ. If M is any finitely generated torsion

Λ(Γ)-module, we define, as usual, M(−1) = M⊗OP
TPB

⊗(−1), endowed with the
diagonal action of Γ. Here, we note that TP ' Z2. Then, writing cM(T ) for a
characteristic power series of M, a characteristic power series of the Λ(Γ)-module
M(−1) is given by cM(u(1 + T ) − 1), where u = ρP,Γ(γ). We also note that if M
has no non-zero finite Γ-submodule, then the same is true for M(−1).

Recall that γ is our fixed topological generator of Γ, and recall also that both
B(K) and X(B/K)(PP∗) are finite by Remark 3.5. Using Theorem 5.1 and the
theorem of Greenberg on the non-existence of finite submodules forX(F∞) [9, p. 93],
and noting that Hom(X(F∞), BP∞) is isormorphic to Hom(X(F∞)(−1), TP/OTP

)
as Γ-modules, we can reformulate Corollary 4.7 as follows.

Proposition 5.4. Let cX(T ) be a characteristic power series of X(F∞), and let
u = ρP,Γ(γ). Then cX(u− 1) 6= 0. Moreover, we have

(5.1) |cX(u− 1)|−1
p =

1

2

∣∣∣∣(1− φ(p)

2

)∣∣∣∣−1

P

.

We now introduce the P-adic L-function of B for the tower F∞/K and a cor-
responding main conjecture of Iwasawa theory. Recall that we have chosen a
global minimal generalised Weierstrass equation (2.1) for A/H. Moreover, since
H = K(j(OK)) and we have fixed an embedding of K into C, we also have an
embedding of H into C. The Néron differential ω = dx/(2y + a1x + a3) on A/H
then has a complex period lattice of the form L = Ω∞OK , where Ω∞ is a nonzero
complex number which is uniquely determined up to sign.

We now fix an embedding of H into the fraction field of I , which amounts to

choosing a prime w of H lying above p. We write Â for the formal group of A

under this embedding. Since Â has height 1 as a formal group, there exists an
isomorphism

(5.2) jp : Ĝm
∼−→ Â

of formal groups over I , where Ĝm denotes the formal multiplicative group. As

usual, we take as a parameter for Â the local parameter t = −xy at infinity of the

Weierstrass equation (2.1). The isomorphism jp is then given by a power series

t = jp(w0) with coefficients in I , where w0 is the parameter of Ĝm. We then
define the p-adic period Ωp to be the coefficient of w0 in the formal power series
t = jp(w0). Since jp is an isomorphism, Ωp is a unit in I .

We now fix an embedding of the field T into C which extends our fixed embedding

of K into C, so that we can consider the complex Hecke L-functions L(φ
k
, s) for

all odd integers k ≥ 1. Here, we note that the Hecke character φ
k

has conductor

q, and by a theorem of Deuring, L(φ
k
, s) is an entire function. Finally, we fix an
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embedding of the compositum HT into the fraction field of I which induces the
prime w of H and the prime P of T . This is possible because H ∩ T = K.

By Theorem 5.4 in [6], for all odd integers k ≥ 1, we have

L(φ
k
, k)

Ωk∞
∈ HT.

We are now ready to introduce a P-adic L-function and to state a main conjecture.

Proposition 5.5. There exists a unique measure µA in ΛI (Γ) such that, for all
odd positive integers k = 1, 3, 5, . . ., we have

(5.3) Ω−kp

∫
Γ

(ρP,Γ)kdµA = (k − 1)!Ω−k∞ L(φ
k
, k)(1− φk(p)/2).

Furthermore, µA satisfies the main conjecture

cXΛI (Γ) = µAΛI (Γ),

where cX is a characteristic element for X(F∞).

Proof. The details for the construction of µA and its relation to certain Iwasawa
modules can be found in Sections 4–7 in [6]. For the proof of the main conjecture,
we refer to Theorem 7.13 in [6]. �

Combined with Proposition 5.4, we thus obtain a new proof of the theorem of
Rohrlich on the non-vanishing of L(A, 1) on noting that L(A, 1) 6= 0 if and only if
L(φ, 1) 6= 0. Furthermore, we obtain the precise 2-adic valuation of the algebraic
part of the L-value L(φ, 1)/Ω∞:

Corollary 5.6. We have L(φ, 1) 6= 0. Moreover, we have

(5.4)

∣∣∣∣L(φ, 1)

Ω∞

∣∣∣∣−1

2

= 2−1.

Proof. This follows from Propositions 5.4 and 5.5. Indeed, given an element w in
ΛI (Γ), we write w(T ) for the corresponding power series under the isomorphism
from ΛI (Γ) to I [[T ]] induced by mapping γ to 1 + T . By Theorem 5.5, we have
cX = µAβ for some unit β in ΛI (Γ), whence

|cX(u− 1)|−1
2 = |µA(u− 1)|−1

2 =

∣∣∣∣∫
Γ

ρp,ΓdµA

∣∣∣∣−1

2

.

In particular, we conclude from (5.3) for k = 1 that cX(u − 1) 6= 0 if and only
if L(φ, 1) 6= 0. Thus, the first assertion of Corollary 5.6 follows from the first
assertion of Proposition 5.4. Finally, since Ωp is a unit in I , the formula (5.4)
follows immediately from (5.1) and (5.3) for k = 1. �

We end this section with some remarks on the algebraic L-value in Corollary
5.6. It was shown by Buhler and Gross (or in [6]) that L(φ, 1)/Ω∞ is contained

in HT , and that the fractional ideal L(φ,1)
Ω∞
OHT descends to a fractional ideal m in

T . Corollary 5.6 shows the P-adic valuation of m is equal to −1. Thus, we have
proved:

Theorem 5.7. The P-part of the Birch–Swinnerton-Dyer conjecture holds for B.

At present, we cannot give the precise P′-adic valuation of m for other primes
of T lying above 2 (except for P∗). A detailed study of these P′-valuations will be
contained in our subsequence work [15].
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6. Generalised Zhao’s method and 2-adic valuation of central
L-values

In this section, we will use an extension of Zhao’s induction method [24, 25],
modified for the abelian varieties, to obtain the exact valuation of central L-values
for quadratic twists, using Corollary 5.6 as the base case.

As defined in the introduction, let R ∈ R be of the form R = r1 · · · rk, where
k ≥ 0 and r1, . . . , rk are distinct primes such that (i) ri ≡ 1 mod 4, and (ii) ri is
inert in K for i = 1, . . . , k. We recall that φ is the Hecke character of B/K. Then,
since (R, q) = 1, for each positive integer d | R, the Hecke character φd of B(d)/K
is given by φd = φχd, where χd denotes the abelian character of K defining the
quadratic extension K(

√
d)/K. Here, as usual, we denote by B(d) the twist of B

by the extension K(
√
d)/K. The remainder of this section will be dedicated to

concluding the proof of the following main result stated in the introduction.

Theorem 6.1. For any R = r1 · · · rk ∈ R. Then L(φR,1)
√
R

Ω∞
∈ TH, and for any

prime P of TH lying above P, we have

ordP

(
L(φR, 1)

√
R

Ω∞

)
= k − 1.

In particular, L(A(R)/H, 1) 6= 0. Moreover, the Mordell–Weil group A(R)(H) and
and the Tate–Shafarevich group X(A(R)/H) of A(R) are finite.

We define the imprimitive Hecke L-series

LR(φd, s) =
∑

(b,Rq)=1

φd(b)

N(b)s
,

where the sum on the right is taken over all integral ideals b of K which are prime
to Rq. It is classical that the Dirichlet series on the right converges for Re(s) > 3/2,
and it has analytic continuation to the whole complex plane.

We define the fields

(6.1) JR = K(
√
r1, . . . ,

√
rk), HR = H(

√
r1, . . . ,

√
rk),

and we recall that Ω∞ is the complex period defined in Section 5. The proof of the
following proposition can be found in Proposition 9.8 and Theorem 9.9 of [6].

Proposition 6.2. There exists an element VR ∈ HR which is integral at all places
of HR above 2, and which satisfies∑

d|R

LR(φd, 1)/Ω∞ = 2kVR,

where the sum runs over all positive divisors d of R.

This will be a key identity in the induction argument to follow.

Lemma 6.3. For each R ∈ R, the extension JR/K defined by (6.1) is unramified
at the primes of K lying above 2.

Proof. It suffices to show that, for each prime divisor r ofR, the extensionK(
√
r)/K

is unramified at the primes above 2. Put m = (
√
r−1)/2, so that V (m) = 0, where

V (X) = X2 +X − (r − 1)/4. But then V ′(m) = 2m+ 1 is a unit at p and p∗, and
so K(m) = K(

√
r) is unramified at the primes of K above 2. �
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For each positive divisor d of R, we define

L (d) =
√
dL(φd, 1)/Ω∞, L = L (1).

Proposition 9.3 in [6] shows that L (d) always belongs to the field HT . However,
the following stronger assertion is essential for our proof. Note that by Corollary
5.6, we have L 6= 0 for all primes q ≡ 7 mod 8.

Proposition 6.4. Assume R ∈ R, and let d be any positive divisor of R. Then
L (d)/L belongs to the field T .

Proof. This is exactly Proposition 9.15 in [6], which uses Proposition 11.1 in [3] as
a key input. �

Before we prove Theorem 6.1, we need the following lemma.

Lemma 6.5. Let d be any positive divisor of R, and let r be any prime dividing R
with (r, d) = 1. Then φd(rOK) = −r.

Proof. Let r = rOK . Noting that −r is a square modulo q, the explicit formula for
φ given at the beginning of §2 of [3] shows that φ(r) = −r. On the other hand,

since r is inert in K and the Galois group of K(
√
d)/Q is not cyclic, the prime

r of K must split in K(
√
d), so that we have χd(r) = 1. Hence φd(r) = −r, as

required. �

We can now conclude the proof of Theorem 6.1 using induction on the number
k of prime factors of R. Assume first that k = 1, so that R = r, a prime number.
Then Proposition 6.2 gives

(6.2) L (r)/
√
r + (1− φ((r))/r2)L = 2Vr.

Let Q be any prime of HT (
√
r) lying above the prime P of T . We then have

ordQ(Vr) ≥ 0. Furthermore, by Lemma 6.5, we have (1− φ((r))/r2) = (1 + 1/r).
Since r+1 ≡ 2 mod 4, it follows from Corollary 5.6 that ordQ((1− φ((r))/r2)L ) = 0.
As ordQ(Vr) ≥ 0, we conclude from (6.2) that ordQ(L (r)/

√
r) = 0, and so Theorem

6.1 holds when k = 1.
Suppose now that R = r1 · · · rk with k ≥ 2. By Proposition 6.2, we have

(6.3) L (R)/
√
R+

∑
d|R,d 6=1,R

Λ(d,R)/
√
d+ L

k∏
i=1

(1− φ((ri))/r
2
i ) = 2kVR,

where
Λ(d,R) = L (d)

∏
r|R/d

(1− φd((r))/r2).

The problem here is that the terms Λ(d,R) lie in an extension of HT , where the
prime P of T is unramified but will usually have a large residue class field extension.
This means that one cannot carry through the inductive argument in its naive form,
and we must appeal to Proposition 6.4 to get around it. The key to overcoming
this difficulty is to divide both side of (6.3) by the non-zero number L . Then
defining Φ(d,R) = Λ(d,R)/L for each positive integer divisor d of R, we obtain
the equation

(6.4) Φ(R)/
√
R+

∑
d|R,d 6=1,R

Φ(d,R)/
√
d+

k∏
i=1

(1− φ((ri))/r
2
i ) = 2kVR/L ,

where Φ(R) = L (R)/L . Let HR be the field defined in (6.1), and we now take Q
to be any prime of the compositum HRT lying above P so that Q/P is unramified.
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By Proposition 6.2, we have ordQ(VR) ≥ 0. Thus we conclude from Corollary 5.6
that ordQ(2kVR/L ) ≥ k + 1. Thanks to Lemma 6.5, we have

(6.5) ordQ(

k∏
i=1

(1− φ((ri))/r
2
i )) = k.

On the other hand, our inductive hypothesis together with Corollary 5.6 and Lemma
6.5 shows that, for each positive divisor d of R with d 6= 1, R, we have

ordQ(Φ(d,R)/
√
d) = k.

Of course, these estimates alone do not allow us to conclude that ordQ(Φ(R)/
√
R) =

k when applied to (6.4). However, the argument is saved by Proposition 6.4, which
tells us that Φ(d,R) belongs to the field T for every positive divisor d of R, and so
it lies in the completion TP at P. Since P has its residue degree of order 2, we can
write for each divisor d of R with 1 < d < R

Φ(d,R)/
√
d =
√
dπkP(1 + πPbd),

where πP is a local parameter at P and ordP(bd) ≥ 0. Thus,∑
d|R,d 6=1,R

Φ(d,R)/
√
d ≡ πkPDR mod Qk+1

with DR =
∑
d|R.d 6=1,R

√
d. But

D2
R ≡

∑
d|R.d 6=1,R

d mod Q

and
∑
d|R.d 6=1,R d ≡ 2k mod 2, whence ordQ(DR) ≥ 1. Thus, we have shown that

ordQ

 ∑
d|R,d 6=1,R

Φ(d,R)/
√
d

 ≥ k + 1.

It now follows from (6.4) and (6.5) that ordQ(Φ(R)) = k. Thus, again applying
Corollary 5.6, we have finally completed the proof of Theorem 6.1 by induction on
the number of prime factors of R ∈ R.

We will conclude this paper the proof of the density result in Corollary 1.2, which
we now recall.

Corollary 6.6 (Corollary 1.2). Let D ≥ 1 denote a fundamental discriminant, and
let N(X) = #{D < X : L(A(D)/H, 1) 6= 0}. Then we have

N(X) >>
X

log
3
4 X

.

Proof. The proof follows closely the ideas of Serre [?], which is based on generalisa-
tions of the Tauberian theorem of Ikehara due to Delange[?], Wintner[?] et al. and
a method of Landau [?]. Such an argument has already appeared in, for example,
the works of Ono [?] or Kriz–Li [?], but we write out the details for our particular
case.

We define the set of primes P denote the set of primes which is the complement
of the set of primes which are congruent to 1 modulo 4 and inert in K. Then P
is regular of density 1 − 1

2 ·
1
2 = 3

4 in the sense of Delange [?], by the Chebotarev
density theorem. Furthermore, P is associated to the set E = N>0\R, in the sense
that for any p ∈ P and any integer m ≥ 1 not divisible by p, we have pm ∈ E.
Given X, let E(X) = {D ≤ X : D ∈ E} and R(X) = {D ≤ X : D ∈ R}, so that
E(X) + R(X) = X.
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Noting that now R(X) = E′(X) in the notation of [?], we have from [?, Théorème
2.8], for any integer k ≥ 0, real numbers c0, c1, . . . , ck with c0 > 0 such that

R(X) =
X

log
3
4 X

(c0 + c1/ logX + · · · ck logkX +O(1/ logk+1X)).

In particular,

R(X) = c0
X

log
3
4 X

+O(X/ log
7
4 X).

The result now follows, on noting that by Theorem 1.1 we have L(A(D)/H, 1) 6= 0
for all D ∈ R. �
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