
MIXED AX-SCHANUEL FOR THE UNIVERSAL ABELIAN VARIETIES

AND SOME APPLICATIONS
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Abstract. In this paper we prove the mixed Ax-Schanuel theorem for the universal abelian
varieties (more generally any mixed Shimura variety of Kuga type), and give some simple
applications. In particular we present an application to studying the generic rank of the Betti
map.
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1. Introduction

The goal of this paper is to prove a transcendence result and give some simple applications.
More applications to Diophantine problems will be given in forthcoming papers.

The transcendence result is the following mixed Ax-Schanuel theorem for the universal abelian
variety. We call it “mixed” since the ambient space is a mixed Shimura variety but not a pure
Shimura variety. It parametrizes 1-motives of a certain kind. The result is an extension of a
recent result of Mok-Pila-Tsimerman [MPT19] on the Ax-Schanuel theorem for pure Shimura
varieties. Let us describe the setting.

Let D = diag(d1, · · · , dg) be a diagonal g × g-matrix with d1| · · · |dg positive integers. Let
Ag,D(N) be the moduli space of abelian varieties of dimension g which are polarized of type
D equipped with level-N -structures. Assume N ≥ 3. Then Ag,D(N) admits a universal family
π : Ag,D(N)→ Ag,D(N). For simplicity we drop the “D” and the “(N)”.

The uniformizing space X+
2g,a of Ag, in the category of complex spaces, admits a reasonable

algebraic structure. This is explained in §3.1. Denote by u : X+
2g,a → Ag the uniformization. We
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2 ZIYANG GAO

say that an irreducible subvariety Y of Ag is bi-algebraic if one (and hence any) complex analytic
irreducible component of u−1(Y ) is algebraic in X+

2g,a. There is a good geometric interpretation
of bi-algebraic subvarieties of Ag; see §3.3.

The main result of the paper is the following theorem, which we prove as Theorem 3.4. Denote
by prX+

2g,a
: X+

2g,a × Ag → X+
2g,a and prAg

: X+
2g,a × Ag → Ag the natural projections.

Theorem 1.1 (mixed Ax-Schanuel for the universal abelian variety). Let Z be a complex analytic
irreducible subvariety of graph(u) ⊆ X+

2g,a × Ag. Denote by Z = prAg
(Z). Then

dimZZar − dimZ ≥ dimZbiZar,

where ZZar is the Zariski closure of Z in X+
2g,a × Ag, and ZbiZar is the smallest bi-algebraic

subvariety of Ag which contains Z.

Moreover if we denote by Z̃ = prX+
2g,a

(Z), then the equality holds if Z̃ is a complex analytic

irreducible component of Z̃Zar ∩ u−1(ZZar).

The theorem is motivated by Schanuel’s Conjecture on transcendental number theory. The
analogue of this conjecture over function fields, currently known as the Ax-Schanuel theorem
for complex algebraic tori, was proven by Ax [Ax71]. Later on Ax generalized his result to
complex semi-abelian varieties [Ax72]. The result of Ax [Ax71] was reformulated and re-proven
by Tsimerman [Tsi15] using o-minimal geometry. In the Shimura setting, the theorem was
proven by Pila-Tsimerman for Y (1)N [PT14], and recently proven for any pure Shimura variety
by Mok-Pila-Tsimerman [MPT19]. Its generalization to any variation of pure Hodge structures
is proven by Bakker-Tsimerman [BT19]. A particular case of the Ax-Schanuel theorem, called

the Ax-Lindemann theorem, concerns the case where Z̃ is assumed to be algebraic. We refer to
the survey [KUY18] for its history.

Our proof of Theorem 1.1 uses the work of Mok-Pila-Tsimerman and extends their proof. As
a statement itself, Theorem 1.1 implies the pure Ax-Schanuel theorem for the moduli space Ag.

Application to the Betti map. Let A → S be an abelian scheme of relative dimension g over

a smooth irreducible complex algebraic variety. Let S̃ → San be the universal covering, and let

A
S̃

:= A×S S̃. Then we can define the Betti map (which is real analytic)

b : A
S̃
→ T2g

where T2g is the real torus of dimension 2g as follows. As S̃ is simply-connected, one can define

a basis ω1(s̃), . . . , ω2g(s̃) of the period lattice of each fiber s̃ ∈ S̃ as holomorphic functions of
s. Now each fiber As̃ can be identified with the complex torus Cg/Zω1(s̃) ⊕ · · · ⊕ Zω2g(s̃),

and each point x ∈ As̃(C) can be expressed as the class of
∑2g

i=1 bi(x)ωi(s̃) for real numbers
b1(x), . . . , b2g(x). Then b(x) is defined to be the class of the 2g-tuple (b1(x), . . . , b2g(x)) ∈ R2g

modulo Z2g.
Let ξ be a multi-section of A/S. Then it induces a multi-section ξ̃ of A

S̃
/S̃. The following

question is asked by André-Corvaja-Zannier [ACZ20, Question 2.1.2].

Question 1.2. Assume Zξ is Zariski dense in A and that A/S has no fixed part (over any finite
étale covering of S). If dim ι(ξ(S)) ≥ g, is it true that

(1.1) max
s̃∈S̃

(
rank(db|

ξ̃(s̃)
)
)

= 2g?



AX-SCHANUEL FOR THE UNIVERSAL ABELIAN VARIETY 3

André-Corvaja-Zannier systematically studied Question 1.2. One important idea of André-
Corvaja-Zannier is to relate the derivative of the Betti map to the Kodaira-Spencer map. After
some careful computation, they got a sufficient condition for (1.1) in terms of the derivations
on the base [ACZ20, Corollay 2.2.2] (which we call Condition ACZ ). This condition does not
depend on ξ, so itself is of independent interest. Then they proved Condition ACZ, thus gave
an affirmative answer to Question 1.2, in loc.cit. when ιS is quasi-finite and g ≤ 3. The real
hyperelliptic case, which goes beyond Conjecture 1.2, is also discussed in Appendix I of loc.cit.

Inspired by several discussions with André-Corvaja-Zannier, the author applied the pure Ax-
Schanuel theorem [MPT19] to prove in Appendix of loc.cit. that Condition ACZ holds if ιS is
quasi-finite, dim ιS(S) ≥ g, and ιS(S) is Hodge generic in Ag. In particular, a result of André-
Corvaja-Zannier [ACZ20, Theorem 8.1.1] then gives an affirmative answer to Question 1.2 when

ιS is quasi-finite, dim ιS(S) ≥ g, and End(A/S) = Z[1]; see [ACZ20, Theorem 2.3.2]. However
there are examples with ιS quasi-finite, dim ιS(S) ≥ g but Condition ACZ violated (most of
them arise from Shimura varieties of PEL type), and hence it is hardly possible to prove the
fully answer Question 1.2 using only the pure Ax-Schanuel theorem.

In this paper, we give a different approach to study Question 1.2, by presenting a simple
application of Theorem 1.1 to Conjecture 1.2. We restrict ourselves to an easy case and prove
the following result (Theorem 9.1).

Theorem 1.3. The equality (1.1) holds if the geometric generic fiber of A/S is a simple abelian
variety, ιS is quasi-finite, and dim ιS(S) ≥ g.

Note that this theorem and the result of the ACZ paper do not imply each other. We also
point out that no new contribution to Condition ACZ is made by this method.

A finiteness result à la Bogomolov. Bogomolov [Bog81, Theorem 1] proved the following
finiteness result. Let A be an abelian variety over C and let Y ⊆ A be an irreducible subvariety,
then there are finitely many abelian subvarieties B of A with dimB > 0 satisfying: x+B ⊆ Y
for some x ∈ A(C), maximal for this property.

This finiteness property was extended by Ullmo to pure Shimura varieties [Ull14, Théorème 4.1],
using o-minimal geometry, as an application of the pure Ax-Lindemann theorem. Later on it
was extended by the author to mixed Shimura varieties [Gao17b, Theorem 12.2] with a similar
proof. The corresponding objects of x+ B in the Shimura case are the so-called weakly special
subvarieties defined by Pink [Pin05, Definition 4.1.(b)], which are precisely the bi-algebraic sub-
varieties (see [UY11], [Gao17b, Corollary 8.3]). This finiteness result is useful for the proof of
the André-Oort conjecture.

On the other hand, in order to study the Zilber-Pink conjecture, which is a generalization
of the André-Oort conjecture, Habegger-Pila [HP16] introduced the notion of weakly optimal
subvarieties of a given subvariety of a mixed Shimura variety; see Definition 8.1. They also proved
in loc.cit. the natural generalization of the finiteness result for weakly optimal subvarieties in
the cases of complex abelian varieties and Y (1)N (product of modular curves). This result is
later on generalized by Daw-Ren to any pure Shimura variety [DR18, Proposition 3.3]. A key
point to pass from Ullmo’s result to Daw-Ren’s result is to apply the Ax-Schanuel theorem in
lieu of the Ax-Lindemann theorem.

[1]By writing End(A/S), we allow finite coverings of S.
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In this paper, we prove the corresponding finiteness result for weakly optimal subvarieties
for Ag (Theorem 8.2). The proof follows the guideline of Daw-Ren by plugging in the author’s
previous work on extending Ullmo’s finiteness result to the mixed case. Denote by (P2g,a,X+

2g,a)
the connected mixed Shimura datum of Kuga type associated with Ag; see §2.2 for the notation.

Theorem 1.4. There exists a finite set Σ consisting of elements of the form ((Q,Y+), N), where
(Q,Y+) is a connected mixed Shimura subdatum of (P2g,a,X+

2g,a) and N is a normal subgroup
of Q whose reductive part is semi-simple, such that the following property holds. If a closed
irreducible subvariety Z of Y is weakly optimal, then there exists ((Q,Y+), N) ∈ Σ such that
ZbiZar = u(N(R)+ỹ) for some ỹ ∈ Y+.

Outline of the paper. In §2 we introduce, in an example based way, the basic knowledge of
Ag as a connected mixed Shimura variety. In the end of the section we give the definition and
some basic properties (including the realization of the uniformizing space) of connected mixed
Shimura varieties of Kuga type.

In §3 we set up the framework for proving the mixed Ax-Schanuel theorem. We consider not
only Ag, but also all connected mixed Shimura varieties of Kuga type.[2] In particular we review
the bi-algebraic system associated with Ag and the geometric/group-theoretic interpretation of
bi-algebraic subvarieties of Ag.

The proof of the mixed Ax-Schanuel theorem is done in §4-§7. In §4, we fix the basic setup
and summarize some results for the pure part. In particular we cite the volume bounds for
pure Shimura varieties. In §5 we do the necessary dévissage and reduce the mixed Ax-Schanuel
theorem to the case where we have a big Q-stabilizer. Apart from the proof of Theorem 5.2,
this section is a standard argument. Then in §6 we prove that the Q-stabilizer can be assumed
to be normal in P . Here §6.1-6.2 are simply the argument of [MPT19] adapted to the mixed
case, although unlike the pure case we need to be careful with the monodromy group and the
Mumford-Tate group. The argument of §6.3 is new. Then in §7 we finish the proof.

The finiteness result à la Bogomolov is proven in §8. The application to the rank of the Betti
map is presented in §9.

At this stage it is worth making some extra comments. The extension of the pure Ax-
Schanuel theorem to the mixed one in this paper does not follow the same guideline as the
author’s previous work on the extension of Ax-Lindemann [Gao17b]. In both cases one studies

some complex analytic irreducible subset Z̃ in the uniformizing space. For the Ax-Lindemann

theorem Z̃ is assumed to be algebraic. So its pure part, being also algebraic, must hit the
boundary of the bounded symmetric domain. Thus its pure part is open in a compact set. As

we have the freedom to choose Z̃ to have relative dimension 0 over its pure part in the proof of
the Ax-Lindemann theorem, the “vertical” direction is uniformly bounded. Thus in [Gao17b,
§9-10], no extra estimate beyond the pure part is needed, and it can be shown that the reductive
part of the Q-stabilizer is a priori as big as possible. However for the Ax-Schanuel theorem, the

pure part of Z̃ does not necessarily hit the boundary, so in order to get any meaningful estimate

we need to compare the growth of Z̃ in the vertical direction with its growth in the horizontal
direction. It is impossible to prove the bigness of the reductive part of the Q-stabilizer directly.
To solve this problem, we argue as in §6.3. This subsection is not needed to prove the pure

[2]In fact this makes the last step of the proof (§7) easier.
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Ax-Schanuel theorem because for a pure Shimura datum (G,X+
G ), any normal subgroup N of

G induces a decomposition of (G,X+
G ).

As for the comparison of the growth of Z̃ in the two directions, we have to consider two cases:

the vertical direction of Z̃ grows at most polynomially in terms of its growth in the horizontal
direction, and vice-versa. The former case can be settled by estimates on the pure part without
much effort. To solve the latter case, we use a variant of Tsimerman’s idea polynomial for free
in unipotent groups in [Tsi15, pp. 3]. See the proof of Theorem 5.2 for more details.

Acknowledgements. The author would like to thank Ngaiming Mok, Jonathan Pila and Jacob
Tsimerman for numerous valuable discussions on the subject and for sending their preprint on the
pure Ax-Schanuel theorem, and especially Jacob Tsimerman for pointing out the variant of the
polynomial-for-free argument in Theorem 5.2. Part of the work was done when the author was a
long-term visitor at the Fields Institute under the Thematic Program on Unlikely Intersections,
Heights, and Efficient Congruencing. The author would like to thank the organizing committee
for the invitation and the program for the financial support. The author would also like to
particularly thank Ngaiming Mok for his great help on complex geometry and his invitation to
the University of Hong Kong. The author benefited a lot from the stimulating atmosphere. The
author would like to thank Daniel Bertrand, Jacob Tsimerman and Umberto Zannier for their
comments, and especially Ngaiming Mok for pointing out a serious mistake in a previous version
of the paper. The author would like to thank the anonymous referees for their careful reading
and suggestions to improve the paper.

2. Universal abelian variety

We recall in this section some basic knowledge of mixed Shimura varieties of Kuga type. In
particular we explain how the universal abelian variety fits in this language. In the end we fix
some notation for the paper.

2.1. Moduli space of abelian varieties. Let g ≥ 1 be an integer. Let D = diag(d1, . . . , dg)
with d1| · · · |dg be positive integers. Let N ≥ 1 be an integer. Let Ag,D(N) be the moduli space of
abelian varieties of dimension g which are polarized of type D equipped with level-N -structures.

It is well-known that Ag,D is a connected pure Shimura variety, associated with the connected
pure Shimura datum (GSp2g,D,H

+
g ); see [GN06, §1.2]. We hereby give a quick summary of this

fact.
Let V2g be a Q-vector space of dimension 2g, and let

(2.1) Ψ: V2g × V2g → Ga,Q, (v1, v2) 7→ v
ᵀ

1

(
0 D
−D 0

)
v2

be a non-degenerate alternating form. Then the Q-group GSp2g,D is defined by

GSp2g,D = {h ∈ GL(V2g) : Ψ(hv, hv′) = ν(h)Ψ(v, v′) for some ν(h) ∈ Gm}

=

{
h ∈ GL2g : h

(
0 D
−D 0

)
h
ᵀ

= ν(h)

(
0 D
−D 0

)
, ν(h) ∈ Gm

}
.

Let Sp2g,D = GSpder
2g,D.

Let H+
g be the Siegel upper half-space

{Z = X +
√
−1Y ∈Mg×g(C) : Z = Z

ᵀ
, Y > 0}.
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Then GSp2g,D(R)+ acts on H+
g by the formula(

A′ B′

C ′ D′

)
Z = (A′Z +B′)(C ′Z +D′)−1, ∀

(
A′ B′

C ′ D′

)
∈ GSp2g,D(R)+ and Z ∈ H+

g .

It is known that the action of GSp2g,D(R)+ on H+
g thus defined is transitive.

The natural inclusion H+
g ⊆ {Z = X +

√
−1Y ∈ Mg×g(C) : Z = Z

ᵀ} ' Cg(g+1)/2 realizes

H+
g as an open (in the usual topology) semi-algebraic subset of Cg(g+1)/2. Hence this inclusion

endows H+
g with a complex structure.

Let ΓSp2g,D
(N) = {h ∈ GSp2g,D(Z) : h ≡ I2g (mod N)}. Then Ag,D(N) ' ΓSp2g,D

(N)\H+
g as

complex varieties. Thus we obtain a uniformization in the category of complex varieties

(2.2) H+
g → Ag,D(N).

2.2. Universal abelian variety. Use the notation of the previous subsection. If furthermore
N ≥ 3, then Ag,D(N) is a fine moduli space and hence admits a universal family, which we call
Ag,D(N). We use π : Ag,D(N)→ Ag,D(N) to denote the natural projection.

The variety Ag,D(N) is an example of a connected mixed Shimura variety (of Kuga type). We

hereby give a construction of the connected mixed Shimura datum of Kuga type (P2g,D,a,X+
2g,a)

associated with Ag,D(N).
Recall that V2g is a Q-vector space of dimension 2g. By abuse of notation we also use it to

denote the Q-vector group of dimension 2g. Then the natural action of GSp2g,D on V2g defines
a Q-group

P2g,D,a = V2g o GSp2g,D.

It is not hard to see that the unipotent radical Ru(P2g,D,a) of P2g,D,a is V2g, and the reductive
part P2g,D,a/Ru(P2g,D,a) of P2g,D,a is GSp2g,D.

The space X+
2g,a is constructed as follows.

(i) As a set, X+
2g,a = V2g(R)× H+

g .

(ii) The action of P2g,D,a(R)+ on X+
2g,a is defined as follows: for any (v, h) ∈ P2g,D,a(R)+ =

V2g(R) o GSp2g,D(R)+ and any (v′, x) ∈ X+
2g,a, we have

(2.3) (v, h) · (v′, x) = (v + hv′, hx).

This action is transitive.
(iii) Fix a Lagrangian decomposition of V2g(R) = R2g ' Rg × Rg. The complex structure of

X+
2g,a is the one given by the pullback of the following map

(2.4)
X+

2g,a = Rg × Rg × H+
g

∼−→ Cg × H+
g ,

(a, b, Z) 7→ (Da+ Zb, Z)
.

The pair (P2g,D,a,X+
2g,a) is a connected mixed Shimura datum as defined by Pink; see [Pin05,

Construction 2.9, Example 2.12] and [Pin89, 2.25]. There is a natural morphism

π̃ : (P2g,D,a,X+
2g,a)→ (GSp2g,D,H

+
g )

induced by the projection P2g,D,a = V2g o GSp2g,D → GSp2g,D. This is a Shimura morphism as
defined by Pink [Pin05, Definition 2.5] or [Pin89, 2.3].
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Let ΓP2g,D,a
(N) = NV (Z) o ΓSp2g,D

(N). Then as complex varieties we have Ag(N) '
ΓP2g,D,a

(N)\X+
2g,a. This makes Ag,D(N) a connected mixed Shimura variety. See [Pin05, Ex-

ample 2.12] or [Pin89, 10.5, 10.9, 10.10]. We thus obtain a uniformization in the category of
complex varieties

(2.5) X+
2g,a → Ag,D(N).

Now we have the following commutative diagram

(2.6) (P2g,D,a,X+
2g,a)

π̃ //

(2.5)

��

(GSp2g,D,H
+
g )

(2.2)

��
Ag,D(N)

π // Ag,D(N)

where for simplicity of notation the vertical maps are the uniformizations we discussed above.

2.3. A Hodge-theoretic point of view on X+
2g,a. Let us take a closer look at X+

2g,a. We work
with the category of analytic objects in this section. For future purpose, we make the situation
slightly more general. Let ∆ be a simply-connected complex space, and let π∆ : A∆ → ∆ be a
polarized family of abelian varieties of dimension g ≥ 1. Use ψ to denote this polarization.

Let Z∆ (resp. C∆) be the constant local system of Z-rank 1 (resp. of C-dimension 1) on ∆.
Let ZA∆

(resp. CA∆
) be the constant local system of Z-rank 1 (resp. of C-dimension 1) on A∆.

Then R1(π∆)∗ZA∆
, which we define as the dual of R1(π∆)∗ZA∆

, is a local system on ∆ such
that (R1(π∆)∗ZA∆

)s = H1(As,Z) for any s ∈ ∆. It defines a variation of Z-Hodge structures over
∆ of type {(0,−1), (−1, 0)} in the following way: the O∆-sheaf V∆ = R1(π∆)∗ZA∆

⊗Z∆
O∆ '

H1
dR(A∆/∆)∨ is locally free, and has a locally free O∆-subsheaf F0V∆ defined by (F0V∆)s =

H0,1(As)∨ for any s ∈ ∆. From this we see that V∆/F0V∆ ' (Ω1
A∆/∆

)∨. Note that R1(π∆)∗ZA∆

and F0V∆ are subsheaves of V∆, and

(2.7) R1(π∆)∗ZA∆
∩ F0V∆ is trivial, namely is the constant sheaf 0∆.

Let V∆ and F0V∆ be the vector bundles associated with the locally free sheaves V∆ and
F0V∆. Then the discussion in the previous paragraph yields an exact sequence of holomorphic
vector bundles on ∆

(2.8) 0→ F0V∆ → V∆ → Lie(A∆/∆)→ 0.

Next we explain that there exists a real analytic diffeomorphism Lie(A∆/∆) ' R2g ×∆.
Note that R1(π∆)∗CA∆

= R1(π∆)∗ZA∆
⊗Z∆

C∆ is the local system on ∆ of the C-dimension
2g. There is a unique vector bundle with flat connection associated with it. Since ∆ is simply
connected, this vector bundle with flat connection is trivial. In other words we have V∆ '
C2g×∆ and R1(π∆)∗CA∆

is the subsheaf of V∆ consisting of constant sections (recall that V∆ is
the sheaf of sections of the vector bundle V∆ over ∆). So the constant sheaf R1(π∆)∗ZA∆

is the

subsheaf of V∆ consisting of the sections of V∆ over ∆ with image in Z2g × V∆ (these sections
are constant since Z2g is discrete). So the inclusion of sheaves R1(π∆)∗ZA∆

⊆ V∆ corresponds

to the natural inclusion Z2g ×∆ ⊆ C2g ×∆ ' V∆. The intersection of Z2g ×∆ and F0V∆ in
V∆ is the zero section of V∆ → ∆ by (2.7).
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Thus we obtain an injective map Z2g ×∆→ Lie(A∆/∆) as the composite

Z2g ×∆ ⊆ C2g ×∆ ' V∆ → V∆/F
0V∆ ' Lie(A∆/∆).

See (2.8) for the last equality. This injective map extends to

(2.9) R2g ×∆ ⊆ C2g ×∆ ' V∆ → V∆/F
0V∆ ' Lie(A∆/∆),

where the first inclusion is obtained by identifying R2g as the real part of C2g. Note that apart
from the first inclusion, every morphism in this composition is holomorphic.

Denote by

(2.10) i∆ : R2g ×∆→ Lie(A∆/∆)

the composite of the maps in (2.9). Then the following properties clearly hold true.

(i) The map i∆ is a real analytic diffeomorphism. It is semi-algebraic if ∆ has a semi-
algebraic structure;

(ii) For any a ∈ R2g, the image i∆({a} ×∆) is complex analytic;
(iii) Over each s ∈ ∆, the induced map (i∆)s : R2g → Lie(A∆/∆)s is a group homomorphism.

We end this subsection by relating it to the last subsection. Take ∆ = H+
g and A∆ to be the

pullback of Ag,D(N) → Ag,D(N) under the uniformization H+
g → Ag,D(N) in (2.2). Denote by

X+
2g,a := Lie(A∆/∆) for this choice. The complex space X+

2g,a thus obtained coincides with the

one defined in §2.2. Indeed, fix a Lagrangian decomposition V2g(R) = R2g ' Rg ×Rg and write

(2.11)
X+

2g,a
∼←−−
i
H+
g

V2g(R)× H+
g = Rg × Rg × H+

g
∼−→ Cg × H+

g

(a, b, Z) 7→ (Da+ Zb, Z)
.

From this we obtain ρg : X+
2g,a → Cg ×H+

g . Then it is not hard to see that ρg is an isomorphism

of complex spaces. Since iH+
g

is semi-algebraic, we can conclude that the X+
2g,a defined above is

the same complex space as the one defined in §2.2 in view of (2.4).

2.4. Mixed Shimura variety of Kuga type. In this subsection we recall the definition and
some basic properties of mixed Shimura varieties of Kuga type. Let S = ResC/RGm,C be the
Deligne torus.

Definition 2.1 ([Pin05, Definition 2.1]). A connected mixed Shimura datum of Kuga
type is a pair (P,X+) where

• P is a connected linear algebraic group over Q whose unipotent radical V is a vector
group,
• X+ ⊆ Hom(S, PR) is a left homogeneous space under P (R)+,

such that for one (and hence for all) x ∈ X+, we have

(i) the adjoint representation induces on LieP a rational mixed Hodge structure of type

{(−1, 1), (0, 0), (1,−1)} ∪ {(−1, 0), (0,−1)},
(ii) the weight filtration on LieP is given by

Wn(LieP ) =


0 if n < −1

LieV if n = −1

LieP if n ≥ 0

,
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(iii) the conjugation by x(
√
−1) induces a Cartan involution on Gad

R where G = P/V , and

Gad posses no Q-factor H such that H(R) is compact,
(iv) the group P/P der = Z(G) is an almost direct product of a Q-split torus with a torus of

compact type defined over Q,
(v) P possesses no proper normal subgroup P ′ such that x factors through P ′R ⊆ PR.

If in addition P is reductive, then (P,X+) is called a connected pure Shimura datum.

Remark 2.2. (1) By our convention, every connected pure Shimura datum is a connected
mixed Shimura datum of Kuga type. The pair (P2g,D,a,X+

2g,a) in §2.2 is an example of a
connected mixed Shimura datum of Kuga type, which is not pure.

(2) Conditions (i) and (ii) imply that dimV is even.
(3) Definition 2.1 is a particular case of [Pin05, Definition 2.1]. The difference is that the

subgroup U in Ru(P ) in loc.cit. is trivial in our case (connected mixed Shimura datum
of Kuga type), hence property (i) of Definition 2.1 of loc.cit. is not needed here.

(4) Condition (iv) of Definition 2.1 implies that every sufficiently small congruence subgroup
Γ of P (Q) is contained in P der(Q); see [Pin89, proof of 3.3(a)]. Fix a Levi decomposition
P = V oG, then P der = V oGder, and hence any congruence subgroup Γ < P der(Q) is
Zariski dense in P der by condition (iii); see [PR94, Theorem 4.10].

(5) Condition (v) is what Pink calls “irreducible” in [Pin89, 2.13]. It means precisely that P
is the Mumford-Tate group of a generic choice of x ∈ X+. For the purpose of studying
transcendence results or unlikely intersections, it is harmless to consider only this kind
of connected mixed Shimura data. Hence we put this condition in the definition as Pink
does in [Pin05].

(6) The space X+ has a unique structure of complex manifold such that for every represen-
tation ρ : P → GL(W ), the Hodge filtration determined by ρ ◦ x varies holomophically
with x ∈ X+. In particular this complex structure is invariant under P (R)+. See [Pin05,
Fact 2.3(b)] or [Pin89, 1.18]. We will also give more details on this in §2.5.

Let (P,X+) be a connected mixed Shimura datum of Kuga type. The following results are
proven by Pink; see [Pin05, Fact 2.3(c)-(e)] or [Pin89, 3.3, 9.24]. For any congruence subgroup
Γ ⊆ P (Q) ∩ P (R)+, where P (R)+ is the stabilizer of X+ ⊆ Hom(S, PR), the quotient Γ\X+ is
a complex analytic space with at most finite quotient singularities, and has a natural structure
of a quasi-projective algebraic variety over C. Moreover it is smooth if Γ is sufficiently small.

Definition 2.3. A connected mixed Shimura variety of Kuga type M associated with
(P,X+) is the quotient Γ\X+ from above. Then we have a uniformization in the category of
complex analytic spaces u : X+ →M .

Definition 2.4. (i) A (Shimura) morphism of connected mixed Shimura data of Kuga

type ψ̃ : (Q,Y+) → (P,X+) is a homomorphism ψ̃ : Q → P of algebraic groups over Q
which induces a map Y+ → X+, y 7→ ψ̃ ◦ y.

(ii) In particular, if ψ̃ is an inclusion (on the group and the underlying space), then we say
that (Q,Y+) is a connected mixed Shimura subdatum of (P,X+).

(iii) A Shimura morphism of connected mixed Shimura varieties of Kuga type is a mor-
phism of algebraic varieties induced by a Shimura morphism of connected mixed Shimura
data of Kuga type.
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(iv) In particular given M a connected mixed Shimura variety of Kuga type associated with
(P,X+), the subvarieties of M coming from connected mixed Shimura subdata of (P,X+)
are called connected mixed Shimura subvarieties.

Pink proved that every Shimura morphism of connected mixed Shimura varieties of Kuga
type is algebraic. See [Pin05, Facts 2.6] or [Pin89, 3.4, 9.24].

The morphism π̃ in (2.6) is an example of Shimura morphism of connected mixed Shimura
data of Kuga type. It induces a Shimura morphism π of connected mixed Shimura varieties of
Kuga type.

Before going on, let us make the following remark. The notion “connected mixed Shimura
subdatum” exists a priori for any connected mixed Shimura datum (P,X+), not necessarily of
Kuga type. However if (P,X+) is of Kuga type, then all its connected mixed Shimura subdata a
priori defined are again of Kuga type by reason of weight; see [Gao17b, Proposition 2.9]. Hence
our Definition 2.4(ii) is compatible with the usual convention.

The following fact is proven by Pink [Pin89, 2.9].

Fact 1. Let (P,X+) be a connected mixed Shimura datum of Kuga type. Let P0 be a normal
subgroup of P . Then there exists a quotient connected mixed Shimura datum of Kuga type
(P,X+)/P0 and a Shimura morphism (P,X+) → (P,X+)/P0, unique up to isomorphism, such
that every Shimura morphism (P,X+) → (P ′,X ′+), where the homomorphism P → P ′ factors
through P/P0, factors in a unique way through (P,X+)/P0.

In fact Pink proved that such a quotient exists for an arbitrary connected mixed Shimura
datum (not necessarily of Kuga type), and then it is not hard to see that the resulting (P,X+)/P0

is of Kuga type if (P,X+) is.

Notation 2.5. We use the following notation. Let M = Γ\X+ be a connected mixed Shimura
variety of Kuga type associated with (P,X+), and let u : X+ →M be the uniformization.

We use V to denote Ru(P ), and (G,X+
G ) to denote (P,X+)/V . The quotient Shimura mor-

phism is denoted by π̃ : (P,X+)→ (G,X+
G ).

We use MG to denote the connected pure Shimura variety π̃(Γ)\X+
G , and use uG : X+

G →MG

to denote the uniformization. Then π̃ induces a Shimura morphism π : M →MG. We thus have
the following commutative diagram:

(2.12) (P,X+)
π̃ //

u

��

(G,X+
G )

uG

��
M

π // MG.

We gave an example of a connected mixed Shimura varieties of Kuga type, namely the uni-
versal abelian variety; see §2.2. In particular (2.6) is a particular case of (2.12). But in fact,
all connected mixed Shimura varieties of Kuga type arise from this case. More precisely, Pink
proved the following result, which he called reduction lemma.[3]

Theorem 2.6 ([Pin89, 2.26]). Let (P,X+) be a connected mixed Shimura datum of Kuga type
such that dimV = 2g > 0, where V = Ru(P ). Then there exist a connected pure Shimura

[3]We only need the result for Kuga type, so the statement is simpler.
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datum (G0,D+), a diagonal matrix D = diag(d1, . . . , dg) with d1| · · · |dg positive integers, and a
Shimura morphism

λ̃ : (P,X+) ↪→ (G0,D+)× (P2g,D,a,X+
2g,a).

Taking the quotient of both sides by their unipotent radicals, we obtain a Shimura morphism

λ̃G : (G,X+
G )→ (G0,D+)× (GSp2g,D,H

+
g ); see [Gao17b, Proposition 2.9] for a proof.

Theorem 2.6 has the following immediate corollary.

Corollary 2.7. Let M = Γ\X+ be a connected mixed Shimura variety of Kuga type associated
with (P,X+). Assume dimV = 2g. Then up to replacing Γ by a subgroup of finite index, we
have that π : M →MG is an abelian scheme of relative dimension g.

Proof. If V = 0, then the conclusion certainly holds. Assume dimV = 2g > 0. Then apply
Theorem 2.6 to (P,X+). We have the following cartesian diagram

(P,X+)
λ̃ //

π̃
��

(G0,D+)× (P2g,D,a,X+
2g,a)

��
(G,X+

G )
λ̃G // (G0,D+)× (GSp2g,D,H

+
g ).

It is cartesian by comparing the dimension of the vertical fibers.

Now up to replacing Γ by a subgroup of finite index, we may assume that λ̃ induces a closed
immersion M →MG0 × Ag(N) by [Pin89, 3.8(b)]. Thus we obtain a cartesian diagram

M //

π

��

MG0 × Ag,D(N)

��
MG

// MG0 × Ag,D(N)

where the horizontal morphisms are closed immersions. Hence π : M →MG is an abelian scheme
of relative dimension g. �

2.5. Realization of X+. Let (P,X+) be a connected mixed Shimura datum of Kuga type. We
recall the realization of X+ as in [Gao17b, §4].

We start with the dual X∨ of X+; see [Pin89, 1.7(a)] or [Mil88, Chapter VI, Proposition 1.3].
Let W be a faithful representation of P and take any point x0 ∈ X+. The weight filtration on

W is constant, so the Hodge filtration x 7→ Fil·x(WC) gives an injective map X+ ↪→ Grass(W )(C)
to a certain flag variety. In fact, the injective map factors through

X+ = P (R)+/StabP (R)+(x0) ↪→ P (C)/ exp(Fil0x0
LiePC) ↪→ Grass(W )(C),

where the first injection is an open immersion; see [Pin89, 1.7(a)] or [Mil88, Chapter VI, (1.2.1)].
We define the dual X∨ of X+ to be

X∨ = P (C)/ exp(Fil0x0
LiePC).

Then X∨ is clearly a connected smooth complex algebraic variety.
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Proposition 2.8 ([Gao17b, Proposition 4.1 and Remark 4.4]). Under the open (in the usual
topology) immersion X+ ↪→ X∨, the space X+ is realized as a semi-algebraic subset which is also
a complex manifold. In particular, the complex structure of any X+

xG
(xG ∈ X+

G ) is the same as

the one obtained from X+
xG
' V (C)/Fil0xGV (C).

Example 2.9. Let us look at the example (P2g,D,a,X+
2g,a). In this case, we can take W be to a

Q-vector space of dimension 2g + 1 and identify P2g,D,a with the following subgroup of GL2g+1:(
GSp2g,D V2g

0 1

)
.

It is then not hard to prove that the complex structure of X+
2g,a given by Proposition 2.8 coincides

with the one given by (2.4).[4]

The identification (2.4) can be generalized to arbitrary (P,X+) of Kuga type in the following

way. Use Notation 2.5. By [Wil97, pp. 6], there exists a Shimura morphism ĩ : (G,X+
G ) →

(P,X+) such that π̃ ◦ ĩ = id. Then ĩ defines a Levi decomposition of P = V o G. Recall
X+ ⊆ Hom(S, PR). Define the bijective map

ρ : V (R)×X+
G
∼−→ X+, (v, x) 7→ int(v) ◦ ĩ(x).

Under this identification, the action of P (R)+ = V (R) oG(R)+ on X+ is given by the formula

(v′, h) · (v, x) = (v′ + hv, hx), ∀(v′, h) ∈ P (R)+ and (v, x) ∈ X+.

It is proven that for the realization of X+ as an open (in the usual topology) semi-algebraic
subset of X∨, the identification ρ above is semi-algebraic; see [Gao17b, Proposition 4.3].

3. Statement of the Ax-Schanuel theorem

3.1. Review on the bi-algebraic system. Let M = Γ\X+ be a connected mixed Shimura
variety of Kuga type associated with (P,X+). Let u : X+ →M be the uniformization.

Recall the realization of X+ in §2.5. By Proposition 2.8 X+ can be realized as an open (in
the usual topology) semi-algebraic subset of a complex algebraic variety X∨.

Definition 3.1. (i) A subset Ỹ of X+ is said to be irreducible algebraic if it is a complex
analytic irreducible component of X+ ∩W , where W is an algebraic subvariety of X∨.

(ii) A subset Ỹ of X+ is said to be irreducible bi-algebraic if it is an irreducible algebraic

subset of X+ and u(Ỹ ) is an algebraic subvariety of M .
(iii) A closed irreducible subvariety Y of M is said to be bi-algebraic if one (and hence

any) complex analytic irreducible subvariety of u−1(Y ) is irreducible algebraic in X+. A
closed subvariety Y of M is said to be bi-algebraic if all of its irreducible components are
bi-algebraic.

The following result is not hard to prove.

[4]The realization of H+
g by Proposition 2.8 is the Harish-Chandra realization, whereas the one given by (2.4)

is the Siegel upper half-space realization. It is known that for H+
g , the complex structures given by these two

realizations coincide. Moreover, the various realizations of X+
G give the same semi-algebraic structure by [Ull14,

Lemma 2.1].
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Lemma 3.2. If F1 and F2 are bi-algebraic subvarieties of M , then every irreducible component
of F1 ∩ F2 is also bi-algebraic.

In view of this, we can introduce the following notation.

Notation 3.3. (i) Let Z̃ be any complex analytic irreducible subset of X+. Use Z̃Zar to

denote the smallest irreducible algebraic subset of X+ which contains Z̃, and use Z̃biZar

to denote the smallest irreducible bi-algebraic subset of X+ which contains Z̃.
(ii) Let Z be any subset of M (not necessarily a subvariety). Use ZbiZar to denote the smallest

bi-algebraic subvariety of M which contains Z (hence ZbiZar contains ZZar).

3.2. Statement of the Ax-Schanuel theorem. Let M = Γ\X+ be a connected mixed
Shimura variety of Kuga type associated with (P,X+). Let u : X+ →M be the uniformization.
The typical case is when M = Ag,D is the universal abelian variety.

Theorem 3.4 (Ax-Schanuel for mixed Shimura varieties of Kuga type). Let Z be a complex

analytic irreducible subvariety of graph(u) ⊆ X+ ×M , and denote by Z̃ the image of Z under
the natural projection X+ ×M → X+. Then

dimZZar − dim Z̃ ≥ dim Z̃biZar,

where ZZar means the Zariski closure of Z in M × X+. Moreover the equality holds if and only

if Z̃ is a complex analytic irreducible component of Z̃Zar ∩ u−1(u(Z̃)Zar).

We also state the weak Ax-Schanuel theorem for mixed Shimura varieties of Kuga type to
make the statement more clear. It follows directly from Theorem 3.4.

Theorem 3.5 (weak Ax-Schanuel for mixed Shimura varieties of Kuga type). Let Z̃ be a complex
analytic irreducible subset of X+. Then

dim(u(Z̃))Zar + dim Z̃Zar ≥ dim Z̃ + dim Z̃biZar.

Moreover the equality holds if and only if Z̃ is a complex analytic irreducible component of

Z̃Zar ∩ u−1(u(Z̃)Zar).

Before moving on, we point out that the “Moreover” part of Theorem 3.5 immediately follows
from the main part and the Intersection Dimension Inequality.

Remark 3.6. Our proof of Theorem 3.4 uese the work of Mok-Pila-Tsimerman [MPT19] on
the Ax-Schanuel theorem for pure Shimura varieties and extends their proof. As a statement
itself, Theorem 3.4 implies the pure Ax-Schanuel theorem.

3.3. Geometric description of bi-algebraic subvarieties. By [Gao17b, Theorem 8.1], bi-
algebraic subvarieties of Ag,D are precisely the weakly special subvarieties defined by Pink [Pin05,
Definition 4.1.(b)]. The definition of weakly special subvarieties will be given in §3.4. For the
moment we present the geometric description of these weakly special subvarieties. Recall the
projection π : Ag,D → Ag,D, which is proper. We have the following result.

Proposition 3.7 ([Gao17a, Proposition 1.1]). A closed irreducible subvariety Y of Ag,D is bi-
algebraic (or equivalently weakly special) if and only if the following conditions hold:

(i) Its projection π(Y ) is a weakly special subvariety of Ag,D;
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(ii) Up to taking a finite covering of π(Y ), we have that Y is the translate of an abelian
subscheme of π−1(π(Y ))→ π(Y ) by a torsion section and then by a constant section.

Let us explain condition (ii) in more details. We have that π(Y ) is a closed irreducible
subvariety of Ag,D, hence π−1(π(Y )) = Ag,D|π(Y ) is an abelian scheme over π(Y ). Condition (ii)
means: there exists a finite covering B′ → π(Y ) such that under the base change A′ := B′×π(Y )

π−1(π(Y )) and the natural projection p′ : A′ → π−1(π(Y )), we have Y = p′(B + σ + σ0), where
B is an abelian subscheme of A′ → B′, σ is a torsion section of A′ → B′, and σ0 is a constant
section of (the largest constant abelian subscheme of) A′ → B′.

Proposition 3.7 is proven as a consequence of the following result.

Proposition 3.8 ([Gao17a, Proposition 3.3]). Let B be an irreducible subvariety of Ag,D. Then

{Up to taking a finite covering of B, the translates of an abelian subscheme
of π−1(B)→ B by a torsion section and then by a constant section}

= {irreducible components of π−1(B) ∩ F : F weakly special in Ag,D with B ⊆ π(F )}.

3.4. Review on weakly special subvarieties. Now let us give the definition of weakly special
subvarieties following Pink. Let (P,X+) and M be as above Theorem 3.4.

Definition 3.9. (i) A subset Ỹ of X+ is said to be weakly special if there exist a connected
mixed Shimura subdatum of Kuga type (Q,Y+) of (P,X+), a normal subgroup N of Qder,

and a point ỹ ∈ Y+ such that Ỹ = N(R)+ỹ.

(ii) A subvariety Y of M is said to be weakly special if Y = u(Ỹ ) for some weakly special

subset Ỹ of X+.

Our formulation is slightly different from [Pin05, Definition 4.1.(b)], but it is not hard to show
that they are equivalent; see [Gao17b, §5.1].

4. Basic Setting-up

In this section, we fix some basic setting-up to prove Theorem 3.4. Let M be a connected
mixed Shimura variety of Kuga type associated with (P,X+). Let u : X+ → M be the uni-
formization. Use ∆ ⊆ X+×M to denote graph(u). Let π̃ : (P,X+)→ (G,X+

G ) and π : M →MG

be as in Notation 2.5.
Let Z = graph(Z̃ → u(Z̃)) be a complex analytic irreducible subset of graph(u). Let ZZar be

the smallest algebraic subvariety of X+ ×M containing Z. We wish to prove

dimZZar − dimZ ≥ dim Z̃biZar.

It is clear that we may replace Z by a complex analytic irreducible component of ZZar∩∆. Hence
Theorem 3.4 is equivalent to the following statement.

Theorem 4.1. Let B be an irreducible algebraic subvariety of X+ ×M , and let Z be a complex
analytic irreducible component of B ∩∆. Assume B = ZZar. Then

dimB− dimZ ≥ dim Z̃biZar,

where Z̃ is the image of Z under the natural projection X+ ×M → X+.
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We shall prove the Ax-Schanuel theorem in the form of Theorem 4.1. Since any connected
mixed Shimura subvariety ofM is bi-algebraic, we may replace (P,X+) by the smallest connected

mixed Shimura datum such that Z̃ ⊆ X+ and replace M accordingly. Then we still have
B ⊆ X+ ×M . Use

prX+ : X+ ×M → X+, prM : X+ ×M →M

to denote the natural projections. They are clearly algebraic. We still have Z̃ = prX+(Z).
Consider the action of Γ on X+×M via its action on the first factor. Then ∆ is Γ-invariant.

4.1. Fundamental Set. Fix a Shimura embedding (P,X+) ↪→ (G0,D+)×(P2g,D,a,X+
2g,a). Such

an embedding exists by Theorem 2.6.
Let FSp2g

be a Siegel fundamental set for the action of Sp2g,D(Z) on H+
g . Let FP2g,a ⊆ X+

2g,a

be defined as iH+
g

(
(−k, k)2g × FSp2g

)
for some k ≥ 1, where

iH+
g

: V2g(R)× H+
g ' X+

2g,a

is the real-algebraic map defined in (2.11). Then FP2g,a is a fundamental set for the action of

Z2g o Sp2g,D(Z) on X+
2g,a.

Let FD+ be a fundamental set for the action of Γ0 on D+ as in [KUY16, Theorem 1.9]. Then
F = FD+ × FP2g,a is a fundamental set for u : D+ × X+

2g,a → S0 × Ag. Moreover u|F is definable

in Ran,exp by [PS13].
It is possible to choose FSp2g

, k and FD+ such that F∩X+ is a fundamental set for u : X+ →M .

Replace F by F∩X+, then u|F is definable in Ran,exp. We may furthermore enlarge F such that
F, resp. FG := π̃(F), is open in X+, resp. in X+

G , in the usual topology.

4.2. Some results on the pure part. Let Z̃ be as in Theorem 4.1. In this subsection we
summarize some known results on the pure part, which will be used in the proof of Theorem 5.2.

Assume dim π̃(Z̃) > 0. All distances and norms || · ||∞ below are as in [KUY16, §5.1].

Fix z̃0,G ∈ π̃(Z̃). All constants below depend only on X+
G , FG, π̃(Z̃), and z̃0,G.

For any T > 0, define

(4.1) Bhorz(z̃0,G, T ) = {z̃G ∈ X+
G : dhorz(z̃G, z̃0,G) < log T},

where dhorz(·, ·) is the Gder(R)+-invariant hyperbolic metric on X+
G .

Lemma 4.2. For each z̃G ∈ Bhorz(z̃0,G, T ) ⊆ X+
G , we have

||z̃G||∞ ≤ c0T.

Proof. For z̃G ∈ Bhorz(z̃0,G, T ) ⊆ X+
G , there exists g ∈ G(R)+ such that g · z̃0,G = z̃G. Then by

[KUY16, Lemma 5.4], we have

log ||g||∞ ≤ dhorz(z̃G, z̃0,G) < log T.

Hence we are done. �

Now let us consider

(4.2) LG(T ) := {γG ∈ ΓG : γGFG ∩Bhorz(z̃0,G, T ) 6= ∅}.
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Lemma 4.3. There exist two constants c1, c2 > 0 such that

H(γG) ≤ c1T
c2 for any γG ∈ LG(T ).

Proof. For any γG ∈ LG(T ), we have γ−1
G z̃G ∈ FG for some z̃G ∈ Bhorz(z̃0,G, T ). Thus the result

follows from Lemma 4.2 and [KUY16, Lemma 5.5]. �

All volumes below are hyperbolic volumes.

Lemma 4.4. There exist two constants c3 > 0 and c4 > 0 such that

vol(π̃(Z̃) ∩Bhorz(z̃0,G, T )) ≥ c3T
c4 dim π̃(Z̃), ∀T � 0.

Proof. This is [HT02, Corollary 3]. �

Lemma 4.5. There exists a constant c5 > 0 such that

vol(π̃(Z̃) ∩ γGFG) ≤ c5

for all γG ∈ ΓG.

Proof. This follows from [BT19, Proposition 3.2]; our π̃(Z̃) ∩ γGFG is the image of the Z ∩ γΦ
in loc.cit. under the projection X+

G ×MG → X+
G . As our notation is somewhat different from

loc.cit., we briefly recall the proof. Denote by X̃ = Z̃Zar and Y = u(Z̃)Zar. The assumption of

Theorem 4.1 (Z is a complex analytic irreducible component of B∩∆) implies that Z̃ is a complex

analytic irreducible component of X̃ ∩ u−1(Y ). Hence π̃(Z̃) is a complex analytic irreducible

component of π̃(X̃) ∩ u−1
G (π(Y )), where uG : X+

G →MG is the uniformizing map. It is possible
to cover FG with finitely many semi-algebraic subsets {Σi} such that each Σi can be written
in terms of (Siegel) coordinates; see [KUY16, Lemma 5.8] or [BT19, Proposition 3.2]. For each

dominant projection p from γ−1
G π̃(Z̃) ∩ Σi to dim π̃(Z̃) coordinates, it can be computed that

p(γ−1
G π̃(Z̃)∩ FG ∩Σi) has finite volume. As the Kähler form with respect to which we compute

the volume is Gder(R)+-invariant, it suffices to bound the degree of the projections uniformly

for γG ∈ ΓG. But the function G(R)+ → R, g−1π̃(X̃) ∩ (u−1
G (π(Y )) ∩ FG) ∩ Σi 7→ deg(p) is a

definable function with value in Z. Hence the image must be a finite set, meaning that the degree
is uniformly bounded for g ∈ G(R)+, and in particular for γG ∈ ΓG. Hence we are done. �

5. Bigness of the Q-stabilizer

Define H to be the Q-stabilizer of B, namely

(5.1) H =
(

Γ ∩ StabP (R)+(B)
Zar
)◦
.

The goal of this section is to execute the following dévissage.

Proposition 5.1. Either Theorem 4.1 is true, or dimH > 0.

Let us prove this proposition. Define

(5.2) Θ = {p ∈ P (R) : dim(p−1B ∩ (F×M) ∩∆) = dimZ}.
Then Θ is a definable set.

We have

(5.3) {γ ∈ Γ : γ(F×M) ∩ Z 6= ∅} ⊆ Θ ∩ Γ
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since Γ∆ = ∆. On the other hand, we have

γ(F×M) ∩ Z = (γ · pr−1
X+(F)) ∩ Z

= pr−1
X+(γF) ∩ Z since prX+ is P (R)+-equivariant

= pr−1
X+(γF ∩ prX+(Z))

= pr−1
X+(γF ∩ Z̃).

Hence (5.3) becomes

(5.4) {γ ∈ Γ : γF ∩ Z̃ 6= ∅} ⊆ Θ ∩ Γ.

Theorem 5.2. Assume dim Z̃ > 0. Then there exist a constant ε > 0 and a sequence {Ti} with
Ti →∞ such that the following property holds: for each Ti there exists a connected semi-algebraic
block B ⊆ Θ which contains ≥ T εi points in Γ with height at most Ti.

[5]

Proof. Use the notation of (2.12). A typical case to keep in mind is (P,X+) = (P2g,D,a,X+
2g,a)

and (G,X+
G ) = (GSp2g,D,H

+
g ). The map π̃ : (P,X+) → (G,X+

G ) is the natural projection.

Denote by X̃ = Z̃Zar and Y = u(Z̃)Zar. Then the assumption on Z implies that Z̃ is a complex

analytic irreducible component of X̃ ∩ u−1(Y ).

Case dim π̃(Z̃) = 0 In this case Z̃ is contained in a fiber of X+ → X+
G . Consider {γ ∈ Γ :

γF ∩ Z̃ 6= ∅}. We claim that it is infinite. Assume it is not, then u(Z̃) =
⋃
γ∈Γ u(Z̃ ∩ γF)

is a finite union, with each member in the union being closed, complex analytic and definable

(in Ran,exp) in M . Hence u(Z̃) is closed complex analytic and definable in M . Hence u(Z̃)
is algebraic by Peterzil-Starchenko’s o-minimal Chow [PS09, Theorem 4.5]; see also [MPT19,

Theorem 2.2], and so u(Z̃) = Y . The monodromy group of Y , denoted by ΓY , is infinite since

Y is a positive dimensional subvariety of an abelian variety. But ΓY ⊆ {γ ∈ Γ : γF ∩ Z̃ 6= ∅}.
This settles the claim.

Now that {γ ∈ Γ : γF ∩ Z̃ 6= ∅} is infinite, we get that it contains ≥ T elements of height
at most T (for all T � 0) because each fundamental set in the fiber of X+ → X+

G is contained

in an Euclidean ball of a fixed radius and that Z̃ is connected.[6] Hence we can conclude the
theorem by Pila-Wilkie [Pil11, Theorem 3.6].

Case dim π̃(Z̃) > 0 Fix z̃0 ∈ Z̃ ∩ F ⊆ X+, and denote by z̃0,G = π̃(z̃0). Consider the geodesic

balls Bhorz(z̃0,G, T ) in X+
G defined by (4.1), which for simplicity we denote by Bhorz(T ).

For each T > 0, let Z̃(T ) denote the complex analytic irreducible component of Z̃∩π̃−1(Bhorz(T ))
which contains z̃0. Define the following sets:

Ξ(T ) = {p ∈ P (R) : pF ∩ Z̃(T ) 6= ∅},
ΞG(T ) = {g ∈ G(R) : gFG ∩ π̃(Z̃(T )) 6= ∅}.

In the rest of the proof we prove that #(Ξ(T ) ∩ Γ) grows polynomially in terms of T . It is
divided into two steps: first we treat the base, and then we insert the information on the vertical
direction.

[5]We refer to [Pil11, Definition 3.4 and the paragraph below] for the definition and basic properties of semi-
algebraic blocks.

[6]The crucial point is that the group V (R) is a Euclidean space. See [Tsi15, pp. 3].
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Step I Count on the base.

It is clear that
π̃(Z̃(T )) =

⋃
γG∈ΞG(T )∩ΓG

(γGFG ∩ π̃(Z̃(T ))).

Thus by taking volumes on both sides, we get by Lemma 4.4[7] and Lemma 4.5 that

(5.5) #(ΞG(T ) ∩ ΓG) ≥ cT ε, ∀T � 0

for some constants c > 0 and ε > 0 independent of T .
On the other hand for each γG ∈ ΞG(T )∩ΓG, we have γG ∈ LG(T ) for the set LG(T ) defined

in (4.2). Thus Lemma 4.3 implies H(γG) ≤ c1T
c2 for some constants c1, c2 > 0 independent of

T .
Step II Study the vertical direction.

Consider the projection to the V -direction

pV : X+ ' V (R)×X+
G → V (R).

By abuse of notation we shall identify X+ and V (R)×X+
G .

For any set E ⊆ V (R), denote by ||E||∞ = max{||e||∞ : e ∈ E}.
Fix a number δ > c2. We are in one of the following two cases.

(i) For a sequence {Ti ∈ R}i∈N such that Ti →∞, we have ||pV (Z̃(Ti))||∞ ≤ T δi .

(ii) We have ||pV (Z̃(T ))||∞ > T δ for all T � 0.

Assume we are in case (i). We claim that for each γG ∈ ΞG(Ti)∩ΓG, there exists γV ∈ ΓV with
H(γV ) ≤ T δi such that (γV , γG) ∈ Ξ(Ti) ∩ Γ. Indeed, let γG ∈ ΞG(Ti) ∩ ΓG and choose a point

z̃G ∈ γGFG∩ π̃(Z̃(Ti)). Take z̃ ∈ Z̃(Ti) such that π̃(z̃) = z̃G. Write z̃ = (z̃V , z̃G) ∈ V (R)×X+
G '

X+, then by assumption on case (i) we have ||z̃V ||∞ ≤ T δi . Hence z̃V ∈ γV +(−1, 1)2g with some
γV ∈ ΓV such that H(γV ) ≤ ||z̃V ||∞ ≤ T δi . Recall that by choice of F we have (−1, 1)2g×FG ⊆ F.
This γV is what we desire.

Now that #(ΞG(Ti)∩ΓG) ≥ cT εi by (5.5) and H(γG) ≤ c1T
c2
i for each γG ∈ ΞG(Ti)∩ΓG (see

below (5.5)), the paragraph above yields

#{γ ∈ Ξ(Ti) ∩ Γ : H(γ) ≤ Ti} ≥ cT εi
where c and ε are modified appropriately (but still independent of Ti). By definition we have

Ξ(Ti) ∩ Γ ⊆ {γ ∈ Γ : γF ∩ Z̃ 6= ∅}, and hence by (5.4) we have

#{γ ∈ Θ ∩ Γ : H(γ) ≤ Ti} ≥ cT εi .
Now Pila-Wilkie [Pil11, Theorem 3.6] yields the conclusion for case (i).

Assume we are in case (ii). Recall that by the choice by F we have F ⊆ (−k, k)2g × FG for
some fixed integer k. For each γ = (γV , γG) ∈ Γ such that γGFG ∩ Bhorz(T ) 6= ∅, we have
H(γG) ≤ c1T

c2 by Lemma 4.3. Now for each x̃ = (x̃V , x̃G) ∈ γF, we have

x̃V ∈ γG · (−k, k)2g + γV ⊆ (−kc1T
c2 , kc1T

c2)2g + γV .

Thus if γ = (γV , γG) ∈ Γ satisfies γF ∩ Z̃(T ) 6= ∅, then we have

pV (γF ∩ Z̃(T )) ⊆ (−kc1T c2 , kc1T
c2)2g + γV ⊆ BEucl(

√
2gkc1T

c2) + γV ,

[7]When T → ∞, we have that vol(π̃(Z̃(T ))) approximates vol(π̃(Z̃) ∩ Bhorz(T )) since Z̃ is irreducible. Thus
they have the same volume lower bounds when T � 0.
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where BEucl(
√

2gkc1T
c2) is the Euclidean ball in V (R) centered at 0 of radius

√
2gkc1T

c2 .
On the other hand consider the Euclidean ball in V (R) centered at 0 of radius T δ for all

T � 0. The assumption of case (ii) says that pV (Z̃(T )) reaches the boundary of this ball.

Since Z̃(T ) is connected and V (R) is Euclidean, the two paragraphs above then imply

(5.6) #{γV ∈ ΓV : H(γV ) ≤ T δ, (γV , γG) ∈ Ξ(T ) for some γG ∈ ΞG(T )∩ΓG} ≥
1√

2gkc1
T δ−c2

for T � 0. On the other hand each γG ∈ ΞG(T ) ∩ ΓG satisfies H(γG) ≤ c1T
c2 . Hence (5.6)

yields

#{(γV , γG) ∈ Ξ(T ) ∩ Γ : H(γV ) ≤ T δ, H(γG) ≤ c1T
c2} ≥ 1√

2gkc1
T δ−c2 .

Recall that the only assumption on δ is that δ > c2, so δ is independent of T . Hence we have

#{γ ∈ Ξ(T ) ∩ Γ : H(γ) ≤ T} ≥ c′T ε

for some c′, ε > 0 independent of T . Hence by Pila-Wilkie [Pil11, Theorem 3.6] we are done. �

Now we are ready to prove the bigness of the Q-stabilizer of B.

Proof of Proposition 5.1. Denote by F = u(Z̃)biZar and F̃ = Z̃biZar. Then F is weakly special

by [Gao17b, Theorem 8.1]. As Z̃ is by assumption Hodge generic in X+, we have F̃ = N(R)+x̃
for some N C P and some x̃ ∈ X+. See §3.4. Denote by ΓN = N(Q) ∩ Γ. Without loss of

generality we may assume dim Z̃ > 0; otherwise Theorem 4.1 is clearly true.
We do the lexicographic induction on (dimB−dimZ,dimZ), upwards for the first factor and

downwards for the second.
The starting point of the induction on the first factor is when dimB − dimZ = 0. Then

B = Z and hence both Z̃ and u(Z̃) are algebraic. Therefore Z̃ = F̃ and u(Z̃) = F . Thus

Z = graph(F̃ → F ). In particular Z is ΓN -invariant, namely ΓN · Z = Z. But the action of
P (R)+ on X+ ×M is algebraic. So taking Zariski closures on both sides, we get N(R)+B = B.

But then B = F̃ × F , and hence dimB − dimZ = dimF . So we must have dimF = 0. Hence
this case is proven.

Let us prove the starting point of the induction on the second factor. Recall that Z ⊆
graph(F̃ → F ). So the starting point of the induction on the second factor is when Z =

graph(F̃ → F ). Hence Z is ΓN -invariant, namely ΓN · Z = Z. But the action of P (R)+ on
X+ ×M is algebraic. So taking Zariski closures on both sides, we get N(R)+B = B. But then

B = F̃ × F , and hence dimB− dimZ = dimF . Hence we are done for this case.
Now we do the induction. Let C be a connected semi-algebraic curve in Θ. For each c in

an open neighborhood of C, let Zc be a complex analytic irreducible component of c−1B ∩ ∆

such that dimZc = dimZ. Let c0 ∈ C be such that prX+(Zc0)biZar = F̃ ,[8] then there are 3
possibilities:

(i) c−1B is independent of c ∈ C;
(ii) c−1B is not independent of c ∈ C but Zc0 ⊆ c−1B for all c ∈ C;
(iii) c−1B is not independent of c ∈ C and Zc0 6⊆ (c′)−1B for some c′ ∈ C.

[8]This holds for all but countably many points in C.



20 ZIYANG GAO

If we are in case (ii), then let B1 := B ∩ c−1B for a generic c ∈ C. Then dimB1 < dimB.
But dimZc0 = dimZ. Applying the inductive hypothesis on dimB − dimZ to (B1,Zc0), we
have dimB1 − dimZc0 ≥ dimF . Hence the Theorem 4.1 is true. If we are in case (iii), then
let B2 := (C−1B)Zar and let Z2 be a complex analytic irreducible component of B2 ∩∆. Then

dimB2 = dimB+ 1[9], and hence dimZ2 = dimZ+ 1 since Z2 contains ∪c∈CZc. Hence dimB2−
dimZ2 = dimB − dimZ, and we can apply the inductive hypothesis on dimZ to (B2,Z2) and
get dimB2 − dimZ2 ≥ dimF . Hence Theorem 4.1 is true.

It remains to treat case (i). In particular we may take C to be a semi-algebraic curve contained
in the semi-algebraic block B as in Theorem 5.2; note that B depends on the chosen Ti in
Theorem 5.2. It is known that B is the union of all such C’s; see [Pil11, below Definition 3.4].
The assumption on case (i) implies that each C is contained in some left coset of StabP (R)(B).
Since B is path-connected, it is possible to connect any two points of B by a semi-algebraic curve.
So all these C’s are contained in the same left coset of StabP (R)(B). Thus B ⊆ p StabP (R)(B) for
some p ∈ P (R). In particular b ∈ pStabP (R)(B) for each b ∈ B. Since left cosets are disjoints,
we then have bStabP (R)(B) = pStabP (R)(B) for each b ∈ B.

So B ⊆ bStabP (R)(B) for each b ∈ B. In particular γ−1B ⊆ StabP (R)(B) for some γ ∈ B ∩ Γ.
By letting Ti →∞ and varying B accordingly, we get dimH > 0. �

Remark 5.3. As a byproduct, the proof above yields the following claim: In order to prove the
Ax-Schanuel theorem (equivalently Theorem 4.1), we may assume that every connected semi-
algebraic block B of positive dimension in Θ is contained in a left coset of StabP (R)(B).

6. Normality of the Q-stabilizer

The goal of this section is to prove the following proposition. Use the notation of §5.

Proposition 6.1. Without loss of generality we may assume H C P .

The proof of Proposition 6.1 is by upward induction on dimB. It is clearly true for the
starting case dimB = 0 because H = 1 in this case.

6.1. Algebraic family associated with B. Mok’s idea to prove the Ax type transcendence
results is to use algebraic foliations. In our situation, we wish to construct a family F′ of
varieties in X+ associated with Z, such that F′ is Γ0-invariant for a suitable subgroup Γ0 of
Γ. This construction can be realized, for example, by using Hilbert schemes. Then u(F′) is a
foliation on M . Next we wish to improve the algebraicity of u(F′) to make it into an algebraic
subvariety. We present this process for our situation in this subsection. We point out that it is
[MPT19, §3] adapted to mixed Shimura varieties of Kuga type with some slight modifications.

Let Y = u(Z̃)Zar = prM (Z)Zar. Let X∨ be as in Proposition 2.8, then X+ is open (in the usual
topology) semi-algebraic in X∨. Let H be the Hilbert scheme of all subvarieties of X∨×Y with
the same Hilbert polynomial as B, and let B→ H be the (modified) universal family, namely

B = {(x̃,m, [W ]) ∈ X+ × Y ×H : (x̃,m) ∈W} ↪→ (X+ × Y )×H ⊆ (X+ ×M)×H

[9]The action of P (R)+ on X+×M extends to an action of P (C) on X∨×M . Thus (C−1)ZarB, being the image
of (C−1)Zar × B under P (C)× (X∨ ×M)→ X∨ ×M , has dimension at most dimB + 1. As C−1B ⊆ (C−1)ZarB
we have dim(C−1B)Zar ≤ dim(C−1)ZarB ≤ dimB + 1. As C−1B ⊆ (C−1)ZarB we have dim(C−1B)Zar > dimB

by the assumption of (iii).
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where [W ] means the point of H representing W . It is known that H is proper. Denote by

ψ : B→ X+ ×M

the natural projection. Then ψ is proper since H is proper.
The action of Γ on X+ ×M induces an action of Γ on B by

(6.1) γ(x̃,m, [W ]) = (γx̃,m, [γW ]).

It is clear that ψ is Γ-equivariant.
Recall that ∆ = graph(X+ →M) ⊆ X+ ×M . Define Z ⊆ B ∩ (∆×H) to be

(6.2) Z = {(δ̃, [W ]) ∈ ∆×H : δ̃ ∈ ∆ ∩W, dim
δ̃
(∆ ∩W ) ≥ dimZ}.

Then Z is a closed complex analytic subset of B. Hence ψ(Z) is closed complex analytic in
X+ ×M since ψ is proper.

Note that ∆ is Γ-invariant. So Z is Γ-invariant for the action (6.1). Hence we can define
Γ\Z, which is naturally a complex analytic variety. Moreover ψ(Z) is also Γ-invariant since ψ
is Γ-equivariant. We thus obtain the following commutative diagram:

(6.3) Z
ψ //

��

ψ(Z) ⊆

��

X+ ×M

(u,id)

��
Γ\Z

ψ // Γ\ψ(Z) ⊆ M ×M.

Then ψ is proper since ψ is proper.
We are now ready to prove the following result.

Proposition 6.2. The subset (u, id)(ψ(Z)) = ψ(Γ\Z) is a closed algebraic subvariety of M×M .

Proof. We claim that ψ(Z) ∩ (F×M) is definable in Ran,exp. Since

ψ(Z) ∩ (F×M) = ψ(Z ∩ (F×M ×H)),

it suffices to prove that Z ∩ (F×M ×H) is definable. But

Z ∩ (F×M ×H) = {(x̃,m, [W ]) ∈ F×M ×H : (x̃,m) ∈W, x̃ ∈ (u|F)−1(m),

dim(x̃,m)(∆ ∩ (F×M) ∩W ) ≥ dimZ}.

Hence Z ∩ (F×M ×H) is definable since u|F is definable.
Now since ψ(Z) is Γ-invariant, we have that

(u, id)(ψ(Z)) = (u, id) (ψ(Z) ∩ (F×M))

is closed complex analytic and definable in M ×M . Hence (u, id)(ψ(Z)) is closed algebraic by
Peterzil-Starchenko’s o-minimal Chow [PS09, Theorem 4.5]; see also [MPT19, Theorem 2.2]. �

Corollary 6.3. We have ψ(Γ\Z) = Y with Y viewed as a subvariety of M×M via the diagonal
embedding.

Proof. First, observe that ψ(Z) ⊆ ∆. Hence ψ(Γ\Z) = (u, id)(ψ(Z)) ⊆ M with M viewed as a
subvariety of M ×M via the diagonal embedding. Next, we have ψ(Z) ⊆ ψ(B) ⊆ X+ × Y by
definition of B. Hence ψ(Γ\Z) = (u, id)(ψ(Z)) ⊆ pr−1

2 (Y ) ⊆ M ×M for the projection to the
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second factor pr2 : M ×M →M . So ψ(Γ\Z) ⊆M ∩pr−1
2 (Y ) = Y with Y viewed as a subvariety

of M ×M via the diagonal embedding.
By assumption we have Z ⊆ ψ(Z). Hence (u, id)(Z) ⊆ (u, id)(ψ(Z)) = ψ(Γ\Z). Applying the

projection pr1 : M ×M →M to the first factor, we get

(6.4) u(Z̃) = u(prX+(Z)) ⊆ pr1(ψ(Γ\Z)).

Taking Zariski closures of both sides, we get Y ⊆ pr1(ψ(Γ\Z)). But ψ(Γ\Z) ⊆ Y with Y viewed
as a subvariety of M ×M via the diagonal embedding. We are done. �

6.2. The Q-stabilizer and first steps towards the normality. In this subsection we relate
Y to the Q-stabilizer of B via monodromy. We point out that it is [MPT19, §3] adapted to the
universal abelian variety. However we need to carefully distinguish the Mumford-Tate group
and the monodromy group in the mixed case, since the underlying group is no longer reductive
(so that we do not have a decomposition X+ = X+

1 ×X
+
2 as in the pure case, and are thus not

able to replace X+ by an N(R)+-orbit).
Let Z0 be the complex analytic irreducible component of Z which contains Z × [B]. By

Corollary 6.3, ψ(Γ\Z0) = Y since Y is irreducible. Consider the following map

(6.5) π1(Γ\Z0)
ψ∗−→ π1(Y )→ Γ.

Denote by Γ0 the image of this map, and by N the identity component of the Q-Zariski closure
(in P ) of Γ0. Then it is clear that Γ0Z0 ⊆ Z0 for the action Γ on B defined by (6.1).

Lemma 6.4. We have N C P . Moreover Z̃biZar = N(R)+z̃ for any z̃ ∈ Z̃.

Proof. Recall our assumption that (P,X+) is the smallest connected mixed Shimura subdatum of

Kuga type such that Z̃ ⊆ X+. Therefore M is the smallest connected mixed Shimura subvariety

of Kuga type which contains Y = u(Z̃)Zar.
Since ψ is proper, the image of ψ∗ has finite index in π1(Y ). Hence N equals the connected

algebraic monodromy group of Y . By the last paragraph, we have N CP by André [And92, §5,
Theorem 1]; see [Gao17b, §3.3].

Next observe that u(Z̃)biZar = Y biZar. So Z̃biZar = N(R)+z̃ (for any z̃ ∈ Z̃) by [Gao17b,
Theorem 8.1]. Thus we finish the proof. �

Denote by θ : B → H the natural projection. Let F = θ−1(θ(Z0)) = {(x̃,m, [W ]) : [W ] ∈
θ(Z0), (x̃,m) ∈W}, then F ⊆ B is the family of algebraic varieties parametrized by θ(Z0) ⊆ H,
with the fiber over each [W ] ∈ θ(Z0) being W . Then we have

Γ0F ⊆ F

for the action Γ on B defined by (6.1); see below (6.5).
For any [W ] ∈ θ(Z0) and any complex analytic irreducible component Z′ of its fiber (Z0)[W ],

we have u(prX+(Z′))Zar ⊆ Y as Z′ ⊆ ψ(Z0). Thus prX+(Z′)biZar ⊆ Z̃biZar as Y biZar = u(Z̃)biZar.
Moreover for a very general [W ] ∈ θ(Z0), i.e. outside a countable union of proper closed

subvarieties, there exists a component Z′ of (Z0)[W ] such that prX+(Z′)biZar = Z̃biZar.
Denote by

ΓF = {γ ∈ Γ : γW ⊆W, ∀[W ] ∈ θ(Z0)}.
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Then for a very general [W ] ∈ θ(Z0) (but may be different from above), we have

(6.6) StabΓ(W ) = ΓF.

Indeed, let Hγ := {[W ] ∈ θ(Z0) : γW ⊆W} for each γ ∈ Γ. Then for any γ 6∈ ΓF, we have that
Hγ is a proper subvariety of θ(Z0). Thus it suffices to take [W ] ∈ θ(Z0) \

⋃
γ∈Γ\ΓF

Hγ .

The two paragraphs above together imply: for a very general [W ] ∈ θ(Z0), we have StabΓ(W ) =

ΓF and there exists a component Z′ of (Z0)[W ] such that prX+(Z′)biZar = Z̃biZar.
It is known that B is a fiber of F. We claim that it suffices to handle the case where B is a

very general fiber as in the previous paragraph. Indeed, take [W ] ∈ θ(Z0) very general. Let Z′

be an irreducible component of (Z0)[W ] with u(prX+(Z′))biZar = Z̃biZar. We have dimZ′ ≥ dimZ

by definition of Z, and dimW = dimB by definition of the Hilbert scheme H. Denote by B′ =

(Z′)Zar, then B′ ⊆W . Then dimB−dimZ ≥ dimB′−dimZ′ and dim Z̃biZar = dim prX+(Z′)biZar.
So to prove the Ax-Schanuel Theorem (Theorem 4.1) for (B,Z), it suffices to prove it for (B′,Z′).
If dimB′ < dimW = dimB, then Proposition 6.1 follows from induction hypothese and we are
done. If dimB′ = dimW , then B′ = W is a very general fiber of F as we desire.

By (6.6), (ΓZar
F )◦ is the Q-stabilizer of B, which is the H defined in (5.1). The “Moreover”

part of Lemma 6.4 implies B = N(R)+z̃ × u(N(R)+z̃), and hence H is a subgroup of N .

Lemma 6.5. We have H CN .

Proof. Since Γ0F ⊆ F, every γ ∈ Γ0 sends a very general fiber W of F to a very general fiber
W ′ of F. As StabΓ(W ′) = StabΓ(γW ) = γStabΓ(W )γ−1, by (6.6) we get ΓF = γΓFγ

−1 for all
γ ∈ Γ0. Hence the conclusion follows by taking Zariski closures. �

6.3. Normality of the Q-stabilizer. The argument in this subsection is new compared to the
proof of the pure Ax-Schanuel theorem.

Proof of Proposition 6.1. Recall the definable set Θ defined in (5.2)

Θ = {p ∈ P (R) : dim(p−1B ∩ (F×M) ∩∆) = dimZ},

where F is the fundamental set for u : X+ → M defined in §4.1. By Remark 5.3, we may and
do assume that every positive dimensional semi-algebraic block in Θ is contained in a left coset
of StabP (R)(B).

We have H(R)+B ⊆ B since B is algebraic in X+ ×M and the action of P (R)+ on X+ ×M
is semi-algebraic.

Let VH = V ∩ H and VN = V ∩ N . Let GH = H/VH , GN = N/VN and G = P/V . Then
GH CGN CG by Lemma 6.4 and Lemma 6.5. Hence GH CG since any reductive group over Q,
in particular G, is an almost direct product of its center and almost simple normal subgroups.

Now we are left to prove the following two facts.

(i) VH is a G-submodule of V .
(ii) GH acts trivially on V/VH .

We start with (ii). By Lemma 6.5, we have H C N . It follows that GH acts trivially on
VN/VH . Hence it suffices to prove that GH acts trivially on V/VN . But Lemma 6.4 asserts that
N C P , and hence GN acts trivially on V/VN . In particular GH acts trivially on V/VN . Thus
we have established (ii).
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Now we prove (i). The “Moreover” part of Lemma 6.4 implies that B ⊆ F̃ × F , where

F̃ = N(R)+z̃ and F = u(F̃ ). Consider X̃ = prX+(B), then X̃ ⊆ F̃ . Applying the natural

projection π̃ : (P,X+) → (G,X+
G ), we get X̃G ⊆ GN (R)+z̃G. Here we denote by X̃G = π̃(X̃)

and z̃G = π̃(z̃).
For convenience of readers, the rest of the proof of (i) is divided into 3 steps.

Step I Any x̃G ∈ X+
G gives a morphism C× = S(R) → G(R). If we endow V (R) with the

complex structure determined by V (R) ' π̃−1(x̃G), then a real subspace V ′ of VR is complex
if and only if the following condition holds: x̃G(

√
−1) · V ′ ⊆ V ′. Denote for simplicity by

Jx̃G = x̃G(
√
−1). Thus under this complex structure on V (R), we have

• the smallest complex subspace of V (R) containing VH(R) is VH(R) + Jx̃GVH(R).
• the largest complex subspace of V (R) contained in VH(R) is VH(R)

⋂
Jx̃GVH(R).

Now each point in X̃G is of the form gz̃G for some g ∈ GN (R)+.
We claim that Jx̃GVH(R) is independent of x̃G when x̃G varies in GN (R)+z̃G. For any g ∈

GN (R)+, we have J−1
x̃G
gJx̃G ∈ GN (R)+ sinceGNCG. Hence gJx̃G = Jx̃Gg

′ for some g′ ∈ GN (R)+.

Note that Jgx̃G = gJx̃Gg
−1. Thus

Jgx̃GVH(R) = gJx̃Gg
−1 · VH(R) ⊆ gJx̃G · VH(R) = Jx̃Gg

′ · VH(R) ⊆ Jx̃G · VH(R).

Here we used the fact that VH is stable under GN (since H CN). This proves the claim.

In particular, Jx̃GVH(R) is independent of x̃G for x̃G ∈ X̃G.

Step II Next for any γG ∈ π̃(Θ) ∩ ΓG ⊇ {γG ∈ ΓG : γGFG ∩ Z̃G 6= ∅},[10] let Z̃|+γGFG
be a

complex analytic irreducible component of Z̃|γGFG
:= Z̃ ∩ π̃−1(γGFG), and define the following

definable set

Θ′ = {v ∈ V (R) : dim
(
(−v, γ−1

G )B ∩ (F×M) ∩∆
)

= dimZ} ⊆ V (R).

Then Θ′ ∩ Γ ⊇ {γV ∈ ΓV : (γV , γG)F ∩ Z̃|+γGFG
6= ∅}, and (Θ′, γ−1

G ) ⊆ Θ. Denote by ΓVH =

VH(Q) ∩ ΓV .

Suppose {γV ∈ ΓV : (γV , γG)F∩ Z̃|+γGFG
6= ∅} is not contained in a finite union of ΓVH -cosets.

Identify X+ ' V (R)×X+
G , then F = (−k, k)2g × FG for some k ≥ 1, where g = dimV . Hence

{γV ∈ ΓV : (γV , γG)F∩ Z̃|+γGFG
6= ∅} = {γV ∈ ΓV :

(
(γV + γG(−k, k)2g)× γGFG

)
∩ Z̃|+γGFG

6= ∅}.

Let pV : X+ ' V (R) × X+
G → V (R), then pV ((γV + γG(−k, k)2g) × γGFG) is contained in a

Euclidean ball of radius at most kH(γG). But Z̃|+γGFG
is connected by choice. Thus if the set

above is not contained in a finite union of ΓVH -cosets, then we get for free that it contains ≥ T
elements in ΓV \ΓVH of height at most H(γG)T (for all T � 0). [11] Hence by Pila-Wilkie [Pil11,
Theorem 3.6], there exist two constants c, ε > 0 with the following property: for each T � 0, Θ′

contains a semi-algebraic block B′ which is not in any coset of VH(R) and which contains ≥ cT ε
elements in ΓV outside ΓVH of height at most T . Recall our assumption that every positive
dimensional semi-algebraic block in Θ is contained in a left coset of StabP (R)(B). In particular

[10]It is not hard to show this inclusion by using Θ ∩ Γ ⊇ {γ ∈ Γ : γF ∩ Z̃ 6= ∅}. See [Gao17b, proof of
Lemma 10.2].

[11]The crucial point is that the group V (R) is Euclidean. See [Tsi15, pp. 218-219].
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(B′, γ−1
G ) ⊆ (γ′V , γ

−1
G )·StabP (R)(B) for some γ′V ∈ B′∩ΓV . Hence (−γ′V +γGB

′, 1) ⊆ StabP (R)(B);
the argument is similar to the end of Proposition 5.1 (right above Remark 5.3). But then(

(−γ′V + γGB
′) ∩ ΓV , 1

)
⊆ StabP (R)(B) ∩ Γ ⊆ H(Q).

By letting T →∞ and varying B′ accordingly, we see that this inclusion cannot hold since each
B′ ⊆ V (R) thus obtained is not contained in any coset of VH(R).

Thus {γV ∈ ΓV : (γV , γG)F ∩ Z̃|+γGFG
6= ∅} is contained in a finite union of ΓVH -cosets. Hence

for the map u : X+ → ΓV \X+,[12] we have that u(Z̃|+γGFG
) is closed in (ΓV \X+)|γGFG

in the
usual topology.

In the following paragraph we consider the usual topology. As γGFG is an open subset of X+
G

for each γG ∈ ΓG, each Z̃|+γGFG
is an open subset of Z̃. In particular there exists a Z̃|+γGFG

as

above such that dim Z̃|+γGFG
= dim Z̃. Consider the closure W of u(Z̃|+γGFG

) in ΓV \X+. By the

last paragraph, we have W ◦ ⊆ u(Z̃|+γGFG
) ⊆ W where W ◦ is the interior of W . Now let Z̃ ′ be

the complex analytic irreducible component of u−1(W ) that contains Z̃|+γGFG
. Then we have

Z̃ ′ ⊆ Z̃ and u(Z̃ ′) = W is closed in ΓV \X+.

Denote by Z′ := graph(Z̃ ′ → u(Z̃ ′)). Then dimZ′ = dimZ because dim Z̃ ′ = dim Z̃. By

analytic continuation, we then have (Z′)Zar = ZZar = B and (Z̃ ′)Zar = Z̃Zar = X̃.

Step III Now let

Γ′ = Im
(
π1(u(Z̃ ′))→ π1(ΓV \X+) = ΓV

)
⊆ ΓV .

Then Γ′ stabilizes Z̃ ′ for the action of ΓV on X+. Recall that P (R)+ acts on X+ ×M via its
action on the first factor. So Γ′ stabilizes Z′. Hence (Γ′)Zar(R) ⊂ V (R) stabilizes B = (Z′)Zar.
On the other hand H is defined to be the Q-stabilizer of B. So (Γ′)Zar ⊆ H ∩ V = VH .

Let us take a closer look at this. The identification π1(ΓV \X+) = ΓV is realized via (2.10)

i−1

X+
G

: X+ ' V (R)×X+
G

and hence ΓV \X+ ' (ΓV \V (R)) × X+
G . We have Z̃ ′ ⊆ X̃ = (Z̃ ′)Zar ⊆ F̃ = N(R)+z̃. Since

VH CN , we can take the quotient of F̃ = N(R)+z̃ by VH(R) and get a real manifold. Call this
quotient q. Denote by ΓVN = ΓV ∩N(Q) and ΓVH = ΓV ∩H(Q). Then we obtain a commutative
diagram

VN (R)× F̃G ' F̃
q //

u
��

q(F̃ ) ' (VN/VH)(R)× F̃G

��

(ΓVN \VN (R))× F̃G ' u(F̃ )
[q] //

(
(ΓVN /ΓVH )\(VN/VH)(R)

)
× F̃G.

Here all the isomorphisms in the diagram are compatible with the i−1

X+
G

above. For now on, by

abuse of notation we no longer write i−1

X+
G

(·).

[12]The complex space ΓV \X+ is a family of abelian varieties. In fact it is the pullback of the abelian scheme
M →MG under the uniformization X+

G →MG.
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Since Γ′ ⊆ VH(Q), we have that [q](u(Z̃ ′)) is contained in {t}×F̃G for some t ∈ (ΓVN /ΓVH )\(VN/VH)(R).

But then q(Z̃ ′) ⊆ {v′} × F̃G for some v′ ∈ (VN/VH)(R). Thus there exists v ∈ V (R) such that

(6.7) Z̃ ′ − ({v} × Z̃ ′G) ⊆ VH(R)× F̃G.

But iX+
G

({v} × Z̃ ′G) is complex analytic in X+ by property (ii) of iX+
G

below (2.10). So the left

hand side of (6.7) is complex analytic.

We have proven in Step I that over each x̃G ∈ F̃G, the largest complex subspace of V (R)
contained in VH(R) is VH(R)

⋂
Jx̃GVH(R) and Jx̃GVH(R) is independent of the choice of x̃G.

Hence (6.7) implies

Z̃ ′ − ({v} × Z̃ ′G) ⊆ (VH(R)
⋂
Jx̃GVH(R))× F̃G

since the left hand side is complex analytic. Taking the Zariski closures, we get

X̃ − ({v} × X̃G) ⊆ (VH(R)
⋂
Jx̃GVH(R))× F̃G.[13]

But VH(R) stabilizes X̃, so VH(R) = VH(R)
⋂
Jx̃GVH(R). But then VH(R) is complex for the

complex structure of V (R) ' X+
x̃G

for any x̃G ∈ F̃G. Since Z̃ is assumed to be Hodge generic in

(P,X+), we may take x̃G such that MT(x̃G) = G. Then we see that VH is a G-module. �

7. End of proof

Use the notation of §5. We finish the proof of Theorem 4.1. Let B and Z = graph(Z̃ → u(Z̃))

be as in the theorem. Denote by F̃ = Z̃biZar. Then F̃ is weakly special by [Gao17b, Theorem 8.1],

and hence F̃ = N(R)+x̃ for some N C P and some x̃ ∈ X+. See §3.4.
By Proposition 5.1, it suffies to consider the case where dimH > 0. By Proposition 6.1, we

may and do assume H C P . Note that H is a subgroup of N by Lemma 6.4 and Lemma 6.5.
Consider the quotient connected mixed Shimura datum of Kuga type (P,X+)/H, which we

denote by (P ′,X ′+). Use M ′ to denote the corresponding connected mixed Shimura variety of
Kuga type. We have the following commutative diagram:

(P,X+)
ρ̃ //

u

��

(P ′,X ′+)

u′

��
M

ρ // M ′.

Let B′ = (ρ̃, ρ)(B), Z′ = (ρ̃, ρ)(Z) and Z̃ ′ = ρ̃(Z̃). Then ρ̃(F̃ ) = (Z̃ ′)biZar. Apply Proposition 5.1
to B′ and Z′. We have either

(7.1) dimB′ − dimZ′ ≥ dim ρ̃(F̃ ),

or the Q-stabilizer of B′, which we call H ′, has positive dimension. But in the second case,
ρ̃−1(H ′)(R)+ stabilizes B and is larger than H, contradicting the maximality of H. So we are
in the first case, namely (7.1) holds.

For the quotient (ρ̃, ρ) : X+ ×M → X ′+ ×M ′, any fiber of B→ B′ is of the form

(7.2) H(R)+x̃× Y

[13]We use the fact that any subset of X+ is algebraic if and only if it is complex analytic and semi-algebraic.
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for some x̃ ∈ prX+(B) and some algebraic subvariety Y of M (with ρ(Y ) being a point). Hence
any fiber of Z′ → Z is of the form

(7.3) graph(Ỹ → Y )

where Ỹ is a complex analytic irreducible component of u−1(Y ). By generic flatness we may
choose a point z′ ∈ Z′ such that

dimZ− dimZ′ = dimZz′ and dimB− dimB′ = dimBz′ .

Thus

dimB− dimZ = (dimB′ + dimBz′)− (dimZ′ + dimZz′)

= (dimB′ − dimZ′) + (dim(H(R)+x̃× Y )− dimY ) by (7.2) and (7.3)

≥ dim ρ̃(F̃ ) + dimH(R)+x̃ by (7.1)

= dim(N/H)(R)+ρ̃(x̃) + dimH(R)+x̃

= dimN(R)+x̃ = dim F̃ .

Hence we are done.

8. Application to a finiteness result à la Bogomolov

The goal of this section is to prove a finiteness result à la Bogomolov. Fix a connected mixed
Shimura variety of Kuga type M associated with (P,X+), and use u : X+ → M to denote the
uniformization. Fix an irreducible subvariety Y of M .

The following definition was introduced by Habegger-Pila [HP16] to study the Zilber-Pink
conjecture. Recall that weakly special subvarieties of M are precisely the bi-algebraic subvari-
eties; see §3.3.

Definition 8.1. (i) For any irreducible subvariety Z of M , define δws(Z) = dimZbiZar −
dimZ.

(ii) A closed irreducible subvariety Z of Y is said to be weakly optimal if the following
condition holds: Z ( Z ′ ⊆ Y ⇒ δws(Z

′) > δws(Z), where Z ′ is assumed to be irreducible.

Theorem 8.2. There exists a finite set Σ consisting of elements of the form ((Q,Y+), N),
where (Q,Y+) is a connected mixed Shimura subdatum of (P,X+) and N is a normal subgroup
of Q whose reductive part is semi-simple, such that the following property holds. If a closed
irreducible subvariety Z of Y is weakly optimal, then there exists ((Q,Y+), N) ∈ Σ such that
ZbiZar = u(N(R)+ỹ) for some ỹ ∈ Y+.

Our proof of Theorem 8.2 follows the guideline of Daw-Ren [DR18, Proposition 3.3] for the
corresponding result for pure Shimura varieties, and plugs in the author’s previous work on
extending a finiteness result for pure Shimura varieties by Ullmo [Ull14, Théorème 4.1] to the
mixed case [Gao17b, Theorem 12.2].

8.1. Preliminary. We give an equivalent statement of the weak Ax-Schanuel theorem formu-
lated by Habegger-Pila [HP16]. We start by the following definition.

Definition 8.3. (i) For any complex analytic irreducible subset Z̃ of X+, define δZar(Z̃) =

dim Z̃Zar − dim Z̃.
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(ii) A closed complex analytic irreducible subset Z̃ of u−1(Y ) is said to be Zariski optimal

if the following condition holds: Z̃ ( Z̃ ′ ⊆ u−1(Y ) ⇒ δZar(Z̃
′) > δZar(Z̃), where Z̃ ′ is

assumed to be complex analytic irreducible.

It is clear that if Z̃ is Zariski optimal in u−1(Y ), then Z̃ is a complex analytic irreducible

component of Z̃Zar ∩ u−1(Y ).

Theorem 8.4. Let Z̃ be a complex analytic irreducible subset of u−1(Y ) which is Zariski optimal.

Then Z̃Zar is weakly special.

Proof. This is equivalent to the weak Ax-Schanuel theorem (Theorem 3.5). See [HP16, §5]. �

By Theorem 2.6 there exists a Shimura embedding (P,X+) ↪→ (G0,D+)× (P2g,D,a,X+
2g,a) for

some connected pure Shimura datum (G0,D+) and some g × g-diagonal matrix D. Let V be
the unipotent radical of P and let G be P/V . Denote by π̃ : (P,X+) → (G,X+

G ). Fix a Levi

decomposition P = V oG. It induces X+ ' V (R)×X+
G . All semi-direct products taken below

are assumed to be compatible with this one.
Let T be the set of pairs (V ′, G′) consisting of a symplectic (with respect to the non-degenerate

alternative form Ψ in (2.1)) subspace of VR and a connected subgroup of GR which is semi-simple
and has no compact factors. Let

G := Sp2g,D(R)×G(R).

Then G acts on T by (gV , g) · (V ′, G′) = (gV V
′, gG′g−1). Up to the action of G on T , there exist

only finitely many such pairs; see [Gao17b, Lemma 12.3]. Fix Ω a finite set of representatives.
Finally for an element t = (V ′, G′) ∈ T and a point (x̃V , x̃G) ∈ X+ ' V (R)×X+

G , define

(V ′, G′)(x̃V , x̃G) = {(V ′(R) + g′x̃V , g
′x̃G) : g′ ∈ G′(R)}.

8.2. An auxiliary finiteness result. Fix F a fundamental set for u : X+ →M such that u|F
is definable in Ran,exp.

Consider the following definable set

Υ = {(ỹ, g, t, v) ∈ (u−1(Y ) ∩ F)× G × Ω× V (R) : gG′g−1 · gV V ′ ⊆ gV V ′,
ỹ(S) ⊆ (v, 1) ·NP (gV V

′ o gG′g−1) · (−v, 1)},

where S is the Deligne torus as in Definition 2.1, g = (gV , g), t = (V ′, G′), andNP (gV V
′ogG′g−1)

is the normalizer of gV V
′ o gG′g−1 in PR.[14]

Lemma 8.5. We have

(i) For any (ỹ, g, t, v) ∈ Υ, we have that (g · t)ỹ is complex analytic (and hence complex
algebraic since it is also semi-algebraic).

(ii) Any weakly special subset having non-empty intersection with u−1(Y )∩ F is of the form
(g · t)ỹ for some (ỹ, g, t, v) ∈ Υ.

Proof. (i) The set (g · t)ỹ is

{(gV V ′(R) + gg′g−1ỹV , gg
′g−1ỹG) : g′ ∈ G′(R)},

[14]The semi-direct product gV V
′ o gG′g−1 is well-defined by the assumption gG′g−1 · gV V ′ ⊆ gV V ′.
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where ỹ = (ỹV , ỹG) under X+ ' V (R)×X+
G . Denote by ỹ′ = (ỹV −v, ỹG). Then (g ·t)ỹ is

the translate of the group orbit (gV V
′ogG′g−1)(R) · ỹ′ by the constant section {v}×X+

G .
The group orbit is complex analytic because ỹ′(S) ⊆ NP (gV V

′ o gG′g−1). The constant
section is complex analytic by the discussion in §2.3 (between (2.9) and (2.11)). Hence
(g · t)ỹ is complex analytic.

(ii) Let X̃ be such a weakly special subset. Then there exist a connected mixed Shimura
subdatum of Kuga type (Q,Y+) of (P,X+), a normal subgroup N of Q whose reductive

part is semi-simple, and a point ỹ ∈ Y+ such that X̃ = N(R)+ỹ. We can take ỹ ∈
u−1(Y ) ∩ F. Then it suffices to take g · t to be (VN,R, G

nc
N,R), where VN = V ∩N , GN =

N/VN and Gnc
N,R is the product of the non-compact simple factors of G+

N,R. The element

v ∈ V (R) appears because N = (v, 1)(VN oGN )(−v, 1) for some v ∈ V (Q).[15] �

From now on, all the dimensions are real dimensions. Define the following functions on
(u−1(Y ) ∩ F)× G × Ω× V (R):

d(ỹ, g, t, v) = dimỹ

(
(g · t)ỹ

)
= dimỹ

(
(gV V

′, gG′g−1)ỹ
)
,

dY (ỹ, g, t, v) = dimỹ

(
u−1(Y ) ∩ F ∩ (g · t)ỹ

)
= dimỹ

(
u−1(Y ) ∩ F ∩ (gV V

′, gG′g−1)ỹ
)
.

Define

Ξ0 = {(ỹ, g, t, v) ∈ Υ : (ỹ, g
1
, t1, v1) ∈ Υ, (g · t)ỹ ( (g

1
· t1)ỹ

⇒ d(ỹ, g, t, v)− dY (ỹ, g, t, v) < d(ỹ, g
1
, t1, v1)− dY (ỹ, g

1
, t1, v1)}.

Finally define

Ξ = {(ỹ, g, t, v) ∈ Ξ0 : (ỹ, g
1
, t1, v1) ∈ Υ, (g · t)ỹ ) (g

1
· t1)ỹ ⇒ dY (ỹ, g, t, v) > dY (ỹ, g

1
, t1, v1)}.

Then both Ξ0 and Ξ are definable.

Lemma 8.6. The set of pairs {(g · t, v) : (ỹ, g, t, v) ∈ Ξ} is finite.

Proof. We start by proving that (g · t)ỹ is weakly special for any (ỹ, g, t, v) ∈ Ξ. Let Z̃ be the

complex analytic irreducible component of (g · t)ỹ ∩ u−1(Y ) passing through ỹ such that

dim Z̃ = dY (ỹ, g, t, v).

Let Z̃ ′ ⊇ Z̃ be such that Z̃ ′ ⊆ u−1(Y ) is complex analytic irreducible and δZar(Z̃
′) ≤ δZar(Z̃).

We may and do assume that Z̃ ′ is Zariski optimal. Then Z̃ ′ is a complex analytic irreducible

component of (Z̃ ′)Zar∩u−1(Y ), and (Z̃ ′)Zar = (g
1
·t1)ỹ for some (ỹ, g

1
, t1, v1) ∈ Υ by Theorem 8.4

and Lemma 8.5.(ii). Here the ỹ can be taken as above.

Now we have Z̃ ⊆ (g · t)ỹ ∩ (g
1
· t1)ỹ, and hence Z̃ ⊆ (g

2
· t2)ỹ for some (ỹ, g

2
, t2, v2) ∈ Υ with

(g
2
· t2)ỹ ⊆ (g · t)ỹ.[16] By definition of Ξ, we then have (g

2
· t2)ỹ = (g · t)ỹ. Hence

(g · t)ỹ ⊆ (g
1
· t1)ỹ.

[15]Here VN o GN is defined to be compatible with the fixed Levi decomposition P = V o G. It may differ
from N as {0}oGN may not be contained in N .

[16]The point ỹ can be taken as before since ỹ ∈ Z̃. Then (g
2
· t2, v2) arises from the intersection of the two

subgroups (v, 1)(gV V
′ o gG′g−1)(−v, 1) and (v1, 1)(gV,1V

′
1 o g1G

′
1g
−1
1 )(−v1, 1) of P .
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On the other hand we have

d(ỹ, g
1
, t1, v1)− dY (ỹ, g

1
, t1, v1) = dim(Z̃ ′)Zar − dimỹ((Z̃

′)Zar ∩ u−1(Y ) ∩ F)

≤ δZar(Z̃
′) ≤ δZar(Z̃)

≤ d(ỹ, g, t, v)− dY (ỹ, g, t, v).

Hence by definition of Ξ0, we have (g · t)ỹ = (g
1
· t1)ỹ = (Z̃ ′)Zar is weakly special.

Thus by the definition of weakly special subvarieties, we have g · t = (VN,R, G
nc
N,R) for some

Q-subgroup N of P , where VN is the unipotent radical of N , and Gnc
N,R is the almost direct

product of the non-compact factors of G+
N,R. We also obtain some v ∈ V (Q); see the proof of

Lemma 8.5.(ii). Therefore the set {(g · t, v) : (ỹ, g, t, v) ∈ Ξ} is countable.

On the other hand write Ω = {t1, . . . , tn}. Then we have Ξ =
⋃n
i=1 Ξi, where Ξi = {(ỹ, g, t, v) ∈

Ξ : t = ti}. For each i ∈ {1, . . . , n}, consider the map

Ξi →
(

Sp2g(R)/StabSp2g(R)(V
′
i )
)
×
(
G(R)/NG(R)(G

′
i)
)
×V (R), (ỹ, g, ti, v) 7→ (gV V

′
i , gG

′
ig
−1, v)

where we write ti = (V ′i , G
′
i) and g = (gV , g). This map is definable, and hence the image is

definable. But its image is {(g · t, v) : (ỹ, g, t, v) ∈ Ξi}. Thus

{(g · t, v) : (ỹ, g, t, v) ∈ Ξ} =

n⋃
i=1

{(g · t, v) : (ỹ, g, t, v) ∈ Ξi}

is definable. Hence this set is finite because it is countable and definable. �

Lemma 8.7. Let Z̃ ⊆ u−1(Y ) be Zariski optimal such that Z̃ ∩ F 6= ∅. Then we have

Z̃Zar = (g · t)ỹ

for some (ỹ, g, t, v) ∈ Ξ.

Proof. By Theorem 8.4, Z̃Zar is weakly special. Hence part (ii) of Lemma 8.5 implies

Z̃Zar = (g · t)ỹ

for some (ỹ, g, t, v) ∈ Υ. Moreover we may take ỹ ∈ Z̃ such that dim Z̃ = dimỹ(Z̃
Zar∩u−1(Y )∩F).

We wish to prove that (ỹ, g, t, v) ∈ Ξ.
We start by proving (ỹ, g, t, v) ∈ Ξ0. Suppose not, then there exists (ỹ, g

1
, t1, v1) ∈ Υ such

that (g · t)ỹ ( (g
1
· t1)ỹ and

(8.1) d(ỹ, g, t, v)− dY (ỹ, g, t, v) ≥ d(ỹ, g
1
, t1, v1)− dY (ỹ, g

1
, t1, v1).

Let Z̃ ′ be a complex analytic irreducible component of (g
1
· t1)ỹ ∩ u−1(Y ) passing through ỹ

such that dim Z̃ ′ = dY (ỹ, g
1
, t1, v1). Then

dimỹ(Z̃
′ ∩ Z̃Zar) ≥ dim Z̃ ′ + dim Z̃Zar − d(ỹ, g

1
, t1, v1) by the Dimension Intersection Inequality

≥ dim Z̃ by (8.1).
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Thus Z̃ ′ contains a neighborhood of ỹ in Z̃, and hence Z̃ ⊆ Z̃ ′. But Z̃ is Zariski optimal and

δZar(Z̃
′) ≤ δZar(Z̃) by (8.1), so Z̃ = Z̃ ′. But then we get the following contradiction to (8.1):

d(ỹ, g
1
, t1, v1)− dY (ỹ, g

1
, t1, v1) ≥ 2δZar(Z̃

′) = 2δZar(Z̃) = d(ỹ, g, t, v)− dY (ỹ, g, t, v).

Here the first inequality follows from part (i) of Lemma 8.5.
Hence (ỹ, g, t, v) ∈ Ξ0. Suppose this quadriple does not belong to Ξ, then there exists

(ỹ, g
1
, t1, v1) ∈ Υ such that (g · t)ỹ ) (g

1
· t1)ỹ and dY (ỹ, g

1
, t1, v1) = dY (ỹ, g, t, v) = dim Z̃.

But then

Z̃ ⊆ (g
1
· t1)ỹ ( (g · t)ỹ = Z̃Zar.

This is a contradiction to part (i) of Lemma 8.5. �

Proposition 8.8. There exists a finite set Σ consisting of elements of the form ((Q,Y+), N),
where (Q,Y+) is a connected mixed Shimura subdatum of (P,X+) and N is a normal subgroup

of Q whose reductive part is semi-simple such that the following property holds. If Z̃ is a complex

analytic irreducible subset in u−1(Y ) which is Zariski optimal and such that Z̃ ∩ F 6= ∅, then

there exists ((Q,Y+), N) ∈ Σ such that Z̃Zar = N(R)+ỹ for some ỹ ∈ Y+.

Proof. By Theorem 8.4, we know that Z̃ is weakly special. Thus there exist a connected mixed
Shimura subdatum of Kuga type (Q,Y+) of (P,X+), a normal subgroup N of Qder, and a point

ỹ ∈ Y+ such that Z̃ = N(R)+ỹ.
Let us prove that the N arises from finitely many choices. It suffices to prove that (VN , GN , v)

arises from finitely many choices, where VN = V ∩ N , GN = N/VN and v ∈ V (Q) such that
N = (v, 1)(VNoGN )(−v, 1). By Lemma 8.7 and Lemma 8.6, there are only finitely many choices
for (VN,R, G

nc
N,R, v), where Gnc

N,R is the almost direct product of the non-compact factors of G+
N,R.

But then we can take GN to be the smallest connected Q-subgroup of G which contains Gnc
N,R.

Hence we proved the finiteness of N .
Next for eachN , there are only finitely many (Q,Y+) such thatNCQ by [Gao17b, Lemma 12.1].

Hence we are done. �

8.3. Proof of Theorem 8.2. Let Z be a closed irreducible subvariety of Y which is weakly

optimal. Let Z̃ be a complex analytic irreducible component of u−1(Z) such that Z̃ ∩F 6= ∅. In

view of Proposition 8.8, it suffices to prove that Z̃ is Zariski optimal in u−1(Y ).

Let Z̃ ′ ⊇ Z̃ be such that Z̃ ′ ⊆ u−1(Y ) is complex analytic irreducible and δZar(Z̃
′) ≤ δZar(Z̃).

We may and do assume that Z̃ ′ is Zariski optimal. Then Z̃ ′ is a complex analytic irreducible

component of (Z̃ ′)Zar ∩ u−1(Y ), and (Z̃ ′)Zar is weakly special by Theorem 8.4.

On the other hand u−1(u(Z̃ ′)biZar) ⊇ (Z̃ ′)Zar since u(Z̃ ′)biZar is bi-algebraic. So

u(Z̃ ′)biZar = u
(

(Z̃ ′)Zar
)
.

Hence we have

δws(u(Z̃ ′)Zar) = dim u(Z̃ ′)biZar − dim u(Z̃ ′)Zar = dim(Z̃ ′)Zar − dim u(Z̃ ′)Zar

≤ dim(Z̃ ′)Zar − dim Z̃ ′ = δZar(Z̃
′) ≤ δZar(Z̃) = dim Z̃Zar − dim Z̃

≤ dimZbiZar − dimZ = δws(Z).
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Since Z̃ ′ ⊆ u−1(Y ), we have u(Z̃ ′)Zar ⊆ Y . Moreover recall our assumption that Z is weakly

optimal. So Z = u(Z̃ ′)Zar. But then Z̃ ′ ⊆ Z̃. So Z̃ is Zariski optimal. Hence we are done.

9. A simple application to the Betti map

In this section, we present a simple application of the mixed Ax-Schanuel theorem for the
universal abelian variety to the Betti map. Our goal is to show the idea, so we restrict ourselves
to a simple case.

Our setting-up is as follows: let S be an irreducible quasi-projective variety over C and let
A → S be an abelian scheme of relative dimension g. By [GN06, §2.1], A → S carries a
polarization of type D = diag(d1, . . . , dg) for some positive integers d1|d2| · · · |dg. Up to taking
a finite covering of S, it induces a cartesian diagram

A ι //

��

Ag,D

π

��
S

ιS // Ag,D.

We furthermore make the following extra assumptions for simplicity:

• the geometric generic fiber of A/S is a simple abelian variety.
• ιS is quasi-finite (so is ι).

Because of the second bullet point, we may and do replace A/S by ι(A)/ιS(S). Let AH+
g

be the pullback of Ag,D/Ag,D under uG : H+
g → Ag,D. Recall the real analytic diffeomorphism

(2.10)

iH+
g

: R2g × H+
g
∼−→ X+

2g,a = Lie(AH+
g
/H+

g ).

It induces then a real analytic diffeomorphism

iH+
g

: T2g × H+
g
∼−→ AH+

g
.

Hence we get the following map, which is called the Betti map

b : AH+
g

∼−→ T2g × H+
g → T2g

where the first map is i
−1

H+
g

and the last map is the projection.

Let S̃ be a complex analytic irreducible component of u−1
G (S), and let A

S̃
be the restriction

of AH+
g

to S̃. By abuse of notation, we denote by

b : A
S̃
→ T2g

the restriction of the Betti map.

Theorem 9.1. Let ξ : S → A be a multi-section. It induces a multi-section ξ̃ of A
S̃
/S̃. Assume

Zξ is Zariski dense in A. If dimS ≥ g, then there exists s̃ ∈ S̃ such that

rank(db|
ξ̃(s̃)

) = 2g.
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Proof. Denote by Y = ξ(S). It is an irreducible subvariety of Ag,D. Consider the diagram

X+
2g,a

u

��

R2g × H+
gi

H+
g

∼oo

Ag,D

.

Take a complex analytic irreducible component Ỹ of u−1(Y ). By abuse of notation we identify
X+

2g,a and R2g × H+
g and no longer write iH+

g
(·).

Let G = MT(S̃). Since Zξ is Zariski dense in A, it is possible to take s̃ ∈ S̃ with Mumford-

Tate group G and a ∈ R2g = V2g(R) with some non-rational coordinate such that (a, s̃) ∈ Ỹ . It
suffices to prove that rank(db|(a,s̃)) = 2g.

If rank(db|(a,s̃)) < 2g, then by property (ii) below (2.10) there exists a complex analytic variety

C̃ ⊆ S̃ of dimension ≥ dimS− g+ 1 passing through s̃ such that {a}× C̃ ⊆ Ỹ . Apply the weak

Ax-Schanuel theorem (Theorem 3.5) to Z̃ = {a} × C̃, then we have

(9.1) dim({a} × C̃)Zar + dim u({a} × C̃)Zar ≥ dim({a} × C̃) + dim u({a} × C̃)biZar.

But {a} × C̃Zar is complex analytic (by property (ii) below (2.10)) and real algebraic, and

so is algebraic. Thus ({a} × C̃)Zar = {a} × C̃Zar. On the other hand, the characterization

of bi-algebraic subvarieties of Ag,D and the assumption on a imply that u({a} × C̃)biZar =

Ag,D|uG(C̃)biZar ; see Proposition 3.7.[17] So (9.1) becomes

(9.2) dim C̃Zar + dim u({a} × C̃)Zar ≥ dimS − g + 1 + dimAg,D|uG(C̃)biZar .

But dim C̃Zar ≤ dim C̃biZar = dim uG(C̃)biZar. Moreover dim u({a} × C̃)Zar = dim uG(C̃)Zar

since {a} × C̃ ⊆ Ỹ and Y = ξ(S) is a multi-section of A/S. So we obtain from (9.2)

dim uG(C̃)biZar + dim uG(C̃)Zar ≥ dimS − g + 1 + dimAg,D|uG(C̃)biZar .

Thus

dim uG(C̃)Zar ≥ dimS − g + 1 + (dimAg,D|uG(C̃)biZar − dim uG(C̃)biZar) = dimS − g + 1 + g.

Hence dim uG(C̃)Zar ≥ dimS + 1. But this is impossible as uG(C̃)Zar ⊆ S. So we get a
contradiction. �
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[GN06] A. Genestier and B.C. Ngô. Lecture on Shimura varieties. https://www.math.uchicago.edu/ ngo/Shimura.pdf,
2006.

[HP16] P. Habegger and J. Pila. O-minimality and certain atypical intersections. Annales scientifiques de l’Ecole
Normale Supérieure, 4:813–858, 2016.

[HT02] J. Hwang and W. To. Volumes of complex analytic subvarieties of Hermitian symmetric spaces. American
Journal of Mathematics, 124(6):1221–1246, 2002.

[KUY16] B. Klingler, E. Ullmo, and A. Yafaev. The hyperbolic Ax-Lindemann-Weierstrass conjecture. Publ.
math. IHES, 123:333–360, 2016.

[KUY18] B. Klingler, E. Ullmo, and A. Yafaev. Bi-algebraic geometry and the André-Oort conjecture. In Algebraic
Geometry: Salt Lake City 2015, Part 2 (Utah, 2015), Proc. Sympos. Pure Math., pages 319–360. Amer.
Math. Soc., 2018.

[Mil88] J. Milne. Canonical models of (mixed) Shimura varieties and automorphic vector bundles. In Auto-
morphic forms, Shimura varieties, and L-functions. Vol. I. Proceedings of the conference held at the
University of Michigan, Ann Arbor, Michigan, July 6-16 1988.

[MPT19] N. Mok, J. Pila, and J. Tsimerman. Ax-Schanuel for Shimura varieties. Annals of Mathematics, 189:945–
978, 2019.
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Algebra and Number Theory, volume 253 of Progress in Mathematics, pages 251–282. Birkhäuser, 2005.
[PR94] V. Platonov and A. Rapinchuk. Algebraic Groups and Number Theory. Academic Press, INC., 1994.
[PS09] Y. Peterzil and S. Starchenko. Complex analytic geometry and analytic-geometric categories. J.Reine

Angew. Math (Crelle), 626:39–74, 2009.
[PS13] Y. Peterzil and S. Starchenko. Definability of restricted theta functions and families of abelian varieties.

Duke Journal of Mathematics, 162(4):731–765, 2013.
[PT14] J. Pila and J. Tsimerman. Ax-Schanuel for the j-function. Duke Journal of Mathematics, 165(13):2587–

2605, 2014.
[Tsi15] J. Tsimerman. Ax-Schanuel and o-minimality. In O-minimality and Diophantine geometry, number 421

in London Math. Soc. Lecture Note Series. Camb. Univ. Press, 2015.
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